NYU SCPS X52.9546 Section 1 Unix Tools

Fall 2004 Handout 2

A multi-line awk argument

Each line of input has a person’s name. The +2 - 3 arguments of sor t sort by last name; the +0 - 1
break ties by first last name; and the +1 - 2 arguments break further ties by middle name.

Unfortunately, not every line of input has three names. We use awk to supply the dummy word zz
for each missing name. Can you consolidate the NF == 3 and NF > 3 lines into a single line?

#!/ bi n/ ksh
#lnput a list of names, one per |ine.
#Qut put themin order of l|last nane, first nanme, mddle nane.

awk ’
NF == 3 {printf "% % %", $1, $2, $3}
NF == 2 {printf "% zz %", $1, $2}
NF == 1 {printf "zz zz %", $1}
NF == 0 {printf "zz zz zz"
NF >3 {printf "% % %", $1, $2, $NF}
{print " @ $0}
"
sort -f +2 -3 +0 -1 +1 -2 |
awk -F@' {print $2}’

exit O
Before the first awk, the data looks like this:

Madonna

Johann Sebasti an Bach
CGeorge Herbert Wal ker Bush
Bust er Keat on

After the first awk, the data looks like this:

zz zz Madonna @vhadonna

Johann Sebasti an Bach @ohann Sebasti an Bach
Ceorge Herbert Bush @xorge Herbert Wl ker Bush
Buster zz Keaton @uster Keaton

After the sor t , the data looks like this:

Johann Sebasti an Bach @ohann Sebasti an Bach
Ceorge Herbert Bush @xorge Herbert Wl ker Bush
Buster zz Keaton @uster Keaton

zz zz Madonna @vhadonna

After the last awk, the data looks like this:

Fall 2004 Handout 2 %353 -1- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Johann Sebastian Bach
George Herbert Walker Bush
Buster Keaton

Madonna

Another example of an awk multi-line argument

#1/bin/ksh

#lnput a list of names, one per line. Copy each line into one or
#more of the three output Files, depending on its first letter.
#You can remove the $0°’s. See KP p. 130, loose end 1.

cd

awk ~
/"TA-K]1/ {print $0 > "names.ak"}
/7[L-Z]1/ {print $0 > "names.lIz"}
/"[3-M]1/ {print $0 > "names.jm"}

exit O

v Homework 2.1: pinpoint Soviet unrest
The file $d46/ussr contains one line for each ex-Soviet republic:

1$ awk °NR == 1 || $1 == "Belarus” || $1 == "Ukraine"” $S46/ussr
name % of land % of GNP % of pop- population
Belarus 1.0 4.2 3.5 10200000
Ukraine 2.7 16.2 18.0 51704000

As you see, the White Russians have more income per capita than their hereditary enemies, the Ukranians.
Write a shellscript named unrest that will output into a file named uppers in your home directory the
name of every republic whose citizens have a greater than average per capita income. (Four of the fifteen
republics listed are in this enviable position.) Simply print the names of the republics where field three
is greater than field four. Also create an output file named downers for the ten republics whose citizens
have a less than average per capita income. Create an average output file, too.

Print the three output files side by side:

2% pr -11 -m -t uppers downers average minus lowercase L one
Belarus Armenia Estonia

Latvia Azerbaijan

Lithuania Georgia

A

Another example of an awk multi-line argument

Add an optional command line argument to the following shellscript to let the use specify the interval
between dividing lines (default 10).

Fall 2004 Handout 2 %353 -2- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/ bi n/ ksh

#Thi s shell script, naned divide, outputs a copy of its input with a
#dividing line inserted every 3 |ines.

#Sanpl e use: 1$ divide < /etc/passwd

awnk ’

{print}
NR %3 == 0 {print "------cmmmmmmm oo "}

exit O

2$ divide < /etc/passwd | head -13

root:x: 0:1: Super-User:/:/sbin/sh

daenon: x: 1:1::/:

bi n: x:2:2::/usr/bin:

sys:x:3:3::/:

adm x: 4: 4: Admi n: /var/ adm

| p: x: 71: 8: Line Printer Adm n:/usr/spool/lp:

uucp: X: 5:5:uucp Admin:/usr/lib/uucp:

nuucp: x: 9: 9: uucp Admi n:/var/ spool /uucppublic:/usr/Ilib/uucp/uucico
sshd: x: 17: 17: Sshd: / var/ enpty:/bin/fal se

listen: x:37:4: Network Adnmi n:/usr/net/nls:

A multi-statement action

Suppose each assembly language opcode comes in five sizes. To list them all without typing each
one five times, we let awk add the five extensions for us. For example, if we input this file

add
nov
sub

to any of these three shellscripts,

#! / bi n/ ksh
#Qut put each opcode with all five extensions.

ank "{print $1 "b\n" $1 "wn" $1 "I\n" $1 "f\n" $1 "d"}’
exit O

Fall 2004 Handout 2 %353 -3- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools
#!/ bi n/ ksh
#Qut put each opcode with all five extensions.
awk ’
{
print $1 "b" #byt e
print $1 "w' #wor d
print $1 "I" #l ong
print $1 "f" #f | oat
print $1 "d" #doubl e
}
exit O
#!/ bi n/ ksh
#Qut put each opcode with all five extensions.
awk '{print $1 "b"; print $1 "w'; print $1 "I"; print $1 "“f"; print $1 "d"}’
exit O

the output is

addb
addw
addl
addf
addd
novb
novw
nov|
novf
novd
subb etc.

v Homework 2.2: output theinitialization for a C array of strings

Modify the above shellscript to output each opcode surrounded by double quotes and followed by a
comma. Output a numbered C comment (starting at 0) alongside the first opcode in each group. Output an
empty line after the last opcode in each group. The input file should be the one shown above, and the new

output will be

"addb", [* 0 */
"addw',
"addl ",
"addf ",
"addd",

"nmovb", [* 1 */
"nmovw', etc.

Write another shellscript to output the initialization for a C array of structures, each containing five strings:

{"addb", "addw', "addl", "addf", "addd"},

{"movb", "movw', "novl", "novf", "nmovd"},

{"subb", "subw', "subl", "subf", "subd"},
Fall 2004 Handout 2 %2523 -4-

[* 0 */
[* 1 *]
[* 2 *]

etc.

heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

A

An if statement in an action: pp. 119-122

#1/bin/ksh
#Output the last name of everyone in the class, one per line.

for file in "mm64/public_html/x52.9545/bio/*
do

awk *NR == 2 {print $NF}” S$file
done

exit O

#1/bin/ksh
#Output the last name of everyone in the class, one per line.
#1T the name ends with "Jr.", print the next-to-last word instead.

for file in "mm64/public_html/x52.9545/bio/*

do
awk ”
NR == 2 && $NF 1= "Jr." {print $NF}
NR == 2 && $NF == "Jr." {print $(NF - 1)}
> $file
done
exit O

To avoid duplication, write it as one action containing an §Ff statement. You can use the C if,
else, for, while, do-while, continue, and break statements within the curly braces of an awk
action. Within the curly braces of an awk action, the rules for curly braces are the same as those in the lan-
guage C.

#1/bin/ksh
#Output the last name of everyone in the class.
#1T the name ends with "Jr.", print the next-to-last word instead.
for file in "mm64/public_html/x52.9545/bio/*
do
awk ~
NR == 2 {
if (ONF == "JIr.") {
print $(NF - 1)
} else {
print $NF
}
> $File
done
exit O

Fall 2004 Handout 2 %353 -5- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

An assignment statement in an action

#1/bin/ksh
#Output the colors in /usr/openwin/lib/rgb._txt in order of how
#close they are to 200 100 50

awk ~
NR >= 2 {
red = $1 - 200
green = $2 - 100
blue = $3 - 50
print red*red + green*green + blue*blue, $0
}
> Jusr/openwin/lib/rgb._txt |
sort -n |

sed *s/"[1-9][0-9]* /7~

exit O
205 104 57 sienna3
205 91 69 coral3
205 102 29 chocolate3
205 79 57 tomato3
210 105 30 chocolate

v Homework 2.3: parameterize the color

Instead of hardwiring the color (e.g., 200, 100, 50) into the above shellscript, let the user specify it
as three command line arguments.
A

Search using user-defined variables

#1/bin/ksh

#Read in lines and output one copy of the line that appeared most
#frequently. If two or more lines are tied, output one copy of each
#of those that are tied.

sort |

uniq -c |

sort -nr |

awk ~
NR == 1 {n = $1}
$1 == n

T
sed s/~ *[1-9][0-9]* //~
exit O

To output the line(s) that appeared least frequently, change —nr to -n.

v Homework 2.4: list the title of each homework for X52.9545

In the $m45/handout/handout* .ms files, the title of each homework is preceded by the -HW
macro defined in $m45/handout/header.ms. For example, | typed

Fall 2004 Handout 2 %353 -6- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1

. HW

list the title of each honmework for X52.9545
. PP

In the

Write a shellscript named hwi ndex that will

Unix Tools

every line in the

$mi5/ handout / handout *. ns files that immediately follows a . HWIline. Give the twelve input file-

names to awk as command line arguments in numerical order:

cd $mi5/ handout
awk ' first argument goes here’ ‘1s handout *. ns |

On January 9, 2004, the correct output was

1$ hwi ndex | head

i nteresting but harm ess things to do
chnod a directory

create three directories

draw part of the tree

create, print, and copy a file

get three people’ s emnil addresses
how many files are there?

mail a letter to yourself and read it
search for duplicates

find duplicate prograns

A

Arithmetic in awk: KP pp. 118-119

sort +0.7n

#!/ bi n/ ksh

#lnput a list of nunbers, one per line, and output their sum
#The BEGA N | ine is unnecessary here and is always omtted: p. 118.

awk ’
BEG N {sum = 0}
{sum = sum + $1}
END {print suni
exit O
1% I pq
nyu_acf_th_hp8150_1 is ready and printing
Rank Onner Job Files Total Size
active abcl1234 42 noe 29 bytes
1st def 5678 43 larry 100 bytes
2nd def 5678 44 (standard input) 512 bytes
Fall 2004 Handout 2 %353 -7- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/ bi n/ ksh

#Qut put the total number of bytes in all the files waiting to be
#printed on the specified printer.

#Sanpl e use: 2% waiting -Pth_hp8150_1

if [[$# -ne 1]]

t hen
echo $0: requires exactly one conmand |ine argunent 1>&2
exit 1

fi

if [[$2!=-P*]]

t hen
echo $0: command |ine argunment nust start with -P 1>&2
exit 1

fi

I pg $1 |

awk ’
/byt es$/ {sum = sum + $(NF-1)}
END {print suni

exit O

#!/ bi n/ ksh

#Print the files specified as conmand |ine argunents on the printer
#whose queued files total the smallest nunmber of bytes.
#Sanpl e use: 3% fastest filel file2 file3

if [[“waiting -Pth_hp8150_1‘ -It ‘waiting -Pnd_hp3si_3"]]
t hen
echo printing $ on th_hp8150_1
| pr -Pth_hp8150_1 $*
el se
echo printing $* on nd_hp3si_3
| pr -Pnd_hp3si_3 $*
fi

exit O

Total and average size in bytes of all the files in the current directory

1$ cd $mi6/ handout
2$ Is -la | head -5

total 3176

dr wxr - Xr - x 5 mb4 users 8192 Nov 21 13:45

dr wxr - Xr - x 6 b4 users 96 Jun 19 2002 .
-r--r--r-- 1 mMmb4 users 4930 Nov 23 1994 adb. s
dr wxr - Xr - x 2 b4 users 4096 Jan 31 2001 answer

Fall 2004 Handout 2 %353 -8- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#1/bin/ksh
#Output the average size in bytes of all the files in the current
#directory.

Is -l1a |
tail +2 |
awk ~
{sum = sum + $5}
END {print "total:", sum, "average:", sum/NR} #bug
exit O
#1/bin/ksh
Is -l1a |
tail +2 |
awk ~
/-7 {sum = sum + $5}
END {print "total:", sum, "average:", sum/NR} #bug
exit O
#1/bin/ksh
Is -l1a |
tail +2 |
awk ~
/-7 {sum = sum + $5; count = count + 1}
END {print "total:", sum, "average:', sum/count} #bug
exit O
#1/bin/ksh
Is -l1a |
tail +2 |
awk ~
/-7 {sum = sum + $5; count = count + 1}
END {
if (count > 0) {
print "total:", sum, "average:', sum/count
} else {
print "total:", sum
}
}
exit O

Abbreviate count = count + 1 and sum = sum + $5 as in C. See pp. 118 and 121 for +=and ++.

Fall 2004 Handout 2 %353 -9- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

v Homework 2.5: cpu time
+0. 46 - 0. 49 tells sort to sort in order of minutes; +0. 50 - 0. 52 tells sort to break ties in
order of seconds.

1$ ps -Af | sort -nr +0.46 -0.49 +0.50 -0.52 | nore
ub PID PPID C STIME TTY TI ME CVD

nobody 472 463 O Nov 07 ? 111:58 /usr/ | ocal / apache/ bi n/ htt pd
nobody 676 463 O Nov 07 ? 109: 06 /usr/ | ocal / apache/ bi n/ htt pd
nobody 473 463 1 Nov 07 ? 101: 35 /usr/ | ocal / apache/ bi n/ htt pd
sunnet 385 1 0 Nov 07 ? 100: 14 / opt/ SUNWTr spx/ bi n/ srsproxy
nobody 671 463 O Nov 07 ? 110: 24 /usr/ | ocal / apache/ bi n/ htt pd
nobody 655 463 O Nov 07 ? 107: 14 /usr/ | ocal / apache/ bi n/ htt pd
#! / bi n/ ksh
#Qutput the CPU tinme in seconds of each process.
ps -Af |
awk "'NR >= 2 {print 60 * substr($0, 47, 3) + substr($0, 51, 2)}’
exit O
0
0
0
0
0
0
Write a shellscript named cpuki | | that will ki | | -9 every program that has used more than 100

seconds of cpu time, unless the program’s name is - sh, - csh, - ksh, or vi . Pipe the output of ps - Af
into an awk command that outputs the Pl D number of each program to be killed. Then use back quotes.

O Extra credit. Also have cpuki I | mail a one-line letter to the owner of each slain program. Have
awk output to a temporary file the login name of each owner. Then after awk is finished running, mail a
letter to each of these people and remove the temporary file.
A.

Arrays in awk: pp. 122-123
See also the backwar ds example in KP p. 122.

Fall 2004 Handout 2 %353 -10- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/ bi n/ ksh
#lnput a list of nunbers, one per line, and output their nedian.
#Begi n by sorting the nunbers. |If there is an odd nunber of nunbers,
#then the median is the middl e nunber.
#1f there is an even nunber of nunbers, then the nedian is the
#average of the two m ddl e nunbers.
sort -n |
awk ’
{a[NR] = $0} #Copy each line into an array.
END {
if (NR==20) {
print O #none
} elseif (NR%2 ==0) {
print (a[NR'2] + a[l + NR'2])/2 #even
} else {
print a[(NR + 1)/2] #odd
}
)
exit O

Two kinds of for loops in awk: pp. 123-124

1$ ps -A -ouid,rss,comm| nore
UD RSS COMWAND
0 0 sched
0 184 /etc/init
1005 7320 /opt/ SUNWr spx/ bi n/ srsproxy
1 1520 /usr/lib/nfs/statd
50766 1000 awk
2689 704 sleep

Fall 2004 Handout 2 %353 -11- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#1/bin/sh

#Output a table whose first column lists the UID number of everyone
#running a process, and whose second column shows how many K of memory
#all of their processes are using.

ps -A -ouid,rss |
awk ~
NR >= 2 {sum[$1] += $2}

END {
for (uid = 0; uid < 65536; ++uid) {
if (sumfuid] = 0) {
printf "%5d\t%10d\n", uid, sumuid]
}

}
T

sort +1nr +0n

exit O
0 221792 0 isthe UID number of root.
60001 22488
50766 13768
1005 7320
2689 6176

To fix the bug in the above program, we should change the NR >= 2 action

{sum[$1] += $2}

to
{
if ($2 ~ /K$/) {
sum[$1] += $2
} else {
sum[$1] += 1024 * $2
}
}

The For loop shown above makes the variable uid run through all 65,536 possible UID values.

2% awk -F: “{print $3}” /etc/passwd | sort -nr | head -1
793876

3% grep uid_t /usr/include/sys/types.h

typedef ushort_t o uid_t; /* old UID type */
typedef o _uid_t o _gid_t; /* old GID type */
typedef int uid_t; /* UID type */

typedef longuid_t; /* (historical version) */
typedef uid_t gid_t; /* GID type */

4% grep uint_t /usr/include/sys/types.h
typedef unsigned intuint_t;

Fall 2004 Handout 2 %2353 -12- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

5% grep U NT_MAX /usr/include/iso/limts_iso.h
#defi ne U NT_MAX4294967295U /* max val ue of an "unsigned int" */

To run the variable ui d through only those subscripts of the array sumthat have been assigned val-
ues, use the other kind of awk f or loop:

#!1/ bi n/ sh
#Faster way to do the sane thing.

ps -A -ouid,rss |
awk ’
NR >= 2 {sunf$1l] += $2}

END {
for (uid in sunm {
printf "oBd\to%d0d\n", uid, sunfuid]
}
}
"

sort +1nr +0n

exit O

This kind of f or loop gives values to ui d in an unpredicatable order. The sort, however, makes this
irrelevant.

An associative array in awk
To print the loginnames instead of the Ul D numbers in column 1,

1$ ps -A -ouser,rss,comm| nore
USER RSS COWVVAND
r oot 0 sched
root 184 /etc/init
sunnet 7320 /opt/ SUNWsr spx/ bi n/ srsproxy
daenon 1520 /usr/lib/nfs/statd
recon 704 sleep
j £233 1320 /usr/ 1 ocal/bin/perl

Fall 2004 Handout 2 %2353 -13- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!1/ bi n/ sh

#Qut put a table whose first columm lists the | ogi nnane of everyone
#runni ng a process, and whose second col um shows how many K of menory
#all of their processes are using.

ps -A -ouser,rss |

awk ’
NR >= 2 {sunf$1l] += $2}
END {
for (loginname in sum {
printf "% 8s\tvd0d\n", |oginnane, sunil ogi nnane]
}
}
o
sort +1nr +0
exit O
r oot 221896
nobody 22552
nm64 13296
sunnet 7320
recon 6176

Remove duplicateinput lineswithout disturbing their order

sort | uniq

sort -u a faster way to do the same thing
#!1/ bi n/ sh
#Qut put a copy of the lines read as input. |If a line appears nore
#t han once in the input, output only the first copy. |In other words,

#this shellscript does what "uniq" does, but it does not require that
#duplicate input |lines be consecutive.

awk ’
{line[$0] = line[$0] + 1}
line[$0] == {print $0}

awk ' ++line[$0] == 1 a faster way to do the same thing

v Homework 2.6: list the size of each user’slargest process

Write a shellscript that starts with ps - A- ouser, r ss, comm and outputs the r ss of the biggest
program that each user is running. Create an associative array named r ss whose subscripts will be the
loginnames read from input. Sort the output of awk in order of decreasing r ss, breaking ties (if any) in
alphabetical order of loginname.

A

Fall 2004 Handout 2 %2353 -14- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Collating sequences for sort: pp. 19, 106
The collating sequences include
alphabetical (the default);
-f alphabetical, ignoring the difference between upper and lowercase;
-b alphabetical, ignoring leading blanks and tabs (works on acf5 but not acf4);
-d alphabetical, ignoring dashes, apostrophes, etc.;
Oppenhei m ignore case, too: - df

OReilly
Cstrov

-n increasing numeric, including negative numbers and decimal points, ignoring leading blanks and
tabs;

- M chronological, but it knows only 12 words: Jan, Feb, Mar, etc. It ignores case and the rest of the
word. Sun has this option, but DEC doesn’t.

Add an r to any of the above to reverse the order, e.g., - nr gives decreasing numeric.

Ignore initial field(s) and break ties
sort +nignores the first n fields on each line. For example,

1$ 1s -1 | tail +2
STWr----- 1 abcl1234 users 14866 Cct 5 18:12 filel.c
STW- - 1 def5678 users 10812 Cct 5 16:36 filelO.c
STWr--r1-- 2 abc1234 users 14866 Cct 5 18:13 file2.c
28 Is -1 | tail +2 | sort +2 alphabetically by owner’s name
3% Is -1 | tail +2 | sort +4n increasing size order
48 |s -1 | tail +2 | sort +4nr decreasing size order
56 I's -1 | tail +2 | sort +4n +2 increasing size order;
break ties (if any) by alphabetical order of owner’s login name
6 Is -1 | tail +2 | sort +4n +2 +8 increasing size order;

break ties (if any) by alphabetical order of owner’s login name
break further ties (if any) by alphabetical order of filename

If two lines are still tied after all the comparisons you have asked for, sort sorts the two lines in
plain vanilla alphabetical order. This happens, for example, when you sort - n lines that do not start with
a number.

Here are two ways to do the same thing:

sort +2n +3n +1n
sort -n +2 +3 +1

A stand-alone letter such as the above - n applies to all of the following fields. If this is not what you want,
write a separate letter for each field.

v Homework 2.7: sort with multiple fields
The three files $d46/ dat el, $d46/ nane3, and $d46/ net addr ess contain lines of the form

Fall 2004 Handout 2 %353 -15- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

9/9/95 month/day/year
John Philip Sousa
mm64@act5._nyu.edu

respectively. Write three sort commands to sort them. Sort datel chronologically, with the oldest dates
on top. The —t option of sort is just like the —F option of awk. Sort name3 by last name; then break
ties by first name; then break ties by middle name. Ignore case and dashes and apostrophes in hame3.
Sort netaddress by hostname (e.g., i5.nyu.edu); then break ties by loginname (e.g., mm64). Ignore
case in the hostname, but not in the loginname.

A

sed example: sort playing cardsin order of increasing rank

Suppose you have a file of playing cards, one per line. The first column is the rank and the second
column is the suit:

A S
2 C
Q H
J D
#1/bin/ksh

#Sort playing cards, one per line, in order of iIncreasing rank.
#lgnore the suits.

#Add "'14 " to start of every line that begins with "A"™ or "a".

#For & in an s/// command, see textbook pp. 323-324; Handout 8, p. 7.

sed ~
s/"[2-9]1/& &/
s/~10/& &/
s/7[J31/711 &/
s/"[Qq]1/12 &/
s/ [Kk]/13 &/
s/ [Aa]/14 &/
"
sort -n |
sed ’s/7[” 1* //° #Remove everything up to and including 1st blank.

exit O

Fall 2004 Handout 2 %353 -16 - heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#1/bin/ksh

#Sort playing cards, one per line, in order of iIncreasing rank.
#lgnore the suits.

#Add ""14 " to start of every line that begins with "A"™ or "a".

awk ’
/7 ([2-9]]110)/ {print $1 $0}
/"[311/ {print 11 $0}
/"[0q]1/ {print 12 $0}
/" [Kk]/ {print 13 $0}
/" [Aa]/ {print 14 $0}
"
sort -n |
sed ’s/7[” 1* //° #Remove everything up to and including 1st blank.
exit O

After the first sed, our data is:

14 A S
22 ¢
12 Q H
11 J D

After the sort -n, our data is:

22 ¢
113 D
12 Q H
14 A S

After the second sed, our data is:

2 C
J D
Q H
A S

v Homework 2.8: sort whatever you want

Write a shellscript named customsort that sorts its lines of input into an order other than alpha-
betical or numerical. For example, if your input consists of one chemical element per line, sort them in
order of increasing atomic number. Just do the first ten elements: H, He, L1, Be, B, C, N, O, F, and Ne.

before after
H
0
He
Li
B

0

m (D

OO wWr I xT

A

v Homework 2.9: chronological sort
The file $S46/date?2 contain lines of the form

Fall 2004 Handout 2 %2353 -17- heerves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

February 24, 1996
February 25, 1996
Oct ober 29, 1996

Write a shellscript to sort them in chronological order, with the oldest date first. 1f your sort has no - M
option, prepend a number from 1 to 12 and a blank to each line.

2 February 24, 1996
2 February 25, 1996
10 COctober 29, 1996

Then sort and remove the leading number and blank.
A

v Homework 2.10: a compilation lister
Use the GNU gcc compiler for this assignment.

#i ncl ude <stdio. h>
mai n()
{
int i = 10;
printf ("%\n", j);

1$ gcc junk.c >& junk.err See p. 93 for the Bourne shell equivalent of >&.
2$ cat junk.err

junk.c: In function nmain:

junk.c:5: “j’ undeclared (first use this function)

junk.c:5: (Each undeclared identifier is reported only once
junk.c:5: for each function it appears in.)

Write a shellscript named conpi | e that will take one . ¢ file as a command line argument and com-
pile it. You get no credit unless the name of the . c file is supplied to the shellscript as a command line
argument. Sample use:

3% conpile junk.c | nore
1: #i ncl ude <stdi o. h>

2: main()
3:{
4. int i = 10;

5: printf ("%\n", j);
*5: ‘j’" undeclared (first use this function)
*5: (Each undeclared identifier is reported only once
*5: for each function it appears in.)

6:}

Add a zero, a colon, a line number, and another colon to the start of each line of the C program:

0: 1: #i ncl ude <stdi o. h>

0: 2: mai n()

0:3:{

0: 4: int i = 10;

0:5 printf ("%\n", j);
0:6:}

Remove error lines that do not have a line number (e.g., I n functi on mai n:). Then remove the file-
name from the start of each surviving error line i.e., remove everything up to but excluding the first colon.

Fall 2004 Handout 2 %2353 -18- heserves ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Finally, add an increasing number to the start of each error line:

1:5: ‘j’ undeclared (first use this function)
2:5: (Each undeclared identifier is reported only once
3:5: for each function it appears in.)

You get no credit for any shellscript unless you put the temporary files you create into your home
directory:

progl | prog2 | prog3 > $HOVE/ program

prog4 | prog5 | prog6 > $HOWE/ errors

You get no credit if you input a file into a program like this:
cat file | prog

Do it this way instead:
prog file

Merge the two temporary files by feeding them into sort -t: -n +1 +0. Finally, change each
leading zero and colon into a blank, and each leading non-zero number (which may have more than one
digit) and colon into an asterisk.

Use the smallest number of awk’s or sed’s to do the job.
A

Ignore initial character(s)

sort +8. 4bn ignores the first eight fields, then ignores the first four characters of the ninth field,
and then does a numeric sort on what remains. (Without the b, our version of sor t would count the blank
between the eighth and ninth fields as part of the ninth field.)

1$ Is -1 | tail +2 | sort +8.4bn

2$ Is -1 | tail +2 | sort +8.5n

33 Is -1 | tail +2 | sort -k +9.5bn

STWr----- 1 abc1234 users 14866 Cct 5 18:12 filel.c
STWr--r1-- 2 abcl1234 users 14866 Cct 5 18:13 file2.c
STW------ 1 def 5678 users 10812 Cct 5 16:36 filelO.c

Restrict the end of a sort field

A numeric sort ignores leading blanks and tabs at the place you direct it to. It pays attention only to
the number, and then ignores whatever comes after the number. An alphabetical sort, however, pays atten-
tion to every character from the place you direct it to all the way to the end of the line. We say that an
alphabetical sort field extends to the end of the line by default.

You can specify where a sort field ends as well as where it begins by using a pair of arguments with a
plus and minus. For example, to sort alphabetically by the owner’s name and break ties by sorting alpha-
betically by the filename,

1$ Is -1 | tail +2 | sort +2 -3 +8
The +2 - 3 work together as a unit. The +2 means “start paying attention after ignoring the first two
fields. The - 3 means ““stop paying attention at the end of the third field”.

Restrict the end of a sort field to a specific character

To sort social security numbers (nine digits), one per line, in increasing numerical order but ignoring
the first three digits,

sort +0. 3n

Fall 2004 Handout 2 %2353 -19- heerves ©2004 Mark Meretzky

- k numbers are one-base

NYU SCPS X52.9546 Section 1 Unix Tools

To sort social security numbers, one per line, in increasing numerical order but ignoring the first three and
last four digits,

sort +0.3n -0.5

In the following example, the +0. 0 - 0. 1 makes sort pay attention to the first character only, and
the +8 makes sort break ties by the ninth field. Thus it lists all the files first (since - comes before d) in
alphabetical order, followed by all the directories in alphabetical order.

1$1s -1 | tail +2 | sort +0.0 -0.1 +8 files before directories
28 ls -1 | tail +2 | sort +0.0r -0.1 +8 directories before files

v Homework 2.11: four-field sort

Sort the loginnames of the form abc1234 in / et ¢/ passwd in alphabetic order by the last initial
(i.e., the third letter); then first initial (the first letter); then middle initial (the second letter); then in increas-
ing numeric order by the four digits from the social security number. You get credit only if you explicitly
sort the four digits in numerical order, not in alphabetical order. Give no more than five arguments to sor t
by combining the first and middle initials into a single field. Pipe the output of sort through head - 50
into

pr -5 -110 -t minus lowercase L ten

to print only the first 50 loginnames, in five columns of ten lines each. You get credit only if you search for
loginnames of exactly seven characters, no more and no less: three lowercase letters followed by four dig-
its. The first 50 loginnames of this form (as of January 9, 2004) were

dga0772 sqa7460 ej b3500 m b4008 t qb8179
dga9188 anb2023 fqb7538 nmb4793 vl b2007
f da6677 aqb4851 gbb0405 ngb5363 acc4707
i Ta9488 bgb9408 ggh2634 nkb1384 adc2416
j qa7024 ceb6547 i zb6225 pj b7346 aqc1982
| ma2018 dab3766 j qb2622 rab2017 aqc3484
nka7827 dnb9568 kj b8147 sdb1150 aqc7242
nga8127 dqb0497 kr b6949 skb3062 asc3018
pga2778 dqb2129 | eb0734 snh8818 cdc6040
sgaz2554 dqb3240 | zb8099 sgb1811 czc4626

A

O

Fall 2004 Handout 2 %353 -20- heerves ©2004 Mark Meretzky

