
NYU SCPS X52.9546 Section 1 Unix Tools

Fall 2004 Handout 2

A multi-line awk argument

Each line of input has a person’s name. The +2 -3 arguments of sort sort by last name; the +0 -1
break ties by first last name; and the +1 -2 arguments break further ties by middle name.

Unfortunately, not every line of input has three names. We use awk to supply the dummy word zz
for each missing name. Can you consolidate the NF == 3 and NF > 3 lines into a single line?

#!/bin/ksh
#Input a list of names, one per line.
#Output them in order of last name, first name, middle name.

awk ’
NF == 3 {printf "%s %s %s", $1, $2, $3}
NF == 2 {printf "%s zz %s", $1, $2}
NF == 1 {printf "zz zz %s", $1}
NF == 0 {printf "zz zz zz"}
NF > 3 {printf "%s %s %s", $1, $2, $NF}

{print " @" $0}
’ |
sort -f +2 -3 +0 -1 +1 -2 |
awk -F@ ’{print $2}’

exit 0

Before the first awk, the data looks like this:

Madonna
Johann Sebastian Bach
George Herbert Walker Bush
Buster Keaton

After the first awk, the data looks like this:

zz zz Madonna @Madonna
Johann Sebastian Bach @Johann Sebastian Bach
George Herbert Bush @George Herbert Walker Bush
Buster zz Keaton @Buster Keaton

After the sort, the data looks like this:

Johann Sebastian Bach @Johann Sebastian Bach
George Herbert Bush @George Herbert Walker Bush
Buster zz Keaton @Buster Keaton
zz zz Madonna @Madonna

After the last awk, the data looks like this:

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 1 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Johann Sebastian Bach
George Herbert Walker Bush
Buster Keaton
Madonna

Another example of an awk multi-line argument

#!/bin/ksh
#Input a list of names, one per line. Copy each line into one or
#more of the three output files, depending on its first letter.
#You can remove the $0’s. See KP p. 130, loose end 1.

cd

awk ’
/ˆ[A-K]/ {print $0 > "names.ak"}
/ˆ[L-Z]/ {print $0 > "names.lz"}
/ˆ[J-M]/ {print $0 > "names.jm"}

’

exit 0

▼ Homework 2.1: pinpoint Soviet unrest

The file $d46/ussr contains one line for each ex-Soviet republic:

1$ awk ’NR == 1 || $1 == "Belarus" || $1 == "Ukraine"’ $S46/ussr
name % of land % of GNP % of pop. population
Belarus 1.0 4.2 3.5 10200000
Ukraine 2.7 16.2 18.0 51704000

As you see, the White Russians have more income per capita than their hereditary enemies, the Ukranians.
Write a shellscript named unrest that will output into a file named uppers in your home directory the
name of every republic whose citizens have a greater than average per capita income. (Four of the fifteen
republics listed are in this enviable position.) Simply print the names of the republics where field three
is greater than field four. Also create an output file named downers for the ten republics whose citizens
have a less than average per capita income. Create an average output file, too.

Print the three output files side by side:

2$ pr -l1 -m -t uppers downers average minus lowercase L one
Belarus Armenia Estonia
Latvia Azerbaijan
Lithuania Georgia

▲

Another example of an awk multi-line argument

Add an optional command line argument to the following shellscript to let the use specify the interval
between dividing lines (default 10).

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 2 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/ksh
#This shellscript, named divide, outputs a copy of its input with a
#dividing line inserted every 3 lines.
#Sample use: 1$ divide < /etc/passwd

awk ’
{print}

NR % 3 == 0 {print "------------------------------"}
’
exit 0

2$ divide < /etc/passwd | head -13
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:

sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:

uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
sshd:x:17:17:Sshd:/var/empty:/bin/false

listen:x:37:4:Network Admin:/usr/net/nls:

A multi-statement action

Suppose each assembly language opcode comes in five sizes. To list them all without typing each
one five times, we let awk add the five extensions for us. For example, if we input this file

add
mov
sub

to any of these three shellscripts,

#!/bin/ksh
#Output each opcode with all five extensions.

awk ’{print $1 "b\n" $1 "w\n" $1 "l\n" $1 "f\n" $1 "d"}’
exit 0

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 3 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/ksh
#Output each opcode with all five extensions.

awk ’
{

print $1 "b" #byte
print $1 "w" #word
print $1 "l" #long
print $1 "f" #float
print $1 "d" #double

}
’

exit 0

#!/bin/ksh
#Output each opcode with all five extensions.

awk ’{print $1 "b"; print $1 "w"; print $1 "l"; print $1 "f"; print $1 "d"}’
exit 0

the output is

addb
addw
addl
addf
addd
movb
movw
movl
movf
movd
subb etc.

▼ Homework 2.2: output the initialization for a C array of strings

Modify the above shellscript to output each opcode surrounded by double quotes and followed by a
comma. Output a numbered C comment (starting at 0) alongside the first opcode in each group. Output an
empty line after the last opcode in each group. The input file should be the one shown above, and the new
output will be

"addb", /* 0 */
"addw",
"addl",
"addf",
"addd",

"movb", /* 1 */
"movw", etc.

Write another shellscript to output the initialization for a C array of structures, each containing five strings:

{"addb", "addw", "addl", "addf", "addd"}, /* 0 */
{"movb", "movw", "movl", "movf", "movd"}, /* 1 */
{"subb", "subw", "subl", "subf", "subd"}, /* 2 */ etc.

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 4 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▲

An if statement in an action: pp. 119−122

#!/bin/ksh
#Output the last name of everyone in the class, one per line.

for file in ˜mm64/public_html/x52.9545/bio/*
do

awk ’NR == 2 {print $NF}’ $file
done

exit 0

#!/bin/ksh
#Output the last name of everyone in the class, one per line.
#If the name ends with "Jr.", print the next-to-last word instead.

for file in ˜mm64/public_html/x52.9545/bio/*
do

awk ’
NR == 2 && $NF != "Jr." {print $NF}
NR == 2 && $NF == "Jr." {print $(NF - 1)}

’ $file
done

exit 0

To avoid duplication, write it as one action containing an if statement. You can use the C if,
else, for, while, do-while, continue, and break statements within the curly braces of an awk
action. Within the curly braces of an awk action, the rules for curly braces are the same as those in the lan-
guage C.

#!/bin/ksh
#Output the last name of everyone in the class.
#If the name ends with "Jr.", print the next-to-last word instead.

for file in ˜mm64/public_html/x52.9545/bio/*
do

awk ’
NR == 2 {

if ($NF == "Jr.") {
print $(NF - 1)

} else {
print $NF

}
}

’ $file
done

exit 0

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 5 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

An assignment statement in an action

#!/bin/ksh
#Output the colors in /usr/openwin/lib/rgb.txt in order of how
#close they are to 200 100 50

awk ’
NR >= 2 {

red = $1 - 200
green = $2 - 100
blue = $3 - 50
print red*red + green*green + blue*blue, $0

}
’ /usr/openwin/lib/rgb.txt |
sort -n |
sed ’s/ˆ[1-9][0-9]* //’

exit 0

205 104 57 sienna3
205 91 69 coral3
205 102 29 chocolate3
205 79 57 tomato3
210 105 30 chocolate

▼ Homework 2.3: parameterize the color

Instead of hardwiring the color (e.g., 200, 100, 50) into the above shellscript, let the user specify it
as three command line arguments.
▲

Search using user-defined variables

#!/bin/ksh
#Read in lines and output one copy of the line that appeared most
#frequently. If two or more lines are tied, output one copy of each
#of those that are tied.

sort |
uniq -c |
sort -nr |
awk ’

NR == 1 {n = $1}
$1 == n

’ |
sed ’s/ˆ *[1-9][0-9]* //’
exit 0

To output the line(s) that appeared least frequently, change -nr to -n.

▼ Homework 2.4: list the title of each homework for X52.9545

In the $m45/handout/handout*.ms files, the title of each homework is preceded by the .HW
macro defined in $m45/handout/header.ms. For example, I typed

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 6 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

.HW
list the title of each homework for X52.9545
.PP
In the

Write a shellscript named hwindex that will output every line in the
$m45/handout/handout*.ms files that immediately follows a .HW line. Give the twelve input file-
names to awk as command line arguments in numerical order:

cd $m45/handout
awk ’first argument goes here’ ‘ls handout*.ms | sort +0.7n‘

On January 9, 2004, the correct output was

1$ hwindex | head
interesting but harmless things to do
chmod a directory
create three directories
draw part of the tree
create, print, and copy a file
get three people’s email addresses
how many files are there?
mail a letter to yourself and read it
search for duplicates
find duplicate programs

▲

Arithmetic in awk: KP pp. 118−119

#!/bin/ksh
#Input a list of numbers, one per line, and output their sum.
#The BEGIN line is unnecessary here and is always omitted: p. 118.

awk ’
BEGIN {sum = 0}

{sum = sum + $1}
END {print sum}

’
exit 0

1$ lpq
nyu_acf_th_hp8150_1 is ready and printing
Rank Owner Job Files Total Size
active abc1234 42 moe 29 bytes
1st def5678 43 larry 100 bytes
2nd def5678 44 (standard input) 512 bytes

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 7 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/ksh
#Output the total number of bytes in all the files waiting to be
#printed on the specified printer.
#Sample use: 2$ waiting -Pth_hp8150_1

if [[$# -ne 1]]
then

echo $0: requires exactly one command line argument 1>&2
exit 1

fi

if [[$1 != -P*]]
then

echo $0: command line argument must start with -P 1>&2
exit 1

fi

lpq $1 |
awk ’

/bytes$/ {sum = sum + $(NF-1)}
END {print sum}

’
exit 0

#!/bin/ksh
#Print the files specified as command line arguments on the printer
#whose queued files total the smallest number of bytes.
#Sample use: 3$ fastest file1 file2 file3

if [[‘waiting -Pth_hp8150_1‘ -lt ‘waiting -Pnd_hp3si_3‘]]
then

echo printing $* on th_hp8150_1
lpr -Pth_hp8150_1 $*

else
echo printing $* on nd_hp3si_3
lpr -Pnd_hp3si_3 $*

fi

exit 0

Total and average size in bytes of all the files in the current directory

1$ cd $m46/handout
2$ ls -la | head -5
total 3176
drwxr-xr-x 5 mm64 users 8192 Nov 21 13:45 .
drwxr-xr-x 6 mm64 users 96 Jun 19 2002 ..
-r--r--r-- 1 mm64 users 4930 Nov 23 1994 adb.ms
drwxr-xr-x 2 mm64 users 4096 Jan 31 2001 answer

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 8 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/ksh
#Output the average size in bytes of all the files in the current
#directory.

ls -la |
tail +2 |
awk ’

{sum = sum + $5}
END {print "total:", sum, "average:", sum/NR} #bug

’
exit 0

#!/bin/ksh

ls -la |
tail +2 |
awk ’

/ˆ-/ {sum = sum + $5}
END {print "total:", sum, "average:", sum/NR} #bug

’
exit 0

#!/bin/ksh

ls -la |
tail +2 |
awk ’

/ˆ-/ {sum = sum + $5; count = count + 1}
END {print "total:", sum, "average:", sum/count} #bug

’
exit 0

#!/bin/ksh

ls -la |
tail +2 |
awk ’

/ˆ-/ {sum = sum + $5; count = count + 1}
END {

if (count > 0) {
print "total:", sum, "average:", sum/count

} else {
print "total:", sum

}
}

’
exit 0

Abbreviate count = count + 1 and sum = sum + $5 as in C. See pp. 118 and 121 for += and ++.

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 9 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 2.5: cpu time

+0.46 -0.49 tells sort to sort in order of minutes; +0.50 -0.52 tells sort to break ties in
order of seconds.

1$ ps -Af | sort -nr +0.46 -0.49 +0.50 -0.52 | more
UID PID PPID C STIME TTY TIME CMD

nobody 472 463 0 Nov 07 ? 111:58 /usr/local/apache/bin/httpd
nobody 676 463 0 Nov 07 ? 109:06 /usr/local/apache/bin/httpd
nobody 473 463 1 Nov 07 ? 101:35 /usr/local/apache/bin/httpd
sunnet 385 1 0 Nov 07 ? 100:14 /opt/SUNWsrspx/bin/srsproxy
nobody 671 463 0 Nov 07 ? 110:24 /usr/local/apache/bin/httpd
nobody 655 463 0 Nov 07 ? 107:14 /usr/local/apache/bin/httpd

#!/bin/ksh
#Output the CPU time in seconds of each process.

ps -Af |
awk ’NR >= 2 {print 60 * substr($0, 47, 3) + substr($0, 51, 2)}’

exit 0

0
0
0
0
0
0

Write a shellscript named cpukill that will kill -9 ev ery program that has used more than 100
seconds of cpu time, unless the program’s name is -sh, -csh, -ksh, or vi. Pipe the output of ps -Af
into an awk command that outputs the PID number of each program to be killed. Then use back quotes.

✎ Extra credit. Also have cpukill mail a one-line letter to the owner of each slain program. Have
awk output to a temporary file the login name of each owner. Then after awk is finished running, mail a
letter to each of these people and remove the temporary file.
▲. .

Arrays in awk: pp. 122−123

See also the backwards example in KP p. 122.

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 10 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/ksh
#Input a list of numbers, one per line, and output their median.
#Begin by sorting the numbers. If there is an odd number of numbers,
#then the median is the middle number.
#If there is an even number of numbers, then the median is the
#average of the two middle numbers.

sort -n |
awk ’

{a[NR] = $0} #Copy each line into an array.

END {
if (NR == 0) {

print 0 #none
} else if (NR % 2 == 0) {

print (a[NR/2] + a[1 + NR/2])/2 #even
} else {

print a[(NR + 1)/2] #odd
}

}
’

exit 0

Tw o kinds of for loops in awk: pp. 123−124

1$ ps -A -ouid,rss,comm | more
UID RSS COMMAND
0 0 sched
0 184 /etc/init

1005 7320 /opt/SUNWsrspx/bin/srsproxy
1 1520 /usr/lib/nfs/statd

50766 1000 awk
2689 704 sleep

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 11 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/sh
#Output a table whose first column lists the UID number of everyone
#running a process, and whose second column shows how many K of memory
#all of their processes are using.

ps -A -ouid,rss |
awk ’

NR >= 2 {sum[$1] += $2}

END {
for (uid = 0; uid < 65536; ++uid) {

if (sum[uid] != 0) {
printf "%5d\t%10d\n", uid, sum[uid]

}
}

}
’ |
sort +1nr +0n

exit 0

0 221792 0 is the UID number of root.
60001 22488
50766 13768
1005 7320
2689 6176

To fix the bug in the above program, we should change the NR >= 2 action

{sum[$1] += $2}

to

{
if ($2 ˜ /K$/) {

sum[$1] += $2
} else {

sum[$1] += 1024 * $2
}

}

The for loop shown above makes the variable uid run through all 65,536 possible UID values.

2$ awk -F: ’{print $3}’ /etc/passwd | sort -nr | head -1
793876

3$ grep uid_t /usr/include/sys/types.h
typedef ushort_t o_uid_t; /* old UID type */
typedef o_uid_t o_gid_t; /* old GID type */
typedef int uid_t; /* UID type */
typedef longuid_t; /* (historical version) */
typedef uid_t gid_t; /* GID type */

4$ grep uint_t /usr/include/sys/types.h
typedef unsigned int uint_t;

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 12 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

5$ grep UINT_MAX /usr/include/iso/limits_iso.h
#define UINT_MAX 4294967295U /* max value of an "unsigned int" */

To run the variable uid through only those subscripts of the array sum that have been assigned val-
ues, use the other kind of awk for loop:

#!/bin/sh
#Faster way to do the same thing.

ps -A -ouid,rss |
awk ’

NR >= 2 {sum[$1] += $2}

END {
for (uid in sum) {

printf "%5d\t%10d\n", uid, sum[uid]
}

}
’ |
sort +1nr +0n

exit 0

This kind of for loop gives values to uid in an unpredicatable order. The sort, howev er, makes this
irrelevant.

An associative array in awk

To print the loginnames instead of the UID numbers in column 1,

1$ ps -A -ouser,rss,comm | more
USER RSS COMMAND
root 0 sched
root 184 /etc/init

sunnet 7320 /opt/SUNWsrspx/bin/srsproxy
daemon 1520 /usr/lib/nfs/statd
recon 704 sleep
jf233 1320 /usr/local/bin/perl

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 13 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/sh
#Output a table whose first column lists the loginname of everyone
#running a process, and whose second column shows how many K of memory
#all of their processes are using.

ps -A -ouser,rss |
awk ’

NR >= 2 {sum[$1] += $2}

END {
for (loginname in sum) {

printf "%-8s\t%10d\n", loginname, sum[loginname]
}

}
’ |
sort +1nr +0

exit 0

root 221896
nobody 22552
mm64 13296
sunnet 7320
recon 6176

Remove duplicate input lines without disturbing their order

sort | uniq
sort -u a faster way to do the same thing

#!/bin/sh
#Output a copy of the lines read as input. If a line appears more
#than once in the input, output only the first copy. In other words,
#this shellscript does what "uniq" does, but it does not require that
#duplicate input lines be consecutive.

awk ’
{line[$0] = line[$0] + 1}

line[$0] == 1 {print $0}
’

awk ’++line[$0] == 1’ a faster way to do the same thing

▼ Homework 2.6: list the size of each user’s largest process

Write a shellscript that starts with ps -A -ouser,rss,comm, and outputs the rss of the biggest
program that each user is running. Create an associative array named rss whose subscripts will be the
loginnames read from input. Sort the output of awk in order of decreasing rss, breaking ties (if any) in
alphabetical order of loginname.
▲

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 14 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Collating sequences for sort: pp. 19, 106

The collating sequences include

alphabetical (the default);

-f alphabetical, ignoring the difference between upper and lowercase;

-b alphabetical, ignoring leading blanks and tabs (works on acf5 but not acf4);

-d alphabetical, ignoring dashes, apostrophes, etc.;

Oppenheim ignore case, too: -df
O’Reilly
Ostrov

-n increasing numeric, including negative numbers and decimal points, ignoring leading blanks and
tabs;

-M chronological, but it knows only 12 words: Jan, Feb, Mar, etc. It ignores case and the rest of the
word. Sun has this option, but DEC doesn’t.

Add an r to any of the above to rev erse the order, e.g., -nr gives decreasing numeric.

Ignore initial field(s) and break ties

sort +n ignores the first n fields on each line. For example,

1$ ls -l | tail +2
-rw-r----- 1 abc1234 users 14866 Oct 5 18:12 file1.c
-rw------- 1 def5678 users 10812 Oct 5 16:36 file10.c
-rw-r--r-- 2 abc1234 users 14866 Oct 5 18:13 file2.c

2$ ls -l | tail +2 | sort +2 alphabetically by owner’s name

3$ ls -l | tail +2 | sort +4n increasing size order
4$ ls -l | tail +2 | sort +4nr decreasing size order

5$ ls -l | tail +2 | sort +4n +2 increasing size order;
break ties (if any) by alphabetical order of owner’s login name

6$ ls -l | tail +2 | sort +4n +2 +8 increasing size order;
break ties (if any) by alphabetical order of owner’s login name
break further ties (if any) by alphabetical order of filename

If two lines are still tied after all the comparisons you have asked for, sort sorts the two lines in
plain vanilla alphabetical order. This happens, for example, when you sort -n lines that do not start with
a number.

Here are two ways to do the same thing:

sort +2n +3n +1n
sort -n +2 +3 +1

A stand-alone letter such as the above -n applies to all of the following fields. If this is not what you want,
write a separate letter for each field.

▼ Homework 2.7: sort with multiple fields

The three files $d46/date1, $d46/name3, and $d46/netaddress contain lines of the form

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 15 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

9/9/95 month/day/year
John Philip Sousa
mm64@acf5.nyu.edu

respectively. Write three sort commands to sort them. Sort date1 chronologically, with the oldest dates
on top. The -t option of sort is just like the -F option of awk. Sort name3 by last name; then break
ties by first name; then break ties by middle name. Ignore case and dashes and apostrophes in name3.
Sort netaddress by hostname (e.g., i5.nyu.edu); then break ties by loginname (e.g., mm64). Ignore
case in the hostname, but not in the loginname.
▲

sed example: sort playing cards in order of increasing rank

Suppose you have a file of playing cards, one per line. The first column is the rank and the second
column is the suit:

A S
2 C
Q H
J D

#!/bin/ksh
#Sort playing cards, one per line, in order of increasing rank.
#Ignore the suits.
#Add "14 " to start of every line that begins with "A" or "a".
#For & in an s/// command, see textbook pp. 323-324; Handout 8, p. 7.

sed ’
s/ˆ[2-9]/& &/
s/ˆ10/& &/
s/ˆ[Jj]/11 &/
s/ˆ[Qq]/12 &/
s/ˆ[Kk]/13 &/
s/ˆ[Aa]/14 &/

’ |
sort -n |
sed ’s/ˆ[ˆ]* //’ #Remove everything up to and including 1st blank.

exit 0

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 16 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

#!/bin/ksh
#Sort playing cards, one per line, in order of increasing rank.
#Ignore the suits.
#Add "14 " to start of every line that begins with "A" or "a".

awk ’
/ˆ([2-9]|10)/ {print $1 $0}
/ˆ[Jj]/ {print 11 $0}
/ˆ[Qq]/ {print 12 $0}
/ˆ[Kk]/ {print 13 $0}
/ˆ[Aa]/ {print 14 $0}

’ |
sort -n |
sed ’s/ˆ[ˆ]* //’ #Remove everything up to and including 1st blank.

exit 0

After the first sed, our data is:

14 A S
2 2 C
12 Q H
11 J D

After the sort -n, our data is:

2 2 C
11 J D
12 Q H
14 A S

After the second sed, our data is:

2 C
J D
Q H
A S

▼ Homework 2.8: sort whatever you want

Write a shellscript named customsort that sorts its lines of input into an order other than alpha-
betical or numerical. For example, if your input consists of one chemical element per line, sort them in
order of increasing atomic number. Just do the first ten elements: H, He, Li, Be, B, C, N, O, F, and Ne.

before after
H H
O He
He Li
Li B
B O
O O

▲

▼ Homework 2.9: chronological sort

The file $S46/date2 contain lines of the form

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 17 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

February 24, 1996
February 25, 1996
October 29, 1996

Write a shellscript to sort them in chronological order, with the oldest date first. If your sort has no -M
option, prepend a number from 1 to 12 and a blank to each line.

2 February 24, 1996
2 February 25, 1996
10 October 29, 1996

Then sort and remove the leading number and blank.
▲

▼ Homework 2.10: a compilation lister

Use the GNU gcc compiler for this assignment.

#include <stdio.h>
main()
{

int i = 10;
printf ("%d\n", j);

}

1$ gcc junk.c >& junk.err See p. 93 for the Bourne shell equivalent of >&.
2$ cat junk.err
junk.c: In function main:
junk.c:5: ‘j’ undeclared (first use this function)
junk.c:5: (Each undeclared identifier is reported only once
junk.c:5: for each function it appears in.)

Write a shellscript named compile that will take one .c file as a command line argument and com-
pile it. You get no credit unless the name of the .c file is supplied to the shellscript as a command line
argument. Sample use:

3$ compile junk.c | more
1:#include <stdio.h>
2:main()
3:{
4: int i = 10;
5: printf ("%d\n", j);
*5: ‘j’ undeclared (first use this function)
*5: (Each undeclared identifier is reported only once
*5: for each function it appears in.)
6:}

Add a zero, a colon, a line number, and another colon to the start of each line of the C program:

0:1:#include <stdio.h>
0:2:main()
0:3:{
0:4: int i = 10;
0:5: printf ("%d\n", j);
0:6:}

Remove error lines that do not have a line number (e.g., In function main:). Then remove the file-
name from the start of each surviving error line i.e., remove everything up to but excluding the first colon.

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 18 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Finally, add an increasing number to the start of each error line:

1:5: ‘j’ undeclared (first use this function)
2:5: (Each undeclared identifier is reported only once
3:5: for each function it appears in.)

You get no credit for any shellscript unless you put the temporary files you create into your home
directory:

prog1 | prog2 | prog3 > $HOME/program
prog4 | prog5 | prog6 > $HOME/errors

You get no credit if you input a file into a program like this:

cat file | prog

Do it this way instead:

prog file

Merge the two temporary files by feeding them into sort -t: -n +1 +0. Finally, change each
leading zero and colon into a blank, and each leading non-zero number (which may have more than one
digit) and colon into an asterisk.

Use the smallest number of awk’s or sed’s to do the job.
▲

Ignore initial character(s)

sort +8.4bn ignores the first eight fields, then ignores the first four characters of the ninth field,
and then does a numeric sort on what remains. (Without the b, our version of sort would count the blank
between the eighth and ninth fields as part of the ninth field.)

1$ ls -l | tail +2 | sort +8.4bn
2$ ls -l | tail +2 | sort +8.5n
3$ ls -l | tail +2 | sort -k +9.5bn -k numbers are one-based, not zero-based.
-rw-r----- 1 abc1234 users 14866 Oct 5 18:12 file1.c
-rw-r--r-- 2 abc1234 users 14866 Oct 5 18:13 file2.c
-rw------- 1 def5678 users 10812 Oct 5 16:36 file10.c

Restrict the end of a sort field

A numeric sort ignores leading blanks and tabs at the place you direct it to. It pays attention only to
the number, and then ignores whatever comes after the number. An alphabetical sort, however, pays atten-
tion to every character from the place you direct it to all the way to the end of the line. We say that an
alphabetical sort field extends to the end of the line by default.

You can specify where a sort field ends as well as where it begins by using a pair of arguments with a
plus and minus. For example, to sort alphabetically by the owner’s name and break ties by sorting alpha-
betically by the filename,

1$ ls -l | tail +2 | sort +2 -3 +8

The +2 -3 work together as a unit. The +2 means ‘‘start paying attention after ignoring the first two
fields’’. The -3 means ‘‘stop paying attention at the end of the third field’’.

Restrict the end of a sort field to a specific character

To sort social security numbers (nine digits), one per line, in increasing numerical order but ignoring
the first three digits,

sort +0.3n

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 19 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

To sort social security numbers, one per line, in increasing numerical order but ignoring the first three and
last four digits,

sort +0.3n -0.5

In the following example, the +0.0 -0.1 makes sort pay attention to the first character only, and
the +8 makes sort break ties by the ninth field. Thus it lists all the files first (since - comes before d) in
alphabetical order, followed by all the directories in alphabetical order.

1$ ls -l | tail +2 | sort +0.0 -0.1 +8 files before directories
2$ ls -l | tail +2 | sort +0.0r -0.1 +8 directories before files

▼ Homework 2.11: four-field sort

Sort the loginnames of the form abc1234 in /etc/passwd in alphabetic order by the last initial
(i.e., the third letter); then first initial (the first letter); then middle initial (the second letter); then in increas-
ing numeric order by the four digits from the social security number. You get credit only if you explicitly
sort the four digits in numerical order, not in alphabetical order. Giv e no more than five arguments to sort
by combining the first and middle initials into a single field. Pipe the output of sort through head -50
into

pr -5 -l10 -t minus lowercase L ten

to print only the first 50 loginnames, in five columns of ten lines each. You get credit only if you search for
loginnames of exactly seven characters, no more and no less: three lowercase letters followed by four dig-
its. The first 50 loginnames of this form (as of January 9, 2004) were

dqa0772 sqa7460 ejb3500 mlb4008 tqb8179
dqa9188 anb2023 fqb7538 mqb4793 vlb2007
fda6677 aqb4851 gbb0405 mqb5363 acc4707
ima9488 bqb9408 gqb2634 nkb1384 adc2416
jqa7024 ceb6547 izb6225 pjb7346 aqc1982
lma2018 dab3766 jqb2622 rab2017 aqc3484
mka7827 dmb9568 kjb8147 sdb1150 aqc7242
mqa8127 dqb0497 krb6949 skb3062 asc3018
pqa2778 dqb2129 leb0734 smb8818 cdc6040
sqa2554 dqb3240 lzb8099 sqb1811 czc4626

▲

Fall 2004 Handout 2 printed 1/9/04
12:36:12 AM − 20 − All rights

reserved ©2004 Mark Meretzky

