
NYU SCPS X52.9546 Section 1 Unix Tools

Fall 2004 Handout 8

Tcl
Mark Meretzky

New York University School of Continuing and Professional Studies

mark.meretzky@nyu.edu
http://i5.nyu.edu/˜mm64

Introduction

The ‘‘Tool Command Language’’ Tcl is a generic (i.e., plain vanilla) interpreted language, with vari-
ables, assignment statements, loops, conditionals, procedures, etc. What sets it apart is that it is extensible
and embeddable .

Tcl can be extended with new commands and even new control structures by writing C functions to
implement them. The two most popular extended forms of Tcl are the language Tk, for building graphical
user interfaces (GUI’s) on top of the X window system, and the language Expect, for writing scripts to drive
interactive programs such as ftp or telnet.

Tcl and its extensions can also be embedded in an application to endow the application with its own
command language. For example, instead of using yacc to create new ad hoc languages to tell a debugger
or a mail reader how to loop and search, the language Tcl can be built into both applications. A common
language will also make it easier for applications to communicate with each other.

This paper accompanies a tutorial course to let programmers use Tcl, Tk, and Expect without reading
through the 500-page books in the bibliography. Although the programming facilities of Tcl are blandly
generic, the Tcl interpreter provides them in a nonstandard way. We therefore concentrate on the unusual
features of Tcl: the order of parsing and substitution, normal vs. deferred substitution, repeated parsing with
the eval command, and list composition.

The most popular extended forms of Tcl

Tcl

Expect Tk

Expectk

[incr Tcl]TclX

BLT

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 1 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Tcl, Tk, and Expect bibliography and links

The best tutorial for beginners is

Tcl and the Tk Toolkit
by John K. Ousterhout; Addison-Wesley, 1994; ISBN 0-201-63337-X
http://www.awl.com/cseng/titles/0-201-63337-X
http://www.scriptics.com/people/john.ousterhout/

But Tcl has grown since the Osterhout book was published. An up-to-date handbook of commands and
their options is

Tcl/Tk in a Nutshell
by Paul Raines and Jeff Tranter; O’Reilly & Associates, 1999;
ISBN 1-56592-433-9
http://www.oreilly.com/catalog/tclnut/

Advanced examples are shown in

Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk
by Mark Harrison and Michael McLennan; Addison-Wesley, 1998; ISBN 0-201-63474-0
http://www.awl.com/cseng/titles/0-201-63474-0
http://www.tcltk.com/itcl/mmc/index.html

The largest number of examples are in

Practical Programming in Tcl and Tk, 2nd ed.
by Brent B. Welch; Prentice Hall, 1997; ISBN 0-13-616830-2
http://www.prenhall.com/allbooks/ptr_0136168302.html
http://www.beedub.com

Tcl/Tk home page: http://www.scriptics.com/
Tcl/Tk web browser plugin: http://www.scriptics.com/plugin/
Tcl/Tk newsgroup: news:comp.lang.tcl
Perl/Tk FAQ: http://w4.lns.cornell.edu/˜pvhp/ptk/ptkFAQ.html

The standard book on Expect is

Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs
by Don Libes; O’Reilly & Associates, 1994; ISBN 1-56592-090-2
http://www.oreilly.com/catalog/expect/
http://www.mel.nist.gov/msidstaff/libes/

The Expect home page is http://expect.nist.gov/

Other extended forms of Tcl are

BLT: http://www.tcltk.com/blt
[incr Tcl]: http://www.tcltk.com/itcl
TclX: http://www.neosoft.com/tcl/TclX.html

To print the documentation,

1$ man -t tclsh | grops | lpr Tcl shell
2$ man -t wish | grops | lpr Tk shell (‘‘window shell’’)
3$ man -t tk | grops | lpr Tk colormodels

Tcl commands and comments

See execve(2) for the Unix #!. Like the puts function in C, the puts command in Tcl outputs a
string followed by a newline.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 2 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

The end of the line terminates each command in a Tcl program. A semicolon can also terminate a
command, so you can write two commands on the same line.

The # is a comment delimiter only when it is the first character of a command. To write a comment
alongside a command, you must therefore terminate the command with a semicolon. Write the semicolon
immediately before the comment delimiter.

A long command may be continued onto the next line with a backslash. Start a new line between
words, not in the middle of a word.

#!/usr/local/bin/tclsh

puts hello
puts hello; puts goodbye

#This is a comment.
puts ################## ;#Output a row of #’s.

puts \
supercalifragilisticexpialidocious

exit 0 ;#Return exit status; zero is the default.

hello
hello
goodbye
##################
supercalifragilisticexpialidocious

Tcl variables

Tcl has only one data type: string. A value that looks like a number is really only a string of one or
more digits, and maybe a minus sign and/or decimal point. It is an error to attempt to use an uninitialized
variable, or one which has been unset.

Tcl and the shell share the following two rules for dollar signs in front of variables. Don’t put a $ in
front of a variable name when you’re giving it a new value. Put the $ there only when you’re using the
variable’s existing value:

#!/usr/local/bin/tclsh

set x capital ;#This is an assignment.
puts $x
append x ism
puts $x

set y 10
puts $y
incr y 1 ;#1 is the default; -1 will decrement
puts $y

puts y ;#What happens if you forget the dollar sign?

unset x y ;#Unnecessary in this program.
exit 0

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 3 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

capital
capitalism
10
11
y

File identifiers

A puts command must have one or two arguments. If there is only one argument, it is written to the
standard output. If there are two arguments, the second one is written to the destination specified by the
first, which must be an output file identifier : a one-word string specifying the destination of the output. A
file identifier is also used to specify a source of input. Every Tcl program is born with the right to use three
file identifiers: stdin, stdout, and stderr. Additional file identifiers may be created with the open
command, below.

puts hello
puts stdout hello ;#does the same thing
puts stderr hello

Make sev eral words count as a single word

The following commands are therefore illegal:

#Don’t worry: comma and exclamation point are not special characters in Tcl.

puts Hello there, world! ;#too many arguments
puts ;#too few arguments: attempt to output an empty line
puts Hello, world! ;#Hello, is not a file identifier

To make two or more words count as a single word enclose them in "double quotes" or {curly
braces}. The following are now leg al because puts has one argument:

puts "Hello there, world!"
puts "" ;#output an empty line
puts "Hello, world!" ;#to stdout by default

You also need double quotes or curly braces around an argument that begins or ends with a white space:

puts " This line is indented three spaces."

Double quotes vs. curly braces

Shell Tcl

$variable $variable

"double quotes" "double quotes"

’single quotes’ {curly braces}

‘back quotes‘ [square brack ets]

(1) Double quotes in Tcl are like double quotes in the shell: you can use all of the substitution charac-
ters $ \ [] inside of them. Note that * is not a special character in Tcl.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 4 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/sh

w=world #no space around the equal sign
echo "Hello, $w!" #quotes unnecessary
echo "Hello, \$w!"

exit 0

Hello, world!
Hello, $w!

#!/usr/local/bin/tclsh

set w world

puts "Hello, $w!" ;#quotes necessary
puts "Hello, \$w!"

exit 0

Hello, world!
Hello, $w!

#!/usr/local/bin/tclsh

puts "Hello there,\nworld!"
exit 0

Hello there,
world!

The function of double quotes is merely to group two or more words into a single word. They are
therefore never necessary around one word, but we often write them anyway to remind the reader which
words are conventional strings. For example, both of the arguments of the following puts command are
strings everything is a string in Tcl), but only the hello would be a string in a normal programming lan-
guage:

puts stderr "hello" ;#The double quotes are just documentation.

(2) Curly braces in Tcl are like single quotes in the shell: you can’t use any of the special characters
$ \ [] ; inside of them:

#!/bin/sh

w=world
echo ’Hello, $w!’

exit 0

Hello, $w!

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 5 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set w world
puts {Hello, $w!}

exit 0

Hello, $w!

#!/usr/local/bin/tclsh

puts {Hello there,\nworld!}
exit 0

Hello there,\nworld!

Curly braces not only group words together: they also turn off the meanings of the special characters
they enclose. Curly braces are never necessary around a single word containing no special characters, but
we often write them anyway to remind the reader which words are commands:

#The double quotes and curly braces are just documentation.
button .exitbutton -text "exit" -command {exit}

(3) Double quotes and curly braces can therefore be used interchangeably if they enclose no special
characters. For example, the empty string can be written as either "" or {}, but please write it as ""
because that’s what human beings expect.

#!/usr/local/bin/tclsh
puts "Here are {curly braces} within a double-quoted string."
puts {Here are "double quotes" within a curly braced string.}

exit 0

Here are {curly braces} within a double-quoted string.
Here are "double quotes" within a curly braced string.

The set command with two arguments

A set command that gives a new value to a variable must have exactly two arguments. If the new
value is more (or less) than a single word, it must be enclosed in double quotes or curly braces:

set name "John Doe" ;#could have used braces, but quotes are clearer
set name "$first $last" ;#had to use quotes, not braces
set name "" ;#could have used braces, but quotes are clearer

Run a command within a command

‘Back quotes‘ in the shell language let you use the standard output of a program as part of a larger
command line:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 6 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/sh
#Just to remind you of back quotes in the shell.

a=9
b=16
c=‘expr $a + $b‘
echo The sum is $c.

#Of course, if all you want to do is print the sum,
#there is no need to deposit it into a variable:

echo The sum is ‘expr $a + $b‘.
exit 0

The sum is 25.
The sum is 25.

Every Tcl command produces a result string. [Square brackets] in Tcl let you use the result of a com-
mand as part of a larger command. Some commands return the null string as their result, but the expr
command returns a number:

#!/usr/local/bin/tclsh
#The same program, in Tcl.

set a 9
set b 16
set c [expr $a + $b]
puts "The sum is $c."

#Once again, if all you want to do is print the sum,
#there is no need to deposit it into a variable:

puts "The sum is [expr $a + $b]."
exit 0

The sum is 25.
The sum is 25.

The Tcl expr command is different from (and is not implemented by calling) the Unix expr pro-
gram. For example, Tcl expr does floating point arithmetic, while Unix expr does only integer arith-
metic. And Tcl expr does not require that each token of the expression be a separate argument.

The shell lets you use back quotes within double quotes but not within single quotes:

#!/bin/sh

a=9
b=16

echo "The sum is ‘expr $a + $b‘."
echo ’The sum is ‘expr $a + $b‘.’

exit 0

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 7 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

The sum is 25.
The sum is ‘expr $a + $b‘.

Similarly, Tcl lets you use square brackets within double quotes but not within curly braces:

#!/usr/local/bin/tclsh

set a 9
set b 16

puts "The sum is [expr $a + $b]."
puts {The sum is [expr $a + $b].}

exit 0

The sum is 25.
The sum is [expr $a + $b].

Square brackets around a command with no arguments

The -nonewline argument of the puts command is just like the -n option of the Unix echo pro-
gram:

#!/usr/local/bin/tclsh

puts -nonewline "My process ID number is [pid] "
puts "and my current directory is [pwd]."

exit 0

My process ID number is 20412 and my current directory is /usr/bin.

Another square bracket example

1 /* C fragment */
2 #include <stdio.h>
3
4 int red = 0;
5 int green = 127;
6 int blue = 255;
7 char rgb[256];
8
9 sprintf (rgb, "#%02X%02X%02X", red, green, blue);
10 puts (rgb);

sprintf deposits eight characters into memory, including a terminating ’\0’:

#007FFF

The result of the following format command is the same as string written by the above sprintf
function. The double quotes around the #%02X%02X%02X are unnecessary: even without them, the #
would not be a comment delimiter because it is not at the start of a command. And % is not a special char-
acter in Tcl.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 8 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set red 0
set green 127
set blue 255

set rgb [format "#%02X%02X%02X" $red $green $blue]
puts $rgb

exit 0

#007FFF

The set command with one argument

With only one argument (the name of a variable), the set command does not change the value of the
variable. It merely returns the value of the variable as its result. For example,

#!/usr/local/bin/tclsh

set a 10

puts $a
puts [set a]

exit 0

10
10

This lets you write a variable immediately followed by a character which could be part of a variable
name:

#!/usr/local/bin/tclsh

set a 7
set aup 8

puts $aup ;#unsuccessful attempt to print 7up
puts [set a]up
puts ${a}up ;#simpler way to do the same thing

exit 0

8
7up
7up

The simpler way ${a} can be used only with a scalar variable, not an array element. But the real
use of the set command with one argument will be when running tclsh interactively.

Why couldn’t they leave the familiar shell punctuation marks alone?

Why did they change the shell’s single quotes and back quotes to Tcl curly braces and square brack-
ets respectively? Let’s consider the shell’s back quotes as an example. To nest them, you need a backslash
before each member of the inner pair:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 9 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/sh

if [‘expr \‘wc -l < myfile\‘ / 60‘ -gt 100]
then

echo At 60 lines per page, it would take more than 100 pages
echo to print myfile.

fi

if [‘lpq -Pprinter1 | wc -l‘ -lt ‘lpq -Pprinter2 | wc -l‘]
then

echo printer1 is less busy than printer2.
fi

exit 0

In the shell language, the above backslashes are necessary because the two back quotes of a pair are
identical: there are no such things as a ‘‘left back quote’’ and a ‘‘right back quote’’. But if the two charac-
ters of the pair were different, we wouldn’t need the presence or absence of backslashes to tell which one
pairs up with which one:

#!/usr/local/bin/tclsh

puts [pid]
puts [expr [pid] + 1] ;#nested
puts "[pid] [pid]" ;#not nested

puts {Here are {curly braces} with a curly-braced string.}
exit 0

1000
1001
1000 1000
Here are {curly braces} with a curly-braced string.

Curly braces and square brackets are often heavily nested in Tcl, so it made sense to eliminate the
need for the backslashes. Double quotes are not nested heavily in Tcl, so Ousterhout let them remain the
same characters as in the shell language:

#!/usr/local/bin/tclsh

puts "Here are \"double quotes\" within a double-quoted string."
exit 0

Here are "double quotes" within a double-quoted string.

The order in which everything happens

As the Tcl interpreter tclsh reads each command, it does the three things:

(1) The interpreter divides each line into separate words (or arguments) wherever it sees white space.
This is called parsing . Double quotes, curly braces, or square brackets will make two or more words count
as a single word.

(2) The interpreter then performs three kinds of substitutions on each word that is not enclosed in
curly braces:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 10 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(2a) The interpreter performs variable substitution when it changes the name of a variable (with a
leading $) into the value of the variable. For example, the interpreter will cause the following puts com-
mand to receive the three-character string 100 rather than the two-character string $x as its argument:

set x 10
puts $x

(2b) The interpreter performs backslash substitution when it changes a backslash and the following
character into a single (nonprinting) character. For example, the interpreter will cause the following puts
command to receive a three-character string whose middle character is a newline, rather than the four-char-
acter string a\nb containing a backslash and lowercase n:

puts a\nb

(2c) The interpreter performs command substitution when it changes a command in [square
brackets] into the result of the command. For example, the interpreter will cause the following puts com-
mand to receive a string such as 1000 rather than the five-character string [pid] as its argument:

puts [pid]

After all the substitutions (if any), the surrounding double quotes or curly braces (if any) are stripped
off the word. Therefore all three of the following give exactly the same second argument to the set com-
mand:

set x A
set x "A"
set x {A}

(3) The interpreter then executes the command.

For example, in

set x {$a==3}

the curly braces prevent the interpreter from performing substitution on the $a: it will simply give the two
arguments x and $a==3 to the set command. The set command then copies the five characters $a==3
into the variable x. Note that the set command is unaware of the curly braces around its argument:
they’re stripped away before it sees them.

Normal vs. deferred substitution

The following while command goes into an infinite loop, because it receives the argument 1<=10
from the interpreter. The interpreter changed the $i into a 1 before the while command gets to see its
own arguments:

#!/usr/local/bin/tclsh

set i 1

while $i<=10 {puts $i; incr i}

exit 0

To prevent the interpreter from performing this substitution, enclose the first argument of the while
command in curly braces. Now the command will receive the argument $i<=10 from the interpreter.

The command will then perform an additional round of substitution on the first argument that it
receives. This substitution is called deferred substitution . It happens after a command has begun to
execute, and is performed (possibly many times) by the command. The normal kind of substitution hap-
pens before a command has begun to execute, and is performed (only once) by the interpreter.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 11 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Not every command performs deferred substitution on its arguments. Only three of the commands
we have seen so far do this:

while performs deferred substitution on its first argument, and maybe also on its second: while {$a==$b} {puts $c}
if performs deferred substitution on its first argument, and maybe also on its second: if {$a==$b} {exit $c}
expr performs deferred substitution on all its arguments: expr {$a + $b}

It’s too bad that the only way to tell if a command performs deferred substitution on any of its arguments is
to look it up in the documentation.

#!/usr/local/bin/tclsh

set i 1

while {$i<=10} {puts $i; incr i}

exit 0

1
2
3
4
5
6
7
8
9
10

We could have right-justified the output numbers with

puts [format "%2d" $i]

Now that we have curly braces around the first argument of the while command, we can write white
space for legibility there:

while {$i <= 10} {puts $i; incr i}

Loop commands need more curly braces than if commands

We don’t care whether the following logical expression receives normal substitution by the inter-
preter or deferred substitution by the if command. Therefore curly braces are not required around the log-
ical expression (provided that it contains no white space):

set i 1
if $i<=10 {puts $i; incr i} ;#if command receives the argument 1<=10
if {$i<=10} {puts $i; incr i} ;#if command receives the argument $i<=10

But if the logical expression of a while command received normal substitution by the interpreter,
the loop would loop forever. It must therefore receive deferred substitution by the while command itself,
which is smart enough to perform deferred substitution over and over. Therefore the curly braces are
required around the logical expression of w while, even if it contains no white space.

It matters where you put the curly braces

The if command can take two arguments:

if {$a == $b} {puts "equal"}

or four arguments:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 12 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

if {$a == $b} {puts "equal"} else {puts "not equal"}

or seven arguments:

if {$a < $b} {puts "less than"} elseif {$a == $b} {puts "equal"} \
else {puts "not equal"}

or ten arguments, etc.

C, C++, Java, JavaScript, awk, C shell else if

C and C++ preprocessors #elif

Bourne, Korn, and Bourne-Again shells elif

Perl elsif

Tcl elseif

troff, nroff .el .if

m4 .ifelse

There are three ways to show the interpreter that all the arguments belong to the same command:

(1) Write the entire command on one line:

if {$a == $b} {puts "equal"} else {puts "not equal"}

(2) Continue the command onto additional lines with backslashes:

if {$a == $b} \
{puts "equal"} \

else \
{puts "not equal"}

(3) A command that contains a {, [, or " automatically continues at least until the line that contains
the corresponding },], or ":

if {$a == $b} {
puts "equal"

} else {
puts "not equal"

}

The following if command is wrong because it has only one argument:

if {$a == $b}
{puts "equal"}

else
{puts "not equal"}

The above while command would usually be written

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 13 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set i 1

while {$i <= 10} {
puts $i
incr i

}

exit 0

Perform substitution on the same argument twice

For pedagogical purposes only, we can even apply both kinds of substitution to the same argument if
we use while, if, expr, or catch, without curly braces. In the following if command, for example,
the interpreter will perform substitution on the argument $v2, changing it to the three-character string $v1,
and will then give this string $v1 to the expr command. The expr command will then perform deferred
substitution on the $v1, changing it to the two-character string 10.

#!/usr/local/bin/tclsh

set v1 10
set v2 "\$v1" ;#Put the three characters $v1 into v2.

puts $v2 ;#only the normal substitution
puts [expr $v2 + 1] ;#normal followed by deferred substitution

exit 0

$v1
11

In real life, you will never put a dollar sign and the name of a variable into another variable. There-
fore a single performance of substitution will suffice for the first argument of an if command. A second
performance of substitution would be harmless but would have no effect.

Curly braces vs. double quotes around the second argument of an if command

If the second argument of an if command is a single word, it don’t need curly braces or double
quotes. But put curly braces in anyway for documentation:

if {$i <= 10} exit ;#exit status 0 by default
if {$i <= 10} {exit}
puts stderr "hello"

If the second argument of an if command is more than a single word, it must be enclosed in double
quotes or curly braces:

if {$i <= 10} "exit 0" ;#double quotes legal here, but misleading
if {$i <= 10} {exit 0} ;#clearer

Here’s a case where you must use curly braces instead of double quotes to avoid a bug:

1 /* C fragment */
2 #include <stdio.h>
3
4 int i = 1;
5

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 14 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

6 if (++i <= 10) {
7 printf ("%d\n", i);
8 }

#!/usr/local/bin/tclsh

#The if command will perform deferred substitution on the $i
#in the puts:
set i 1
if {[incr i] <= 10} {puts $i} ;#good

#The Tcl interpreter will perform substitution on the $i
#in the puts before the if command is executed:
set i 1
if {[incr i] <= 10} "puts $i" ;#bug

2
1

Execute another program, i.e., spawn a child

A Tcl program can run another program, in any language, with the exec command:

#!/usr/local/bin/tclsh

exec rm myfile
exit 0

The result of the exec command is the standard output of the child:

#!/usr/local/bin/tclsh

set d [exec date]
puts "The current date is $d."

#Of course, if all you want to do is print the standard output
#of date, there is no need to deposit it into a variable:

puts "The current date is [exec date]."
exit 0

The current date is Fri Jan 9 00:41:41 EST 2004.
The current date is Fri Jan 9 00:41:41 EST 2004.

The exec command implements |, <, >, >>, the Bourne shell 2>, and the C shell >&. But it does
not invoke the shell—it calls the execve(2) Unix system call directly. You must therefore put the Tcl
delimiters "" or {}, not the shell delimiters "" or ’’, around a child’s command line argument containing
white space or characters that are special to Tcl. For example, we can put either the "" shown below or {}
around the argument of the following sed because it only contains white space,

set d [exec date | sed "s/Dec 25/Christmas/"]

but we must put the {} shown below around the argument of this sed because it contains the Tcl special
character $ as well as white space:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 15 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

set d [exec date | sed {s/1999$/Nineteen Ninety-Nine/}]

Harvest the child’s exit status

The catch command takes two arguments. The first is a dangerous command, e.g., exec, enclosed
in double quotes or curly braces to make it count as a single argument of catch. The second argument of
catch is the name of the variable (without the leading $) that will receive the standard output of the child.
The result of catch is 0 if the child succeeded (i.e., returned exit status 0), and 1 otherwise.

#!/usr/local/bin/tclsh

set success [catch {exec grep root /etc/passwd} output]

if {$success == 0} {
puts "grep returned exit status 0."

} else {
puts "grep did not return exit status 0."

}

puts "The output of grep is \"$output\"."
exit 0

grep returned exit status 0.
The output of grep is "root:*:0:1:root,,,:/:/bin/csh".

If we grep for a word that is not in the file /etc/passwd, grep will return an non-zero exit status to
exec, causing catch to deposit an error message into its second argument:

grep did not return exit status 0.
The output of grep is "child process exited abnormally".

If grep writes to both its standard output and standard error output, they’re both stored in the second argu-
ment of catch:

#!/usr/local/bin/tclsh

set success [catch {exec grep root /etc/passwd /etc/groups} output]

if {$success == 0} {
puts "grep returned exit status 0."

} else {
puts "grep did not return exit status 0."

}

puts "The output of grep is \"$output\"."
exit 0

grep did not return exit status 0.
The output of grep is "/etc/passwd:root:*:0:1:root,:/:/bin/csh
grep: can’t open /etc/groups".

For loops

As in C, the for command is a more localized notation for a while:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 16 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

for {set i 1} {$i <= 10} {incr i} {
puts $i

}

exit 0

The following for command is illegal because it has only three arguments:

for {set i 1} {$i <= 10} {incr i}
{

puts $i
}

The following is wrong because the variable $i has not yet been initialized when the interpreter performing
substutution on the second argument of the for command:

for {set i 1} $i<=10 {incr i} {
puts $i

}

Strings

The first argument of the string command tells it what to do: the operations familiar to C program-
mers from /usr/include/string.h:

#!/usr/local/bin/tclsh

set users "moe larry curly"

puts "The string is \"$users\"."
puts "The string contains [string length $users] characters."
puts "The second character of the string is [string index $users 1]."

exit 0

The string is "moe larry curly".
The string contains 15 characters.
The second character of the string is o.

Lists

A list is a string (in Tcl, every value is a string) whose curly braces (if any) are nested.

moe larry curly
{moe larry curly}
{moe larry} curly
{}
{moe {larry {curly}} {}}

The most important example of a list is the fact that every Tcl command is a list:

puts "hello"
if {$a == $b} {exit 0}

The empty list (which is the same value as the empty string) may be written either as "" or {}. It’s con-
ventional to write the empty list as {} and the empty string as "".

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 17 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

#Exactly the same value as in previous script.
set users {moe larry curly}

puts "The list is {$users}."
puts "The list contains [string length $users] characters."
puts "The list contains [llength $users] elements."
puts "The second element of the list is [lindex $users 1]."

exit 0

The list is {moe larry curly}.
The list contains 15 characters.
The list contains 3 elements.
The second element of the list is larry.

Every list is a string, but not every string is a list. In other words, not every string can be the argu-
ment of a list function:

#!/usr/local/bin/tclsh

#Need the double quotes to avoid error message.
set s "{moe larry {curly shemp}"
puts $s

puts [string length $s] ;#perfectly legal as a string
puts [llength $s] ;#but illegal as argument of a list function

exit 0

{moe larry {curly shemp}
24
unmatched open brace in list

Command line arguments

The command line arguments (but not the name of the program) are passed to the program in a list
named argv:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 18 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

puts "The name of this program is $argv0."
puts "There are [llength $argv] command line arguments:"
puts ""

puts "The first command line argument is [lindex $argv 0]."
puts "The second command line argument is [lindex $argv 1]."
puts "The third command line argument is [lindex $argv 2]."

puts "The entire list is $argv."
puts ""

puts "There are $argc command line arguments:"
foreach arg $argv { ;#no $ when giving a value to a variable

puts $arg
}

exit 0

When run with the three arguments moe marry curly, the output is

The name of this program is myprog.
There are 3 command line arguments:

The first command line argument is moe.
The second command line argument is larry.
The third command line argument is curly.
The entire list is moe larry curly.

There are 3 command line arguments:
moe
larry
curly

Simulate a C array of structures

Lists can be nested, and can therefore hold rows and columns of information or even trees.

Since there is only one command line argument, $remaining could have been initialized like this:

set remaining $argv

$n receives the value 4.

The initial value of $denominations could have been written on one line:

set denominations \
{{"quarters" "quarter" 25} {"dimes" "dime" 10} {"nickels" "nickel" 5} {"pennies" "penny" 1}}

As in C, the value of == is 1 for true, 0 for false. Integer division truncates, and % is the remainder
operator.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 19 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh
#This program takes one command line argument, giving a number of
#cents. It then outputs the shortest possible list of coins with that
#total value.

if {$argc != 1} {
puts stderr "$argv0: requires one command line argument"
exit 1

}
set remaining [lindex $argv 0]

set denominations {
{"quarters" "quarter" 25}
{"dimes" "dime" 10}
{"nickels" "nickel" 5}
{"pennies" "penny" 1}

}

set n [llength $denominations]

for {set i 0} {$i < $n} {incr i} {
set denomination [lindex $denominations $i]
set value [lindex $denomination 2]
set amount [expr $remaining / $value]

if {$amount > 0} {
puts "$amount [lindex $denomination [expr $amount == 1]]"

}
set remaining [expr $remaining % $value]

}

exit 0

1$ myprog 82
3 quarters
1 nickel
2 pennies

Build a tree

moe larry

curly shemp

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 20 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set stooges {moe larry {curly shemp}}

puts "There are [llength $stooges] stooges."
puts "The third stooge had [llength [lindex $stooges 2]] incarnations."

exit 0

There are 3 stooges.
The third stooge had 2 incarnations.

The list command

The result of the list command is list of all its arguments. Since each of them may be a list, list
can create nested lists:

#!/usr/local/bin/tclsh

set p1 "Madonna"
set p2 "Bill Clinton"
set p3 "Johann Sebastian Bach"
set p4 "George Herbert Walker Bush"

set people_string "$p1 $p2 $p3 $p4"
puts $people_string
puts [llength $people_string]

set people_list [list $p1 $p2 $p3 $p4]
puts $people_list
puts [llength $people_list]

exit 0

Madonna Bill Clinton Johann Sebastian Bach George Herbert Walker Bush
10
Madonna {Bill Clinton} {Johann Sebastian Bach} {George Herbert Walker Bush}
4

Tcl special characters

$ \ [] substitution

{} "" grouping

; newline command termination

comment

Arrays

Tcl has only one-dimensional arrays. Whitespace within the parentheses is significant, so don’t put
any there! When its first argument is the word size, the result of the array command is the number of
elements in the array (in this case 4). When its first argument is the word names, the result of the array
command is a list of all the subscripts of the array.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 21 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set episode(1) "The Phantom Menace"
set episode(4) "A New Hope"
set episode(5) "The Empire Strikes Back"
set episode(6) "Return of the Jedi"

puts "The array has [array size episode] elements."
puts "The subscripts are [array names episode]."

for {set i 1} {$i <= 9} {incr i} {
if {[info exists episode($i)]} {

puts $episode($i)
}

}

exit 0

The array has 4 elements.
The subscripts are 4 5 1 6.
The Phantom Menace
A New Hope
The Empire Strikes Back
Return of the Jedi

Every Tcl array is actually an associative array: one whose subscripts can be any string, not neces-
sarily representing an integer. Don’t use the foreach command if you’re going to insert and delete ele-
ments as it loops through the array.

#!/usr/local/bin/tclsh

set uid(moe) 0 ;#no double quotes around moe
set uid(larry) 1
set uid(curly) 2

puts "The subscripts are [array names uid]."

foreach loginname [array names uid] {
puts "Loginname $loginname has the UID $uid($loginname)."

}

exit 0

The subscripts are moe larry curly.
Loginname moe has the UID 0.
Loginname larry has the UID 1.
Loginname curly has the UID 2.

To loop through the subscripts in alphabetical order, use the lsort command. Its argument and
result are lists:

foreach loginname [lsort [array names uid]] {

As in Perl, the environment variables are stored in an associative array:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 22 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

puts "The full pathname of my home directory is $env(HOME)".
puts "The IP address of my display is $env(DISPLAY)".

exit 0

To see the name and value of every environment variable (in alphabetical order),

#!/usr/local/bin/tclsh

foreach varname [lsort [array names env]] {
puts "$varname $env($varname)"

}

exit 0

DISPLAY 192.168.5.21:0.0
EDITMODE emacs
EDITOR vi
EXINIT set showmode etc.

Eval: the Tcl Heart of Darkness

The eval command lets you store a command in a string for later execution. (The following section
will explain why it won’t work without the word eval.)

#!/usr/local/bin/tclsh

set saved "puts hello"
eval $saved

exit 0

hello

When we create a button or other widget in the language Tk, we often attach to it a string containing a com-
mand to be executed later when the button is pressed.

Most commands are parsed only once.

A puts command must have exactly one argument, not counting the optional file identifier (e.g.,
stderr). Is the following puts legal even though the variable contains three words?

set users {moe larry curly}
puts $users

This turns out to be legal because the interpreter splits a command into separate words once and for all
before it performs any substitution. This splitting is called parsing . The interpreter does not go back and
parse again after changing the $users into the three words moe larry curly.

Similarly, the following set is legal even though the result of the exec command is six separate
words:

set d [exec date]

As before, the interpreter parses the command into words before it performs any substitution. Any section
of a command enclosed in "double quotes", {curly braces}, or [square brackets] counts as a single word.
The interpreter does not go back and parse again after changing the [exec date] into the six words Fri

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 23 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Jan 9 00:41:41 EST 2004.

Parse a command more than once

The glob command outputs a list of the names of some or all of the things in the current directory.

#!/usr/local/bin/tclsh

puts [glob *.o]
exit 0

prog1.o prog2.o prog3.o

Sometimes, however, the ‘‘single parse’’ rule makes a command more complicated. For example,
let’s try to give the result of glob to the Unix rm command instead of to puts:

#!/usr/local/bin/tclsh

exec rm [glob *.o]
exit 0

rm: prog1.o prog2.o prog3.o nonexistent

We want to give three arguments to rm, but rm receives only one big argument containing embedded
blanks (prog1.o prog2.o prog3.o) because a square-bracketed expression such as [glob *.o]
counts as a single word. We hav e to use eval to make the interpreter parse the command again after run-
ning the command in the square brackets:

#!/usr/local/bin/tclsh

eval exec rm [glob *.o]
exit 0

Here’s another example where we need to make the interpreter parse after substitution as well as
before. The unset command can remove more than one variable:

unset x y z

But the following unset receives only one big argument containing embedded blanks: x y z.

set vars {x y z}
unset $vars

We hav e to use eval to make the interpreter parse the command again after performing substitution on the
$vars:

set vars {x y z}
eval unset $vars

One more example:

set loginnames {moe larry curly}
eval exec mail $loginnames < $env(HOME)/letter

Without the eval, you would get the message

moe larry curly... User unknown

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 24 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

The horizontal vs. vertical problem: sometimes you need more than just eval

#!/bin/sh
#Mail a letter to everyone logged in right now.

loginnames=‘who | awk ’{print $1}’‘
mail $loginnames < $HOME/letter

exit 0

The following example hangs because the first newline embedded in the string $loginnames ter-
minates the mail command line, causing mail to wait for standard input from the keyboard:

set loginnames [exec who | awk {{print $1}}]
eval exec mail $loginnames < $env(HOME)/letter

Unlike a shellscript, a Tcl program has to change the newlines to blanks:

set loginnames [exec who | awk {{print $1}} | tr {\012} { }]
eval exec mail $loginnames < $env(HOME)/letter

You could also change the newlines to blanks purely in Tcl:

regsub -all "\n" [exec who | awk {{print $1}}] " " loginnames
eval exec mail $loginnames < $env(HOME)/letter

Parse a saved command correctly

I’d like to sav e a command in a string for later execution. The command should output the current
value of users:

#!/usr/local/bin/tclsh

set users {moe larry curly}
set saved "puts $users"
puts "The saved command is: $saved"

eval $saved ;#causes the error message shown below
exit 0

bad file identifier "moe"
The saved command is: puts moe larry curly

(The error message appears first because, as in C, stdout is buffered but stderr is not.) The second
set saves the string puts moe larry curly into the variable saved. Unfortunately, the eval com-
mand then parses $saved into four separate words, causing the puts in the string to give us the error
message.

Every Tcl command is a list. The correct way to create a list consisting of the one-word list puts
and the three-word list in the variable $users is

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 25 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set users {moe larry curly}
set saved [list puts $users]
puts "The saved command is: $saved"

eval $saved
exit 0

The saved command is: puts {moe larry curly}
moe larry curly

File i/o

The result of the open command is a file identifier, like stdin, stdout, or stderr. Sav e the
result of the open command in a variable, just as you save the return value of the fopen function in C.
The result of the gets command is the number of characters that were input, or −1 on end-of-file. The
result of the split command is a list of substrings.

#!/usr/local/bin/tclsh

set passwd [open "/etc/passwd" r]

while {[gets $passwd line] >= 0} {
set fields [split $line ":"]
set loginname [lindex $fields 0]
puts $loginname

}

close $passwd
exit 0

moe
larry
curly

To catch errors in opening a file, the above set passwd command should be changed to

if [catch {open "/etc/passwd" r} passwd] {
#The variable $passwd now contains an error message.
error "$argv0: $passwd"

}

which will write a message such as

myprog: couldn’t open "/etc/passwd": Permission denied

to the standard error output and yield exit status 1.

The three commands in the body of the while loop may be combined to

puts [lindex [split $line ":"] 0]

Using open files in an exec

Use ordinary < and > when the following words are filenames:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 26 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set outfile "/tmp/[pid]"
exec grep root < /etc/passwd > $outfile
exec grep root < /etc/passwd > stdout ;#create a file named "stdout"

exit 0

Use @< and @> when the following words are file identifiers , i.e., stdin, stdout, stderr, or the
results of previous open’s:

#!/usr/local/bin/tclsh

set passwd [open "/etc/passwd" r]
set outfile [open "/tmp/[pid]" w]

exec grep root <@ $passwd >@ $outfile
exec grep root <@ $passwd >@ stdout ;#stdout of tclsh

exit 0

We’v e already seen that if you use neither >@ nor > the child’s standard output becomes the result of
the exec command:

set d [exec date]

Pipe i/o

The source of the input or the destination of the output can be a pipeline. The ‘‘filename’’ in either
case must begin with the pipe character |, and the second argument of open tells if the pipe leads into the
Tcl program (r) or out (w). Note that this is different from Perl, where an input ‘‘filename’’ ends with a
pipe character and an output ‘‘filename’’ begins with a pipe character.

#!/usr/local/bin/tclsh

set passwd [open "| awk -F: {{print $1}} /etc/passwd | sort" r]

while {[gets $passwd loginname] >= 0} {
puts $loginname

}

close $passwd
exit 0

A user-defined procedure

The following proc command creates a new command named myproc. You must execute the
proc command before attempting to execute the new command.

proc takes three arguments. The first is the name of the new procedure; the second is a list of the
names of the arguments of the new procedure; the third is the body of the new procedure. If the second
argument of proc is the empty list, write it as {}.

Unless you declare them to be global, the variables in a procedure are local to it. Expect has
slightly different scoping rules: see Libes, pp. 100, 241−245.

If the procedure does not execute a return command, or if the return command that is executed
has no argument, the procedure will return the null string.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 27 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/usr/local/bin/tclsh
2
3 proc myproc {} {
4 global a
5
6 set a "moe"
7 set b "larry"
8
9 return "curly"
10 }
11
12 set a 10
13 set b 20
14
15 set retval [myproc]
16
17 puts "\$a == $a"
18 puts "\$b == $b"
19 puts "The return value is $retval."
20
21 exit 0

$a == moe
$b == 20
The return value is curly.

Arguments for user-defined procedures

The first argument of the following myproc is passed by value , so myproc cannot change the value
of the caller’s variable $a. The second argument of myproc is passed by reference , so myproc can
change the value of the caller’s variable $b.

1 #!/usr/local/bin/tclsh
2
3 proc myproc {x y} {
4 upvar $y z
5
6 puts "The caller of this procedure thinks that the name of the"
7 puts "variable is \"$y\", but this procedure thinks that the"
8 puts "name of the variable is \"z\"."
9
10 puts "This procedure received the arguments $x $z."
11
12 set x "moe" ;#has no effect on $a
13 set z "larry" ;#changes the value of $b
14 }
15
16 set a 10
17 set b 20
18
19 myproc $a b
20
21 puts "\$a == $a"
22 puts "\$b == $b"
23

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 28 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

24 exit 0

The caller of this procedure thinks that the name of the
variable is "b", but this procedure thinks that the
name of the variable is "z".
This procedure received the arguments 10 20.
$a == 10
$b == larry

The result of the command in line 19 is the null string, which is what we would have stored in the
variable retval if line 19 said

19 set retval [myproc $a b]

Pass an array as an argument

You can’t pass the contents of an array to a procedure: you have to pass the name of the array.

#!/usr/local/bin/tclsh

set loginname(0) "root"
set loginname(1) "operator"
set loginname(2) "daemon"

proc myproc {original_name} {
upvar $original_name a

puts "The caller of this procedure thinks that the name of the"
puts "array is \"$original_name\", but this procedure thinks"
puts "that the name of the array is \"a\"."

puts [array size a]
puts $a(0)

}

myproc loginname
exit 0

The caller of this procedure thinks that the name of the
array is "loginname", but this procedure thinks
that the name of the array is "a".
3
root

Catch an error

If we changed the above command

myproc loginname

to

set x 10
myproc x

the program would have died in the array size command. The standard error output from the array
size command appears before the standard output from the puts commands:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 29 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

"a" isn’t an array
The caller of this procedure thinks that the name of the
array is "x", but this procedure thinks
that the name of the array is "a".

To die with an error message of our own choosing, put the sensitive array size command inside
of a catch:

#!/usr/local/bin/tclsh

set loginname(0) "root"
set loginname(1) "operator"
set loginname(2) "daemon"

proc myproc {original_name} {
upvar $original_name a

if {[catch {array size a} n] != 0} {
flush stdout
puts stderr "proc myproc argument $original_name must be"
puts stderr "the name of an array"
exit 1

}

puts "The caller of this procedure thinks that the name of the"
puts "array is \"$original_name\", but this procedure thinks"
puts "that the name of the array is \"a\"."

puts "The array contains $n elements."
puts $a(0)

}

myproc loginname
set x 10
myproc x

puts "goodbye"
exit 0

The caller of this procedure thinks that the name of the
array is "loginname", but this procedure thinks
that the name of the array is "a".
The array contains 3 elements.
root
proc myproc argument x must be
the name of an array

There’s no hope of recovery if you drop dead

The above array size command did not execute an exit command when it realized that it had
received a scalar instead of an array. If it had done so, the program would have dropped dead instantly and
it would be too late to catch the error. The command actually executed by array size is the less
extreme error command, which can be caught by a catch.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 30 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Our procedure myproc should show the same courtesy to its callers:

#!/usr/local/bin/tclsh

set loginname(0) "root"
set loginname(1) "operator"
set loginname(2) "daemon"

proc myproc {original_name} {
upvar $original_name a

if {[catch {array size a} n] != 0} {
flush stdout
error "proc myproc argument $original_name must be\

the name of an array"
}

puts "The caller of this procedure thinks that the name of the"
puts "array is \"$original_name\", but this procedure thinks"
puts "that the name of the array is \"a\"."

puts "The array contains $n elements."
puts $a(0)

}

myproc loginname

set x 10
if {[catch {myproc x} retval] != 0} {

puts "That’s tough, but I’m not going to drop dead because of it."
puts "\$retval == \"$retval\""
puts ""
puts "\$errorInfo == \"$errorInfo\""

}

puts "goodbye"
exit 0

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 31 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

The caller of this procedure thinks that the name of the
array is "loginname", but this procedure thinks
that the name of the array is "a".
The array contains 3 elements.
root
That’s tough, but I’m not going to drop dead because of it.
$retval == "proc myproc argument x must be the name of an array"

$errorInfo == "proc myproc argument x must be the name of an array
while executing

"error "proc myproc argument $original_name must be the name of an array""
invoked from within

"if {[catch {array size a} n] != 0} {
error "proc myproc argument $original_name must be the name of an array"
}"
(procedure "myproc" line 4)
invoked from within

"myproc x""
goodbye

source is just like #include

#!/usr/local/bin/tclsh

source myfile.tcl ;#assumed to be in the current directory
source /home1/m/mm64/myfile.tcl

exit 0

Run tclsh interactively

1$ tclsh 2$ is my Unix shell prompt
% puts hello % is the tclsh prompt
hello
% expr 1 + 2
3
% set tcl_interactive
1
% ls -l
and now you see the output of the Unix program ls -l
% exit or type control-d
3$

Four things are different when you run the Tcl interpreter tclsh interactively:

(1) tclsh will begin by executing the commands in the file .tclshrc in your home directory.

(2) tclsh prints a prompt before each command. The default prompt is %, but you can write a
puts command to display your own prompt:

set tcl_prompt1 {puts -nonewline "hello "}
set tcl_prompt1 {puts -nonewline "[history nextid] % "}
set tcl_prompt2 {puts -nonewline "keep going: "} ;#secondary prompt

(3) The value of the variable $tcl_interactive is 1, so you can write procedures that behave
differently when invoked interactively.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 32 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(4) tclsh displays the result of each command, which had previously been thrown away when we
were running non-interactively. For example, you can now say expr 1 + 2 instead of puts
[expr 1 + 2]. And you can say set v instead of puts $v.

The unknown command (Ousterhout pp. 136−137)

When you execute commands which are not recognized as Tcl,

putz hello
ls -l

the Tcl interpreter automatically executes the commands

unknown putz hello
unknown ls -l

The procedure unknown is already written for you. It’s in the file init.tcl in the directory whose
name is the result of the Tcl command

info library

Write your own version of the unknown command

Instead of

set i [expr 1 + 2]

I wish I could say

set i [1 + 2] ;#illegal because 1 is not the name of a Tcl command

And instead of

puts [exec ls -l]

I wish I could say

ls -l ;#illegal because ls is not the name of a Tcl command

The following procedure can take any number of arguments, which will be stored in the list $args.
args is a special word when used as the only (or last) word of the second argument of a proc command
(Ousterhout, p. 83). Use lindex to extract the individual words from args. For example, the result of
lindex $args 0 will be the misspelled command name.

The string compare in the following procedure lets us say

!!

to repeat the last command when using the Tcl interpreter interactively.

>&@ stdout directs the standard output and the standard error output of the Unix program ls -l to
the same destination as the standard output of the Tcl script. Without the >&@ stdout, the standard out-
put of the Unix program ls -l would become the result of the Tcl command ls -l, and (in a script)
you’d hav e to say

puts [ls -l]

to see it.

If the arguments passed to the unknown procedure contain strings but no Tcl variables (e.g., ls -l),
then you don’t need the uplevel in the return uplevel exec. But if the arguments do contain vari-
ables (and they will!) we need the uplevel to tell the unknown procedure that these variables belong to
the caller of the unknown procedure, not to the unknown procedure itself.

If the arguments passed to the unknown procedure contain constants but no variables (e.g., 1 + 2),
then you don’t need the uplevel in the if catch uplevel expr. But if the arguments do contain

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 33 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

variables (and they will!) we need the uplevel to tell the unknown procedure that these variables
belong to the caller of the unknown procedure, not to the unknown procedure itself.

#Just a procedure definition--not a complete program.

proc unknown {args} {
global tcl_interactive

if {$tcl_interactive && [string compare [lindex $args 0] "!!"] == 0} {
return [uplevel history redo]

}

#Is it an expression?
if {[catch {uplevel expr $args} result] == 0} {

return $result
}

#Is it an invocation of a Unix program?
if {[catch {exec which [lindex $args 0]} pathname] == 0} {

return [uplevel exec $args <@ stdin >&@ stdout]
}

error "unknown command $args"
}

Create a Tcl library: Ousterhout, pp. 137−138

Each library is stored in a separate directory, and the list $auto_path lists these directories. The
default unknown procedure automatically searches through the libraries in the order listed in
$auto_path. unknown looks at the tclIndex file in each directory to find the names of the proce-
dures in the .tcl files in that directory. You create these tclIndex files with the auto_mkindex
command.

#!/usr/local/bin/tclsh

puts $auto_path
exit 0

/usr/local/lib/tcl

To create your own library, write proc and the name of the procedure side-by-side at the at the start
of a line in the .tcl file(s) of your library:

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 34 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#This file is /home1/m/mm64/lib/file1.tcl

#myproc0 is legal Tcl, but wrong in a Tcl library--
#for pedagogical purposes only.
proc \
myproc0 {} {
}

proc myproc1 {} {
puts "This is myproc1."

}

proc myproc2 {} {
puts "This is myproc2."

}

#This file is /home1/m/mm64/lib/file2.tcl

proc myproc3 {} {
puts "This is myproc3."

}

After creating the above files, run the following program. * is not a special character in Tcl; it is spe-
cial only to the auto_mkindex and glob commands.

#!/usr/local/bin/tclsh

auto_mkindex /home1/m/mm64/lib *.tcl
exit 0

It will create the following file /home1/m/mm64/lib/tclIndex:

Tcl autoload index file, version 2.0
This file is generated by the "auto_mkindex" command
and sourced to set up indexing information for one or
more commands. Typically each line is a command that
sets an element in the auto_index array, where the
element name is the name of a command and the value is
a script that loads the command.

set auto_index(myproc1) "source $dir/file1.tcl"
set auto_index(myproc2) "source $dir/file1.tcl"
set auto_index(myproc3) "source $dir/file2.tcl"

Finally, at the start of your Tcl program, say

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 35 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/usr/local/bin/tclsh

set auto_path [linsert $auto_path 0 /home1/m/mm64/lib]
puts $auto_path ;#to verify that linsert worked

#Rest of program:
myproc2
exit 0

/home/m/mm64/lib /usr/local/lib/tcl
This is myproc2.

This is more efficient than writing a separate source command at the start of your script for each .tcl
file in your libraries. You can even set your auto_path in your init.tcl file.

Change the linsert command to

lappend $autopath /home1/m/mm64/lib

if you don’t want the procedures in your libraries to override the ones in the existing libraries.

Fall 2004 Handout 8 printed 1/9/04
12:41:41 AM − 36 − All rights

reserved ©2004 Mark Meretzky

