
NYU SCPS X52.9546 Section 1 Unix Tools

Summer 2004 Handout 4

A file with links to two or more directories: KP pp. 59−60

$mer

32

handout

dummy

44

handout

dummy

45

handout

dummy

46

handout

dummy

1$ ls -l \
$mer/32/handout/dummy \
$mer/44/handout/dummy \
$mer/45/handout/dummy \
$mer/46/handout/dummy

2$ cd $mer
3$ ls -l \

32/handout/dummy \
44/handout/dummy \
45/handout/dummy \
46/handout/dummy

-r--r--r-- 1 mm64 users 29 Jun 23 10:53 32/handout/dummy
-r--r--r-- 1 mm64 users 29 Jan 9 00:36 44/handout/dummy
-r--r--r-- 1 mm64 users 29 Jan 9 00:36 45/handout/dummy
-r--r--r-- 1 mm64 users 29 Jan 9 00:36 46/handout/dummy

4$ cd $mer
5$ ls -li \

32/handout/dummy \
44/handout/dummy \
45/handout/dummy \
46/handout/dummy

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 1 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

640324 -r--r--r-- 1 mm64 users 29 Jun 23 10:53 32/handout/dummy
641441 -r--r--r-- 1 mm64 users 29 Jan 9 00:36 44/handout/dummy
639191 -r--r--r-- 1 mm64 users 29 Jan 9 00:36 45/handout/dummy
639398 -r--r--r-- 1 mm64 users 29 Jan 9 00:36 46/handout/dummy

$mer

dummy

32

handout

44

handout

45

handout

46

handout

A link is the thing that connects a file to the directory that contains it. When you mv a file from
directory to directory, you’re not moving the file around the disk: you’re merely removing one link and cre-
ating another.

cp, mv, and ln take the same command line arguments:

6$ cp existing new
7$ mv existing new
8$ ln existing new

ln is just like mv, except that it doesn’t remove the old link. I created the above illusion of four identical
files by

9$ cd $mer/32/handout
10$ vi dummy I created the file dummy.

11$ ln dummy $mer/44/handout
12$ ln dummy $mer/45/handout
13$ ln dummy $mer/46/handout
14$ chmod 444 dummy changes all four files

There is no longer any way to tell which of the four files was the original: all are equally authentic.

▼ Homework 4.1: create and rm a file with links to two or more directories (not to be handed in)

Create and rm a file with links to two or more directories. When you create a new link, does the link
count output by ls -l increase by one? When you chmod any one of the ‘‘copies’’, do the mode bits of
the others automatically change? When you edit any one of the ‘‘copies’’, do the date, size, and contents of
the others automatically change? When you rm a link, does the link count output by ls -l decrease by
one? Do the links to the other directories survive?
▲

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 2 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 4.2: display a file on the World Wide Web

A executable program must be in your $HOME/bin directory. A file that you display on the Web
must be in your $HOME/public_html directory or one of its descendants. To display an executable file
on the Web while keeping it executable, link it to both directories:

1$ cd
2$ cd bin
3$ pwd
4$ chmod a+r myscript Turn on all three r bits.
5$ ln myscript $HOME/public_html

6$ cd
7$ cd public_html
8$ pwd
9$ ls -l | more

Now point your browser at

http://i5.nyu.edu/˜abc1234/myscript

▲

A file with two or more different names

#!/bin/sh

if [$# -ne 3]
then

echo $0: requires 3 command line arguments 1>&2
exit 1

fi

if test $# -ne 3 #KP p. 140
then

echo $0: requires 3 command line arguments 1>&2
exit 1

fi

exit 0

1$ cd /usr/ucb
2$ ls -l | more
-rwxr-xr-x 1 root bin 7556 Apr 6 2002 test

ucb

test [

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 3 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

See man chmod for the ‘‘sticky bit’’ t:

3$ man chmod and of course press RETURN
/sticky and press RETURN to search for the word sticky
control-U scroll up to see the whole paragraph

4$ cd /usr/ucb
5$ ls -li | more

8293 lrwxrwxrwx 1 root root 9 Aug 18 2003 vi -> ../bin/vi

6$ cd /bin
7$ ls -li | more

264 -r-xr-xr-x 1 root bin 10232 Apr 6 2002 grep

To find all examples like the above in the /usr/ucb directory,

8$ cd /usr/ucb
9$ ls -lai | awk ’NR >= 2 && $2 ˜ /ˆ-/ && $3 > 1’ | sort +0n +9 | head -11

1408 -r-xr-xr-x 42 root bin 5424 Jan 6 2003 ps

10$ cd $mer/bin
11$ ls -li | more

640016 -r-xr-xr-x 1 mm64 users 699 Oct 26 1998 fax
640038 -r-xr-xr-x 1 mm64 users 699 Oct 26 1998 postfax

The name of a file that you see with ls -l is not stored in the file itself: it’s stored in the link. A file
with two links can have two different names. Here is how the superuser could have created test and [:

12$ cd /usr/bin
13$ vi test Create the test program—assume it’s a shellscript.

14$ ln test ’[’ just like mv or cp
15$ chmod 755 test

A file with multiple links can have more than one name and be linked to more than one directory. Of
course, a file can’t hav e two links with the same name to the same directory.

Create a link to the newest version of a file

Suppose you keep creating new versions of a program, each in a file with a different name:

/home1/a/abc1234/prog1.c
/home1/a/abc1234/prog2.c
/home1/a/abc1234/prog3.c

Each time you create a new version, it would seem that you have to change all the software and documenta-
tion that mentions the name of the file that holds the newest version:

#!/bin/sh
#Compile the most recent version of the program.

gcc /home1/a/abc1234/prog3.c

To make your software and documentation require less maintenance, give the newest file an addi-
tional name with a link:

3$ cd /home1/a/abc1234
4$ pwd

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 4 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

5$ ln prog3.c prog.c
6$ ls -l
-rw-r--r-- 1 abc1234 users 100 Oct 19 16:24 prog1.c
-rw-r--r-- 1 abc1234 users 200 Oct 19 16:25 prog2.c
-rw-r--r-- 2 abc1234 users 300 Oct 19 16:26 prog3.c
-rw-r--r-- 2 abc1234 users 300 Oct 19 16:26 prog.c

#!/bin/sh
#Compile the most recent version of the program.

gcc /home1/a/abc1234/prog.c

When prog4.c is created, your software and documentation can remain unchanged. Simply

7$ cd /home1/a/abc1234
8$ pwd

9$ ls -l prog.c first make sure that prog.c has more than one link
10$ rm prog.c does not remove prog3.c
11$ ln prog4.c prog.c
12$ ls -l

▼ Homework 4.3: create a file with two different names (not to be handed in)

Create a file with two links to the same directory, with a different name in each link (exactly like
test and [, or prog3.c and prog.c).
▲

Symbolic links

The tree of directories is not stored all on one disk. It’s divided into filesystems, each of which may
be stored on a different disk or disk partition.

1$ df
/ (/dev/md/dsk/d0): 3944106 blocks 338598 files
/usr (/dev/md/dsk/d6):11133212 blocks 940460 files
/proc (/proc): 0 blocks 29933 files
/etc/mnttab (mnttab): 0 blocks 0 files
/dev/fd (fd): 0 blocks 0 files
/var (/dev/md/dsk/d1): 5324398 blocks 502759 files
/var/run (swap):21530800 blocks 800906 files
/tmp (swap):21530800 blocks 800906 files
/opt (/dev/md/dsk/d5): 1222460 blocks 271416 files
/home1 (/dev/md/dsk/d8):34714786 blocks 3302616 files
/local (/dev/md/dsk/d7):25891702 blocks 1766207 files

You’re not allowed to link a file to two directories in two different filesystems:

2$ cd
3$ pwd
/home1/a/abc1234

4$ date > junk
5$ ls -l junk
-rw------- 1 abc1234 users 29 Jun 23 10:53 junk

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 5 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

6$ ln junk /tmp
ln: junk and /tmp/junk are located on different file systems.

7$ df junk See which filesystem contains a given file.
/home1 (/dev/md/dsk/d8):34714786 blocks 3302616 files

8$ df /tmp See which filesystem contains a given directory.
/tmp (swap):21531168 blocks 800905 files

9$ cd /tmp
10$ pwd
/tmp

11$ cd /
12$ ls -ld /tmp
drwxrwxrwt 4 root sys 2901 Jun 23 10:53 /tmp

You can create another type of link which is not subject to this limitation. The new type of link is
called a symbolic link; the old type is called a hard link. Specify the full pathname of the existing file when
creating a symbolic link:

13$ cd
14$ cat junk
Wed Jun 23 10:53:48 EDT 2004

15$ ln -s /home1/a/abc1234/junk /tmp
16$ ln -s ‘pwd‘/junk /tmp easier way to do the same thing

17$ cd /tmp
18$ cat junk
Wed Jun 23 10:53:48 EDT 2004

19$ cd /tmp
20$ ls -l junk
lrwxrwxrwx 1 abc1234 users 20 Jun 23 10:53 junk -> /home1/a/abc1234/junk

Every file is born with exactly one hard link. If it is later given additional hard links, it’s impossible
to tell which is the original. But a symbolic link is easy to recognize: ls -l displays it with an arrow.
Why did the ln -s command create a new file containing exactly 24 characters?

Examples of symbolic links

1$ cd /usr/local/bin
2$ ls -l cc
lrwxrwxrwx 1 root other 16 Feb 5 12:05 cc -> /opt/sfw/bin/gcc

3$ cd /bin
4$ ls -l perl
lrwxrwxrwx 1 root root 23 Aug 18 2003 perl -> ../perl5/5.6.1/bin/perl

Get the right awk automatically

/usr/local/bin/gnuawk is better than our other awk’s:

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 6 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1$ cd /usr/bin
2$ ls -l *awk*
-r-xr-xr-x 2 root bin 85296 Feb 19 17:37 awk
-r-xr-xr-x 1 root bin 119804 Feb 19 17:37 nawk
-r-xr-xr-x 2 root bin 85296 Feb 19 17:37 oawk

You hav e to use a symbolic link because a hard link can’t reach far enough:

3$ cd
4$ cd bin
5$ ln -s /usr/local/bin/gnuawk awk
6$ ls -l awk

Symbolic links between directories

A link is also used to connect each directory with its parent directory. When you create a directory
with mkdir, you automatically give it a hard link to its parent. Only the superuser is allowed to create
additional hard links from the directory to a parent. But anyone can create a symbolic link from the direc-
tory to a parent.

Suppose you keep creating new versions of a software project, each in a different directory:

/home1/a/abc1234/project/ver-1.0
/home1/a/abc1234/project/ver-1.1
/home1/a/abc1234/project/ver-1.2

Each time you create a new version, it would seem that you have to change all the software and documenta-
tion that mentions the name of the directory that holds the newest version:

#!/bin/sh
#List all the files in the most recent version of the project.

ls -l /home1/a/abc1234/project/ver-1.2

To make your software and documentation require less maintenance, give the newest directory an
additional name with a symbolic link:

1$ cd
2$ cd /home1/a/abc1234/project
3$ pwd

4$ ln -s /home1/a/abc1234/project/ver-1.2 ver-newest

5$ ls -l
drwxr-xr-x 2 abc1234 users 512 Oct 19 16:24 ver-1.0
drwxr-xr-x 2 abc1234 users 512 Oct 19 16:25 ver-1.1
drwxr-xr-x 2 abc1234 users 512 Oct 19 16:26 ver-1.2
lrwxr-xr-x 1 abc1234 users 53 Oct 19 16:27 ver-newest ->

/home1/a/abc1234/project/ver-1.2

#!/bin/sh
#List all the files in the most recent version of the project.

ls -l /home1/a/abc1234/project/ver-newest

When version 1.3 is created, your software and documentation can remain unchanged. Simply

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 7 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

6$ cd
7$ cd project
8$ pwd

9$ rm ver-newest does not remove ver-1.2
10$ ln -s /home1/a/abc1234/project/ver-1.3 ver-newest
11$ ls -l

Shell abbreviations for names of files and directories: pp. 26−29

1$ rm *
2$ rm *core*
3$ rm *.c

4$ rm handout?.ms
5$ rm ??

6$ rm handout[12345].ms
7$ rm handout[1-5].ms
8$ rm [a-z][a-z][a-z][0-9][0-9][0-9][0-9][0-9]

shell language
filename abbreviation regular expression

* .*

? .

. \.

’*’ *

[abc] [abc]

[a-z] [a-z]

[!a-z] in ksh and bash [ˆa-z]

Command line arguments for find: see find(1)

1$ find ˜ -name core -print Put this line in your .profile file; -print optional.
2$ find ˜ -name ’*.c’ -print Need quotes; can also use ? []
3$ find ˜ -name ’*.c’ -ls minus lowercase LS: just like ls -l
4$ find ˜ -type d -print d for directory, f for file

Tw o consecutive conditions (such as -type d and -name handout) are assumed to have an
implicit ‘‘and’’ between them. If you want ‘‘or’’, write an explicit -o between them.

5$ find ˜ -type d -a -name ’*bin*’ -print directories whose name contains bin
6$ find ˜ -type d -name ’*bin*’ -print -a is optional, -o is mandatory

There are also parentheses, which must both be in ’single quotes’, and ! for ‘‘not’’. Surprisingly, !
is not a special character in the Korn and Bourne shells, and is not a special character when followed by a
blank in the C shell.

7$ find ˜ -user abc1234 -print files & directories owned by abc1234
8$ find ˜ ! -user abc1234 -print files & directories not owned by abc1234

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 8 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

9$ find ˜ -perm 644 -print files and directories with rw-r--r--
10$ find ˜ -perm -644 -print files and directories with at least rw-r--r--
11$ find ˜ ! -perm -644 -print files and directories with less than rw-r--r--

12$ find ˜/public_html -type f -a ! -perm -444 -print
13$ find ˜/public_html -type d -a ! -perm -555 -print
14$ find ˜/public_html -type f -a ! -perm -444 -o -type d -a ! -perm -555 -print

15$ find ˜ -type f -a -size 1000c -print files whose size is exactly 1000 bytes (‘‘characters’’)
16$ find ˜ -type f -a -size +1000c -print files whose size is greater than 1000 bytes
17$ find ˜ -type f -a -size -1000c -print files whose size is less than 1000 bytes

What’s the simplest way to find all files whose size is greater than or equal to 10 bytes?

18$ find ˜ -type f -a -atime 10 -print files last accessed 10 days ago: ls -lu
19$ find ˜ -type f -a -atime +10 -print files last accessed more than 10 days ago
20$ find ˜ -type f -a -atime -10 -print files last accessed less than 10 days ago:

21$ find ˜ -type f -a -mtime +10 -print files last modified more than 10 days ago: ls -lt
22$ find ˜ -type f -a -ctime +10 -print files last changed more than 10 days ago: ls -lc

‘‘Accessed’’ means that the file was input into a program. ‘‘Modified’’ means that a program’s output
was deposited into the file, i.e., that the contents of the file were changed. ‘‘Changed’’ means that the con-
tents of the file were changed, or the nine permission bits were changed (with chmod), or the owner of the
file was changed (with chown), etc.

23$ date > junk1
24$ date > junk2
25$ date > junk3 junk3 was most recently modified.

26$ chmod 400 junk2 junk2 was most recently changed.

27$ cat junk3
28$ cat junk1 junk1 was most recently accessed.

29$ ls -l junk[123] alphabetical, showing modification times
-rw------- 1 abc1234 users 29 Jun 23 10:53 junk1
-r-------- 1 abc1234 users 29 Jun 23 10:54 junk2
-rw------- 1 abc1234 users 29 Jun 23 10:55 junk3

30$ ls -ltu junk[123] accessed
-rw------- 1 abc1234 users 29 Jun 23 10:58 junk1
-rw------- 1 abc1234 users 29 Jun 23 10:57 junk3
-r-------- 1 abc1234 users 29 Jun 23 10:54 junk2

31$ ls -lt junk[123] modified
-rw------- 1 abc1234 users 29 Jun 23 10:55 junk3
-r-------- 1 abc1234 users 29 Jun 23 10:54 junk2
-rw------- 1 abc1234 users 29 Jun 23 10:53 junk1

32$ ls -ltc junk[123] changed
-r-------- 1 abc1234 users 29 Jun 23 10:56 junk2
-rw------- 1 abc1234 users 29 Jun 23 10:55 junk3
-rw------- 1 abc1234 users 29 Jun 23 10:53 junk1

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 9 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Search the entire tree of directories

find can only search directories for which you have both r and x permission. Use 2> (textbook p.
93; ksh(1) p. 17) /dev/null (pp. 68−69) to throw away the error message that find issues when it is
rebuffed by a directory for which you do not have both permissions.

To use your terminal for something else while find is running, run find in the background with an
ampersand (textbook p. 33; ksh(1) p. 1).

1$ find / -type f -user abc1234 -print > ˜/find.out 2> /dev/null &
2$ The prompt reappears immediately.

Lightning review of back quotes

1$ ls -t | lpr Print the names of the files in chronological order.
2$ lpr ‘ls -t‘ Print the contents of the files in chronological order.

Typical find commands

1$ find / -type f -a -user abc1234 -print Output the names of files belonging to abc1234.
2$ find / -type f -a -user abc1234 -print | lpr Print the names of files belonging to abc1234.

3$ lpr ‘find / -type f -a -user abc1234 -print‘ Print the contents of files belonging to abc1234.
4$ rm ‘find / -type f -a -user abc1234 -print‘ Remove the files belonging to abc1234.
5$ rmdir ‘find / -type d -a -user abc1234 -print‘ Remove the directories belonging to abc1234.

#!/bin/ksh
#A separate lpr command for each file will do a page eject before
#each file.

for filename in ‘find / -type f -a -user abc1234 -print‘
do

lpr $filename
done

The following command does the same thing as the above loop:

6$ find / -type f -a -user abc1234 -exec lpr {} ’;’

Find all hard links to a file

A file can have many names, but it can have only one inode number. This number never changes. To
find all the hard links to a file,

1$ cd /etc/init.d
2$ pwd

3$ ls -li inetinit
5830 -rwxr--r-- 5 root sys 12655 Jan 13 12:19 inetinit

4$ ls -li ‘find /etc -inum 5830‘
5830 -rwxr--r-- 5 root sys 12655 Jan 13 12:19 /etc/init.d/inetinit
5830 -rwxr--r-- 5 root sys 12655 Jan 13 12:19 /etc/rc0.d/K43inet
5830 -rwxr--r-- 5 root sys 12655 Jan 13 12:19 /etc/rc1.d/K43inet
5830 -rwxr--r-- 5 root sys 12655 Jan 13 12:19 /etc/rc2.d/S69inet
5830 -rwxr--r-- 5 root sys 12655 Jan 13 12:19 /etc/rcS.d/K43inet

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 10 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

See init(1M) for the eight runlevels in our version of Unix.

Av oid error messages with ‘‘minus prune’’

find outputs an error message unless the person running find has both r and x permission in a
directory:

find_test

dir1

junk

dir2

junk

dir3

junk

dir4

junk

1$ cd
2$ mkdir find_test
3$ cd find_test
4$ mkdir dir1 dir2 dir3 dir4

5$ date > dir1/junk
6$ date > dir2/junk
7$ date > dir3/junk
8$ date > dir4/junk

9$ chmod 000 dir1
10$ chmod 100 dir2
11$ chmod 400 dir3
12$ chmod 500 dir4

13$ ls -l
d--------- 2 abc1234 users 183 Jun 23 10:58 dir1
d--x------ 2 abc1234 users 183 Jun 23 10:58 dir2
dr-------- 2 abc1234 users 183 Jun 23 10:58 dir3
dr-x------ 2 abc1234 users 183 Jun 23 10:58 dir4

14$ find . -type f -name junk -print
find: cannot read dir dir1: Permission denied
find: cannot read dir dir2: Permission denied
find: cannot read dir dir3/: Permission denied
dir4/junk

The -prune argument tells find not to attempt to visit the files and subdirectories that a directory
contains. I wish we could write an if statement to steer find aw ay from directories that do not have at
least r-xr-xr-x, thus avoiding the above error messages:

if (-type d -a ! -perm -555) {
-prune

}

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 11 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

The -o argument of find short circuits like the || in the language C:

if (a == b || c == d || e == f) {

The following eleven additional arguments therefore do the job of the above if:

#!/bin/ksh

find . \
’(’ ! -type d -o -perm -555 -o -prune ’)’ -a \
-type f -a -name junk -print

▼ Homework 4.4: find things

(1) find ev ery file named stdio.h.

(2) find ev ery file named iostream or iostream.h.

(3) find ev ery directory named font.

(4) find ev ery file named httpd.conf. See Handout 3, pp. 6−7.

(5) find ev ery file named httpd.conf except in /home1 and its subdirectories. Use -prune.

(6) find ev ery directory named man except in /home1 and its subdirectories. Use -prune.

(7) find ev ery directory descended from /usr/include. How many .h files are there in
/usr/include and its descendants?

(8) How many directories are you allow to visit on i5.nyu.edu? How many directories are there at
each level? How many files are there?

(9) What is the inode number (X52.9545 Handout 2, p. 6) of the file /etc/init.d/inetsvc?
ls -l ev ery hard link to that file.
▲

Summer 2004 Handout 4 printed 6/23/04
10:53:47 AM − 12 − All rights

reserved ©2004 Mark Meretzky

