
NYU SCPS X52.9546 Section 1 Unix Tools

Fall 2004 Handout 6

Give birth to a child: David Curry’s O’Reilly book Using C on the UNIX System pp. 292−295; KP pp.
184−185; K&R pp. 167, 253

The string that you give to system must use the Bourne shell syntax. The standard output of the
cal in line 7 will become part of the standard output of the following C program:

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/system.c

1 #include <stdio.h>
2 #include <stdlib.h> /* for system */
3
4 int main()
5 {
6 printf("The current month is\n");
7 fflush(stdout);
8
9 system("cal"); /* Don’t need newline. */
10 system("cal 12 2000");
11 system("cal 12 2000 > $HOME/cal.out"); /* Bourne shell won’t take tilde. */
12
13 system("who | wc -l");
14 system("grep can\\’t /lyrics/stones/satisfaction");
15 system("grep \"can’t\" /lyrics/stones/satisfaction");
16
17 return EXIT_SUCCESS;
18 }

1$ grep can\’t /lyrics/stones/satisfaction KP p. 75
2$ grep "can’t" /lyrics/stones/satisfaction

To get the exit status of the program run by system, store the return value in an int variable and
examine it with the W macros in wait(2). Not ev ery process returns an exit status: some are terminated or
stopped by a signal first.

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/systemexit.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4
5 int main(int argc, char **argv)
6 {
7 /* blank and tab within the [] */
8 int status = system("who | grep -q ’ˆabc1234[\t]’");
9
10 if (WIFEXITED(status)) {
11 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
12 } else if (WIFSIGNALED(status)) {
13 printf("My child was terminated by signal number %d.\n", WTERMSIG(status));

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 1 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

14 } else if (WIFSTOPPED(status)) {
15 printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
16 } else {
17 fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);
18 return EXIT_FAILURE;
19 }
20
21 return EXIT_SUCCESS;
22 }

My child’s exit status was 1.

system in perl

#!/bin/perl
use POSIX;

$status = system(’who | grep -q \’ˆabc1234[\t]\’’);

if (WIFEXITED($status)) {
print "My child’s exit status was ", WEXITSTATUS($status), ".\n";

} elsif (WIFSIGNALED($status)) {
print "My child was terminated by signal number ", WTERMSIG($status), ".\n";

} elsif (WIFSTOPPED($status)) {
print "My child was stopped by signal number ", WSTOPSIG($status), ".\n";

} else {
die "$0: couldn’t find out how child ended up.";

}

exit 0;

http://i5.nyu.edu/˜mm64/x52.9544/src/systemexit

▼ Homework 6.1: get the child’s exit status

Call system to give birth to a child that produces an exit status but no output. Then print a message
determined by the exit status of the child. Let the child be one of the following programs, or a pipeline
ending with one of the following programs. Or write your own child in C, C++, Perl, or the shell language.

1$ mail -e exit status is 0 if you have mail
2$ grep -q word file exit status is 0 if file contains word
3$ cmp -s file1 file2 exit status is 0 if file1 and file2 are identical
4$ sort -c file 2> /dev/null exit status is 0 if file is already sorted
5$ gcc -o /dev/null prog.c exit status is 0 if prog.c has no compilation errors

6$ test -f file exit status is 0 if file exists
7$ test -f file -a -w file exit status is 0 if file exists and is writable
8$ test -d directory exit status is 0 if directory exists
9$ mkdir directory
10$ test ‘who | awk ’{print $1}’ | sort | uniq | wc -l‘ -gt 20

11$ true exit status always 0
12$ false exit status always 1

13$ /usr/sbin/ping -c 1 acf5.nyu.edu > /dev/null 2>&1 exit status is 0 if is is online

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 2 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Here are some machines you can ping:

andrew.cmu.edu Carnegie Mellon University
www.uquebec.ca Universite du Quebec
www.unipi.it Università degli Studi di Pisa

▲

Give birth to a child with a pipe from the parent to the child

popen runs another program and lets you send output to its standard input. pclose sends an EOF
through the pipe and returns the exit status of the program run by popen. You can store it in an int vari-
able and examine it with the W macros:

—Source code on the Web at
http://i5.nyu.edu/˜mm64/x52.9544/src/popen_to_child.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4
5 int main(int argc, char **argv)
6 {
7 FILE *lpr = popen("lpr", "w");
8 int status;
9
10 if (lpr == NULL) {
11 perror(argv[0]);
12 return EXIT_FAILURE;
13 }
14
15 fprintf(lpr, "hello\n");
16 fprintf(lpr, "goodbye\n");
17
18 status = pclose(lpr);
19
20 if (WIFEXITED(status)) {
21 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
22 } else if (WIFSIGNALED(status)) {
23 printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
24 } else if (WIFSTOPPED(status)) {
25 printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
26 } else {
27 fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);
28 return EXIT_FAILURE;
29 }
30
31 return EXIT_SUCCESS;
32 }

The string that you give to popen is not limited to one program. You can change line 7 to

7 FILE *lpr = popen("sort | cat -n | pr -l60 | lpr", "w");

Use Bourne shell syntax.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 3 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Give birth to a child with a pipe from the child to the parent

—Source code on the Web at
http://i5.nyu.edu/˜mm64/x52.9544/src/popen_to_parent.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4
5 int main(int argc, char **argv)
6 {
7 FILE *wc = popen("who | awk ’{print $1}’ | sort | uniq | wc -l", "r");
8 int n; /* number of people logged in */
9 int status;
10
11 if (wc == NULL) {
12 perror(argv[0]);
13 return EXIT_FAILURE;
14 }
15
16 fscanf(wc, "%d", &n);
17 printf("There are %d people logged in.\n", n);
18
19 status = pclose(wc);
20 if (!WIFEXITED(status) || WEXITSTATUS(status) != EXIT_SUCCESS) {
21 fprintf(stderr, "%s: child came to grief somehow.\n", argv[0]);
22 return EXIT_FAILURE;
23 }
24
25 return EXIT_SUCCESS;
26 }

You can call popen several times in the same C program. This allows you to have more than one
pipe coming into and/or going out of a C program (or a Perl program), which you can’t hav e in a
shellscript.

popen in Perl

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 4 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/perl
use POSIX;

open(WC, ’who | awk \’{print $1}\’ | sort | uniq | wc -l |’) || die "$0: $!";
open(LPR, ’| lpr’) || die "$0: $!";

$_ = <WC>;
chomp;
print LPR "There are $_ people logged in.\n";

close WC;
#Should have checked WIFEXITED before calling WEXITSTATUS.
print ’The exit status of the wc -l was ’, WEXITSTATUS($?), ".\n";

close LPR;
print ’The exit status of the lpr was ’, WEXITSTATUS($?), ".\n";

exit 0;

http://i5.nyu.edu/˜mm64/x52.9544/src/popen

▼ Homework 6.2: pipe data to sort

Make Homework 13.4 list everything in alphabetical order. Simply use popen, fprintf, and
pclose to pipe your C program’s output to sort +8.

1 int main(int argc, char **argv)
2 {
3 opendir;
4 popen("sort", "w");
5
6 fprintf all the output into the pipe;
7
8 pclose;
9 closedir;
10 }

If you have done the extra credit parts of Homework 1.8, some lines of output will not have nine
fields, so sort +8 won’t work. Use

awk ’{print $NF, $0}’ | sort | sed ’s/ˆ[ˆ][ˆ]* //’

instead. (The sed remove everything up to and including the first blank on each line.)
▲

Archive sev eral files into one big .tar file

tar is a utility for writing a group of files onto a tape, creating a tape archive . But the output of
tar, like that of any Unix program, can be directed to a file instead of to a hardware device. Give the file a
name ending with .tar.

The following example could have used a device name such as /dev/rmtnh (raw magnetic tape)
instead of the filename date.tar. In that case you’d also need the mt rewind command.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 5 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1$ cd
2$ date > date1
3$ date > date2
4$ date > date3
5$ ls -l date[1-3]
-rw------- 1 mm64 users 29 Jan 9 00:41 date1
-rw------- 1 mm64 users 29 Jan 9 00:41 date2
-rw------- 1 mm64 users 29 Jan 9 00:41 date3

6$ tar cvf date.tar date1 date2 date3 create date.tar
a date1 1K
a date2 1K
a date3 1K

7$ ls -l date.tar
-rw------- 1 abc1234 users 4096 Jan 9 00:41 date.tar

8$ tar tvf date.tar | more Output a table of contents of the .tar file.
tar: blocksize = 8
-rw------- 50766/15 29 Jan 9 00:41 2004 date1
-rw------- 50766/15 29 Jan 9 00:41 2004 date2
-rw------- 50766/15 29 Jan 9 00:41 2004 date3

The x flag extracts a copy of one or more of the little files archived in the .tar file. To extract
ev erything archived in the .tar file, simply give no arguments after the name of the .tar file. Extraction
does not change the contents of the tar file.

9$ rm date1 date2 date3 or rm date[1-3] p. 28; ksh93(1) pp. 10−11

10$ tar xvf date.tar date1 create date1
tar: blocksize = 8
x date1, 29 bytes, 1 tape blocks

11$ ls -l date1
-rw------- 1 abc1234 users 29 Jan 9 00:41 date1

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 6 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Archive an entire directory into one big .tar file

datedir

datedir1 datedir2

date1a date1b date2a date2b

If you give one or more directory names instead of one or more filenames to tar cvf after the name
of the .tar file, tar will archive the directories and all of their descendants, including all of the files they
contain.

1$ cd
2$ pwd
/home1/a/abc1234

3$ mkdir datedir

4$ mkdir datedir/datedir1
5$ date > datedir/datedir1/date1a
6$ date > datedir/datedir1/date1b

7$ mkdir datedir/datedir2
8$ date > datedir/datedir/date2a
9$ date > datedir/datedir/date2b

10$ tar cvf date.tar datedir
a datedir/ 0K
a datedir/datedir1/ 0K
a datedir/datedir1/date1a 1K
a datedir/datedir1/date1b 1K
a datedir/datedir2/ 0K
a datedir/datedir2/date2a 1K
a datedir/datedir2/date2b 1K

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 7 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

11$ tar tvf date.tar | more
tar: blocksize = 13
drwx------ 50766/15 0 Jan 9 00:41 2004 datedir/
drwx------ 50766/15 0 Jan 9 00:41 2004 datedir/datedir1/
-rw------- 50766/15 29 Jan 9 00:41 2004 datedir/datedir1/date1a
-rw------- 50766/15 29 Jan 9 00:41 2004 datedir/datedir1/date1b
drwx------ 50766/15 0 Jan 9 00:41 2004 datedir/datedir2/
-rw------- 50766/15 29 Jan 9 00:41 2004 datedir/datedir2/date2a
-rw------- 50766/15 29 Jan 9 00:41 2004 datedir/datedir2/date2b

12$ rm datedir/datedir[12]/*
13$ rmdir datedir/datedir[12]
14$ rmdir datedir

The following tar xvf command will re-create the directory datedir, its subdirectory
datedir2, and the file date2a:

15$ tar xvf date.tar datedir/datedir2/date2a
tar: blocksize = 13
x datedir/datedir2/date2a, 29 bytes, 1 tape blocks

16$ ls -l | more
drwx------ 4 abc1234 users 257 Jan 9 00:41 datedir

17$ ls -l datedir | more
drwx------ 2 abc1234 users 253 Jan 9 00:41 datedir/datedir2

18$ ls -l datedir/datedir2/date2a
-rw------- 1 abc1234 users 29 Jan 9 00:41 datedir/datedir2/date2a

How much of the full pathnames should be included in the .tar file?

If you specify the full pathnames of the files and directories to be archived, then their full pathnames
will be stored in the .tar file:

1$ rm date.tar
2$ tar cvf date.tar ˜/datedir
a /home1/a/abc1234/datedir/ 0K
a /home1/a/abc1234/datedir/datedir1/ 0K
a /home1/a/abc1234/datedir/datedir1/date1a 1K
a /home1/a/abc1234/datedir/datedir1/date1b 1K
a /home1/a/abc1234/datedir/datedir2/ 0K
a /home1/a/abc1234/datedir/datedir2/date2b 1K
a /home1/a/abc1234/datedir/datedir2/date2a 1K

3$ tar tvf date.tar
tar: blocksize = 13
drwx------ 50766/15 0 Jan 9 00:41 2004 /home1/a/abc1234/datedir/
drwx------ 50766/15 0 Jan 9 00:41 2004 /home1/a/abc1234/datedir/datedir1/
-rw------- 50766/15 29 Jan 9 00:41 2004 /home1/a/abc1234/datedir/datedir1/date1a
-rw------- 50766/15 29 Jan 9 00:41 2004 /home1/a/abc1234/datedir/datedir1/date1b
drwx------ 50766/15 0 Jan 9 00:41 2004 /home1/a/abc1234/datedir/datedir2/
-rw------- 50766/15 29 Jan 9 00:41 2004 /home1/a/abc1234/datedir/datedir2/date2b
-rw------- 50766/15 29 Jan 9 00:41 2004 /home1/a/abc1234/datedir/datedir2/date2a

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 8 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

If you specify only the basenames of the files and directories to be archived, then only their base-
names will be stored in the .tar file:

4$ rm date.tar
5$ cd ˜/datedir/datedir1
6$ tar cvf ˜/date.tar date1a date1b
a date1a 1K
a date1b 1K

7$ cd ˜/datedir/datedir2
8$ tar rvf ˜/date.tar date2a date2b ‘‘replace’’, not cvf!
a date2a 1K
a date2b 1K

9$ tar tvf ˜/date.tar
tar: blocksize = 10
-rw------- 50766/15 29 Jan 9 00:41 2004 date1a
-rw------- 50766/15 29 Jan 9 00:41 2004 date1b
-rw------- 50766/15 29 Jan 9 00:41 2004 date2a
-rw------- 50766/15 29 Jan 9 00:41 2004 date2b

Another way to do exactly the same thing is to use the uppercase -C option of tar instead of doing
the cd’ing yourself:

10$ cd
11$ rm date.tar
12$ tar cvf date.tar \

-C datedir/datedir1 date1a \
-C datedir/datedir1 date1b \
-C datedir/datedir2 date2a \
-C datedir/datedir2 date2b

a date1a 1K
a date1b 1K
a date2a 1K
a date2b 1K

13$ pwd
/home1/a/abc1234 The -C effected only the tar, not you.

14$ tar tvf date.tar
tar: blocksize = 10
-rw------- 50766/15 29 Jan 9 00:41 2004 date1a
-rw------- 50766/15 29 Jan 9 00:41 2004 date1b
-rw------- 50766/15 29 Jan 9 00:41 2004 date2a
-rw------- 50766/15 29 Jan 9 00:41 2004 date2b

Exclude one or more files and/or subdirectories

To archive the directory datedir and all of its descendants except for the directory
datedir/datedir1, use the -e option. Specify the exception directory datedir/datedir1
before its ancestor directory datedir:

1$ cd
2$ tar cvf date.tar -e datedir/datedir1 datedir

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 9 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

3$ tar tvf date.tar

▼ Homework 6.3: create a tar file

Verify that all of the above works. If you’re allowed to use a tape drive, tar some files to tape
instead of to a .tar file.
▲) .HW tar the ppm.h file and all the .c files and the directories that contain them

Create a file named ppm.tar containing the $m46/ppm directory and all of its descendants except
for the subdirectories $m46/ppm/bin and $m46/ppm/lib.

Since ‘‘verbose’’ output of tar cvf is directed to the standard error output rather than to the stan-
dard output, you’ll have to use |& rather than | if you want to pipe it to more. See p. 13 of csh(1). (The
output of tar tvf goes to the standard output.)

Hand in a tar tvf of your ppm.tar file. It must contain only the part of the pathnames from ppm
onwards:

1$ tar tvf ppm.tar | more

▲

▼ Homework 6.4: copy all your files from one machine to another

1$ cd
2$ pwd

3$ tar cvf all.tar .
4$ tar tvf all.tar | more
5$ tar tvf all.tar | lpr

Use ftp to copy the above binary file named all.tar to your home directory on another
machine. Then on the other machine,

$ cd
$ ls -l all.tar
$ tar tvf all.tar | more
$ tar tvf all.tar | lpr
$ tar xvpf all.tar p because machines have different umask

▲

A comparison of ar and tar

ar usually creates a file containing an library of .o files. It also lets you insert new members at any
point in an existing library, change the order of existing members, and delete members.

tar often sends its output to a tape instead of a file. For this reason, it lets you add new members
only to the end of the archive, and has no facilities for reordering or deleting members.

ar creates an index (________64ELEL_), tar doesn’t. In place of the tape drive /dev/rmt0h
below (‘‘raw magnetic tape’’), you can use a file whose name ends with .tar.

Create an archive with three members:
1$ ar crsv libdate.a date1.o date2.o date3.o
2$ tar cvf /dev/rmt0h date1.c date2.c date3.c

Output the table of contents of an archive:
3$ ar tv libdate.a
4$ mt -f /dev/rmt0h rewind
5$ tar tvf /dev/rmt0h

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 10 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Create a copy of date2.o or date2.c in the current directory.
6$ ar xv libdate.a date2.o
7$ tar xvf /dev/rmt0h date2.c

Compress and uncompress

1$ cd
2$ cp /etc/passwd . Copy /etc/passwd to your current directory.
3$ ls -l passwd
-r-------- 1 abc1234 users 736431 Jan 9 00:41 passwd

4$ compress passwd remove passwd and create passwd.Z
5$ ls -l passwd.Z
-r-------- 1 abc1234 users 221463 Jan 9 00:41 passwd.Z

Do not cat to the screen or lpr a compressed file (in this case, a .Z file). Instead,

6$ zcat passwd.Z | head -3
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:

7$ uncompress passwd.Z remove passwd.Z and create passwd
8$ ls -l passwd
-r-------- 1 abc1234 users 736431 Jan 9 00:41 passwd

The compression and decompression is not ‘‘lossy’’:

9$ cmp passwd /etc/passwd No output if identical: Handout 2, p. 11.
10$ rm passwd

Other compression programs

suffix compress decompress

.Z compress uncompress

.gz gzip gunzip

.z pack unpack

Programs written by GNU often start with g. See http://www.gnu.org/. To list the pairs of
utilities for compression and decompression on i5.nyu.edu,

1$ man -k compress | more search for a keyword with -k

For a comprehensive list of suffixes, pairs of utilities, and how to get them, see David Lemson’s compres-
sion document,

http://www.lemson.com/lemson/work.html

A shorter list is in the Whole Internet Catalog, 2nd ed. , pp. 83−85.

▼ Homework 6.5: compress and uncompress a file

Compress and uncompress a file (ASCII or binary). Use bc to find the percent by which it was com-
pressed. Which pair of utilities yields the most compression? Do text files compress further than image
files?

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 11 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1$ bc Handout 2, p. 21; Handout 4, pp. 23−24; Handout 7, p. 7
scale = 2 Output answers to two decimal places.
100 * 221463 / 736431
30.07
control-d
2$

▲ Compress ppm.tar

Compress the ppm.tar file that you created in a previous homework, creating a file named
ppm.tar.Z. Hand in the output of

zcat ppm.tar.Z | tar tvf -

uuencode and uudecode

mail and nn can send only text files, not binaries.

/* This file is little.c. */
main ()
{
}

1$ cc -o little little.c
2$ ls -l little
-rwx------ 1 mm64 users 5916 Jan 9 00:41 little

3$ uuencode little little2 > ascii
4$ head -5 ascii
begin 700 little2
M?T5,1@$" 0 " (! $$! #0 !+D T "
M!0 H !L &0 8 T $ - "@ H 4 P
M -0 !$! ! ! &
M/ !CP % $ $ 8 (&/ %D !@ < 0

5$ tail -1 ascii
end

6$ rm little
7$ uudecode ascii
8$ ls -l
-rwx------ 1 mm64 users 5916 Jan 9 00:41 little2

▼ Homework 6.6: the Revision Control System RCS

Please change every 46 to 45 in the RCS section. For example, ˜mm64/46 becomes ˜mm6445.

The Concurrent Versions System CVS sits on top of RCS. An older program similar to RCS was the
Source Code Control System SCCS.

Do not attempt this assignment before I discuss it in class, or if you were absent when I discussed it
in class, or if your vi says [Using open mode] (Handout 3, p. 1), or if echo $S45 shows you nothing
(Handout 2, p. 13, lines 34−35). Do not write a lawyer joke.

Do not edit any file in the ˜mm64/46/RCS directory. Do not move or copy any file into the
˜mm64/46/RCS directory, or remove any file from that directory.

Do everything in your home directory. Change the permission bits of your home directory to
rwxr-xr-x if you have not already done so.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 12 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(1) The co command (‘‘check out’’) should make the jokes file appear in your current directory.
You can do anything you want with this copy of jokes: more it, lpr it, vi it, etc. But the co command
does not authorize you to change the master copy of jokes from which your copy was cloned. co there-
fore entails no responsibility: it doesn’t hold up anyone else’s work.

You can also see the jokes file, the person (if any) who is editing it now, and a list of all the people
who have edited it on the X52.9545 home page on the World Wide Web at
http://i5.nyu.edu/˜mm64/x52.9545#jokes

1$ cd
2$ pwd

3$ ls -ld Make sure your home directory is rwxr-xr-x.
4$ ls -l jokes If a jokes file already exists, move or remove or rename it.

5$ co ˜mm64/46/RCS/jokes
/home1/m/mm64/46/RCS/jokes --> jokes
revision 1.3
done

6$ ls -l jokes There’s a new file named jokes.
-r-------- 1 abc1234 users 512 Nov 2 21:00 jokes
7$ more jokes
8$ rm -f jokes -f to remove a file with no w permission: p. 56

(2) The co -l command also makes the jokes file appear in your current directory. The -l option
authorizes you to use the ci command in paragraph (3) to change the master copy of jokes from which
your copy was cloned. You can then edit jokes with any editor:

9$ cd
10$ pwd

11$ ls -ld Make sure your home directory is rwxr-xr-x.
12$ ls -l jokes If a jokes file already exists, move or remove or rename it.

13$ co -l ˜mm64/46/RCS/jokes minus lowercase L for ‘‘lock’’
/home1/m/mm64/46/RCS/jokes --> jokes
revision 1.3 (locked)
done

14$ ls -l jokes There’s a new file named jokes. Only you can edit it.
-rw------- 1 abc1234 users 512 Nov 2 21:00 jokes
15$ vi jokes

(3) When you have finished typing your joke at the bottom of the jokes file, use the ci command
(‘‘check in’’) to put the file back so that other people can have their turn. ci will ask you to describe what
you did to jokes. Tell ci which joke(s) you added, pressing RETURN at the end of each line. After the
RETURN at the end of the last line, type control-d (Handout 2, p. 21). ci will then make jokes dis-
appear from your current directory; type ls -l to make sure that it’s gone. You are now done.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 13 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

16$ ci ˜mm64/46/RCS/jokes Don’t forget the ˜mm64/46/RCS/
/home1/m/mm64/46/RCS/jokes <-- jokes It says this.
new revision: 1.4; previous revision: 1.3
enter log message, terminate with single ’.’ or end of file:
>> I added the jokes about the chicken, snowman, and route 9W. RETURN
>> control-d
done

17$ ls -l jokes The file jokes is gone.
18$ rlog -L -R ˜mm64/46/RCS/jokes No output means you no longer have permission to edit jokes.

If rlog -L -R ̃ mm64/46/RCS/jokes does not remain silent, it means that your ci command
didn’t work. jokes is still being edited, and you haven’t relinquished permission to edit the file. No one
else can type a joke. Give the rcs -o command shown below (minus lowercase o: ‘‘outdate’’ means
delete), follow it up with another rlog -L -t, and send me mail immediately with your login name and
secret password:

19$ mail mark.meretzky@nyu.edu
Subject: ci failed
I gave the command
ci ˜mm64/46/RCS/jokes
and typed my description and pressed control-d, but the command
rlog -L -t ˜mm64/46/RCS/jokes
says that I’m still editing the jokes file.
My login name is abc1234 and my secret password is Bacall8?.
control-d
20$

(4) After you have successfully ci’d, giv e the co command without the -l option and print out the
jokes file. ★ You get credit only if you print the copy of the file obtained from co without the -l option.
The copy obtained from co without the -l will have the revision number after the $Header$ on the first
line; the one obtained from co with the -l will have no revision number after the $Header$. Draw a cir-
cle around your joke and hand in the printout of the entire jokes file. You get credit only if you draw a
circle around your joke.

21$ cd
22$ pwd

23$ ls -l jokes If a jokes file already exists, move or remove or rename it.
24$ co ˜mm64/46/RCS/jokes
25$ pr -l60 jokes | lpr minus lowercase L sixty; hand in this printout
26$ rm jokes

If your joke does not print or is mangled (e.g., if you typed lines that are longer than 80 characters),
get permission to edit the file again, fix your joke, and ci it again. Then co the file again, without the -l,
and see if your joke prints correctly.

What can go wrong in RCS

(1) If the co -l ̃ mm64/46/RCS/jokes command says

co error: revision 1.3 already locked by abc1234

it means that abc1234 is editing the file. Wait your turn or pester him or her (see below). To see a list of
all the files that RCS has given permission to edit,

1$ rlog -L -R ˜mm64/46/RCS/*

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 14 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(2) If the co -l ̃ mm64/46/RCS/jokes command complains

writable jokes exists; remove it? [ny](n): you should say n

it means that there already was a file named jokes in your current directory, and co -l refused to over-
write it. rm the file and try again.

(3) If the co command (with or without the -l option) complains

co error: /home1/m/mm64/45/RCS/jokes: Permission denied

it means that the instructor forgot the chmod 444 in Handout 6, p. 4. Please send him email reminding
him. Thanks.

(4) If you realize while you’re editing that you are only making the file worse, exit from vi and can-
cel the co -l with the -u option (‘‘unlock’’) of rcs:

2$ rcs -u ˜mm64/46/RCS/jokes
RCS file: /home1/m/mm64/46/RCS/jokes
1.3 unlocked
done

(5) If you realize after you’ve ci’d that your new revision (number 1.4) was worse than the old revi-
sion, you can remove the new revision by immediately saying

3$ rcs -o1.4 ˜mm64/46/RCS/jokes minus lowercase O stands for ‘‘outdate’’

Other RCS commands

(1) To see a list of all the people who have edited jokes, and the revision numbers,

1$ rlog ˜mm64/46/RCS/jokes | more

If jokes is being edited, you will see the login name of the person who is editing it on the line below the
one that says locks:.

(2) By default, the co ̃ mm64/46/RCS/jokes command gets the most recent revision of the file.
To get a previous revision, use the -r option:

2$ co -r1.2 ˜mm64/46/RCS/jokes

(3) The RCS documentation is under rcsintro(1), co(1), ci(1), rlog(1), rcs(1), ident(1).

How I created the jokes file

To create an empty file named jokes and put it under the protection of RCS, I first created a subdi-
rectory of ˜mm64/46 named RCS and chmod’ed it. Never edit any file in an RCS directory, and never co
or ci while you’re in an RCS directory.

1$ cd ˜mm64/46
2$ pwd

3$ mkdir RCS must be uppercase
4$ ls -ld RCS
drwx------ 2 mm64 users 512 Nov 2 12:41 RCS

5$ chmod 777 RCS
6$ ls -ld RCS
drwxrwxrwx 2 mm64 users 512 Nov 2 12:41 RCS

7$ rcs -i ’-t-X52.9546/Y12.1005 Fall 2004 jokes’ ˜mm64/46/RCS/jokes
8$ rlog ˜mm64/46/RCS/jokes Make sure that the rcs -i -t- worked.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 15 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

9$ chmod 444 ˜mm64/46/RCS/jokes Turn on all three r bits.
10$ ls -l ˜mm64/46/RCS/jokes Make sure that the chmod worked.

To put an existing file under the protection of RCS, it’s more convenient to use the ci -t-
˜mm64/46/RCS/jokes command instead of the rcs -i -t- ̃ mm64/46/RCS/jokes shown above.

Insert the revision number into your file

If you type the expression

$Header$

into a file under the protection of RCS, the expression will be changed to

"$Header: /home1/m/mm64/46/RCS/jokes 1.4 2004/01/13 18:11:07 abc1234 Exp $";

when you check it out with co without the -l option. See the first line of the jokes file. See ident(1)
and p. 3 of rcsintro(1).

Make bibliography

See the three digressions on make in the textbook on pp. 241−242, 254−256, and 265−266. Page
numbers below refer to the 9-page manual page make(1). See also make(1p) (Posix) and make(1u)
(Ultrix). Also print (with minus lowercase L sixty)

1$ make -p -f /dev/null | pr -l60 -h ’make internal rules’ | lpr

See also Managing Projects with make, 2nd ed., by Andrew Oram and Steve Talbott; O’Reilly & Associ-
ates, 1991; ISBN 0-937175-90-0; http://www.oreilly.com/catalog/make2/

Sample C program to demonstrate make

/* This file is func.h. */
int f(void);

/* This file is var.h. */
extern int i;

/* This file is main.c. */
#include <stdio.h>
#include <stdlib.h>
#include "var.h"
#include "func.h"

int main(int argc, char **argv)
{

printf("%d\n", i + f());
return EXIT_SUCCESS;

}

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 16 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

/* This file is func.c. */
#include "func.h"

int f(void)
{

return 2;
}

/* This file is var.c. */
#include "var.h"

int i = 1;

#!/bin/sh
#Compile and link the above C program.

gcc -c main.c #create main.o
gcc -c func.c #create func.o
gcc -c var.c #create var.o
gcc -o prog main.o func.o var.o #create prog

Which files need to be recreated?

A .o file needs to be recompiled if it is older than the corresponding .c file or any of the .h files
that it #include’s. An executable file needs to be relinked if it is older than any of the .o files it com-
prises.

1$ cd $m46/make
2$ ls -l | tail +2
-rw-r--r-- 1 mm64 users 73 Nov 2 13:21 func.c
-rw-r--r-- 1 mm64 users 40 Nov 2 13:24 func.h
-rw-r--r-- 1 mm64 users 496 Nov 2 13:25 func.o
-rw-r--r-- 1 mm64 users 136 Nov 2 13:22 main.c
-rw-r--r-- 1 mm64 users 1764 Nov 2 13:25 main.o
-rwxr-xr-x 1 mm64 users 40688 Nov 2 13:26 prog
-rw-r--r-- 1 mm64 users 55 Nov 2 13:27 var.c
-rw-r--r-- 1 mm64 users 40 Nov 2 13:24 var.h
-rw-r--r-- 1 mm64 users 428 Nov 2 13:25 var.o

3$ ls -lt | tail +2
-rw-r--r-- 1 mm64 users 55 Nov 2 13:27 var.c
-rwxr-xr-x 1 mm64 users 40688 Nov 2 13:26 prog
-rw-r--r-- 1 mm64 users 428 Nov 2 13:25 var.o
-rw-r--r-- 1 mm64 users 1764 Nov 2 13:25 main.o
-rw-r--r-- 1 mm64 users 496 Nov 2 13:25 func.o
-rw-r--r-- 1 mm64 users 40 Nov 2 13:24 var.h
-rw-r--r-- 1 mm64 users 40 Nov 2 13:24 func.h
-rw-r--r-- 1 mm64 users 136 Nov 2 13:22 main.c
-rw-r--r-- 1 mm64 users 73 Nov 2 13:21 func.c

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 17 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

The dependency tree

prog

var.h

main.c

main.o

func.h

func.c

func.o

var.h

var.c

var.o

gcc -c main.c

gcc -c func.c

gcc -c var.c

gcc -o prog \
main.o func.o var.o

func.h

A simple makefile

Put all of the .c and .h files of your C program (except for the .h files in the /usr/include
directory) into one directory, together with the file named makefile shown below. Since makefile is
not a shellscript, do not start it with #! or turn on its three x bits.

The file before the colon is the target . The files after the colon are the dependents . A line with a
colon and the line(s) indented below it constitute a rule . Do not indent the line with the target and depen-
dency files, but indent the line(s) below them that tell how to create the target file. Skip an empty line
between rules.

In makefile, all indentation must be by EXACTLY ONE TAB CHARACTER. Do not indent with
blanks. This is the only place in Unix where the difference between blanks and tabs is significant. The
Unix Haters Handbook (by Simon Garfinkel, Daniel Weise, and Steven Strassmann, with a foreward by
Dennis Ritchie; IDG Books, 1994; ISBN 1-56884-203-1), p. 185, says ‘‘According to legend, Stu Feldman
[the creator of make] didn’t fix make’s syntax, after he realized that the syntax was broken, because he
already had 10 users.’’

The following makefile contains four rules. A rule is executed if the target doesn’t exist, or if the
target is older than any of its dependents, or if there are no dependents listed to the right of the colon.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 18 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

prog: main.o var.o func.o
cc -o prog main.o var.o func.o

main.o: main.c var.h func.h
cc -c main.c

var.o: var.c var.h
cc -c var.c

func.o: func.c func.h
cc -c func.c

You can create any of the targets in the makefile. make will do all the compiling and linking that
is necessary, and no more.

1$ cd to the directory that contains the .h and .c files and the makefile
2$ make prog create prog
3$ make main.o create main.o
4$ make var.o create var.o
5$ make func.o create func.o

If you give make no command line argument, you will create the first target in the makefile by
default. That’s why the target at the root of the tree is listed first in the makefile. The other targets can
be listed in any order.

6$ make create prog
7$ make Nothing happens the second time.
‘prog’ is up to date.

▼ Homework 6.7: play with make

The files func.h, var.h, main.c, func.c, var.c, and makefile are in the directory
$m46/make. Copy them to a directory named $HOME/prog. Then

1$ cd $HOME/prog
2$ make
3$ ls -l Look at the new files created by the make command.
4$ prog Run the program created by the make command.

Then run the make command again and verify that no additional compilation or linking takes place.

Now edit one of the .c files, and verify that make compiles only the edited file and then relinks the
executable. Then edit one of the .h files and verify that make compiles every .c file that #include’s
the .h file (but no other .c file) and then relinks the executable.

Instead of editing a .c file, give the touch command to let you experiment more rapidly.

5$ ls -l main.c
-rw-r--r-- 1 abc1234 users 136 Nov 2 13:22 main.c

6$ touch main.c faster than vi main.c
7$ ls -l
-rw-r--r-- 1 abc1234 users 136 Nov 2 13:29 main.c

You can confuse make by saying

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 19 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

8$ vi main.c This would normally cause make to recompile main.c.
9$ touch main.o
10$ touch prog
11$ make Does make recompile main.c?

{ } around a shell variable: p. 148

1$ lpq -Pth_hp4si_1
2$ lpq -Ped_hp4si_1

#!/bin/sh
#Print the queue for each Hewlett Packard 4Si laser printer.
#Without the {}, the echo would print the wrong variable.

for p in th ed
do

echo ${p}_hp4si_1:
lpq -P${p}_hp4si_1:

done

exit 0

Put parentheses or curly braces around the name of every make macro if the name is more than one
character long.

A makefile with macros

$@ and $* are internal macros, i.e., variables to which make gives different values automatically in
each rule where they are used. See p. 5 in make(1). $@ is the name of the target file, and $* is the name
of the target file with the suffix removed (i.e., the basename of the target file). Contrary to what the man
says, $* can be used outside of suffix rules. You can use $* only in an indented line, not in a colon line.

CC, CFLAGS, and OBJS are non-internal macros; see p. 255 in the textbook and pp. 3−5 in make(1).
A non-internal macro can have any name you want, but please pick names that agree with those output by
the make -p command above.

#makefile for the above C program, using macros.

CC = gcc
CFLAGS = -O #optimization
OBJS = main.o func.o var.o

prog: $(OBJS)
$(CC) $(CFLAGS) -o $@ $(OBJS)

main.o: main.c func.h var.h
$(CC) $(CFLAGS) -c $*.c

func.o: func.c func.h
$(CC) $(CFLAGS) -c $*.c

var.o: var.c var.h
$(CC) $(CFLAGS) -c $*.c

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 20 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 6.8: create a makefile for moon

1$ cd
2$ mkdir moon
3$ cd moon
4$ cp $m46/moon/moon*.[ch] . Handout 1, p. 14
5$ chmod 644 moon*.[ch] if you plan to edit these files

Create a makefile for moon in your $HOME/moon directory. Hand in the makefile. Use the
internal macros $@ and $*. Create the macros CC, CFLAGS, and OBJS. Leave the CFLAGS macro empty
if you don’t want optimization:

CFLAGS =

Also create a macro named LOADLIBES to hold the -lm option of gcc that moon requires. Write
$(LOADLIBES) at the end of the line that contains -o $@.
▲

Other ways to create a make macro: p. 3.

Instead of defining a macro in your makefile, you can pass a command line argument to make:

1$ make CC=gcc No space around the equal sign.

or set an environment variable:

2$ setenv CC gcc do this in your .login file.
3$ env | more see the names and values of all your environment variables
4$ make

If you a macro without defining it anywhere, make will use the default definition you printed out
with the make -p command. These rules also include the defaults for any rules you left out of your
makefile. For example, if you don’t say how to create a .o file from a .c file, make will use the .c.o
default rule displayed by the make -p command.

A makefile for an archive

An archive is made out of .o files, just as a .o file is made out of a .c file. The .o files inside of
the archive libppm.a are named libppm.a(ppm_inheader.o),
libppm.a(ppm_outheader.o), etc. Use backslashes to divide a long colon statement into separate
lines.

The internal macro $? in the following makefile holds the names of all the .o files in the library
that need to be recompiled (i.e., that are older than the corresponding .c files); see p. 3. The macro
$(?:.o=.c) is $? with the .o’s at the end of each word changed to .c’s; see p. 4.

Each indented line counts as a separate shellscript. To write a multi-line command such as
if-then-else-fi, you must therefore use backslashes.

#!/bin/sh
#What goes wrong if you omit the semicolon?

grep word file
who

grep word file; who

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 21 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/sh
#What goes wrong if you omit the semicolons?

if grep -q word file
then

who
fi

if grep -q word file; then who; fi

#This file is $m46/ppm/src/makefile.

CFLAGS = -I/home/m/mm64/46/ppm/include

libppm.a: \
libppm.a(ppm_inheader.o) \
libppm.a(ppm_outheader.o) \
libppm.a(ppm_negative.o)
$(CC) $(CFLAGS) -c $(?:.o=.c)
if [-f $@];\
then\

ar rsv $@ $?;\
else\

ar crsv $@ $?;\
fi
rm $?

#Disable the default rule for creating a .a file out of .c files to
#allow the above rule to be used instead.
.c.a:;

A taller tree

The above tree diagram had only three levels: the root, the leaves, and one level in between. For
tasks with more steps, the tree may be much taller.

A file written by human beings is called source code . Not all .c and .h files are source code: some
are written by programs. For example, human beings write .y files and .l files and feed them to yacc
and lex:

1$ yacc hoc.y create y.tab.c: pp. 233−287
2$ lex lexer.l create lex.yy.c: pp. 256−258

The resulting files y.tab.c and lex.yy.c must then be compiled into .o files. Here is a makefile
for a tree with four levels:

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 22 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

OBJS = main.o y.tab.o lex.yy.o

prog: $(OBJS)
$(CC) -o $@ $(OBJS) $(LOADLIBES)

main.o: main.c
$(CC) $(CFLAGS) -c $*.c

y.tab.o: y.tab.c
$(CC) $(CFLAGS) -c $*.c

lex.yy.o: lex.yy.c
$(CC) $(CFLAGS) -c $*.c

y.tab.c: hoc.y
$(YACC) $(YFLAGS) hoc.y

lex.yy.c: lexer.l
$(LEX) $(LFLAGS) lexer.l

If the source files hoc.y and lexer.l were put under the protection of RCS, then make would
need an additional preliminary step to get these files from RCS. The tree would then have five lev els:

hoc.y:
co hoc.y

lex.l:
co lex.l

A forest

A forest is two or more trees. A makefile may contain a forest instead of a single tree. The root
of one tree will usually be the executable file we want to create. The roots of the other trees may be also be
files that we want to create, but more often are merely names for groups of commands that we want to
execute.

For example, there is no file named cleanup, nor will there ever be. Type make cleanup to lead
make to believe that we want to create a file named cleanup. make will then execute the indented rm
command, believing that this will create cleanup.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 23 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

OBJS = main.o file1.o
SOURCES = prog.h main.c file1.c

prog: $(OBJS) #The root of the first tree
$(CC) $(CFLAGS) -o $@ $(OBJS)

main.o: main.c
$(CC) $(CFLAGS) -c $*.c

file1.o: file1.c
$(CC) $(CFLAGS) -c $*.c

#Remove all files that are not source code.
cleanup:

rm prog $OBJS

print:
pr -l60 $(SOURCES) | lpr #minus lowercase L sixty

test:
prog < test.data > test.out
if cmp -s correct.out test.out;\
then\

rm test.out;\
strip prog;\
mv prog /usr/local/bin;\

else\
echo ’Failed the test.’;\

fi

1$ make
2$ make main.o
3$ make test
4$ make cleanup
5$ make print

Print only the files of which you have no up-to-date printout: p. 265

Add the following rule to the end of the first makefile in this handout.

print: func.h var.h main.c func.c var.c
pr -l60 $? | lpr
touch print

The first time you say make print, the indented commands will be executed because the file
print does not exist. The macro $? will hold the names of all the dependents of this rule. The touch
command will then create print.

Every subsequent time you say make print, the macro $? will hold the names of only those
dependents that are newer than the file print. The indented command will print only the files that have
been edited since the last time you said make print.

Use the same technique to back up only the files that have been modified since the last time they were
backed up.

Fall 2004 Handout 6 printed 1/9/04
12:41:32 AM − 24 − All rights

reserved ©2004 Mark Meretzky

