
NYU SCPS X52.9546 Section 1 Unix Tools

Fall 2004 Handout 5

Time a program: pp. 69, 92

1 /* This program is looper.c. It takes a long time to do nothing. */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 void f(void);
6 void g(void);
7
8 int main()
9 {
10 f();
11 g();
12 printf("All done.\n");
13 return EXIT_SUCCESS;
14 }
15
16 void f(void)
17 {
18 long i;
19
20 for (i = 0; i < 1000000; ++i) {
21 }
22 }
23
24 void g(void)
25 {
26 long i;
27
28 for (i = 0; i < 10000000; ++i) {
29 }
30 }

The word time is a keyword in the C shell language, just like set and setenv; see p. 20 of
csh(1). To run the time program, you must therefore specify its full pathname. time sends its output to
stderr to avoid mixing it with the stdout of the program being timed.

1$ gcc -o looper looper.c
2$ /usr/bin/time looper > /dev/null
real 2.1
user 0.8
sys 0.0

The sys time is the amount of CPU time spent executing the program’s system calls. For example,
the printf function ultimately calls the Unix system call write, and the scanf function ultimately
calls read; see pp. 202−204. The user time is the amount of CPU time spent executing all code other
than Unix system calls.

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 1 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Profile: p. 285

1$ gcc -p -o looper looper.c
2$ looper Create mon.out.
All done.
3$ ls -l mon.out
4$ prof looper mon.out

Profile listing generated Sun Oct 22 22:16:00 2004 with:
prof looper mon.out

--
* -p[rocedures] using pc-sampling; *
* sorted in descending order by total time spent in each procedure; *
* unexecuted procedures excluded *
--
Each sample covers 4.00 byte(s) for 0.21% of 0.4551 seconds

%time seconds cum % cum sec procedure (file)

90.8 0.4131 90.8 0.41 g (<stripped>)
9.2 0.0420 100.0 0.46 f (<stripped>)

5$ prof -v looper mon.out | lpr -g Print a graph (not in our version of Unix).

▼ Homework 5.1: which is the faster way to loop ten million times?

for (i = 0; i < 10000000; ++i) { /* ascending */

for (i = 10000000; i > 0; --i) { /* descending */

Write a C program with two functions named ascending and descending, each containing the
empty loop shown above and nothing else. Which function takes less time? Why? Do you get the same
profile each time you run the program? Hand in a profile.

What is added to the symbol table of a .o file when you create it with the -p option? Compile your
program with and without the -p option, and use nm to save the two symbol tables in two temporary files.
Then use comm to find all the words in the last column of one file that are not in the last column of the sec-
ond file.
▲

How much memory will a process occupy?

ls -l does not show you how much memory a program will occupy as it runs; use the size com-
mand instead. strip decreases the size output by ls -l, but has no effect on the size output by size.

The memory occupied by a process is divided into segments . The text segment holds the
executable instructions. The data segment holds explicitly initialized data. The bss segment holds data
that is implicitly initialized to zero. It’s named after an old IBM 7090 pseudo-op: ‘‘block started by sym-
bol’’. Our gcc compiler uses it to hold static data with no explicit initialization. Its size is 0 in the
above example because moon had no variables with declarations such as

static int i; /* implicitly initialized to 0 */

1$ cd $m46/moon
2$ gcc -c moonmain.c moonphase.c moondraw.c
3$ gcc -o moon moonmain.o moonphase.o moondraw.o -lm

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 2 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

4$ ls -l
-rwx------ 1 mm64 users 9520 Jan 9 00:41 moon
-rw------- 1 mm64 users 1776 Jan 9 00:41 moondraw.o
-rw------- 1 mm64 users 1416 Jan 9 00:41 moonmain.o
-rw------- 1 mm64 users 2768 Jan 9 00:41 moonphase.o

5$ size moonmain.o moonphase.o moondraw.o moon
moonmain.o: 906 + 0 + 0 = 906
moonphase.o: 2259 + 0 + 0 = 2259
moondraw.o: 1272 + 0 + 0 = 1272
moon: 4592 + 472 + 352 = 5416

Each segment is divided into pages . On a giv en machine, every page has the same size:

6$ pagesize How many bytes in a page of memory?
8192

▼ Homework 5.2: find the size of the segments of a C program

Use pagesize to find the page size on your computer. Is there a function that a C program could
call to do this? Write a little C program and see if the sizes of the three segments are multiples of the page
size. If not, why not?
▲

▼ Homework 5.3: how big are the segments of a program?

How big are the segments of a C program that does nothing except

printf ("hello\n");

Will the -O option (‘‘optimize’’) of gcc make it smaller?

Change the printf to

write (1, "hello\n", 6); /* KP pp. 201-204 */

and remove the #include <stdio.h>. Verify that the program still produces the same output and mea-
sure its size again.
▲

Dynamic memory allocation

size shows how much memory a process occupies when it starts running. But a process can get
bigger as it runs by calling malloc; see end(3) for other ways in which a process can grow.

1$ ps -o vsz,comm | more
VSZ COMMAND

1.89M -csh (csh)
1.79M sh -c ps -o vsz,comm
2.33M vi size.ms

1 /* This C program is named little.c. */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 int main()
6 {
7 const char *const command =
8 "ps -o vsz,comm | awk ’NR == 1 || $2 == \"little\"’";

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 3 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

9 char *p;
10
11 system(command);
12 p = malloc(1000 * 1024);
13 system(command);
14
15 free(p);
16 return EXIT_SUCCESS;
17 }

2$ gcc -o little little.c
3$ little
VSZ COMMAND

1.21M little
VSZ COMMAND

2.20M little

Sample C program to run under the control of dbx

1 /* This file is primemain.c.
2 Print the prime numbers between 1 and 100, eight per line. */
3
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 int isprime(int n);
8
9 main()
10 {
11 int n;
12 int i = 0; /* count how many numbers printed so far */
13
14 printf ("The prime numbers from 1 to 100 are:\n");
15
16 for (n = 2; n < 100; ++n) {
17 if (isprime(n)) {
18 printf ("%5d", n);
19 if (++i % 8 == 0) {
20 printf ("\n");
21 }
22 }
23 }
24
25 /* If the last number was not followed by a newline, add one now. */
26 if (i % 8 != 0) {
27 printf ("\n");
28 }
29 exit (0);
30 }

1 /* This file is primeis.c. */
2 int isprime(int n);
3

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 4 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

4 /* Return 1 if n is prime, 0 otherwise. */
5 int isprime(int n)
6 {
7 int i;
8
9 for (i = 2; i < n; ++i) {
10 if (n % i == 0) {
11 return 0;
12 }
13 }
14
15 return 1;
16 }

The prime numbers from 1 to 100 are:
2 3 5 7 11 13 17 19
23 29 31 37 41 43 47 53
59 61 67 71 73 79 83 89
97

Run a C program under the control of dbx

Print dbx(1). Compile all of the .c files of the above program with the -g option of gcc:

1$ gcc -g -o prime primemain.c primeis.c
2$ ls -l Make sure you created an executable prime.
3$ dbx prime

Display lines in the .c files

dbx will display the lines whose numbers you specify in the file that contains the main function.
The dbx prompt is (dbx).

(dbx) list 1 List lines 1−12 of the file primemain.c.
(dbx) list 10 List lines 10−21 of the file primemain.c.
(dbx) list 5,18 List lines 5−18 of the file primemain.c.

(dbx) list List the next 12 lines.
(dbx) list List the next 12 lines.

(dbx) alias l list Let lowercase l be an abbreviation for the word list (already done).
(dbx) alias See a list of all the alias’s; press RETURN.
(dbx) l List the next 10 lines.
(dbx) l 10
(dbx) alias ll "list; list" List the next 20 lines.

(dbx) l main List the first lines in the function main.
(dbx) /printf List the next line that contains the string printf, as in vi.
(dbx) / Repeat the search.
(dbx) / Repeat the search.
(dbx) ?printf List the previous line that contains the string printf, as in vi.

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 5 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(dbx) help
(dbx) help most_used
(dbx) quit Exit from dbx when you’ve had enough

Change to a different file

You can see any of the source code files that constitute your program:

(dbx) file primeis.c Go to the source file primeis.c.
(dbx) l List the first 10 lines of primeis.c.

(dbx) file /usr/include/stdio.h Go to the source file /usr/include/stdio.h.
(dbx) l List the first 10 lines of /usr/include/stdio.h.

(dbx) file primemain.c Go back to the source file primemain.c.
(dbx) l List the first 10 lines in primemain.c.
(dbx) file if you forget what source file you’re looking at

Set and remove breakpoints

Now that we’re back in the file that contains the function main, set a breakpoint at the first
executable line of that function.

(dbx) stop at 14 Put a breakpoint at line 14.
(dbx) status See a numbered list of all your breakpoints.

(dbx) delete 2 Remove breakpoint number 2 (your only breakpoint).
(dbx) status Make sure that the breakpoint is gone.

(dbx) stop at 14 Put the breakpoint back.
(dbx) status Make sure that it’s back.

(dbx) stop in main another way to stop at the beginning of a function

Warning: a breakpoint on a for line is not located within the loop. Put the breakpoint on the next
line.

Execute and single step through the program

Now run the program. It will stop immediately because we’ve put a breakpoint at the first line of the
function main.

(dbx) run Command line arguments and i/o redirection go here: <, >
(dbx) step This gets us to the for in line 16.
(dbx) step This gets us to the if in line 17.
(dbx) where What line am I at? Also show the runtime stack.
(dbx) cont Continue until next breakpoint.

The next command is just like step, except that it jumps over function calls.

(dbx) alias See a list of your alias’es.
(dbx) alias n next Create these alias’s if they don’t already exist.
(dbx) alias s step

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 6 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Print and change the values of variables once the program is under way

(dbx) print i Print the value of i in decimal.
(dbx) printf "%X", i Print the value of i in hex. Make an alias for this.
(dbx) printf "%o", i Print the value of i in octal.
(dbx) &main/10i Print the first ten assembly language instructions in main.

To automatically print the value of i whenever you step,

(dbx) alias s "step; print i" may need to parenthesize i

(dbx) assign i = 10
(dbx) assign i = 0xFFFF hexadecimal
(dbx) assign i = ’A’ Put 65 into i.
(dbx) print i

(dbx) dump Print the value of every variable in the current function.
(dbx) func if you forget which function is the current one
(dbx) dump isprime Print the value of every variable in another active function.

(dbx) print i + 100
(dbx) print i & 15 Print the four lowest bits of i.
(dbx) print i>>4 & 15 Print the next four lowest bits of i.
(dbx) alias nib "print i>>4 & 15" need double quotes around string with blanks
(dbx) nib

(dbx) alias nib(expr) "print (expr) >> 4 & 15" an alias with an argument
(dbx) nib(i)
(dbx) alias nib(expr, n) "print (expr) >> 4*(n) & 15"
(dbx) nib(i, 2)

(dbx) print &i Print the address of i in hex.
(dbx) print sizeof(i) parentheses required
(dbx) whatis i if you forgot that i is an int.

Conditional breakpoints

Use a stop command to stop; use a when command to do other things. If you have a stop and a
when at the same line number, it will do the when first and then stop.

(dbx) delete all
(dbx) status
(dbx) func main Make it clear which n you’re about to mention.
(dbx) stop at 18 if n == 4
(dbx) status
(dbx) run It will stop at line 18.
(dbx) where
(dbx) print n n will be 4.

(dbx) stop at 18 if 4 <= n && n <= 8
(dbx) stop in isprime
(dbx) stop if n == 4

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 7 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(dbx) func main
(dbx) when at 18 {print n}
(dbx) when at 18 {where; print n}
(dbx) when in isprime {where; dump}

Tw o variables with the same name

The functions main and isprime each contain a variable named i. Use a dot to specify the name
of the function that contains the variable. If necessary, you can also specify the name of the file (minus the
trailing .c) that contains the function.

(dbx) when at 11 {print i} the i in the current function
(dbx) when at 11 {print isprime.i} function name, variable name
(dbx) when at 11 {print primemain.isprime.i} file, function, variable
(dbx) when at 11 {print main.i}
(dbx) when at 11 {print primemain.i} if there was an i above main
(dbx) whereis i see a list of all the i’s in the program.

If you make isprime the current function , then you won’t need to type isprime. in front of the
names of isprime’s variables. Warning: you need the func command to change the current function.
The list and file commands do not change the current function.

(dbx) func isprime Make isprime the current function.
(dbx) when at 11 {print i} This i is guaranteed to be the one in isprime.
(dbx) func if you forget which function is the current one

Tw o invocations of the same function at runtime

The where command displays the runtime stack, with main at the bottom and the most recently
called function at the top. The print command will print the variables in the current function. With a
dot, you can print the variables in another function on the stack. Or you can avoid the dot by traveling
along the stack to the other function first.

(dbx) stop in isprime
(dbx) run
(dbx) where We’re in isprime, called from main.

(dbx) print i the i in isprime
(dbx) print main.i the i in main

(dbx) func It prints isprime.
(dbx) up Tr avel towards main.
(dbx) func It prints main.
(dbx) print i the i in main

(dbx) down Tr avel away from main.
(dbx) func It prints isprime.
(dbx) print i the i in isprime

Although our prime program does not illustrate this, a function in C can call itself. When this hap-
pens, the function will be on the runtime stack twice. Use up and down to travel to each invocation of the
function to examine its variables.

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 8 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Trace

(dbx) func main
(dbx) trace i
(dbx) run Print line number, old value, new value whenever i changes.

(dbx) trace i if 3 <= i && i <= 6 See if this works correctly.
(dbx) trace in isprime Print message when entering the function isprime.
(dbx) file primemain.c; trace 18 Print message whenever line 18 is executed.

Print char’s, arrays, and strings

char c = ’A’;
char *p = "hello";
char s[] = "goodbye";

(dbx) print c Prints ’A’.
(dbx) printf "%d", c Prints 65.
(dbx) print (int)c Prints 65.

(dbx) print p Prints value of p (i.e., address of the h) in hex; then print "hello"
(dbx) print *p Prints ’h’.
(dbx) print p[1] Prints ’e’.

In C, s means the address of the array. In dbx, howev er, s means the values of the array’s elements.

(dbx) print s Print the value of every array element: the whole string.
(dbx) print &s Print the address of s[0].
(dbx) print s[3] Print the ’d’ in goodbye.

Examine a core dump

1$ prime It dumps core.
2$ ls -l Make sure there’s a core file.
3$ dbx prime core core is the default
(dbx) where the first dbx command to use when examining a core dump.

Here’s a program that will always dump core:

1 #include <stdio.h>
2
3 main()
4 {
5 char *p = NULL;
6
7 for (;;) {
8 *p++ = ’\0’;
9 }
10 }

And if that doesn’t work, see pp. 225−229, kill(2), signal(3):

/* Excerpts from the file /usr/include/signal.h. */
#define SIGQUIT 3 /* quit */
#define SIGKILL 9 /* kill (cannot be caught or ignored) */

1 #include <sys/types.h>

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 9 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

2 #include <signal.h>
3
4 main()
5 {
6 kill(getpid(), SIGQUIT); /* dump core */
7 }

Create a .dbxinit file

#This file is $HOME/.dbxinit

alias l list #if these aliases are not already created
alias n next
alias s step
alias d delete

#Output one nibble (i.e., 4 consecutive bits) of an expression.
#The first argument is the expression, the second is the number of
#the nibble. Nibble number 0 is the least significant.
alias nib(expr, n) "print (expr) >> 4*(n) & 15"

list main #List first lines of main function.

Fall 2004 Handout 5 printed 1/9/04
12:41:29 AM − 10 − All rights

reserved ©2004 Mark Meretzky

