
NYU SCPS X52.9547 Section 1 Networking and Unix

Fall 2005 Handout 1

32-bit signed and unsigned integer values

(signed)
int bit pattern unsigned bit pattern

4294967295 11111111111111111111111111111111
4294967294 11111111111111111111111111111110
4294967293 11111111111111111111111111111101
4294967292 11111111111111111111111111111100
4294967291 11111111111111111111111111111011
4294967290 11111111111111111111111111111010

2147483653 10000000000000000000000000000101
2147483652 10000000000000000000000000000100
2147483651 10000000000000000000000000000011
2147483650 10000000000000000000000000000010
2147483649 10000000000000000000000000000001
2147483648 10000000000000000000000000000000

2147483647 011111111111111111111111111111111 2147483647 01111111111111111111111111111111
2147483646 011111111111111111111111111111110 2147483646 01111111111111111111111111111110
2147483645 011111111111111111111111111111101 2147483645 01111111111111111111111111111101
2147483644 011111111111111111111111111111100 2147483644 01111111111111111111111111111100
2147483643 011111111111111111111111111111011 2147483643 01111111111111111111111111111011
2147483642 011111111111111111111111111111010 2147483642 01111111111111111111111111111010

5 000000000000000000000000000000101 5 00000000000000000000000000000101
4 000000000000000000000000000000100 4 00000000000000000000000000000100
3 000000000000000000000000000000011 3 00000000000000000000000000000011
2 000000000000000000000000000000010 2 00000000000000000000000000000010
1 000000000000000000000000000000001 1 00000000000000000000000000000001
0 000000000000000000000000000000000 0 00000000000000000000000000000000

−1 111111111111111111111111111111111
−2 111111111111111111111111111111110
−3 111111111111111111111111111111101
−4 111111111111111111111111111111100
−5 111111111111111111111111111111011
−6 111111111111111111111111111111010

−2147483643 100000000000000000000000000000101
−2147483644 100000000000000000000000000000100
−2147483645 100000000000000000000000000000011
−2147483646 100000000000000000000000000000010
−2147483647 100000000000000000000000000000001
−2147483648 100000000000000000000000000000000

The bits of an integer are numbered from right to left, starting at 0. In a 32-bit integer, the leftmost
bit is therefore bit 31. Bit 0 is called thelowest bit or thelow order bit. Bit 31 is called thetop bit or the

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 1 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

high order bit.

Bit 0 is theone’s place, bit 1 is thetwo’s place, bit 2 is thefour’s place, etc. Insigned values, the
top bit is called thesign bit. It is 1 for negative numbers, 0 otherwise.

Why is the integer −1 represented as11111111111111111111111111111111 (thirty-tw o 1’s)?

Think of a car odometer running backward:

0003
0002
0001
0000 zero
9999 negative one
9998 negative two

1111 is the binary equivalent of 9999.

If you want zero to be00000000000000000000000000000000 , positive one to be
00000000000000000000000000000001 , and positive one plus negative one to be 0, then the defini-
tion of negative one is forced on you:

00000000000000000000000000000001 positive one
+ 11111111111111111111111111111111 negative one

00000000000000000000000000000000 zero

00000000000000000000000000000010 positive two
+ 11111111111111111111111111111110 negative two

00000000000000000000000000000000 zero

00000000000000000000000000000011 positive three
+ 11111111111111111111111111111101 negative three

00000000000000000000000000000000 zero

00000000000000000000000000000100 positive four
+ 11111111111111111111111111111100 negative four

00000000000000000000000000000000 zero

Convert binary to hexadecimal and octal

Each hexadecimal digit is an abbreviation for a group of four consecutive binary digits. If the hex-
adecimal digit is a letter, you can write it in either uppercase or lowercase.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 2 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

binary hex

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Each octal digit is an abbreviation for a group of three consecutive binary digits:

binary octal

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

One binary digit is called abit. Four binary digits are called anibble. Eight binary digits should be
called anoctet, but most people call them abyte.

(1) To convert binary to hexadecimal, start at the right end and divide the binary number into nibbles.
For example,807AFD98 is the IP address of our host i5.nyu.edu: 128.122.253.152.

10000000011110101111110110011000 32 bits
1000 0000 0111 1010 1111 1101 1001 1000 8 nibbles

8 0 7 A F D 9 8 8 hex digits

If the number of bits is not a multiple of four, add0’s to the left end of the binary number:

111111111 9 bits
000111111111 12 bits
0001 1111 1111 3 nibbles

1 F F 3 hex digits

(2) To convert binary to octal, start at the right end and divide the binary number into groups of three
bits:

111101101 9 bits
111 101 101 3 trios

7 5 5 3 octal digits

If the number of bits is not a multiple of three, add0’s to the left end of the binary number:

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 3 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1111101101 10 bits
001111101101 12 bits
001 111 101 101 4 trios

1 7 5 5

Convert using bc

Convert binary to hex:

1$ bc ‘‘ binary calculator’’
obase = 16 Spaces optional. Specify the output base before the input base.
ibase = 2
10000000011110101111110110011000 IPv4 address of our hosti5.nyu.edu
807AFD98 It types this.
control-d
2$

Convert hex to binary:

3$ bc
obase = 2 Specify the output base before the input base.
ibase = 16
807AFD98 Must type hex in uppercase forbc .
10000000011110101111110110011000 It types this.
control-d
4$

Switch horses in midstream: convert binary to hex, and then hex to binary.

5$ bc
obase = 16 Specify the output base before the input base.
ibase = 2
10000000011110101111110110011000
807AFD98 It types this.
ibase=10000 Had to specify the input base in binary.
obase=2
807AFD98 Must type hex in uppercase forbc .
10000000011110101111110110011000 It types this.
control-d
6$

7$ man bc or visit http://i5.nyu.edu/˜mm64/man/

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/hextobin

1 #!/bin/ksh
2 #Convert one number from hex to binary.
3 #Usage: hextobin 807AFD98
4
5 if [[$# - ne 1]] #for $#, see ksh(1) p. 11
6 t hen
7 echo $0: requires one argument 1>&2 #for 1>&2, see ksh(1) p. 18
8 exit 1
9 f i

10
11 if [[-z $1]] #for -z, see ksh(1) p. 16

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 4 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

12 then
13 echo $0: argument can\’t be empty string 1>&2
14 exit 2
15 fi
16
17 if [[$1 == *[!0-9A-Fa-f]*]] #exclamation means not: ksh(1) p. 14
18 then
19 echo $0: argument must be hex number 1>&2
20 exit 3
21 fi
22
23 (
24 echo obase = 2
25 echo ibase = 16
26 echo $1 | tr ’[a-f]’ ’[A-F]’
27) | bc
28
29 exit 0

8$ hextobin 807afd98 can type uppercase or lowercase
10000000011110101111110110011000

How many...

There are 21 = 2 one-bit binary numbers.
There are 22 = 2 × 2 = 4 two-bit binary numbers.
There are 23 = 2 × 2 × 2 = 8 three-bit binary numbers.
There are 24 = 2 × 2 × 2 × 2 = 16 four-bit binary numbers. Et cetera:

0 00 000 0000
1 01 001 0001

10 010 0010
11 011 0011

100 0100
101 0101
110 0110
111 0111

1000
1001
1010
1011
1100
1101
1110
1111

(1) We’ll cover TCP and UDP port numbers shortly. In the meantime, let’s find out how many of
them there are. Each one is 16 bits (two bytes), so there are 216 = 65, 536possible port numbers:

1$ bc
2 ˆ 1 6 You type this. Caret means exponentiation; spaces optional.
65536 It types this.
control-d
2$

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 5 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

(2) How many possible 13-bit IP version 4 fragmentation offset values are there? Each one is 13 bits.
We therefore have 213 = 8, 192 possible offsets. Seethe fragmentation offset field of the IP version 4
header in pp. 14, 16, 679, 681.

(3) How many possible 24-bit Ethernet OUI’s (‘‘ Organizationally Unique Identifiers’’) are there?
Each one is 24 bits (six bytes).We therefore have 224 = 16, 777, 216possible OIU’s.

(4) How many IP version 4 addresses are there? Each one is 32 bits (four bytes).We therefore have
232 = 4, 294, 967, 296possible IP version 4 addresses.

(5) How many Ethernet addresses are there?Each one is 48 bits (six bytes).We therefore have
248 = 281, 474, 976, 710, 656possible Ethernet addresses.(An Ethernet address is an example of a Medium
Access Control (MAC) address. See p. 136.)

(6) How many IP version 6 addresses are there? Each one is 128 bits (sixteen bytes).We therefore
have 2128 = 340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 456possible IP version 6 addresses.
This is a 39-digit number:

3$ bc interactive
2 ˆ 1 28
340282366920938463463374607431768211456
control-d
4$

5$ echo ’2 ˆ 128’ | bc non-interactive
340282366920938463463374607431768211456

How many digits was that? Thetr will remove all non-digits, including the newline:

6$ echo ’2 ˆ 128’ | bc | tr -cd ’[0-9]’ | wc -c
39

Useawk to remove the annoying indentation. Theawk will not remove the newline.

7$ echo ’2 ˆ 128’ | bc | tr -cd ’[0-9]’ | wc -c | awk ’{print $1}’
39

The radius of the earth is 3,956.66 miles. Each mile is 5,280 feet. Each foot is 12 inches.What is
the radius of the earth in inches?Seescale in bc (1). Thearea of a sphere isA = 4π r 2. What is the area
of the earth in square inches? How many IP version 6 addresses are there per square inch?

Bitwise not

Let’s turn on, turn off, and examine the bits of a number. The rules for the bitwise operations ‘‘and’’,
‘‘ or’’, and ‘‘not’’ are simpler than the rules for addition and subtraction, because there is no carrying or bor-
rowing. Eachcolumn has no effect on its neighbors.

I wrote the following example in hexadecimal and binary. A hexadecimal number starts with a0x in
the languages C, C++, Perl, and Java, but not inbc . As we’ll see shortly, 0xFFFFFFC0 is the netmask for
our network: 261’s followed by six0’s. For legibility, I inserted a blank after every eight bits.

The ˜ operator (tilde) flips the bits, giving you a photographic negative of the original number. The
easiest way to work out the value of˜0xFFFFFFC0 is to convert it to binary, flip the bits, and convert the
result back to hex.

0xFFFFFFC0 == 11111111 11111111 11111111 11000000
˜0xFFFFFFC0 == 00000000 00000000 00000000 00111111 == 0x0000003F

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 6 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Left shift

Left shift is simpler than right shift.When you left shift, bits fall off the left end into oblivion; fresh
zeroes enter from the right end. Assuming that the 32-bit number is unsigned,

1 == 00000000 00000000 00000000 00000001 == 1
1 << 1 == 00000000 00000000 00000000 00000010 == 2
1 << 2 == 00000000 00000000 00000000 00000100 == 4
1 << 3 == 00000000 00000000 00000000 00001000 == 8
1 << 4 == 00000000 00000000 00000000 00010000 == 16
1 << 30 == 0 1000000 00000000 00000000 00000000 == 1073741824
1 << 31 == 1 0000000 00000000 00000000 00000000 == 2147483648
1 << 32 == 0 0000000 00000000 00000000 00000000 == 0

The next example assumes that the 32-bit number is signed. −1 is all ones.-1 << 6 will yield the net-
mask on p. 28 in line 25 oflocalhosts.pl .

-1 == 11111111 11111111 11111111 11111111 == -1
-1 << 1 == 11111111 11111111 11111111 11111110 == -2
-1 << 2 == 11111111 11111111 11111111 11111100 == -4
-1 << 3 == 11111111 11111111 11111111 11111000 == -8
-1 << 4 == 11111111 11111111 11111111 11110000 == -16
-1 << 6 == 11111111 11111111 11111111 11000000 == -64
-1 << 30 == 11000000 00000000 00000000 00000000 == -1073741824
-1 << 31 == 10000000 00000000 00000000 00000000 == -2147483648
-1 << 32 == 00000000 00000000 00000000 00000000 == 0

Right shift

When you right shift, bits fall off the right end into oblivion; fresh bits enter from the left end. If the
right-shifted number is unsigned, the fresh bits will always be zeroes.For example,

4294967295 == 11111111 11111111 11111111 11111111 == 4294967295
4294967295 >> 1 == 01111111 11111111 11111111 11111111 == 2147483647
4294967295 >> 2 == 00111111 11111111 11111111 11111111 == 1073741823
4294967295 >> 3 == 00011111 11111111 11111111 11111111 == 536870911
4294967295 >> 4 == 00001111 11111111 11111111 11111111 == 268435455
4294967295 >> 30 == 00000000 00000000 00000000 00000011 == 3
4294967295 >> 31 == 00000000 00000000 00000000 00000001 == 1
4294967295 >> 32 == 00000000 00000000 00000000 00000000 == 0

But if the right-shifted number is signed, the fresh bits will always be copies of the original sign bit,
yielding a result with the same sign as the original number. After all, right shift really means ‘‘division by
2’’, which should not change whether a number is positive or neg ative. Here’s an example where the sign
bit is 0. A positive number stays positive:

2147483647 == 01111111 11111111 11111111 11111111 == 2147483647
2147483647 >> 1 == 00111111 11111111 11111111 11111111 == 1073741823
2147483647 >> 2 == 00011111 11111111 11111111 11111111 == 536870911
2147483647 >> 3 == 00001111 11111111 11111111 11111111 == 268435455
2147483647 >> 4 == 00000111 11111111 11111111 11111111 == 134217727
2147483647 >> 29 == 00000000 00000000 00000000 00000011 == 3
2147483647 >> 30 == 00000000 00000000 00000000 00000001 == 1
2147483647 >> 31 == 00000000 00000000 00000000 00000000 == 0

And here’s an example where the sign bit is1. A negative number stays negative:

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 7 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

-2147483648 == 10000000 00000000 00000000 00000000 == -2147483648
-2147483648 >> 1 == 11000000 00000000 00000000 00000000 == -1073741824
-2147483648 >> 2 == 11100000 00000000 00000000 00000000 == -536870912
-2147483648 >> 3 == 11110000 00000000 00000000 00000000 == -268435456
-2147483648 >> 4 == 11111000 00000000 00000000 00000000 == -134217728
-2147483648 >> 30 == 11111111 11111111 11111111 11111110 == -2
-2147483648 >> 31 == 11111111 11111111 11111111 11111111 == -1
-2147483648 >> 32 == 11111111 11111111 11111111 11111111 == -1

Turn bits off with ‘‘bitwise and’’

Write the operands one above the other in binary. For ‘‘bitwise and’’, each bit of the result will be1
if all of the bits above it were1. Otherwise, the resulting bit will be0. ‘‘Bitwise and’’ therefore turns off
selected bits, leaving the other bits unchanged.For example,0x807AFD98 is the IP address of our host
i5.nyu.edu: 128.122.253.152 indotted quadnotation. 0xFFFFFFC0 is our netmask: 261’s followed by
six 0’s. The result will be the IP address of i5.nyu.edu with the six rightmost bits turned off. Later we’ll
see that this is the IP address of our network.

0x807AFD98 == 10000000 01111010 11111101 10011000 == 128.122.253.152
0xFFFFFFC0 == 11111111 11111111 11111111 11000000 == 255.255.255.192

0x807AFD98 & 0xFFFFFFC0 == 10000000 01111010 11111101 10000000 == 128.122.253.128

Turn bits on with ‘‘bitwise or’’

For ‘‘bitwise or’’, each bit of the result will be0 if all of the bits above it were0. Otherwise, the
resulting will be1. ‘‘Bitwise or’’ therefore turns on selected bits, leaving the other bits unchanged.For
example,0x807AFD98 is the IP address of our host i5.nyu.edu: 128.122.253.152.̃0xFFFFFFC0 is a
photographic negative of our netmask: 260’s followed by six1’s. The result will be the IP address of
i5.nyu.edu with the six rightmost bits turned on. Later we’ll see that this is the broadcast address for our
network.

0x807AFD98 == 10000000 01111010 11111101 10011000 == 128.122.253.152
˜0xFFFFFFC0 == 00000000 00000000 00000000 00111111 == 0x0000003F

0x807AFD98 | ˜0xFFFFFFC0 == 10000000 01111010 11111101 10111111 == 128.122.253.191

Examine an individual bit

Suppose we wanted to know if bit 3, for example, of our host’s IP address0x807AFD98
(128.122.253.152) is on or off. (It’s on.) Firstwe create the mask1 << 3 , whose bit 3 is on and whose
31 other bits are off. Thenwe ‘‘bitwise and’’ the IP address with the mask to obliterate every bit except bit
3. Bit 3 of the original IP address survives unchanged.

0x807AFD98 == 10000000 01111010 11111101 10011000 == 128.122.253.152
1 << 3 = = 00000000 00000000 00000000 00001000

0x807AFD98 & 1 << 3 == 00000000 00000000 00000000 00001000 does not equal 0

C, C++, Perl, and Java agree that<< has higher precedence than&, so no parentheses are required.bc
does not have& and| .

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 8 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

A protocol is a set of rules.

TCP provides reliability with a mechanism calledPositive Acknowledgement with
Retransmission(PAR). Simply stated, a system using PAR sends the data again
unlessit hears from the remote system that the data arrived OK. . . . After this ex-
change, hostA ’s TCP has positive evidence that the remote TCP is alive and ready
to receive data.

—Craig Hunt,TCP/IP Network Administration, 3rd ed. (2002), pp. 19−20

‘‘ The Fail-Safe point is different for each group,’’ General Bogan explained.
‘‘ They also change from day to day. There is a fixed point in the sky where the
planes will orbit until they get a positive order to go in. Without it they must
return to the United States. This is called Positive Control. Fail-Safe simply
means that if something fails it is still safe.In short, we cannot go to war except
by a direct order. No bomber can go in on its own discretion.We giv e that order.’’

—Eugene Burdick & Harvey Wheeler,Fail-Safe(1962), chapter 2

A protocol is a set of rules that two programs agree to obey when they talk to each other (p. 4).For
example, here are two rules from the Ethernet protocol. The data to be transmitted between the two pro-
grams must be divided into sections calledframes,of at most 1500 bytes each (p. 148). The first 14 bytes
of each frame must be a header telling which host sent the frame and which host is to receive the frame.
Each host is specified by a six-byte ‘‘Ethernet address’’.

Similarly, here are two rules from the IP protocol (version 4, pp. 13−14). The data to be transmitted
between the two programs must be divided into sections calleddatagrams.The first 20 or 24 bytes of each
datagram must be a header telling which host sent the datagram and which host is to receive the datagram.
In this protocol, however, each host is specified by means of a four-byte ‘‘IP address’’.

Finally, here are two rules from the TCP protocol (pp. 19−22).The data to be transmitted between
the two programs must be divided into sections calledsegments.The first 20 or so bytes of each segment
must be a header telling which program on the source host sent the segment, and which program on the des-
tination host is to receive the segment. Eachprogram is specified by means of a two-byte ‘‘TCP port num-
ber’’.

Why are there three such similar protocols? See ‘‘Why do we hav emore than one layer’’, below.

The stack of protocols (p. 7)

Programs do not send naked TCP segments back and forth.(Why not? See‘‘ Why do we hav emore
than one layer’’, below.) Each TCP segment is contained in an IP datagram, which carries the TCP seg-
ment to the other host. In other words, each TCP segment is the payload, or contents, of an IP datagram.

Furthermore, programs do not send naked IP datagrams back and forth. Each IP datagram (or frag-
ment thereof) is contained in an Ethernet frame, which carries the IP datagram to the other host.In other
words, each IP datagram is the payload, or contents, of an Ethernet frame.

In the following diagram,08:00:20:c9:a0:09 and00:d0:bc:c9:a0:0a are six-byte Ether-
net addresses.128.122.253.152 and128.122.253.153 are four-byte IP addresses.10000 and
10001 are two-byte TCP port numbers.

"hello"
TCP header

From: port 10000
To: port 10001

IP header
From: 128.122.253.152
To: 128.122.253.153

Ethernet header
From: 08:00:20:c9:a0:09
To: 00:d0:bc:c9:a0:0a

When two communicating programs are obeying the rules of the TCP protocol, we say that they’re
‘‘ communicating via TCP’’. The sending program calls functions (or subroutines, or procedures—the
name is different in each programming language) that break the stream of data into segments, and the

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 9 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

receiving program calls other functions that reassemble the segments back into a continuous stream of data.

When we say ‘‘TCP reassembles the segments’’, we don’t mean the TCP protocol itself.Literally
speaking, the TCP protocol can’t do anything—it’s merely a set of rules.We use the term ‘‘TCP’’ as a
shorthand for ‘‘the functions that the program calls to obey the TCP protocol’’.

The sending program calls TCP functions to break the data into TCP segments. TheTCP functions
then call IP functions to encapsulate (surround) each TCP segment in an IP datagram. The IP functions
then call Ethernet functions to encapsulate each IP datagram in an Ethernet frame.This process is called
‘‘ sending data down the protocol stack’’.

The receiving program calls other Ethernet functions to strip away the Ethernet frame that surrounds
each IP datagram. The Ethernet functions then give the IP datagrams to IP functions, which strip away the
IP datagram that surrounds each TCP segment. TheIP functions then give the TCP segments to TCP func-
tions, which reassemble the segments into a continuous stream. This process is called ‘‘sending data up the
protocol stack’’.

TCP functions TCP functions

IP functions IP functions

Ethernet functions Ethernet functions

sending program receiving program

stream of bytes

TCP segments

IP datagrams IP datagrams

TCP segments

the same stream of bytes

Ethernet frames

Tw o complications:

(1) I’m sorry that each protocol has a different word for essentially the same thing: segment, data-
gram, frame, packet, message. See p. 11.

(2) Ethernet is the most widely used LAN (Local Area Network) hardware. ButIP can ‘‘run on’’
(i.e., be carried by) many other kinds of hardware: X.25, Token Ring, etc. See p. 16.

Why do we hav emore than one layer?

(1) If you all you need is to send data to another host on the same Local Area Network (LAN), then
all you need is Ethernet. The example we will see is ARP messages.

(2) An Ethernet frame can travel only between two hosts on the same LAN.To send data to a host on
another LAN, you need IP as well as Ethernet. An IP datagram can travel across many LAN’s to its final
destination. Asit passes the boundary of each successive LAN, the surrounding Ethernet frame will fall off

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 10 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

of the datagram and be replaced by another Ethernet frame. This ‘‘molting’’ can happen up to 255 times;
see the ‘‘time to live’’ fi eld of the IP datagram header in pp. 14, 679, 681.

(3) There may be many programs running on the receiving host. Which program gets to receive the
incoming IP datagram? IP gives you no way to specify this. An IP datagram is therefore delivered to the
operating system on the receiving host, rather than to any specific program.

To send data to a specific program, you need TCP (or UPD) as well as IP. Each TCP segment (or
UDP packet) carries a ‘‘port number’’ i dentifying the program that should receive it.

Now let’s talk about what the packetsdon’t carry. Neither the Ethernet, IP, TCP, nor UDP headers
carry login names, so they don’t tell you which person sent or received the packets. However, login names
may be transported as TCP or UDP cargo.

Don’t use more layers than you need: it would slow you down. For example, ARP packets travel
only within a LAN, and they are addressed to the operating system on the receiving host.They can there-
fore be carried directly by Ethernet without IP or TCP. On the other hand, ICMP packets need to travel to
other LAN’s, although they too are addressed to the operating system on the receiving host.They are there-
fore carried by Ethernet and IP, but without TCP. Finally, HTTP messages need to travel to other LAN’s,
and must be delivered to one specific program on the receiving host: the web browser. They are therefore
carried by Ethernet, IP, and TCP.

Shedding an ethernet frame

An Ethernetframe contains an IPdatagram, which contains a TCPsegment.I’m sorry we have
three different words for the same thing (p. 11).

An Ethernet frame can not travel beyond the local network. At each gateway, the frame’s payload
(the IP datagram) ‘‘molts’’. The IP datagram is copied into a new frame and sent onward for another
‘‘ hop’’.

In the following example, i5.nyu.edu and WWITSGW-VLAN-13.NET.NYU.EDUare both on
the same network. AndWWITSGW-VLAN-13.NET.NYU.EDUanddestination.nyu.edu are both
on another network. WWITSGW-VLAN-13.NET.NYU.EDUtherefore belongs to both networks, and is
called agatewayor router (p. 14).

Note that we do not use any port number on the middle machine
WWITSGW-VLAN-13.NET.NYU.EDU. Port numbers are used only to specify the original source and
ultimate destination. The job of the middle machine is handled by its operating system.

The IP datagram ages as it hops. When its time to live (TTL) goes down to zero, it dies, and an
ICMP ICMP_TIMXCEEDmessage is sent back to the original program. These messages are also used by
traceroute .

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 11 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

port 1000
i5.nyu.edu

128.122.253.152
08:00:20:d8:d7:af

WWITSGW-VLAN-13.NET.NYU.EDU
128.122.253.129

00:d0:04:a4:10:0a

port 1001
destination.nyu.edu

128.122.109.6
08:00:20:ab:cd:ef

"hello"
TCP header

From: port 10000
To: port 10001

IP header, TTL = 255
From: 128.122.253.152
To: 128.122.109.6

Ethernet header
From: 08:00:20:d8:d7:af
To: 00:d0:04:a4:10:0a

"hello"
TCP header

From: port 10000
To: port 10001

IP header, TTL = 254
From: 128.122.253.152
To: 128.122.109.6

Ethernet header
From: 00:d0:04:a4:10:0a
To: 08:00:20:ab:cd:ef

Who carries whom?

Solid boxes represent protocols that can carry any kind of data: text, sound, video, etc. Dashed boxes
represent protocols that can carry only special-purpose numeric codes.For example, ARP carries only Eth-
ernet addresses and IP addresses; ICMP carries only codes such as ‘‘echo request’’, ‘‘echo reply’’, ‘‘destina-
tion unreachable’’, etc.

Each vertical and diagonal line means ‘‘is carried by’’. For example, each TCP segment is carried by
an IP datagram.A more elaborate diagram is in Stevens, p. 30.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 12 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Ethernet

ARP

IPv4 IPv6

OSPFICMP

TCP UDP

RIP

FTP HTTPSSH

WiFiPPP

LCP NCP

Tr ansport Layer: pp. 18−20

Application Layer: pp. 22−23

Internet Layer: pp. 12−17

Network Access Layer: pp. 11−12

pp. 43−44

p. 17

p. 152

Names and numbers

Many things have both names and numbers:

1$ awk -F: ’$1 == "mm64"’ /etc/passwd
mm64:x:50766:15:Mark Meretzky:/home1/m/mm64:/bin/ksh

2$ awk -F: ’$3 == 15’ /etc/group
users::15:

3$ awk -F: ’$1 == "x52954700120053"’ /etc/group
x52954700120053::8836:

Every file has a name and an ‘‘inode number’’ (index node number). Here are two files with the same
name:

4$ ls -li /bin/head /usr/local/bin/head
266 -r-xr-xr-x 1 r oot bin 6216 Apr 6 2002 /bin/head
49 -rwxr-xr-x 1 r oot other 91292 Mar 5 2001 /usr/local/bin/head

Here’s how I discovered the two files with the same name:

5$ find / -name head 2> /dev/null

And here is a file with two names:

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 13 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

6$ cd /opt/sfw/bin
7$ ls -li emacs emacs-21.2
2686 -r-xr-xr-x 2 r oot bin 4868160 May 19 2003 emacs
2686 -r-xr-xr-x 2 r oot bin 4868160 May 19 2003 emacs-21.2

Here’s how I discovered the other name:

8$ find / -inum 2686 2> /dev/null

The IPv4 address of our host i5.nyu.edu is 10000000011110101111110110011000

The IP (version 4) address of our hosti5.nyu.edu is the 32-bit number

10000000011110101111110110011000 32 bits
10000000 01111010 11111101 10011000 four ‘‘octets’’ of eight bits each
128.122.253.152 dotted quad notation: each octet in decimal

Find the IP address(es) and netmask(s) of your host

(1) To find the IP address and netmask of a Macintosh host running OS9,

Apple Menu -> Control Panels -> TCP/IP

(2) To find the IP address and netmask of a Macintosh host running OSX,

Apple Menu -> System Preferences... -> Network -> TCP/IP

(3) To find the IP address and netmask of a Windows host,

Start -> Programs -> Accessories -> Command Prompt
ipconfig for Windows 2000 or NT
winipcfg for Windows 95 or 98

For example,

C:\WINDOWS> ipconfig
C:\WINDOWS> ipconfig /all | more

Windows 98 IP Configuration

0 Ethernet adapter :

IP Address. : 192.168.20.19
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.20.1

(4) Do the following two websites give the same answer as the above? If not, you may be behind a
box that performs NAT (‘‘ Network Address Translation’’).

http://www.whatismyip.com/
http://i5.nyu.edu/cgi-bin/cgiwrap/mm64/whatismyip

To read my CGI program, see

˜mm64/public_html/cgi-bin/whatismyip

on i5.nyu.edu . The more elaborate gateway

http://www.netcraft.com/oldwhats/

will tell you what operating system a host is running. Also try

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 14 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

http://gotomypc.com/

(5) On a Unix host,ifconfig shows you the name, IP address, and netmask of each interface. lo
stands for ‘‘loopback’’. ge stands for ‘‘Gigabit Ethernet’’: a billion bits per second.(Giga means
1,000,000,000.) TheIP and broadcast addresses are displayed byifconfig in decimal, but the netmask
is in hex.

1$ ifconfig -a | more -a for ‘‘all’’
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1

inet 127.0.0.1 netmask ff000000
ge0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

inet 128.122.253.152 netmask ffffffc0 broadcast 128.122.253.191

It appears that the hosts on our local network have class B addresses.For example, the IP address of
i5.nyu.edu is 128.122.253.152 . You would therefore think that they hav e16 network bits and 16
host bits. In reality, howev er, the netmask tells us they hav e26 network bits and only 6 host bits.

Sometimes the netmask is written as four decimal numbers, separated by dots.Our netmask
0xFFFFFFC0 would be255.255.255.192 .

Ask DNS for the IP address of any host

Each network interface of a host has its own IP address. If a host has several interfaces, it will have
several IP addresses.indira.uu.nl has three;www.microsoft.com has eight.

1$ /usr/sbin/nslookup indira.uu.nl | cat -n
1 Server: NYUNSB.NYU.EDU
2 Address: 128.122.253.37
3
4 Non-authoritative answer:
5 Name: indira.uu.nl
6 Addresses: 131.211.5.1, 131.211.16.1, 131.211.17.1
7

2$ /usr/sbin/nslookup 131.211.16.1 | cat -n
1 Server: NYUNSB.NYU.EDU
2 Address: 128.122.253.37
3
4 Name: Indira.uu.nl
5 Address: 131.211.16.1
6

3$ /usr/sbin/dig indira.uu.nl | more change hostname to IP address
4$ /usr/sbin/dig -x 131.211.16.1 | more -x to change IP address to hostname

Your $PATH environment variable

Your $PATHenvironment variable is created in your˜/.profile file.

1$ cd
2$ pwd
3$ ls -la | more -a for ‘‘all’’, even names that start with dot

4$ echo $PATH
/home1/m/mm64/bin:/bin:/usr/bin:/usr/local/bin:/usr/openwin/bin:/opt/sfw/bin:/usr/ucb:/opt/sfw/esp/bin:/usr/sbin:.

012 is the octal ASCII code for the newline character.sfw is ‘‘Sun Freeware’’.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 15 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

http://www.sunfreeware.com/

Dot is the current directory.

5$ echo $PATH | tr : ’\012’ | cat -n | more
1 / home1/m/mm64/bin
2 / bin
3 / usr/bin
4 / usr/local/bin
5 / usr/openwin/bin
6 / opt/sfw/bin
7 / usr/ucb
8 / opt/sfw/esp/bin
9 / usr/sbin

10 .

6$ man -s 5 environ section 5 of the manual
7$ env | sort -df | more See all your environment variables; ‘‘dictionary, fold’’.
b45=/home1/m/mm64/public_html/x52.9545/bio
DISPLAY=192.168.20.196:0.0
EDITOR=/bin/vi
EXINIT=set showmode
GROFF_FONT_PATH=/home1/m/mm64/45/handout

The IP version 4 address classes: pp. 30−32

The leftmost bits of an IP address are thenetwork bits;they identify which network the host belongs
to. Therightmost bits of an IP address are thehost bits; they identify the host.You’re not allowed to use
all 0’s or all 1’s as the host bits.(All 0’s would be the address of the network; all1’s would be the broad-
cast address of the network.) That’s why the numbers in the last column are always 2 less than a power of
2.

how many maximum number
network host networks ofhosts

class first octet bits bits of this class per network

A 1−126 8 24 126 16, 777, 214= 224 − 2

B 128−191 16 16 16,384= 64 × 28 65, 534= 216 − 2

C 192−223 24 8 2, 097, 152= 32 × 216 254= 28 − 2

loopback 127 1 1

D (multicast) 224−239

E (experimental) 240−254

Who were the 126 lucky organizations who got class A addresses?

Seewhois at

http://www.geektools.com/

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 16 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1.0.0.0 to 1.255.255.255 Internet Assigned Numbers Authority: http://www.iana.net/
2.0.0.0 to 2.255.255.255 Internet Assigned Numbers Authority: http://www.iana.net/
3.0.0.0 to 3.255.255.255 General Electric Company:http://www.ge.com/
4.0.0.0 to 4.255.255.255 Genuity:http://www.genuity.com/
5.0.0.0 to 5.255.255.255 Internet Assigned Numbers Authority: http://www.iana.net/
6.0.0.0 to 6.255.255.255 Department of Defense Network Info Center:http://www.nic.mil/
7.0.0.0 to 7.255.255.255 Department of Defense Network Info Center:http://www.nic.mil/
8.0.0.0 to 8.255.255.255 Genuity:http://www.genuity.com/
9.0.0.0 to 9.255.255.255 IBM: http://www.ibm.com/
10.0.0.0 to 10.255.255.255 Internet Assigned Numbers Authority: http://www.iana.net/

Who were the 122 organizations who got class B addresses ahead of NYU?

128.0.0.0 to 128.0.255.255 Internet Assigned Numbers Authority: http://www.iana.net/
128.1.0.0 to 128.1.255.255 BBN Communications:http://www.bbn.com/
128.2.0.0 to 128.2.255.255 Carnegie Mellon University:http://www.cmu.edu/
128.3.0.0 to 128.3.255.255 Lawrence Berkeley National Laboratory:http://www.lbl.gov/
128.4.0.0 to 128.4.255.255 University of Delaware:http://www.udel.edu/
128.5.0.0 to 128.5.255.255 Ford Motor Company:http://www.ford.com/
128.6.0.0 to 128.6.255.255 Rutgers University:http://www.rutgers.edu/
128.7.0.0 to 128.7.255.255 FGAN - FFM:http://www.fgan.de/
128.8.0.0 to 128.8.255.255 University of Maryland:http://www.umaryland.edu/
128.9.0.0 to 128.9.255.255 Information Sciences Institute:http://www.isi.edu/

128.121.0.0 to 128.121.255.255 Verio, Inc.: http://www.verio.net/
128.122.0.0 to 128.122.255.255 New York University:http://www.nyu.edu/
128.123.0.0 to 128.123.255.255 New Mexico State University:http://www.nmsu.edu/

Test the bits in an IPv4 address

...two mighty Powers have, as I was going to tell you, been engaged in a most
obstinate War for six and thirty Moons past. It began upon the following Occa-
sion. It is allowed on all Hands, that the primitive Way of breaking Eggs before
we eat them, was upon the larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an egg, and breaking it according to the ancient
Practice, happened to cut one of his Fingers.Whereupon the Emperor his Father,
published an Edict, commanding all his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so highly resented this Law, that our
Histories tell us, there have been six Rebellions raised on that Account; wherein
one Emperor lost his Life, and another his Crown. Thesecivil Commotions were
constantly fomented by the Monarchs ofBlefuscu; and when they were quelled,
the Exiles always fled for Refuge to that Empire.It is computed, that eleven
Thousand Persons have, at sev eral Times, suffered Death, rather than submit to
break their Eggs at the smaller End.Many hundred large Volumes have been pub-
lished upon this Controversy: But the Books of theBig-Endianshave been long
forbidden, and the whole party rendered incapable by Law of holding Employ-
ments.

—Jonathan Swift,Gulliver’s Travels, Part I: A Voyage to Lilliput , Chapter 4

Where do the numbers for the first octet come from in the above table? We had an easy way to tell if
a signed number was negative: just see if the topmost bit is 1.Similarly, there is an easy way to see if an IP
address is class A (including the loopback address) or not: just see if the topmost bit (bit 31) is 0.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 17 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

127 == 0111 1111
128 == 1000 0000

If the top bit is 1, it’s not an class A address.There is now an easy way to see if it is class B or not:
just see if the next bit (bit 30) is 0.

191 == 1011 1111
192 == 1100 0000

If it’ s neither A nor B, there is an easy way to see if it’s class C or not: just see if the next bit (bit 29)
is 0.

223 == 1101 1111
224 == 1110 0000

If it’ s neither A, B, nor C there is an easy way to see if it’s class D or not: just see if the next bit (bit
28) is 0.

239 == 1110 1111
240 == 1111 0000

Use the data typein_addr_t in lines 12−13 ofclass.c to hold a 32-bit IPv4 address.Here’s
how the name for this data type was created. The firsttypedef means thatin_addr_t is just another
name foruint32_t . The nexttypedef means thatuint32_t is just another name forunsigned
int . And anunsigned int on our machine is 32 bits.The [square brackets] of each wildcard contain
one blank and one.

1$ grep ’typedef[]*in_addr_t;’ /usr/include/netinet/in.h

2$ grep ’typedef[]*uint32_t;’ /usr/include/sys/int_types.h

TheAF_INET in line 22 is a macro that means ‘‘IP version 4’’; AF_INET6 would mean ‘‘IP version
6’’.

3$ grep ’#define[][]*AF_INET’ /usr/include/sys/socket.h
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF_INET6 26 /* Internet Protocol, Version 6 */

The functioninet_pton (‘‘presentation to numeric’’) in line 22 takes a string containing a dotted
IPv4 address such as"128.122.253.152" and converts it to a 32-bit number whose four bytes are in
the ‘‘big-endian’’ order used by the Internet (highest byte first).The manual page for each function tells
which header files must be included (lines 4−8) and which libraries must be linked in with the-l (minus
lowercase L) option ofgcc .

4$ man inet_pton
5$ man -s 3socket inet_pton Only Solaris needs the-s (for ‘‘section’’).
http://i5.nyu.edu/˜mm64/man/ easiest way to read the manual

Unfortunately, some platforms (e.g., Pentium) need to have the four bytes in ‘‘little-endian’’ order to
do arithmetic. The functionntohl (‘‘network to host long’’) in line 28 takes an Internet-order number
(big-endian) and returns the same number with the four bytes rearranged into the local order. If the local
order is the same as the Internet order, the return value ofntol is the same as its argument.

This program assumes that the loopback address is class A.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/class.c

1 #include <stdio.h>
2 #include <stdlib.h>

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 18 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

3
4 #include <sys/types.h>
5 #include <sys/socket.h>
6 #include <netinet/in.h>
7 #include <arpa/inet.h>
8 #include <inttypes.h>
9

10 int main(int argc, char **argv)
11 {
12 in_addr_t ip; /* in network byte order */
13 in_addr_t i; /* in local byte order */
14 char class; /* IPv4 address class: A, B, C, D, or E */
15
16 if (argc != 2) {
17 fprintf(stderr, "%s: argument must be a dotted IPv4 address\n",
18 argv[0]);
19 return 1;
20 }
21
22 if (inet_pton(AF_INET, argv[1], &ip) != 1) {
23 fprintf(stderr, "%s: argument %s must be a dotted IPv4 address\n",
24 argv[0], argv[1]);
25 return 2;
26 }
27
28 i = ntohl(ip); /* network to host long */
29
30 if ((i & 1 << 31) == 0) {
31 class = ’ A’; /* Bit 31 is 0 (includes loopback address). */
32 } else if ((i & 1 << 30) == 0) {
33 class = ’ B’; /* Bit 31 is 1, bit 30 is 0. */
34 } else if ((i & 1 << 29) == 0) {
35 class = ’ C’; /* Bit 31 is 1, bit 30 is 1, bit 29 is 0. */
36 } else if ((i & 1 << 28) == 0) {
37 class = ’ D’; /* Bit 31 is 1, bit 30 is 1, 29 is 1, 28 is 0. */
38 } else {
39 class = ’ E’; /* Bit 31 is 1, bit 30 is 1, 29 is 1, 28 is 1. */
40 }
41
42 printf("%s is a class %c IPv4 address.\n", argv[1], class);
43 return EXIT_SUCCESS;
44 }

6$ cd ˜/bin
7$ pwd

8$ lynx -source http://i5.nyu.edu/˜mm64/x52.9547/src/class.c > class.c
9$ ls -l class.c Did thelynx -source work?

Minus lowercase LNSL for the Network Services Library:

10$ man -M /usr/local/man gcc
11$ cd ˜mm64/public_html/x52.9547/src
12$ /usr/local/bin/gcc -o ˜/bin/class class.c -lsocket -lnsl

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 19 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

13$ ls -l ˜/bin/class
-rwx--x--x 1 mm64 users 7520 Dec 1 11:59 /home1/a/abc1234/bin/class

14$ class 128.122.253.152
128.122.253.152 is a class B IPv4 address.

15$ echo $? See the exit status;echo $status if you’re using the C shell.
0

Line 30 of the C program, line 13 of the Perl program, and line 18 of the Java program need the
parentheses around thei & 1 << 3 1 to force the<< and& to go before the==. If the argument is
128.122.253.152 , the line will perform

128.122.253.152 == 10000000 01111010 11111101 10011000
1 << 31 == 1 0000000 00000000 00000000 00000000

10000000 00000000 00000000 00000000 does not equal 0

Line 32 of C, 15 of Perl, and 20 of Java will perform

128.122.253.152 == 10000000 01111010 11111101 10011000
1 << 30 == 0 1000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 does equal 0

The library files are in/usr/lib :

16$ cd /usr/lib
17$ ls -l lib@(socket|nsl).a For @seeksh (1) p. 14.
-rw-r--r-- 1 root bin 1184388 Oct 9 2003 libnsl.a
-rw-r--r-- 1 root bin 87048 Apr 6 2002 libsocket.a

The same program, in Perl

To find the full pathname of your Perl interpreter (line 1),

1$ which perl
/bin/perl

Every Perl statement ends with a semicolon. The name of a Perl variable or array element always
starts with a dollar sign; see the$ip and$ARGV[0] in line 8, the$i in line 11, and the$class in line
14. Thespecial variable$0 in lines 5 and 9 is the name of the Perl program.

Perl has the same’ single quotes’ , " double quotes" , and ‘ back quotes‘ as the Unix shell.The
quotes in lines 5, 9, and 25 must be double, not single, because they enclose variables. Thequotes in line
25 must also be double because they enclose an escape character (the newline\n).

The expression@ARGVin line 4 is the number of command line arguments; in this program it should
be 1. If not, thedie statement in line 5 will kill the program. The ominousor in line 9 means ‘‘or else’’.

The array element$ARGV[0] in line 8 is the first command line argument; it should be a string con-
taining a dotted IPv4 address such as128.122.253.152 . The functioninet_aton (‘‘alphanumeric
to numeric’’) in line 8 takes the IPv4 address and returns a 32-bit number whose four bytes are in the ‘‘big-
endian’’ order used by the Internet (highest byte first).Line 2 is needed for this and other networking func-
tions.

Unfortunately, some platforms (e.g., Pentium) might need to have the four bytes in ‘‘little-endian’’
order to do arithmetic.Theunpack in line 11 takes an Internet-order number (big-endian; the’N’ stands
for ‘‘network’’) and returns the same number with the four bytes rearranged into the local order. If the local
order is the same as the Internet order, the return value of thisunpack is the same as its argument. It

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 20 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

therefore does the same job ashtonl in C. Seeperlfunc (1) pp. 42−48, 77.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/class.pl

1 #!/bin/perl
2 use Socket;
3
4 if (@ARGV != 1) {
5 die "$0: argument must be a dotted IPv4 address";
6 }
7
8 $ip = inet_aton($ARGV[0])
9 or d ie "$0: argument $ARGV[0] must be a dotted IPv4 address";

10
11 $i = unpack(’N’, $ip);
12
13 if (($i & 1 << 31) == 0) {
14 $class = ’ A’; #Bit 31 is 0 (includes loopback address).
15 } elsif (($i & 1 << 30) == 0) {
16 $class = ’ B’; #Bit 31 is 1, bit 30 is 0.
17 } elsif (($i & 1 << 29) == 0) {
18 $class = ’ C’; #Bit 31 is 1, bit 30 is 1, bit 29 is 0.
19 } elsif (($i & 1 << 28) == 0) {
20 $class = ’ D’; #Bit 31 is 1, bit 30 is 1, bit 29 is 1, bit 28 is 0.
21 } else {
22 $class = ’ E’; #Bit 31 is 1, bit 30 is 1, bit 29 is 1, bit 28 is 1.
23 }
24
25 print "$ARGV[0] is a class $class IPv4 address.\n";
26 exit 0;

2$ cd ˜/bin
3$ pwd

4$ lynx -source http://i5.nyu.edu/˜mm64/x52.9547/src/class.pl > class.pl
5$ ls -l class.pl Did thelynx -source work?
6$ chmod 755 class.pl
7$ ls -l class.pl Did thechmod work?

8$ class.pl 128.122.253.152
128.122.253.152 is a class B IPv4 address.

9$ echo $? See the exit status.
0

The same program, in Jav a

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/Class.java

1 i mport java.net.*; //for class InetAddress in lines 12-13
2
3 c lass Class {
4 s tatic public void main(String argv[]) {
5 i f (argv.length != 1) {

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 21 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

6 System.err.println(
7 " Class: argument must be a dotted IPv4 address");
8 System.exit(1);
9 }

10
11 try {
12 final InetAddress ip = InetAddress.getByName(argv[0]);
13 final byte[] b = ip.getAddress(); //array of 4 bytes
14 final byte i = b[0]; //the high order byte
15
16 char c; //IPv4 address class: A, B, C, D, or E
17
18 if ((i & 1 << 7) == 0) {
19 c = ’ A’; //Bit 31 is 0 (includes loopback address).
20 } else if ((i & 1 << 6) == 0) {
21 c = ’ B’; //Bit 31 is 1, bit 30 is 0.
22 } else if ((i & 1 << 5) == 0) {
23 c = ’ C’; //Bit 31 is 1, bit 30 is 1, bit 29 is 0.
24 } else if ((i & 1 << 4) == 0) {
25 c = ’ D’; //Bit 31 is 1, bit 30 is 1, 29 is 1, 28 is 0.
26 } else {
27 c = ’ E’; //Bit 31 is 1, bit 30 is 1, 29 is 1, 28 is 1.
28 }
29
30 System.out.println(argv[0] + " is a c lass " + c
31 + " I Pv4 address.");
32 System.exit(0);
33 }
34
35 catch (Exception e) { //may be thrown by getByName in line 12
36 System.err.println("argument " + a rgv[0]
37 + " must be a dotted IPv4 address");
38 System.exit(2);
39 }
40 }
41 }

1$ javac Class.java Run the Java compiler; createClass.class

2$ ls -l Class.class
-rw------- 1 mm64 users 1168 Dec 1 11:59 Class.class

3$ java Class 128.122.253.152 Run the Java interpreter.
128.122.253.152 is a class B IPv4 address.

4$ echo $? See the exit status.
0

The format of an IPv4 address

The address of the network is stored in routing tables. The first host on our network,
128.122.253.129 , is our network’s gateway to the outside world; try

1$ /usr/sbin/traceroute www.u-tokyo.ac.jp

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 22 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

The broadcast address of the network is used byping .

The limited broadcast address is used only by hosts that do not know the address or netmask of their
network. Datasent to the broadcast address is usually not forwarded by a router. Data sent to the limited
broadcast address isnever forwarded by a router. The limited broadcast address is used by DHCP: pp. 80,
588.

00000000000000000000000000000000

0 0 0 0 0 0 0 0

01111111000000000000000000000001

7 F 0 0 0 0 0 1

11111111111111111111111111000000

F F F F F F C 0

10000000011110101111110110000000

8 0 7 A F D 8 0

10000000011110101111110110000001

8 0 7 A F D 8 1

10000000011110101111110110011000

8 0 7 A F D 9 8

10000000011110101111110110111110

8 0 7 A F D B E

10000000011110101111110110111111

8 0 7 A F D B F

11111111111111111111111111111111

F F F F F F F F

8 network bits 24 host bits

26 network bits 6 host bits

0.0.0.0myself before I know my own IP address

127.0.0.1loopback address

255.255.255.192netmask of our network

128.122.253.128/26IP address of our network

128.122.253.129IP address of the first host on our network

128.122.253.152IP address of our host i5.nyu.edu

128.122.253.190IP address of the last host on our network

128.122.253.191broadcast address of our network

255.255.255.255limited broadcast address

A netmask usually begins with bytes of 255 and ends with bytes of 0’s. In between, here are the
bytes that can appear at the boundary line:

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 23 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

hex binary decimal

FF 11111111 255
FE 11111110 254
FC 11111100 252
F8 11111000 248
F0 11110000 240
E0 11100000 224
C0 11000000 192
80 10000000 128
00 00000000 0

Broadcast an echo request to all the hosts on the local network

In the IP address of each host in our local network, the first 26 bits identify the network. Thatleaves
6 bits to identify each host within the network. Ournetwork can therefore hold at most 26 − 2 = 62 differ-
ent hosts.

If you give the broadcast address toping -s , it will broadcast ICMP packets carrying the echo
request codeICMP_ECHO. Only the superuser is allowed to broadcast, so the setuid bit ofping is turned
on:

1$ cd /usr/sbin
2$ ls -l ping
-r-sr-xr-x 1 root bin 47788 Apr 6 2002 ping

ping broadcasts an echo request code with the sequence number 0. (The sequence numbers are in the
icmp_seq field of the ICMP header.) It outputs a line whenever it receives an ICMP packet carrying the
ICMP_ECHOREPLYcode. Thesereplies carry the same sequence number. After one second,ping broad-
casts another echo request, this time with the sequence number 1. This continues until you kill theping
with a control-c.

msmeans millisecond: one thousandth of a second.

3$ /usr/sbin/ping -s 128.122.253.191 | more Pressq to quit.
PING 128.122.253.191: 56 data bytes
64 bytes from i5.nyu.edu (128.122.253.152): icmp_seq=0. time=0. ms
64 bytes from HPC2.ES.ITS.NYU.EDU (128.122.253.140): icmp_seq=0. time=3. ms
64 bytes from AS17.ES.ITS.NYU.EDU (128.122.253.163): icmp_seq=0. time=12. ms
etc.
64 bytes from i5.nyu.edu (128.122.253.152): icmp_seq=1. time=0. ms
64 bytes from HPC2.ES.ITS.NYU.EDU (128.122.253.140): icmp_seq=1. time=1. ms
64 bytes from AS17.ES.ITS.NYU.EDU (128.122.253.163): icmp_seq=1. time=3. ms
etc.
64 bytes from i5.nyu.edu (128.122.253.152): icmp_seq=2. time=0. ms
64 bytes from AS11.ES.ITS.NYU.EDU (128.122.253.172): icmp_seq=2. time=1. ms
64 bytes from HPC2.ES.ITS.NYU.EDU (128.122.253.140): icmp_seq=2. time=3. ms
etc.
control-c

Where does ping get the hostnames from?

ping outputs the name of our hosti5.nyu.edu in lowercase, and the other hosts in uppercase.
This is a hint thatping gets its information from two different sources.The /etc/nsswitch.conf
file (p. 271) tells any program that needs to convert an IP address to a hostname to consult a file on our host
first. Thefile it consults is/etc/hosts . The DNS (the Domain Name System) is the last resort:

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 24 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1$ awk ’$1 == "hosts:"’ /etc/nsswitch.conf
hosts: files dns

2$ man -s 4 nsswitch.conf

i5.nyu.edu is written in lowercase in the/etc/hosts file:

3$ awk ’$2 == "i5.nyu.edu"’ /etc/hosts
128.122.253.152 i5.nyu.edu i5 loghost

4$ man -s 4 hosts

But the other hosts are not listed in the/etc/hosts file, soping falls back on DNS for them.DNS
coughs up uppercase hostnames.

Cut off the ping

To cut off the output ofping as soon as we receive a packet whose sequence number is not zero,

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/cutoff

1 #!/bin/ksh
2 #Ping every host on our network once. Then stop.
3
4 if [[$# - ne 1]]
5 t hen
6 echo $0: requires network name 1>&2
7 exit 1
8 f i
9

10 /usr/sbin/ping -s $1 |
11 awk ’NR >= 2 {
12 if ($0 ˜ /icmp_seq=0\./) {
13 print
14 } else {
15 exit 0
16 }
17 }’
18
19 exit 0

1$ cutoff 128.122.253.191 | cat -n | head -5
1 64 bytes from i5.nyu.edu (128.122.253.152): icmp_seq=0. time=0. ms
2 64 bytes from IONWEB.FAS.NYU.EDU (128.122.253.147): icmp_seq=0. time=3. ms
3 64 bytes from AS11.ES.ITS.NYU.EDU (128.122.253.172): icmp_seq=0. time=13. ms
4 64 bytes from AS17.ES.ITS.NYU.EDU (128.122.253.163): icmp_seq=0. time=16. ms
5 64 bytes from HPC2.ES.ITS.NYU.EDU (128.122.253.140): icmp_seq=0. time=18. ms

2$ cutoff 128.122.253.191 | cat -n | tail -5
24 64 bytes from WWITSGW-VLAN-13.NET.NYU.EDU (128.122.253.129): icmp_seq=0. time=66. ms
25 64 bytes from ITP.NYU.EDU (128.122.253.189): icmp_seq=0. time=69. ms
26 64 bytes from AS5.ES.ITS.NYU.EDU (128.122.253.148): icmp_seq=0. time=71. ms
27 64 bytes from AS3.ES.ITS.NYU.EDU (128.122.253.138): icmp_seq=0. time=74. ms
28 64 bytes from GOOGLE.NYU.EDU (128.122.253.155): icmp_seq=0. time=76. ms

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 25 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Loop through all the hosts on the local network

We’v e seen that the functioninet_pton (‘‘presentation to numeric’’) in line 25 takes a string con-
taining a dotted IPv4 address such as"128.122.253.152" and converts it to a 32-bit number whose
four bytes are in the ‘‘big-endian’’ order used by the Internet (highest byte first). The function
inet_ntop in line 57 does the opposite conversion: it converts a 32-bit number back to a dotted string.

We’v e also seen that the functionntohl in line 31 takes an Internet-order number (big-endian) and
returns the same number with the four bytes in the local order. The functionhtonl in line 54 does the
opposite conversion: ‘‘host to network long’’.

If the second argument is 26, line 40 of the C program and line 26 of the Perl program will let the
number of host bits be 6. The-1 in line 43 of C and line 29 of Perl is thirty-two1’s:

11111111 11111111 11111111 11111111

When line 43 of C (25 of Perl) shifts it 6 places to the left, the result stored in$netmask is

11111111 11111111 11111111 11000000

The expressioñ$netmask in line 51 of C (line 35 of Perl) is the photographic negative:

00000000 00000000 00000000 00111111

Line 47 of C program (line 32 of Perl) perform

10000000 01111010 11111101 10011000 IP address of the given host
& 11111111 11111111 11111111 11000000 $netmask

10000000 01111010 11111101 10000000 address of the network

Line 51 of C (line 35 of Perl) perform

10000000 01111010 11111101 10011000 IP address of the given host
| 0 0000000 00000000 00000000 00111111 ˜$netmask

10000000 01111010 11111101 10111111 broadcast address of the network

The functiongethostbyaddr in line 55 takes (the address of) a 32-bit IP address and returns a
pointer to a structure whoseh_name field in line 63 of C (line 39 of Perl) is the name of he host whose IP
address was supplied.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/localhosts.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <netdb.h>
4 #include <arpa/inet.h>
5
6 i nt main(int argc, char **argv)
7 {
8 i n_addr_t ip;
9 i n_addr_t i;

10 in_addr_t netmask;
11 in_addr_t network;
12 in_addr_t broadcast;
13
14 int netbits; /* how many network bits */
15 int hostbits; /* how many host bits */
16 struct hostent *p;
17 char buffer[INET_ADDRSTRLEN];

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 26 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

18
19 if (argc != 3) {
20 fprintf(stderr, "%s: requires 2 arguments: IP netbits\n",
21 argv[0]);
22 return 1;
23 }
24
25 if (inet_pton(AF_INET, argv[1], &ip) != 1) {
26 fprintf(stderr, "%s: first argument %s must be a dotted IPv4 address\n",
27 argv[0], argv[1]);
28 return 2;
29 }
30
31 i = ntohl(ip);
32
33 netbits = strtol(argv[2], NULL, 10); /* string to long */
34 if (netbits <= 0 || netbits > 30) {
35 fprintf(stderr, "%s: second argument %s must be number of network bits\n",
36 argv[0], argv[2]);
37 return 3;
38 }
39
40 hostbits = 32 - n etbits;
41
42 /* The netmask is netbits 1’s, followed by hostbits 0’s. */
43 netmask = -1 << h ostbits;
44
45 /* The network address is the IP address, with all the host bits turned
46 off. */
47 network = i & n etmask;
48
49 /* The broadcast address is the IP address, with all the host bits
50 turned on. */
51 broadcast = i | ˜ netmask;
52
53 for (i = network + 1; i < broadcast; ++i) {
54 ip = htonl(i);
55 p = gethostbyaddr((char *)&ip, sizeof ip, AF_INET);
56 if (p != NULL) {
57 if (inet_ntop(AF_INET, &ip, buffer, sizeof buffer) !=
58 buffer) {
59 fprintf(stderr, "%s: inet_ntop failed\n",
60 argv[0]);
61 return 4;
62 }
63 printf("%s %s\n", buffer, p->h_name);
64 }
65 }
66
67 return EXIT_SUCCESS;
68 }

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 27 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1$ cd ˜mm64/public_html/x52.9547/src
2$ gcc -o ˜/bin/localhosts localhosts.c -lsocket -lnsl
3$ ls -l ˜/bin/localhosts

4$ localhosts 128.122.253.152 26 | head -5 | cat -n
1 128.122.253.129 WWITSGW-VLAN-13.NET.NYU.EDU
2 128.122.253.131 NYU-DA3400-1-253-128.NS.ITS.NYU.EDU
3 128.122.253.135 DEVXFILES.NYU.EDU
4 128.122.253.136 BLOGS.NYU.EDU
5 128.122.253.137 AS2.ES.ITS.NYU.EDU

Note thati5.nyu.edu comes out in lowercase:

5$ localhosts 128.122.253.152 26 | cat -n | awk ’15 <= NR && NR <= 17’
15 128.122.253.150 HPC1.ES.ITS.NYU.EDU
16 128.122.253.152 i5.nyu.edu
17 128.122.253.155 GOOGLE.NYU.EDU

6$ localhosts 128.122.253.152 26 | cat -n | tail -5
37 128.122.253.185 ITS.NYU.EDU
38 128.122.253.186 IONDATA.TSOA.NYU.EDU
39 128.122.253.187 ION1.TSOA.NYU.EDU
40 128.122.253.188 ION2.TSOA.NYU.EDU
41 128.122.253.189 ITP.NYU.EDU

The same program, in Perl

We’v e seen that the functioninet_aton (‘‘alphanumeric to numeric’’) in line 21 can take a dotted
IP address such as"128.122.253.152" . It can also take a hostname such asi5.nyu.edu and return
the corresponding IP address as a 32-bit number whose four bytes are in the order (‘‘big-endian’’) used by
the Internet. The functioninet_ntoa (‘‘numeric to alphanumeric’’) in line 41 does the opposite conver-
sion: it takes a 32-bit number whose four bytes are in Internet order and returns a string such as
"128.122.253.152" .

We’v e seen that theunpack in line 24 takes a 32-bit number whose bytes are in Internet order and
returns the same number with the four bytes in local order. Thepack in line 38 does the opposite conver-
sion: it takes a local-order number and returns the same number with the four bytes in Internet order.

The AF_INET in line 39 means ‘‘IP version 4’’; AF_INET6 would mean ‘‘IP version 6’’.
AF_INET is not a variable: it has no leading$. It’s a subroutine with no arguments, declared in

1$ cat -n /usr/perl5/5.6.1/lib/sun4-solaris-64int/Socket.pm |
sed -n 345p

345 sub AF_INET ();

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/localhosts.pl

1 #!/bin/perl
2 #Output the IP address and fully qualified domain name of every host
3 #on the same network as the given host.
4 #The first argument is the hostname or IP address of a given host,
5 #e.g., i5.nyu.edu or 128.122.253.152
6 #The second argument is the number of network bits in the netmask, e.g., 26
7
8 use Socket;
9

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 28 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

10 if (@ARGV != 2) {
11 die "$0: requires 2 arguments";
12 }
13
14 $hostname = $ARGV[0];
15 $netbits = $ARGV[1]; #number of network bits in the bitmask
16
17 if ($netbits <= 0 || $netbits > 30) {
18 die "$0: netbits $netbits must be in range 1 to 30 inclusive";
19 }
20
21 $ip = inet_aton($hostname)
22 or die "$0: argument $hostname must be a hostname or dotted IP address";
23
24 $i = unpack(’N’, $ip);
25
26 $hostbits = 32 - $netbits;
27
28 #The netmask is $netbits 1’s, followed by $hostbits 0’s.
29 $netmask = -1 << $hostbits;
30
31 #The network address is the IP address, with all the host bits turned off.
32 $network = $i & $netmask;
33
34 #The broadcast address is the IP address, with all the host bits turned on.
35 $broadcast = $i | ˜$netmask;
36
37 for ($i = $network + 1; $i < $broadcast; ++$i) {
38 $ip = pack(’N’, $i);
39 $name = gethostbyaddr($ip, AF_INET);
40 if (defined $name) {
41 print inet_ntoa($ip), " $name\n";
42 }
43 }
44
45 exit 0;

▼ Homework 1.1: find all your local hosts

Run ifconfig to find the IP address and netmask of your host. Then runlocalhosts.c or
localhosts.pl to find the IP address and fully qualified domain name of every host on your local net-
work. Handin the output; write down how many network bits are in the netmask.
▲

Which local hosts are not answering a ping?

comm -23

localhosts.pl ping

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 29 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/noresponse

1 #!/bin/ksh
2 #Output the fully qualified domain name of every host on the
3 #local network that does not respond to a broadcast ping.
4
5 cd / tmp
6
7 ˜ mm64/public_html/x52.9547/src/localhosts.pl 128.122.253.152 26 |
8 awk ’{print $2}’ |
9 tr ’ [a-z]’ ’[A-Z]’ |

10 sort > local.$$
11
12 ˜mm64/public_html/x52.9547/src/cutoff 128.122.253.191 |
13 awk ’{print $4}’ |
14 tr ’[a-z]’ ’[A-Z]’ |
15 sort > ping.$$
16
17 comm -23 local.$$ ping.$$
18 rm local.$$ ping.$$
19 exit 0

1$ cd ˜mm64/public_html/x52.9547/src
2$ noresponse | cat -n | tail -5

11 IONDATA.TSOA.NYU.EDU
12 MODIYA.NYU.EDU
13 NEWI2.NYU.EDU
14 NYU-DA3400-1-253-128.NS.ITS.NYU.EDU
15 POLARIS.ITS.NYU.EDU

▼ Homework 1.2: display all the NYU hostnames

NYU has many LANs in addition to our LAN128.122.253.128/26 . IN fact, NYU owns all the
IPv4 addresses from128.122.0.0 to 128.122.255.255 inclusive.

Write a program to display the IP address and fully qualified domain name of every NYU IP address
that has a fully qualified domain name, from128.122.0.0 to 128.122.255.255 . Run the program
in the background because it takes too long:

1$ allnyu > allnyu.out 2>&1 &

128.122.0.0 NYU-NET
128.122.255.255 NYU-BROADCAST

▲

IP version 6 addresses

See RFC 3513 for IPv6 addresses.(RFC’s come from the IETF: Internet Engineering Task Force.)
The Belgian National Research Network has hosts with IPv6 addresses as well as IPv4 addresses. Also try
www.ipv6.org , ipv6.linux-tech.com .

By default, nslookup will display only IP version 4 addresses.They are called ‘‘type A’’ , for
‘‘ address’’.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 30 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1$ /usr/sbin/nslookup patah.belnet.be
Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

Non-authoritative answer:
Name: patah.belnet.be
Address: 193.190.198.30

To see IP version 6 addresses ask for typeAAAA, which are four times as long as IP version 4.

2$ /usr/sbin/nslookup -type=AAAA patah.belnet.be
Server: NYUNSB.NYU.EDU
Address: 128.122.253.37

Non-authoritative answer:
Name: patah.belnet.be
Address: 2001:6a8:3c80:0:a00:20ff:fea2:8dbc

3$ /usr/sbin/nslookup -type=PTR 2001:6a8:3c80:0:a00:20ff:fea2:8dbc | \
awk ’NR == 5 {print $NF}’

patah.belnet.be

You hav eto type the address backward for dig.

4$ /usr/sbin/dig -t any \
c.b.d.8.2.a.e.f.f.f.0.2.0.0.a.0.0.0.0.0.0.8.c.3.8.a.6.0.1.0.0.2.ip6.arpa | \
awk ’/ˆ;; ANSWER SECTION:$/,/ˆ$/’ | \
fold -s -80 fold at last space before column 80
;; ANSWER SECTION:
c.b.d.8.2.a.e.f.f.f.0.2.0.0.a.0.0.0.0.0.0.8.c.3.8.a.6.0.1.0.0.2.ip6.arpa.
2d23h52m42s IN PTR patah.belnet.be.

If the first three network bits are001 , there are 64 host bits.(This is called an ‘‘aggregatable unicast
address’’; we’ll talk about aggregation when we do CIDR.)If the host bits are derived from the 48-bit Eth-
ernet address of the host, they are derived by inserting the 16 bits0xFFFE after the 24-bit Organizationally
Unique Identifier (OIU) at the start of the Ethernet address, and flipping bit 17 of the OIU. This is the
‘‘ universal/local’’ bit; 1 is universal, 0 is local. See RFC 3513, pp. 20−21.

For example, the host bits ofpatah.belnet.be are derived from the Ethernet address
08:00:20:a2:8d:bc . The OIU of this address is08:00:20 . Looking this OUI up at

http://standards.ieee.org/regauth/oui/index.html

reveals that it was manufactured by Sun. Flipping bit 17 from0 to 1 changes

08:00:20 00001000 00000000 00100000 to
0a:00:20 00001010 00000000 00100000

An ‘‘IPv4-mapped IPv6 address’’ is a 128-bit IPv6 address.But data sent to it will be carried by
IPv4 datagrams. This lets an IPv6 host talk to an IPv4 host. An IPv4-mapped IPv6 address is 80 zeroes,
followed by 16 ones, followed by the 32-bit IPv4 address.For example, the IPv4-mapped IPv6 address of
i5.nyu.edu is::ffff:807a:fd98 , ususally written as::ffff:128.122.253.152 .

If you have a host that can receive IPv6, but which is accessible only via an IPv4 router, giv e the host
an ‘‘IPv4-compatible IPv6 address’’. For example, the IPv4-compatible IPv6 address of i5.nyu.edu would
be ::807a:fd98 , ususally written as::128.122.253.152 . An IPv6 datagram sent to an IPv4-com-
patible address will be encapsulated in one or more IPv4 datagrams before it gets to the router. This is
calledtunneling.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 31 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

00

0000 0000 0000 0000 0000 0000 0000 0000

0001

0000 0000 0000 0000 0000 0000 0000 0001

00100000000000010000011010101000001111001000000000000000000000000000101000000000001000001111111111111110101000101000110110111100

2001 06a8 3c80 0000 0a00 20ff fea2 8dbc

00111111111111111110000000011110101111110110011000

0000 0000 0000 0000 0000 ffff 807a fd98

0010000000011110101111110110011000

0000 0000 0000 0000 0000 0000 807a fd98

unspecified address: I don’t know who I am

loopback address

64 network bits 64 host bits (interface ID)patah.belnet.be

IPv4-mapped IPv6 address fori5.nyu.edu

IPv4-compatible IPv6 address fori5.nyu.edu

Get an IPv4-mapped IPv6 address

The usual way to get an IPv4-mapped IPv6 address is to set

1$ echo $RES_OPTIONS resolver options
2$ export RES_OPTIONS=inet6
3$ echo $RES_OPTIONS

and call the functiongethostbyname2 . But we don’t hav egethostbyname2s , and
resolv.conf (4) says this has no effect ongethostbyname . Instead, we have to call
getipnodebyname . The AI_DEFAULT in line 19 gets us, among other things, IPv4-mapped IPv6
addresses.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9547/src/getipnodebyname.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <netdb.h> /* for gethostbyname */
4
5 extern int errno; /* for inet_ntop */
6
7 i nt main(int argc, char **argv)
8 {
9 s truct hostent *entry;

10 char **p;
11 char buffer[INET6_ADDRSTRLEN];
12 int error;
13
14 if (argc != 2) {
15 fprintf(stderr, "%s: need hostname\n", argv[0]);
16 return 1;
17 }
18
19 entry = getipnodebyname(argv[1], AF_INET6, AI_DEFAULT, &error);

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 32 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

20 if (entry == NULL) {
21 fprintf(stderr, "%s: error %d from getipnodebyname\n",
22 argv[0], error);
23 return 2;
24 }
25
26 switch (entry->h_addrtype) {
27 case AF_INET:
28 case AF_INET6:
29 for (p = entry->h_addr_list; *p != NULL; ++p) {
30 if (inet_ntop(entry->h_addrtype, *p,
31 buffer, sizeof buffer) == NULL) {
32
33 perror(argv[0]);
34 return 3;
35 }
36 printf("%s\n", buffer);
37 }
38 break;
39
40 default:
41 fprintf(stderr, "%s: unknown address type %d\n",
42 argv[0], entry->h_addrtype);
43 return 4;
44 }
45
46 return EXIT_SUCCESS;
47 }

4$ cd ˜mm64/public_html/x52.9547/src
5$ gcc -o ˜/bin/getipnodebyname getipnodebyname.c -lsocket -lnsl

i5.nyu.edu has no IPv6 address, so we get an IPv4-mapped IPv6 address instead.One group of mul-
tiple consecutive zeroes can be written as a double colon.

6$ getipnodebyname i5.nyu.edu
::ffff:128.122.253.152

Textbook

TCP/IP Network Administration, Third Edition by Craig Hunt; O’Reilly, 2002; ISBN 0-596-00297-1;
$44.95.

http://www.oreilly.com/catalog/tcp3/
http://www.craighunt.com/

It’s $44.95 in aisle 9 downstairs at the NYU Main Bookstore (not the NYU Computer Bookstore), 18
Washington Place, (212) 998-4667,http://www.bookc.nyu.edu/main/ .

Or you can get theNetworking CD Bookshelf, Version 2.0; O’Reilly, 2002; ISBN 0-596-00334-x;
$119.95.

http://www.oreilly.com/catalog/netcd2/

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 33 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Computer bookstores in Manhattan

Computer Bookworks (212) 385-1616
78 Reade Street (near City Hall), between Broadway and Church Street
bookman3@mindspring.com

Barnes and Noble (212) 807-0099
http://www.barnesandnoble.com/

Contact information

Home page for this course: http://i5.nyu.edu/˜mm64/x52.9547/

Mark Meretzky’s email address: mark.meretzky@nyu.edu

Mark Meretzky’s home page: http://i5.nyu.edu/˜mm64/

The system administrator’s address iscomment@i5.nyu.edu . For the NYU computer help desk,
send email toits.clientservices@nyu.edu , or call (212) 998-3333, or visit the ITS Client Ser-
vices Center athttp://www.nyu.edu/its/helpdesk.html . For problems with computer
accounts and passwords, send email to the accounts office atits.clientservices@nyu.edu or call
(212) 998-3333, or visithttp://www.nyu.edu/its/accounts/stuaccts.html . For informa-
tion about grades, incompletes, and NYU courses, including courses which I will teach next semester, call
the School of Continuing and Professional Studies at (212) 998-7190.To contact me after the course is
over, please send me email—don’t phone.

Homework, exams, grades

Your grade will depend on the homework you hand in to me on paper between the start of the course
and 6:00 p.m. on the last class of the course.There will be no midterm or final.You get only one chance to
hand in each problem. Hand in only the ones I assign in class, not all the problems in the Handouts.

Each assignment will be due one class after it is assigned.I can’t predict when I will assign each
assignment, since it depends on how fast the class goes.The class web page will list when each assignment
is due. If you have handed in little or no work during the semester, it will not help your grade if you hand
in all or most of it late at the end of the semester.

I will give you the answer to every assignment on the day it is due.You therefore get no credit for
homework that I receive after that date. If you will be absent on the due date, hand it in early or mail it to
me so that I receive it early:

Mark Meretzky
care of Joanne Davis
NYU School of Continuing and Professional Studies
Technology Division Administration
10 Astor Place, room 505D (between Broadway and Lafayette Street; closed after 6:00 p.m.)
New York, NY 10003−6935

Put your real name, course number, and section number on the homework. Do not email me your home-
work. If you miss a class, send someone to tape it or take notes, and to drop and pick up your homework.

I will return each assignment to you one class after you give it to me, except for homework which
you give me on or after the last class.I will give you back that homework only if you give me a self-
addressed stamped envelope.

I will not give a grade to each individual homework, but I will correct every mistake you make. If
there are no corrections, you did the homework perfectly. The only grade you will receive will be the one
you get for the entire course. There is no way to predict this grade before the end of the course, since it
partially depends on how well everyone else in the class does.You may also be penalized for gross absen-
teeism.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 34 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Collaboration

To collaborate with one or two other people, you may collectively hand in one copy of every assign-
ment with the names of the two or three authors.You must stay with the same partner(s) throughout the
semester, and you will all receive the same grade. In the real world you will program with other people, so
I encourage you to do so now.

You must do all your own work with no help from anyone except your partner(s), if any.

You will f ail the course if I receive two copies of the same work from people who are not partners, or work
on which you were helped by a person who is not your partner. After you’re caught, it is too late to make
the other person your partner. You will fail the course if you hand in copies of my answers, or anybody
else’s answers.

The end of the course

I will not tell you your grade.I always mail the grades to NYU immediately after the last class of the
course, or the day I receive the garding sheet from NYU, whichever comes last.I don’t know what NYU
will do with the grades or how long they will take to make them available to you.

david.finney@nyu.edu , Dean of SCPS, says ‘‘Incomplete grades should be given only in rare
circumstances where a student has been able to completenearly all of the course assignments by the end of
the semester.’’ Some students request an Incomplete just to extend their computer account.

To extend your i5.nyu.edu account if you have requested an Incomplete, fill out form ITS 775 at

http://www.nyu.edu/its/accounts/forms/request.extension.pdf

and bring it to me by the last day of class.After I sign it, take it to the address at the top of the form.Do
not leave form ITS 775 with me.

To complete your incomplete, mail the ‘‘To complete an Incomplete’’ project in the class web page to
me at the above address. Alsoinclude xeroxes of all the homework I returned to you during the semester,
showing my comments. Include your full name, social security number or NYU ID number, email address,
the course and section number, and the year and semester when you took the course. Do not email me your
late homework.

Computer labs at NYU:
http://www.nyu.edu/its/labs/

(212) 998-3409 Room LC-8 Tisch Hall, two flights down
PC’s 40 West 4th Street at Greene Street
printers: noneaccessible via the i5.nyu.edulpr command

(212) 998-3457 14 Washington Place, one flight down
PC’s between Greene and Mercer Streets
printer: wppc-hp9050-1

(212) 998-3421 Education Building, second floor
Macs 35West 4th Street at Greene Street
printer: ed-hp8150dn-1

(212) 998-3504 North Dorm, two flights down
PC’s and Macs 75 Third Avenue (southeast corner of Third Avenue & 12th Street)
printer: nd-hp9050dn-1

To get your plastic, magnetic NYU ID card, see

http://www.nyu.edu/nyucard/

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 35 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

Your i5.nyu.edu account

Our computer is Sun 250 server running Solaris 9 (SunOS 5.9).Its Internet hostname is
i5.nyu.edu , its IP version 4 address is128.122.253.152 , and its Ethernet address is
8:0:20:c9:a0:9 .

Your i5.nyu.edu login name is listed at

http://i5.nyu.edu/˜mm64/common/students.html

It is the same as your NYU NetID used by your NYU DIAL or NYU Home account. It will be two or three
lowercase letters (your initials) followed by one or more digits. In these Handouts, we’ll assume your
login name isabc1234 .

Your i5.nyu.edu secret password is the same as your central NYU single sign-on password used by
your NYU DIAL or NYU Home account. In these Handouts, we’ll assume your password isBacall8? .

Before using your login name and password for the first time, register at
http://start.nyu.edu/ . First time i5.nyu.edu users must leave the password field blank as they
have not yet set their password. They will then be prompted to enter their social security number and birth
date.

To change your password to a more colorful one, e.g.,bogart! or Bacall8? , go back to
http://start.nyu.edu/ .

The ‘‘secure shell’’ ssh

NYU will be your access provider if you don’t already have one. Goto one of the computer labs and
get the ITS NYU-NET CD-ROM containing the communications software and installation documentation.
Seehttp://www.nyu.edu/its/faq/ . Your NetID is the same as your login name.

To log into i5.nyu.edu , you have to run the a program that speaks the ‘‘secure shell protocol’’.
One example is a program namedPuTTYor putty.exe . If you don’t already have it, get it from

http://www.chiark.greenend.org.uk/˜sgtatham/putty/

(1) On Windows, runputty.exe . A window namedPuTTY Configuration will appear. Type
i5.nyu.edu as the host name, and select the radio button for the protocolSSH. The port number should
be 22. Then pressOpen. Dismiss anyPuTTy Security Alert window that may appear.

login as: abc1234
abc1234@i5.nyu.edu’s password: Bacall8?

(2) From any other Unix host, you can get toi5.nyu.edu by running the programssh . If you
don’t already have it, here is is NYU’s page about where to get it:

http://www.nyu.edu/its/faq/connecting/ssh.html

On Mac OSX, for example, lauch theTerminal application to get a Unix shell window. Pull down the
Font menu and select a pleasant font. Then give the command

ssh abc1234@i5.nyu.edu

(3) On other Macs, launch the applicationMacSSH Telnet . A window named Open
Connection... will appear. Type i5.nyu.edu as the host name, and check the checkbox for
Secure Shell . Then pressConnect .

If it doesn’t work, try again but say128.122.253.152 instead ofi5.nyu.edu .

After logging in

When you are finished logging in, you will see the prompt.To verify that you are really logged in,
run simple programs such as

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 36 − All rights

reserved ©2005 Mark Meretzky

NYU SCPS X52.9547 Section 1 Networking and Unix

1$ date PressRETURNafter each command line.
2$ cal 12 2005 Need space before each command line argument.

Log out

1$ exit or logout on other systems

If the terminal window is still open, pull down theFile menu and selectExit or Quit to close it.

What can go wrong: a guide to the special keys

(1) If you accidentally typecontrol-z , it will say Stopped . Type

1$ fg Bring the most recently stopped program back into the foreground.

to start things up again. If it saysYou have stopped jobs when you try to log out, typefg to give
your stopped job a chance to finish. Repeat if necessary.

(2) Pressbackspace , delete , or ← to erase the last character typed.If your ← or
backspace key doesn’t work, type

2$ stty erase ←

(with a space before the←) and pressRETURN. As a last resort, see ifcontrol-h will backspace.

(3) To kill a long program, typecontrol-c on a terminal or a PC.You may have to type it several
times.

(4) Control-s will freeze the screen; unfreeze it withcontrol-q . Similarly, Hold Screen on
a terminal orScroll Lock on a PC will freeze the screen. Unfreeze it with anotherHold Screen or
Scroll Lock .

(5) Never pressCaps Lock in Unix: almost everything we type will be lowercase. Don’t confuse
(5a) the lowercase letterl , the uppercase letterI , and the digit1
(5b) the lowercase lettero, the uppercase letterO, and the digit0
(5c) the diagonal slash/ and the backslash\
(5d) the single quote’ , the double quote" , and the back quote‘
(5e) the dash- , the underscore_, and the tildẽ
(5f) the left parentheses(, the left curly brace{ , and the left square bracket[
(5g) the right parentheses) , the right curly brace} , and the right square bracket]
(5h) the vertical bar (pipe symbol)| , the colon: , and the exclamation point!
(5i) any uppercase letter and the corresponding lowercase letter.

Fall 2005 Handout 1printed 12/1/05
11:59:52 AM − 37 − All rights

reserved ©2005 Mark Meretzky

