
NYU SCPS X52.9547 Section 1 Networking and Unix

Fall 2005 Handout 5

CIDR: Classless Inter-Domain Routing (‘‘cider’’)

R011000000 00000000 00000000 00000000 192.0.0.0/24

R111000000 00000000 00000001 00000000 192.0.1.0/24

R211000000 00000000 00000010 00000000 192.0.2.0/24

R311000000 00000000 00000011 00000000 192.0.3.0/24

R411000000 00000000 00000100 00000000 192.0.4.0/24

R511000000 00000000 00000101 00000000 192.0.5.0/24

R611000000 00000000 00000110 00000000 192.0.6.0/24

R711000000 00000000 00000111 00000000 192.0.7.0/24

R811000000 00000000 00001000 00000000 192.0.8.0/24

R911000000 00000000 00001001 00000000 192.0.9.0/24

R1011000000 00000000 00001010 00000000 192.0.10.0/24

R1111000000 00000000 00001011 00000000 192.0.11.0/24

R1211000000 00000000 00001100 00000000 192.0.12.0/24

R1311000000 00000000 00001101 00000000 192.0.13.0/24

R1411000000 00000000 00001110 00000000 192.0.14.0/24

R1511000000 00000000 00001111 00000000 192.0.15.0/24

11000000 00000000 00000000 00000000 192.0.0.0/22

11000000 00000000 00000100 00000000 192.0.4.0/22

11000000 00000000 00001000 00000000 192.0.8.0/21

R015’s routing table

11000000 00000000 00000000 00000000 192.0.0.0/20 R’s routing table

R03

R47

R815

R015 R

This diagram shows routers and the direct connections between them.We do not show the LAN(s) to
which each router is attached, and the non-router hosts on the LANs.We also do not show the interface

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 1 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

numbers. Assumethat the interfaces leading leftwards from each router are numbered from top to bottom,
starting at zero.

In the vertical column are sixteen Class C networks. (Infact, 192 is the first Class C byte; see Hand-
out 1, p. 13.) Their addresses are shown in binary and dotted decimal. Because they are Class C, each
address has 24 network bits and 8 host bits.We show this by writing the/24 ’s.

The undashed vertical lines separate the network bits from the host bits. The dashed vertical lines
show that the addresses of the first four networks start with the same 22 bits. Ditto for the next four net-
works. Theaddresses of the last eight networks start with the same 21 bits.

RouterR03 is connected to the four routersR0, R1, R2, and R3. Its routing table therefore contains
four entries telling how to get to the network connected to each router

192.0.0.0/24 interface0
192.0.1.0/24 interface1
192.0.2.0/24 interface2
192.0.3.0/24 interface3

You would think that routerR015’s routing table would also contain four entries for these destina-
tions. ButR015 has only one entry,summarizingthe above four:

192.0.0.0/22 interface0

R015 can summarize the four entries into one because they agree in their first bits, and they all lie in the
same direction fromR015: throughR015’s interface0 to routerR03. Summarization is also called
route aggregation or supernetting.See pp. 32−33; RFC’s 1517−1520.

Similarly, routerR47 has four entries telling how to get to these destinations:

192.0.4.0/24 interface0
192.0.5.0/24 interface1
192.0.6.0/24 interface2
192.0.7.0/24 interface3

RouterR015 can summarize them into the single entry

192.0.4.0/22 interface0

Finally, routerR815 has eight entries telling how to get to these destinations:

192.0.8.0/24
192.0.9.0/24
192.0.10.0/24
192.0.11.0/24
192.0.12.0/24
192.0.13.0/24
192.0.14.0/24
192.0.15.0/24

RouterR015 can summarize them into the single entry

192.0.8.0/21 interface0

There’s more. We hav e seen that routerR015 has the following three entries.I’ ll write them in
binary, too:

11000000 00000000 00000000 00000000 == 192.0.0.0/22
11000000 00000000 00000100 00000000 == 192.0.4.0/22
11000000 00000000 00001000 00000000 == 192.0.8.0/21

They start with the same 20 bits, so routerRcan summarize them into the single entry

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 2 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

11000000 00000000 00000000 00000000 == (192.0.0.0/20)

A router can summarize only when the networks addresses agree in their leading bits and lie in the
same direction from that router. For this reason, an attempt is being made to assign consecutive addresses
to networks that are geographically near each other. For example, all newly assigned network addresses in
Europe lie in the range194.0.0.0 to 195.255.255.255 . In the United States, the American Reg-
istry for Internet Numbershttp://www.arin.net/ encourages people to trade in older, non-consecu-
tive network addresses for new ones.

Suppose a datagram addressed to192.0.6.2 arrives at routerR. The first 20 bits of192.0.6.2
match the entry for interface 0 inR’s routing table, so the datagram will be sent through that interface to
R015. The first 22 bits of192.0.6.2 match the entry for interface 1 inR015’s routing table, routing
table, so the datagram will be sent through that interface toR47. The first 24 bits of192.0.6.2 match
the entry for interface 2 inR47’s routing table, so the datagram will be sent through that interface toR6.

Private IP addresses and NAT

A network connected to the outside world must use IP addresses issued by an ISP, which is a hassle
and costs money. A network that is not connected to the outside world is free to use any IP addresses you
want. Of course, you’ll have to change them if you ever connect to the Internet—they might duplicate
someone else’s addresses.

For this reason, RFC 1918 set aside three blocks of IP addresses for internal use only:

Class A: 10.0.0.0/8 i.e., 10.0.0.0 to 10.255.255.255
Class B: 172.16.0.0/12 i.e., 172.16.0.0 to 172.31.255.255
Class C: 192.168.0.0/16 i.e., 192.168.0.0 to 192.168.255.255

For example, the Mac OSX I usually use at NYU isftcg5faculty2.edlab.its.nyu.edu
and has the RFC 1918 IP address192.168.20.196 . But packets from hosts with RFC 1918 addresses
cannot be routed outside of NYU.That’s why I can’t ping or traceroute to an outside host from the
Mac.

When I point the Mac’s web browser at

http://www.whatismyip.com/

I am told that the Mac’s address is128.122.128.41 because of a NAT translation box (pp. 85−88) at
NYU. In fact, several of the NYU Mac’s with RFC 1918 addresses are told bywhatismyip that their
address is128.122.128.41 . The name of128.122.128.41 is PROXY-DEV.NS.NYU.EDU.

A NAT box can also perform ‘‘port address translation’’ (PAT). TCPor UDP packets coming into
NYU that are addressed to port 10000 of128.122.128.41 can be routed to my Mac; those addressed to
port 10001 of128.122.128.41 can be routed to another Mac.This is how you survive if your organi-
zation has more hosts than IP addresses, at least if all the hosts will not be in use at the same time.

Flooding

Used mostly by the military and by wireless networks.

Static routing

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 3 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

R0

R1

R2

R3

R4

R5

R6

1

5

1

2

1

4

2

1

5

1

Here is an algorithm for finding the shortest path between two routers. Theadjacency table has a
zero for every pair of routers that are not connected directly to each other. It also has zero for every router’s
distance from itself.

R0 R1 R2 R3 R4 R5 R6

R0 0 1 5 0 0 0 0

R1 1 0 0 1 2 0 0

R2 5 0 0 2 0 1 0

R3 0 1 2 0 1 4 0

R4 0 2 0 1 0 0 5

R5 0 0 1 4 0 0 1

R6 0 0 0 0 5 1 0

The shortest path algorithm is used by OSPF. For simplicity, we assume that there is only at most
one direct link between any two routers.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/shortest.c

1 #include <stdio.h>
2 #include <stdlib.h> /* for exit and EXIT_SUCCESS */
3 #include <limits.h> /* for INT_MAX */
4
5 #define N 7 /* the number of nodes */
6 i nt distance[N][N] = {
7 { 0, 1, 5, 0, 0, 0, 0},
8 { 1, 0, 0, 1, 2, 0, 0},
9 { 5, 0, 0, 2, 0, 1, 0},

10 {0, 1, 2, 0, 1, 4, 0},
11 {0, 2, 0, 1, 0, 0, 5},
12 {0, 0, 1, 4, 0, 0, 1},
13 {0, 0, 0, 0, 5, 1, 0}
14 };
15
16 void shortest_path(int begin, int end);
17
18 int main(int argc, char **argv)
19 {
20 shortest_path(0, 6);
21 return EXIT_SUCCESS;
22 }

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 4 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

23
24 void shortest_path(int begin, int end)
25 {
26 struct router {
27 int predecessor;
28 int length;
29 enum {permanent, tentative} label;
30 };
31 struct router a[N];
32
33 int i;
34 int current;
35 int new_distance;
36 int min;
37
38 /* Initialize the state of each node. */
39 for (i = 0; i < N; ++i) {
40 a[i].predecessor = - 1;
41 a[i].length = I NT_MAX;
42 a[i].label = t entative;
43 }
44
45 current = begin;
46 a[current].length = 0;
47 a[current].label = permanent;
48
49 while (current != end) {
50 printf("When current == R%d, we are probing ", current);
51
52 /*
53 Probe each tentatively labeled node i adjacent to the current
54 node. Compute the distance from the beginning to i via the
55 current node. If this new distance is the shortest distance
56 we’ve seen so far from the beginning to i, record the new
57 distance as the tentative distance from the beginning to i.
58 */
59 for (i = 0; i < N; ++i) {
60 if (a[i].label == tentative && distance[current][i] > 0) {
61 printf(" R%d", i);
62
63 new_distance =
64 a[current].length + distance[current][i];
65
66 if (new_distance < a[i].length) {
67 a[i].length = new_distance;
68 a[i].predecessor = current;
69 }
70 }
71 }
72
73 printf("\n");
74
75 /*
76 Let the new current node be the tentatively labeled node with

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 5 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

77 the smallest distance to the end.
78 */
79 min = I NT_MAX;
80 current = 0;
81
82 for (i = 0; i < N; ++i) {
83 if (a[i].label == tentative && a[i].length < min) {
84 min = a[i].length;
85 current = i ;
86 }
87 }
88
89 if (min == INT_MAX) {
90 printf("There is no path from R%d to R%d.\n",
91 begin, end);
92 return;
93 }
94
95 a[current].label = permanent;
96 }
97
98 printf("\nThe shortest path from R%d to R%d, listed backwards, is\n",
99 begin, end);

100
101 for (current = end;; current = a[current].predecessor) {
102 printf("R%d\n", current);
103 if (current == begin) {
104 break;
105 }
106 }
107 }

1$ cd ˜mm64/public_html/x52.9547/src
2$ gcc -o ˜/bin/shortest shortest.c
3$ ls -l ˜/bin/shortest

4$ shortest
When current == R0, we are probing R1 R2
When current == R1, we are probing R3 R4
When current == R3, we are probing R2 R4 R5
When current == R4, we are probing R6
When current == R2, we are probing R5
When current == R5, we are probing R6

The shortest path from R0 to R6, listed backwards, is
R6
R5
R2
R3
R1
R0

(1) When the current node isR0, we assign a tentative length of 1 toR1 and 5 toR2.

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 6 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

(2) When the current node isR1, we assign a tentative length of 2 toR3 and 3 toR4.

(3) When the current node isR3, we assign a tentative length of 6 toR5. The tentative length ofR4
is already 3, so we don’t change it.We change the tentative length ofR2 from 5 to 4.

Note that the path followed by the ‘‘current node’’ is not necessarily the same as the shortest path
from the beginning to the end.For example, the current node is momentarilyR4, but R4 is not on the final
path.

RIP: Routing Information Protocol

RIP is adistance vectorrouting algorithm. See pp. 179−184; RFC’s 1058 (RIP Version 1) and 2453
(RIP Version 2).

Suppose that sending a packet directly from one router to another takes one unit of time. Or perhaps
it costs one unit of money. Or perhaps it introduces errors that cause one unit of pain.

We will say that the direct distance between the two routers is 1.(‘‘Direct’ ’ means that there are no
intervening routers between them.) RIP always believes that the distance between routers is 1, but a
smarter distance vector protocol might know that the distances can be greater than one.

Here’s the graph we used before:

R0

R1

R2

R3

R4

R5

R6

1

5

1

2

1

4

2

1

5

1

Propagate information about R0 from router to router

Each router broadcasts to its immediate neighbors, but does not send information to anyone else.The
broadcasts are repeated every 30 seconds.We assume for simplicity that they all happen at the same time,
but they really don’t.

(1) R0 finds out how far it is from its immediate neighborsR1 andR2 and broadcasts the results to
them.

(2) R1 hears fromR0 that R1 is one unit away from R0 and broadcasts this information to all its
immediate neighborsR4, R3, andR0. (Of course,R0 ignores this broadcast coming back fromR1.)

(3) R2 hears fromR0 that R2 is 5 units away from R0 and broadcasts this information to all its
immediate neighborsR3, R5, andR0. (Of course,R0 ignores this broadcast coming back fromR0.)

(4) R3 hears fromR2 that R2 is 5 units away from R0. R3 concludes thatR3 is 7 units away from
R0 via a path whose first step isR2.

But more or less simultaneously, R3 also hears fromR2 that R2 is 1 unit away from R0. R3 con-
cludes thatR3 is only 2 units away from R0 via a path whose first step isR1. R3 then forgets about the
longer path fromR3 to R0 whose first step isR2.

R3 broadcasts to its immediate neighborsR1, R2, R4, and R5 thatR3 is 2 units away from R0. You
can see why this broadcast will be ignored byR1: R1 is only 2 units away from R0. But this broadcast will
be avidly absorbed byR2. R2 knows that it is 5 units away from R0 along a direct path, but is glad to find
out that it is 4 units away from R0 along a path whose first step isR3. R3 then forgets about the longer
path fromR3 directly toR0.

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 7 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Good news travels fast over RIP.

Suppose a link of length 2 comes up betweenR0 andR5. R5 will hear the good news along the new
link from R0 and will be delighted to know that it is only 2 units fromR0. R2, R3, and R6 will then hear
from R5 thatR5 is 2 units away from R0. R3 will ignore this broadcast becauseR3 is already 2 units away
from R0. But R2 will conclude thatR2 is now only 3 units away fromR0 along a path whose first step is
R5, andR6 will conclude thatR6 is now only 3 units away fromR0 along a path whose first step isR5.

It will take routers two 30-second intervals to readjust their distances fromR0.

Counting to infinity: regain equilibrium after 10 1⁄2 minutes

Bad news travels slowly over RIP. Let’s use a much simpler group of routers:

R0 R1 R2
1 1

R0 should assureR1 ev ery 30 seconds that it is still there.If 180 seconds passes withoutR1 hearing
from R0, R1 will assume thatR0 is down, or that the link between them is down.

RIP can count up only to 15. It thinks that any greater distance is infinity. It will therefore take three
minutes plus 15 periods of 30 seconds = 101⁄2 minutes forR1 to realize that it has no way to reachR0. Dur-
ing those three minutes, a packet addressed toR0 that finds itself at eitherR1 or R2 would go back and
forth between the latter two routers until its time to live counted down to zero.

RFC 1058, pp. 13−14: ‘‘If a [router such as the above R0] becomes completely inaccessible, we want
counting to infinity [i.e., 16] to be stopped as soon as possible.Infinity must be large enough so that no real
route is that big. But it shouldn’t be any bigger than required.Thus the choice of infinity is a tradeoff
between network size and speed of convergence in case counting to infinity happens.’’ A small infinity will
make the network converge more rapidly, but it will limit the size of the network.

Split horizon: regain equilibrium after 3 minutes

In actual RIP, a router does not broadcast information back to the source from which it heard it.In
the above diagram,R2 hears fromR1 thatR1 is 1 unit away from R0. R2 then concludes thatR2 is 2 units
aw ay from R0 via a path whose first step isR1. But R2 does not broadcast (‘‘advertise’’) this conclusion to
R1. If the link betweenr0 andR1 goes down,R1 will resign itself to this fact after 3 minutes.

Split horizon with poison rev erse: p. 183

Will the above split horizon scheme always prevent a count to infinity?If R0 goes down, R1 andR2
will perform their own count to infinity. With split horizon and poison reverse, this will be prevented and
we will regain equilibrium after 3 minutes.

R0

R1 R2

1

1

1

RFC 1058, pp. 14−15: ‘‘However, poisoned reverse does have a disadvantage: it increases the size of
the routing messages. Consider the case of a campus backbone connecting a number of different buildings.
In each building, there is a gateway connecting the backbone to a local network. Considerwhat routing
updates those gateways should broadcast on the backbone network. All that the rest of the network really
needs to know about each gateway is what local networks it is connected to. Using simple split horizon,

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 8 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

only those routes would appear in update messages sent by the gateway to the backbone network. If split
horizon with poisoned reverse is used, the gateway must mention all routes that it learns from the backbone,
with metrics of 16. If the system is large, this can result in a large update message, almost all of whose
entries indicate unreachable networks.’’

Tr iggered updates

Will the above split horizon with poison reverse always prevent a count to infinity?

The DNS resolver

Given a host’s fully qualified domain namei5.nyu.edu , how can you find the corresponding IP
address128.122.253.152 ? Conversely, giv en an IP address, how can you find the corresponding fully
qualified domain name?

The filensswitch.conf (Handout 1, p. 24) tells us to look in a file first. See pp. 52−54.

1$ awk ’$1 == "hosts:"’ /etc/nsswitch.conf
hosts: files dns

In this case,files means the file/etc/hosts :

2$ cat -n /etc/hosts | more
1 #
2 # I nternet host table
3 #
4 127.0.0.1 localhost
5 ## 1 28.122.253.152 i6.home.nyu.edu loghost
6 128.122.253.152 i5.nyu.edu i5 loghost

If we can’t find what we’re looking for in/etc/hosts , nsswitch.conf tells us to try DNS sec-
ond. TheDomain Name System is a database of fully qualified domain names and IP addresses.Each
record of the database is called a Resource Record (RR, pp. 216−217).The database is resides in thousands
or millions of programs. These programs (and the hosts on which they run) are calleddomain name
servers.

Instead of talking directly to a domain name server, you use a package of functions called aresolver.
See pp. 60, 206, andresolver (3resolv). If there is no server running on your machine, your resolver
will communicate with a server running on another machine via UDP.

Before our host is fully booted, our resolver may not be able to talk to other hosts because UDP is not
up yet. In this case, our only hope is the/etc/hosts file.

After our host is fully booted, our resolver looks at the/etc/resolv.conf file to see which
domain name server(s) it should talk to.For example, there might be a domain name server running right
here on our host. But disappointingly, our /etc/resolv.conf file mentions no domain name server on
i5.nyu.edu (128.122.253.152):

3$ cat -n /etc/resolv.conf | more
1 domain nyu.edu
2 nameserver 128.122.253.37
3 nameserver 128.122.128.24
4 nameserver 128.122.253.92
5 s earch nyu.edu home.nyu.edu es.its.nyu.edu

Our resolver therefore sends questions to the three domain name servers

128.122.253.37 NYUNSB.NYU.EDU
128.122.128.24 EGRESS.NYU.EDU
128.122.253.92 CMCL2.NYU.EDU

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 9 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

The search command

We can abbreviate the name of other machines whose names end withnyu.edu . See p. 59.For
example, we can say

1$ ping i4
i4 is alive

instead of

2$ ping i4.nyu.edu

Thesearch command in line 5 of/etc/resolv.conf is what lets us get away with this. Page
208 says that theresolv.conf file should never contain both of the commandsdomain andsearch ,
but ours does.

Why isn’t i5.nyu.edu running a domain name server?

A dæmon runs as long as the machine is up, so it must be launched in the background with an amper-
sand. Seesh (1) pp. 1, 3, 7 for background jobs in the Bourne Shell.For example, theinetd dæmon is
launched in the background when we come up to runlevel 2 in Handout 4, p. 4. If our host was going to run
the name server /usr/sbin/in.named , it would be launched in the background when we come up to
runlevel 2:

1$ cd /etc
2$ ls -li init.d/inetsvc
392 -rwxr--r-- 5 r oot sys 7353 Mar 18 2004 init.d/inetsvc

3$ ls -li ‘find . -inum 392 2> /dev/null‘
392 -rwxr--r-- 5 r oot sys 7353 Mar 18 2004 ./init.d/inetsvc
392 -rwxr--r-- 5 r oot sys 7353 Mar 18 2004 ./rc0.d/K42inetsvc
392 -rwxr--r-- 5 r oot sys 7353 Mar 18 2004 ./rc1.d/K42inetsvc
392 -rwxr--r-- 5 r oot sys 7353 Mar 18 2004 ./rc2.d/S72inetsvc
392 -rwxr--r-- 5 r oot sys 7353 Mar 18 2004 ./rcS.d/K42inetsvc

4$ cat -n init.d/inetsvc | sed -n 72,80p
72 #
73 # If this machine is configured to be an Internet Domain Name System (DNS)
74 # server, run the name daemon. Start named prior to: route add net host,
75 # to avoid dns gethostbyname timout delay for nameserver during boot.
76 #
77 if [-f / etc/named.conf] && [-f /usr/sbin/in.named]; then
78 echo ’starting internet domain name server.’
79 /usr/sbin/in.named &
80 fi

To see what the-f in the[single square brackets] means,

5$ man test

See pp. 212−216 for thenamed.conf file, which we don’t hav e.

6$ ls -l /etc/named.conf /usr/sbin/in.named
/etc/named.conf: No such file or directory
-r-xr-xr-x 1 root bin 404536 Feb 24 2004 /usr/sbin/in.named

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 10 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Ask the resolver a question in C via gethostbyname

You can ask the resolver a question in C by calling thegethostbyname function in line 8. The
resolver will send your question to a domain name server, and get an answer from the server. I picked a
machine that has three IP addresses; most have only one. We saw the inet_ntop in line 18 in Handout
1, p. 25, line 57.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/gethostbyname.c

1 /* C onvert a fully qualified domain name into its IP address(es). */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <netdb.h>
5
6 i nt main(int argc, char **argv)
7 {
8 s truct hostent *entry = gethostbyname("indira.uu.nl");
9 c har **pp;

10
11 if (entry == NULL) {
12 fprintf(stderr, "%s: h_errno == %d\n", argv[0], h_errno);
13 return EXIT_FAILURE;
14 }
15
16 for (pp = entry->h_addr_list; *pp != NULL; ++pp) {
17 char buffer[INET6_ADDRSTRLEN];
18 inet_ntop(entry->h_addrtype, *pp, buffer, sizeof buffer);
19 printf("%s\n", buffer);
20 }
21
22 return EXIT_SUCCESS;
23 }

Compile with the-lnsl option for the ‘‘Networking Services Library’’ /usr/lib/libnsl.a .
Type two lowercase L’s, not ones.

1$ man libnsl
2$ gcc -o ˜/bin/gethostbyname gethostbyname.c -lnsl
3$ ls -l ˜/bin/gethostbyname

4$ gethostbyname
131.211.5.1
131.211.16.1
131.211.17.1

If the gethostbyname function fails, the value ofh_errno in the above line 12 will be one of

5$ cat -n /usr/include/netdb.h | sed -n 403,406p
403 #define HOST_NOT_FOUND 1 /* Authoritive Answer Host not found */
404 #define TRY_AGAIN 2 /* N on-Authoritive Host not found, or SERVERFAIL */
405 #define NO_RECOVERY 3 /* N on recoverable errors, FORMERR, REFUSED, NOTIMP */
406 #define NO_DATA 4 /* V alid name, no data record of requested type */

See if your machine hashstrerror , which is a better way of printing an error message.

6$ man hstrerror

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 11 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

There is an ‘‘address family’’ macro for each possible value of theh_addrtype field in the above
line 18:

7$ cat -n /usr/include/sys/socket.h | sed -n ’162p;186p’
162 #define AF_INET 2 / * i nternetwork: UDP, TCP, etc. */
186 #define AF_INET6 26 /* Internet Protocol, Version 6 */

The following program converts in the opposite direction, from an IP address to a fully qualified
domain name.For the in_addr_t in the following line 8, see Handout 1, p. 14.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/gethostbyaddr.c

1 /* C onvert an IP address into its fully qualified domain name. */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <netdb.h>
5
6 i nt main(int argc, char **argv)
7 {
8 i n_addr_t ip = inet_addr("131.211.17.1");
9 s truct hostent *entry;

10
11 if ((int)ip == -1) {
12 fprintf(stderr, "%s: bad argument to inet_addr\n", argv[0]);
13 return EXIT_FAILURE;
14 }
15
16 entry = gethostbyaddr((char *)&ip, sizeof ip, AF_INET);
17 if (entry == NULL) {
18 fprintf(stderr, "%s: h_errno == %d\n", argv[0], h_errno);
19 return EXIT_FAILURE;
20 }
21
22 printf("%s\n", entry->h_name);
23 return EXIT_SUCCESS;
24 }

8$ gcc -o ˜/bin/gethostbyaddr gethostbyaddr.c -lnsl
9$ ls -l ˜/bin/gethostbyaddr
10$ gethostbyaddr
Indira.uu.nl

Ask the resolver a question in Perl via gethostbyname

In the above C programgethostbyname.c , entry was the following structure:

1$ cat -n /usr/include/netdb.h | sed -n 116,123p
116 struct hostent {
117 char *h_name; /* official name of host */
118 char **h_aliases; /* alias list */
119 int h_addrtype; /* host address type */
120 int h_length; /* length of address */
121 char **h_addr_list; /* list of addresses from name server */
122 #define h_addr h_addr_list[0] /* address, for backward compatiblity */
123 };

Theh_addr_list in line 16 of the above C program above was the fifth field of the structure. This field

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 12 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

is an array of IP addresses.

In the following Perl program,@entry is a list. The fifth, sixth, seventh, etc. elements
($entry[4] , $entry[5] , $entry[6] , etc.) area sublist of IP addresses.The$#entry in line 8 is
the largest subscript in the@entry list. In this example,$#entry is 6 becauseindira has the three IP
addresses in$entry[4] , $entry[5] , $entry[6] .

Since$#entry is 6, the expression@entry[4 .. $#entry] in line 8 means the following list
of words:

($entry[4], $entry[5], $entry[6])

Theforeach loop in line 8 means the same thing as the Korn Shell loop

for ip in ${entry[4]} ${entry[5]} ${entry[6]}
do

Seeksh (1) pp. 7−8 for Korn Shell arrays.

We saw the inet_ntoa in line 9 in Handout 1, p. 27, line 37.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/gethostbyname.pl

1 #!/bin/perl
2 #Convert a fully qualified domain name into its IP address(es).
3 use Socket;
4
5 @entry = gethostbyname(’indira.uu.nl’)
6 or d ie "$0: couldn’t find indira.uu.nl\n";
7
8 f oreach $ip (@entry[4 .. $#entry]) {
9 print inet_ntoa($ip), "\n";

10 }
11
12 exit 0;

2$ gethostbyname.pl
131.211.16.1
131.211.17.1
131.211.5.1

The following program converts in the opposite direction, from an IP address to a fully qualified
domain name.The$entry[0] in line 8 is the first element of the@entry list. It corresponds to the first
field of the above C structure. We saw the inet_aton in line 5 in Handout 1, p. 17, line 8.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/gethostbyaddr.pl

1 #!/bin/perl
2 #Convert an IP address to its fully qualified domain name.
3 use Socket;
4
5 $ip = inet_aton(’131.211.17.1’) or die "$0: inet_aton failed";
6 @entry = gethostbyaddr($ip, AF_INET) or die "$0: gethostbyaddr failed";
7
8 print $entry[0], "\n";
9 exit 0;

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 13 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

3$ gethostbyaddr.pl
Indira.uu.nl

Non-interactive nslookup

The easiest way to ask your resolver to send a question to a domain name server is by running
nslookup . nslookup ev en tells you which domain name server it referred your question to.

1$ /usr/sbin/nslookup indira.uu.nl
Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

Non-authoritative answer:
Name: indira.uu.nl
Addresses: 131.211.17.1, 131.211.5.1, 131.211.16.1

2$ /usr/sbin/nslookup 131.211.17.1
Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

Name: Indira.uu.nl
Address: 131.211.17.1

Non-interactive dig

dig gives more detailed output thannslookup . Seeman resolver for the resolver options.

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 14 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1$ /usr/sbin/dig indira.uu.nl | cat -n | more
1
2 ; <<>> DiG 8.3 <<>> indira.uu.nl
3 ; ; r es options: init recurs defnam dnsrch
4 ; ; g ot answer:
5 ; ; - >>HEADER<<- opcode: QUERY, status: NOERROR, id: 2
6 ; ; f lags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 3, ADDITIONAL: 4
7 ; ; Q UERY SECTION:
8 ; ; i ndira.uu.nl, type = A, class = IN
9

10 ;; ANSWER SECTION:
11 indira.uu.nl. 7h59m58s IN A 131.211.17.1
12 indira.uu.nl. 7h59m58s IN A 131.211.5.1
13 indira.uu.nl. 7h59m58s IN A 131.211.16.1
14
15 ;; AUTHORITY SECTION:
16 uu.nl. 4h18m49s IN NS ns.uu.nl.
17 uu.nl. 4h18m49s IN NS ns1.surfnet.nl.
18 uu.nl. 4h18m49s IN NS ns2.uu.nl.
19
20 ;; ADDITIONAL SECTION:
21 ns.uu.nl. 11h47m9s IN A 131.211.4.5
22 ns1.surfnet.nl. 13h53m1s IN A 192.87.106.101
23 ns1.surfnet.nl. 21h3m26s IN AAAA 2001:610:1:800a:192:87:106:101
24 ns2.uu.nl. 1h53m49s IN A 131.211.4.6
25
26 ;; Total query time: 2 msec
27 ;; FROM: i5.nyu.edu to SERVER: default -- 128.122.253.37
28 ;; WHEN: Thu Dec 22 08:49:51 2005
29 ;; MSG SIZE sent: 30 rcvd: 215
30

Interacti ve nslookup

Whenscript captures all the input and output of an interactive program, it annoyingly stores a car-
riage return and a newline at the end of each line except the first one and last two. Thecarriage return
appears invi as aˆM, since the ASCII code of a carriage return is 13 andM is the thirteenth letter of the
alphabet. Unixneeds only need the newline, so usevi to remove the carriage return from the end of every
line, except the first one and last two.

1$ cd
2$ script myscript
$ / usr/sbin/nslookup script gives you a dollar sign prompt.
$ exit Turn off script when you’re done withnslookup .

3$ cd
4$ vi myscript The carriage returns will appear aŝM’s.
:2,$-2s/.$// Remove last character (carriage return) from each line except first and last two.
:w write
:q quit
5$

See pp. 216−217. The> is thenslookup prompt.

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 15 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

6$ /usr/sbin/nslookup
Default Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

> set type=any
> set all
Default Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

Set options:
nodebug defname search recurse
nod2 novc noignoretc port=53
querytype=ANY class=IN timeout=5 retry=2
root=ns.internic.net.
domain=nyu.edu
srchlist=nyu.edu/home.nyu.edu/es.its.nyu.edu

> nyu.edu
Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

nyu.edu internet address = 128.122.108.35
nyu.edu preference = 10, mail exchanger = SMTP.nyu.edu
nyu.edu record type LOC, interpreted as:
nyu.edu. 4D IN LOC 40 42 51.000 N 74 00 23.000 W 0.00m 1.00m 10000.00m 10.00m
nyu.edu nameserver = NS1.nyu.edu
nyu.edu nameserver = NS2.nyu.edu
nyu.edu nameserver = NYU-NS.BERKELEY.edu
nyu.edu nameserver = LAPIETRA.NYU.FLORENCE.IT
nyu.edu

origin = NS1.nyu.edu
mail addr = HOSTMASTER.nyu.edu
serial = 200512220
refresh = 86400 (1D)
retry = 7200 (2H)
expire = 2592000 (2592000)
minimum ttl = 345600 (4D)

nyu.edu nameserver = NS1.nyu.edu
nyu.edu nameserver = NS2.nyu.edu
nyu.edu nameserver = NYU-NS.BERKELEY.edu
nyu.edu nameserver = LAPIETRA.NYU.FLORENCE.IT
SMTP.nyu.edu internet address = 128.122.109.18
NS1.nyu.edu internet address = 128.122.253.83
NS2.nyu.edu internet address = 128.122.253.42
NYU-NS.BERKELEY.edu internet address = 128.32.222.90
> exit
7$

The4D in the Location record is the ‘‘time to live’’ i n p. 217—four days. RFC 1876 gives the other
fields: latitude, longitude, altitude, diameter, horizontal precision, vertical precision.m is meters; the
default is centimeters.

For the fields in the Start of Authority record, see pp. 572−576.refresh is how often a slave
server will compare the serial number of its most recently downloaded information with the master’s cur-
rent serial number. If the master doesn’t respond, a slave will wait retry seconds before trying again. A

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 16 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

slave will discard its downloaded information afterexpire seconds. Aremote server will remember for
minimum ttl seconds that a host in this zone doesn’t exist.

8$ bc
scale = 5
2592000 / 60 / 60 / 24
30.00000
control-d
9$

A zone transfer

A zone filestores the fully qualified domain names and IP addresses of all the hosts in a zone.The
textbook makes several attempts to define azone.Page 60: ‘‘A particular domain’s database file is called a
zone file...’’ Page 206: ‘‘A zone is a piece of the domain namespace over which a nameserver holds
authority.’’ Page 572: ‘‘The Start of Authority Record (SOA) marks the beginning of a zone...’’

The names of the hosts in a zone all end with the same suffix. For example, all the hosts whose
names end with.uu.nl constitute a zone.We can get the zone’s domain name server to send us all its
resource records (RR’s). Seepp. 60, 207, 231−232.

Not all domain name servers are willing to do this for us—the NYU domain name servers aren’t. See
theallow-transfer option on pp. 554, 557.

1$ /usr/sbin/nslookup
Default Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

> set type=any
> uu.nl
Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

Non-authoritative answer:
uu.nl

origin = ns.uu.nl
mail addr = hostmaster.uu.nl
serial = 2005120102
refresh = 28800 (8H)
retry = 7200 (2H)
expire = 604800 (1W)
minimum ttl = 86400 (1D)

uu.nl nameserver = ns.uu.nl
uu.nl nameserver = ns1.surfnet.nl
uu.nl nameserver = ns2.uu.nl

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 17 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Authoritative answers can be found from:
uu.nl nameserver = ns.uu.nl
uu.nl nameserver = ns1.surfnet.nl
uu.nl nameserver = ns2.uu.nl
ns.uu.nl internet address = 131.211.4.5
ns1.surfnet.nl internet address = 192.87.106.101
ns1.surfnet.nl IPv6 address = 2001:610:1:800a:192:87:106:101
ns2.uu.nl internet address = 131.211.4.6
> server ns1.surfnet.nl
Default Server: ns1.surfnet.nl
Addresses: 192.87.106.101, 2001:610:1:800a:192:87:106:101

> ls u u.nl
[ns1.surfnet.nl]
$ORIGIN uu.nl.
ns.bio 8H IN A 131.211.48.32
ns2.bio 8H IN A 131.211.48.98
ns.bureau 8H IN A 131.211.98.100
cao1 8H IN A 131.211.17.28
cao2 8H IN A 131.211.17.9
etc.
> exit
2$

The1D is the ‘‘time to live’’ i n p. 217—one day.IN A means ‘‘internet address’’.

Configure and run the name server dæmon in.named on i5.nyu.edu

RFC 1918 says that the class B NAT addresses172.16.0.0 through 172.31.255.255 are
available for an organization’s internal use, without having to be registered with any authority. See p. 86.
If you traceroute to these addresses from within NYU, you never go beyond NYU.

Let’s pretend that we have the following three machines:

172.31.0.1 host1.x529547.com
172.31.0.2 host2.x529547.com
172.31.0.3 host3.x529547.com

host1.x529547.com will also be known by the nameswww.x529547.com and
ftp.x529547.com

We hav eto create five files:

named.conf
named.ca
named.local
172.31.rev
x529547.com.hosts

The superuser would put the files in/var/named ; see filesystem (5) p. 5 for the/var directory. I
put them in my directorỹmm64/public_html/x52.9547/src/named . You can see this directory
on the web at

http://i5.nyu.edu/˜mm64.nyu.edu/x52.9547/src/

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 18 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

The configuration file named.conf

See pp. 212−216; 550−568. In our version of Unix, there must be a semicolon after every } except
the last. As you’ll see,in.named will complain about that missing semicolon. But if you supply the
missing semicolon,in.named will drop dead.

1$ man -s 4 named.conf

The directory in line 4 is prepended to the filenames in lines 6, 11, 26, 31, 36, and 41.The
print-time in line 12 will record the date and time in the logging file.The quoted strings in lines 24,
29, 34, and 39 give the default suffix for the names in the first field of the records in each file.

2$ cat -n ˜mm64/public_html/x52.9547/src/named/named.conf | more
1 #pp. 212-216; 550-568
2
3 options {
4 directory "/home1/m/mm64/public_html/x52.9547/src/named"; #pp. 553, 213
5 l isten-on port 10566 {128.122.253.152;}; #pp. 554, 557
6 pid-file "named.pid"; #pp. 553, 555
7 } ;
8
9 l ogging {

10 channel my_channel {
11 file "named.channel"; #or null; p. 562
12 print-time yes; #p. 562
13 };
14
15 category queries { #individual questions and answers, p. 563
16 my_channel;
17 };
18
19 category xfer-out { #outbound zone transfers, p. 563
20 my_channel;
21 };
22 };
23
24 zone "." { #This file converts 13 names to IP addresses.
25 type hint;
26 file "named.ca"; #".ca" stands for "cache"
27 };
28
29 zone "0.0.127.in-addr.arpa" { #This file converts one IP address to a name.
30 type master;
31 file "named.local";
32 };
33
34 zone "x529547.com" { #This file converts many names to IP addresses.
35 type master;
36 file "x529547.com.hosts";
37 };
38
39 zone "31.172.in-addr.arpa" { #This file converts many IP addresses to names.
40 type master;
41 file "172.31.rev";
42 } #no ; in BIND Version 8, even though it complains about the missing ;

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 19 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

The name server usually sends and receives packets via port 53. (The wildcard with square brackets
contains one blank and one tab.)

3$ lynx -source http://www.iana.org/assignments/port-numbers | grep ’[]53/’
domain 53/tcp Domain Name Server
domain 53/udp Domain Name Server

4$ awk ’$1 == "domain"’ /etc/services
domain 53/udp
domain 53/tcp

5$ man -s 4 services

But only the superuser can run a program that inputs packets from ports below 1024:

6$ cat -n /usr/include/netinet/in.h | sed -n 193,200p
193 /*
194 * Ports < IPPORT_RESERVED are reserved for
195 * privileged processes (e.g. root).
196 * Ports > IPPORT_USERRESERVED are reserved
197 * for servers, not necessarily privileged.
198 */
199 #define IPPORT_RESERVED 1024
200 #define IPPORT_USERRESERVED 5000

That’s why the above line 5 listens on port 10566.

To see the port numbers currently in use,

7$ netstat -an -f inet -P udp | more or -P tcp
Local Address Remote Address State

*.111 Idle
. Unbound
*.32771 Idle
. Unbound
*.123 Idle
*.32778 Idle
. Unbound
. Unbound

The cache file named.ca

See pp. 219−221.To download the file, I said

1$ cd ˜mm64/public_html/x52.9547/src/named
2$ pwd

3$ lynx -source ftp://ftp.internic.net/domain/named.root > named.ca
4$ chmod 444 named.ca
5$ ls -l named.ca
-r--r--r-- 1 mm64 users 2517 Nov 17 13:08 named.ca

In thenamed.conf file, every statement (except the last) ended with a semicolon.But in the fol-
lowing files, the semicolon is a comment delimiter. The time to live is 3,600,000 seconds = 1,000 hours =
41.67 days.

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 20 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

6$ bc
scale = 2
3600000 / 60 / 60 / 24
41.66

DNS searches for a name in the first field of each record, and returns the item in the last field of each
record.

7$ cat -n ˜mm64/public_html/x52.9547/src/named/named.ca | sed -n 15,29p
15 ;
16 ; formerly NS.INTERNIC.NET
17 ;
18 . 3600000 IN NS A.ROOT-SERVERS.NET.
19 A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
20 ;
21 ; formerly NS1.ISI.EDU
22 ;
23 . 3600000 NS B.ROOT-SERVERS.NET.
24 B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
25 ;
26 ; formerly C.PSI.NET
27 ;
28 . 3600000 NS C.ROOT-SERVERS.NET.
29 C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12

The current status of the 13 root servers is at

http://netmon.grnet.gr/pings/rootnsping/

The loopback file named.local

See p. 222.The@in the first field of line 4 stands for the default suffix 0.0.127.in-addr.arpa
in line 29 of the filenamed.conf .

Line 12 has no first field, so by default it gets the first field of the previous line.

The 1 in the first field of line 14 has no dot after it.That’s why the suffix
0.0.127.in-addr.arpa in line 29 ofnamed.conf is appended to it, yielding
1.0.0.127.in-addr.arpa . The i5.nyu.edu in line 12 does have a dot after it. That’s why the
suffix 0.0.127.in-addr.arpa is not appended to it.

1$ cat -n ˜mm64/public_html/x52.9547/src/named/named.local | more
1 ; Time to live: 60 * 60 * 24 seconds
2 $TTL 86400
3
4 @ IN SOA i5.nyu.edu. mm64.i5.nyu.edu. (
5 2004062401 ;serial number, p. 573
6 21600 ;refresh: how often slave server should check serial numbers
7 1800 ;retry: how long slave server should wait before trying again
8 604800 ;expire: how long slave server should wait before discarding
9 900 ;negative cache ttl: how long slave server should cache bad news

10)
11
12 IN NS i5.nyu.edu.
13 0 IN PTR loopback. ;the imaginary network
14 1 IN PTR localhost. ;the one machine on the imaginary network

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 21 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

The rev erse zone file 172.31.rev

See pp. 223−225. The @ in the first field of line 4 stands for the default suffix
31.172.in-addr.arpa in line 39 of the filenamed.conf .

$GENERATEis a ‘‘for’ ’ l oop. You can use it forPTR records, but not forA records. Seepp. 219,
224−225, 570.

1$ cat -n ˜mm64/public_html/x52.9547/src/named/172.31.rev | more
1 ; Time to live: 60 * 60 * 24 seconds
2 $TTL 86400
3
4 @ IN SOA i5.nyu.edu. mm64.i5.nyu.edu. (
5 2004062401 ;serial number, p. 573
6 21600 ;refresh: how often slave server should check serial numbers
7 1800 ;retry: how long slave server should wait before trying again
8 604800 ;expire: how long slave server should wait before discarding
9 900 ;negative cache ttl: how long slave server should cache bad news

10)
11
12 IN NS i5.nyu.edu.
13
14 1.0 IN PTR host1.x529547.com.
15 2.0 IN PTR host2.x529547.com.
16 3.0 IN PTR host3.x529547.com.
17
18 ;$GENERATE 1-3/1 $.0 PTR host$.x529547.com. ;Can’t say "IN".

The forward zone file x529547.com.hosts

See pp. 225−227.The@in the first field of line 4 stands for the default suffix x529547.com in line
34 of the filenamed.conf .

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 22 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1$ cat -n ˜mm64/public_html/x52.9547/src/named/x529547.com.hosts | more
1 ; Time to live: 60 * 60 * 24 seconds
2 $TTL 86400
3
4 @ IN SOA i5.nyu.edu. mm64.i5.nyu.edu. (
5 2004062401 ;serial number, p. 573
6 21600 ;refresh: how often slave server should check serial numbers
7 1800 ;retry: how long slave server should wait before trying again
8 604800 ;expire: how long slave server should wait before discarding
9 900 ;negative cache ttl: how long slave server should cache bad news

10)
11
12 IN TXT "Networking and Unix X52.9547"
13 IN LOC 40 N 75 W 0m ;latitute, longitude, altitude in meters
14 IN NS i5.nyu.edu.
15 IN MX 10 i5.nyu.edu.
16
17 localhost IN A 127.0.0.1
18 host1 IN A 172.31.0.1
19 host2 IN A 172.31.0.2
20 host3 IN A 172.31.0.3
21
22 ;host1.x529547.com will also be known as www.x529547.com
23 www IN CNAME host1
24
25 ;www.x529547.com will also be known as ftp.x529547.com
26 ;(demonstrate that CNAME’s can be chained together)
27 ftp IN CNAME www

Run the name server dæmon in.named on i5.nyu.edu

1$ cd ˜mm64/public_html/x52.9547/src/named
2$ pwd

3$ /usr/sbin/in.named -v See the version number.
in.named BIND 8.3.3 Wed Feb 18 23:46:02 PST 2004

Generic Patch-5.9-May 2002

-d 1 turns on the lowest level of debugging. in.named (1M) says thatin.named will put itself in
the background without an&; look at the-f option. Butas we have seen,/etc/rc2.s/S72inetsvc
launchesin.named with an ampersand, becausein.named will not put itself into the background until
it has bound itself to a port.

4$ /usr/sbin/in.named -c named.conf -d 1 minus d one

5$ cat named.pid so you know which process to kill
24553

6$ ps -f -p ‘cat named.pid‘
UID PID PPID C STIME TTY TIME CMD

mm64 24553 1 0 08:49:55 ? 0:00 /usr/sbin/in.named -c named.conf -d 1

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 23 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

7$ head -3 named.run created because we asked for debugging with-d 1
Debug level 1
Version = in.named BIND 8.3.3 Wed Feb 18 23:46:02 PST 2004

Generic Patch-5.9-May 2002

The following syntax error is caused by the missing semicolon in thenamed.conf file. Thisprob-
lem is fixed in Version 9 of BIND (‘‘Berkeley Internet Name Domain’’), the Unix version of a DNS server.

8$ sed -n 42p named.run
named.conf:43: syntax error near <end of file>

Individual questions are asked and answered via UDP:

9$ netstat -a -f inet -P udp | awk ’2 <= NR && NR <= 4 || $1 ˜ /\.10566$/’
UDP: IPv4

Local Address Remote Address State
-------------------- -------------------- -------
i5.10566 Idle

Zone transfers are delivered via TCP:

10$ netstat -a -f inet -P tcp | awk ’2 <= NR && NR <= 4 || $1 ˜ /\.10566$/’
TCP: IPv4

Local Address Remote Address Swind Send-Q Rwind Recv-Q State
-------------------- -------------------- ----- ------ ----- ------ -------
i5.10566 *.* 0 0 49152 0 LISTEN

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 24 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Ask our name server a question

1$ /usr/sbin/nslookup with no arguments
Default Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

> server i5.nyu.edu
Default Server: i5.nyu.edu
Address: 128.122.253.152

> set port=10566
> host1.x529547.com
Server: i5.nyu.edu
Address: 128.122.253.152

Name: host1.x529547.com
Address: 172.31.0.1

> www.x529547.com
Server: i5.nyu.edu
Address: 128.122.253.152

Name: host1.x529547.com
Address: 172.31.0.1
Aliases: www.x529547.com

> f tp.x529547.com
Server: i5.nyu.edu
Address: 128.122.253.152

Name: host1.x529547.com
Address: 172.31.0.1
Aliases: ftp.x529547.com, www.x529547.com

> exit
2$

3$ cat -n named.channel | more created becausenamed.conf asked for logging
1 22-Dec-2005 08:50:30.350 XX+/128.122.253.152/host1.x529547.com/A/IN
2 22-Dec-2005 08:50:30.358 XX+/128.122.253.152/www.x529547.com/A/IN
3 22-Dec-2005 08:50:30.360 XX+/128.122.253.152/ftp.x529547.com/A/IN

4$ /usr/sbin/dig @i5.nyu.edu host1.x529547.com -p 10566

5$ cat -n named.channel | more
1 22-Dec-2005 08:50:30.350 XX+/128.122.253.152/host1.x529547.com/A/IN
2 22-Dec-2005 08:50:30.358 XX+/128.122.253.152/www.x529547.com/A/IN
3 22-Dec-2005 08:50:30.360 XX+/128.122.253.152/ftp.x529547.com/A/IN
4 22-Dec-2005 08:50:30.467 XX+/128.122.253.152/host1.x529547.com/A/IN

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 25 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Request a zone transfer from our name server

1$ /usr/sbin/nslookup
Default Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

> server i5.nyu.edu
Default Server: i5.nyu.edu
Address: 128.122.253.152

> set port=10566
> set type=any
> x529547.com
Server: i5.nyu.edu
Address: 128.122.253.152

x529547.com preference = 10, mail exchanger = i5.nyu.edu
x529547.com nameserver = i 5.nyu.edu
x529547.com record type LOC, interpreted as:
x529547.com. 1D IN LOC 40 00 00.000 N 75 00 00.000 W 0.00m 0.00m 0.00m 0.00m
x529547.com text = " Networking and Unix X52.9547"
x529547.com

origin = i5.nyu.edu
mail addr = mm64.i5.nyu.edu
serial = 2004062401
refresh = 21600 (6H)
retry = 1800 (30M)
expire = 604800 (1W)
minimum ttl = 900 (15M)

x529547.com nameserver = i 5.nyu.edu
i5.nyu.edu internet address = 128.122.253.152
> ls x 529547.com
[i5.nyu.edu]
$ORIGIN x529547.com.
host2 1D IN A 172.31.0.2
localhost 1D IN A 127.0.0.1
host3 1D IN A 172.31.0.3
host1 1D IN A 172.31.0.1
> ls -t p tr 31.172.in-addr.arpa
[i5.nyu.edu]
$ORIGIN 31.172.in-addr.arpa.
2.0 1D IN PTR host2.x529547.com.
3.0 1D IN PTR host3.x529547.com.
1.0 1D IN PTR host1.x529547.com.
> exit
2$

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 26 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

3$ cat -n named.channel | more created becausenamed.conf asked for logging
1 22-Dec-2005 08:50:30.350 XX+/128.122.253.152/host1.x529547.com/A/IN
2 22-Dec-2005 08:50:30.358 XX+/128.122.253.152/www.x529547.com/A/IN
3 22-Dec-2005 08:50:30.360 XX+/128.122.253.152/ftp.x529547.com/A/IN
4 22-Dec-2005 08:50:30.467 XX+/128.122.253.152/host1.x529547.com/A/IN
5 22-Dec-2005 08:50:30.623 XX+/128.122.253.152/x529547.com/ANY/IN
6 22-Dec-2005 08:50:30.628 XX /128.122.253.152/x529547.com/AXFR/IN
7 22-Dec-2005 08:50:30.628 zone transfer (AXFR) of "x529547.com" (IN) to [128.122.253.152].57128 serial 2004062401
8 22-Dec-2005 08:50:30.632 XX /128.122.253.152/31.172.in-addr.arpa/AXFR/IN
9 22-Dec-2005 08:50:30.633 zone transfer (AXFR) of "31.172.in-addr.arpa" (IN) to [128.122.253.152].57129 serial 2004062401

4$ dig @i5.nyu.edu x529547.com axfr -p 10566
5$ dig @i5.nyu.edu -x 172.31 axfr -p 10566

6$ cat -n named.channel | more
1 22-Dec-2005 08:50:30.350 XX+/128.122.253.152/host1.x529547.com/A/IN
2 22-Dec-2005 08:50:30.358 XX+/128.122.253.152/www.x529547.com/A/IN
3 22-Dec-2005 08:50:30.360 XX+/128.122.253.152/ftp.x529547.com/A/IN
4 22-Dec-2005 08:50:30.467 XX+/128.122.253.152/host1.x529547.com/A/IN
5 22-Dec-2005 08:50:30.623 XX+/128.122.253.152/x529547.com/ANY/IN
6 22-Dec-2005 08:50:30.628 XX /128.122.253.152/x529547.com/AXFR/IN
7 22-Dec-2005 08:50:30.628 zone transfer (AXFR) of "x529547.com" (IN) to [128.122.253.152].57128 serial 2004062401
8 22-Dec-2005 08:50:30.632 XX /128.122.253.152/31.172.in-addr.arpa/AXFR/IN
9 22-Dec-2005 08:50:30.633 zone transfer (AXFR) of "31.172.in-addr.arpa" (IN) to [128.122.253.152].57129 serial 2004062401
10 22-Dec-2005 08:50:30.749 XX /128.122.253.152/x529547.com/AXFR/IN
11 22-Dec-2005 08:50:30.749 zone transfer (AXFR) of "x529547.com" (IN) to [128.122.253.152].57130 serial 2004062401
12 22-Dec-2005 08:50:30.771 XX /128.122.253.152/31.172.in-addr.arpa/AXFR/IN
13 22-Dec-2005 08:50:30.772 zone transfer (AXFR) of "31.172.in-addr.arpa" (IN) to [128.122.253.152].57131 serial 2004062401

Do not leave your name server running.To kill it,

7$ cd ˜mm64/public_html/x52.9547/src/named
8$ pwd

9$ cat named.pid
24553

10$ kill -9 ‘cat named.pid‘
11$ ps -Af | grep abc1234
12$ rm named.pid

▼ Homework 5.1: a resource record for an IPv6 address

Can you make a resource record of typeAAAAor A6? What aboutMXor RP?
▲

▼ Homework 5.2: run a slave server on i5.nyu.edu

Run a slave server for the domainx529547.com on your machine.(Your machine could be
i5.nyu.edu). Seepp. 214−216.The masters statements in the slave’s named.conf file will have to
specify the port number of the master server:

masters port 10566 {128.122.253.152;};

Hand in the configuration file(s) you had to create, and annslookup or dig session to prove that it
worked. Itthe slave doesn’t work, see if there are error messages in thenamed.run file.

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 27 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

▲

Fall 2005 Handout 5printed 12/22/05
8:49:47 AM − 28 − All rights

reserved ©2005 Mark Meretzky

