
NYU SCPS X52.9546 Section 1 Unix Tools

Fall 2006 Handout 10

join

The join field in each file must be sorted alphabetically, even if i t’s numeric.

1$ awk -F: ’{print $4, $1}’ /etc/passwd | sort > ˜/people1
0 r oot
15 mm64

2$ awk -F: ’{print $3, $1}’ /etc/group | sort > ˜/group1
12 daemon
15 users

To output each person alongside the name of the group to which they belong,

3$ join ˜/people1 ˜/group1
15 mm64 users

The above example outputs four lines because there are four pairs of identical keys:

0

15

2020

2020

root

ed38

mh28

mm64

0

15

2020

daemon

users

instructors

Generate a Cartesian product: Hamlet II, ii, 387−390
(lines 138703−138709 in$S45/Shakespeare.complete)

To form the Cartesian product of two files,

Republican This isparty .
Democratic

liberal This isleaning .
conservative
moderate

1$ sed ’s/ˆ/A /’ party > ˜/party_temp or perl -pe ’s/ˆ/A /’
2$ sed ’s/ˆ/A /’ leaning > ˜/leaning_temp
3$ join ˜/party_temp ˜/leaning_temp

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 1 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

A

A

Republican

Democratic

A

A

A

liberal

conservative

moderate

A Republican liberal
A Republican conservative
A Republican moderate
A Democratic liberal
A Democratic conservative
A Democratic moderate

Then remove the leadingA and blank:

sed ’s/ˆA //’
perl -pe ’s/ˆA //’

The -j1 and -j2 options of join

By default, the join field is the first field on each line of input. Use the-j1 option to use a different
field as the join field in the first input file;-j2 in the second input file.For example, to use the second field
in each input file as the join field,

1$ awk -F: ’{print $1, $4}’ /etc/passwd | sort +1 > ˜/people2
root 0
mm64 15

2$ awk -F: ’{print $1, $3}’ /etc/group | sort +1 > ˜/group2
daemon 12
users 15

3$ join -j1 2 -j2 2 ˜/people2 ˜/group2
15 mm64 users

Never giv e the options-j1 1 or -j2 1 : they’re the default.

The -o option of join

The default output is the join field, then the rest of the line from the first input file, then the rest of the
line from the second input file. Use the lowercase-o option to compose a different output line consisting
of fields from either input file.For example, to make the above join command output only the person’s
loginname (the first word of the first input file,1.1) followed by the group name (the first word of the sec-
ond input file,2.1), change it to

1$ join -j1 2 -j2 2 -o 1.1 2.1 ˜/people2 ˜/group2
mm64 users

2$ join -j1 2 -j2 2 -o 2.1 2.2 1.1 ˜/people2 ˜/group2
users 15 mm64

The -t option of join is just like the -F option ofawk and the-t option ofsort . Seeman -t
join .

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 2 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 10.1: a join application

Columns two and three of the output ofps -lax are thePID and parent’sPID of every process.

1$ ps -lax
F UID PID PPID CP PRI NI SZ RSS WCHAN STATTT TIME COMMAND

8201 420 11395 11394 0 15 0 64 352 pause I p 4 0:04 -csh (csh)
8021 420 15584 11395 4 1 0 168 480 socket S p4 0:00 vi handout10.ms

1 420 15604 15603 29 32 0 152 408 R p4 0:00 ps -lx

The first and last columns of the output ofps -acux are the owner’s loginname and name of every pro-
cess. Why shouldawk print $NF instead of$11?

2$ ps -acux
USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND
meretzky 15611 15.4 0.7 152 384 p4 R 14:20 0:00 ps
meretzky 15584 0.0 0.9 168 496 p4 S 14:17 0:00 vi
meretzky 11395 0.0 0.6 64 344 p4 I 11:13 0:04 csh

Write a shellscript namedmyps that will output one line for each process, with the four columns
described above. Output no header line.

3$ myps
meretzky 11395 11394 csh
meretzky 15584 11395 vi

myps will call ps twice, with the two different arguments. Feedselected columns of the output of
the two ps ’s into join , which will use thePID numbers as the join field.You get no credit unless you
sort the join field alphabetically. You get no credit if you give the-j1 1 or -j2 1 options tojoin . join
will output only the processes whosePID numbers appear in the output of bothps ’s; it will remove the
others automatically.

You get no credit for any shellscript unless you put the temporary files you create into your home
directory:

prog1 | prog2 | prog3 > $HOME/program
prog4 | prog5 | prog6 > $HOME/errors

You get no credit if you input a file into a program like this:

cat file | prog

Do it this way instead:

prog file

sort the output ofjoin in order of ascendingPID numbers. Linethe columns up nicely by filter-
ing them through theprintf statement ofawk or perl .

Hand in only the first 50 lines of output.You get no credit if the same PID number appears on two
different lines.

▼ Homework 10.2: log off the idlers

Usejoin to eliminate thefor loop in theawk example that killed programs running on idle termi-
nals.
▲

▼ Homework 10.3: a join application

Thedf command (for ‘‘disk free’’) outputs a table showing how full each subtree is. Each subtree is
listed by the name of its top (i.e., root) directory.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 3 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1$ df | more
/ (/) : 5 239602 blocks 477535 files

Write a shellscript namedfull that will output the login name of everyone whose home directory is in a
subtree that’s more than 80% full. This could be used tomail them a letter telling them to remove unnec-
essary files.

Create two files and feed them intojoin . The first file will list the directories that are more than
80% full, sorted in alphabetical order of the directory name. Don’t list the root directory/ .

The second file will list the loginname of each person in/etc/passwd , preceded by the first com-
ponent of the full pathname of their home directory. Sort it in alphabetical order of the directory name:

/home1 aa947
/home1 aas269
/home1 aav232
/home1 ab215

Thenjoin the two files.
▲

Outline for the advanced perl course
1. Introduction

A. theUnix philosophy of simple tools connected by pipes; i/o redirection

B. perl as a successor ofgrep , sed , awk, sh , and C

C. advantages ofperl over a shellscript of connected tools:

1. betternotation (e.g.,perl contains the union ofgrep andegrep)

2. not limited to one-way sequential communication (i.e., pipes) between parts of the pro-
gram. Inperl , data can be loaded into a data structure (i.e., a list) and processed non-
sequentially (e.g., in contrast tosed)

D. tasksfor which you would otherwise have to resort to C:

1. processbinary data in addition to ASCII data

2. formatindividual bits and bytes in memory withpack andunpack

3. callthe Unix system calls (e.g.,stat , fork , socket , etc.)

2. Runningperl:print "hello\n";

A. interactively, in response to the C shell prompt (-e option)

B. in a Bourne shellscript

C. asa perlscript starting with#!

3. Programmingwith scalar variables

A. scalarvariables, assignment, initialization, undefined values

B. stringoperators:. x

C. outputwith print , input with<>, $/ , and read .

D. ’ single quotes’ , " double quotes" , and ‘ back quotes‘

E. controlstructure: loops ,if , { curly braces}

4. I/Owith files and pipes

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 4 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

A. filehandles,open with | , <, >, >>

B. errormessages withdie "$0: $!"; , || as a shorthand forif not

C. while (<>) and the special variable$_

D. loopthrough a list of filenames with<*.c> ; file test operators;unlink , rename ,
chmod, chown ; system .

5. Lists

A. storea list in an array:@a = (1, 2, 3); , subscripts,$#a , @ARGV

B. scalarcontext vs. array context

C. loopthrough a list withforeach

D. loopthrough a list withgrep

E. sort a list; sort subroutines

F. associative arrays,%ENV

6. Implicit input-driven looping

A. emulategrep andawk with the-n option;$.

B. emulateawk with the-a option (autosplit),@F

C. emulatesed with the-p option

7. Regular expressions (a large topic)

A. acomplete exposition of regular expressions, assuming no previous knowledge

B. taggedregular expressions (parentheses and\1 , \2 , \3), important in data transformation

8. Datatransformation (a large topic)

A. s/pattern/replacement/ with regular expressions;$‘ , $&, $’ , $1 , $2 , $3

B. s/pattern/replacement/ with interpolated variables: a combination ofsed and
awk

9. Callingthe Unix system calls

A. pack andunpack binary data

B. require (just like#include in C)

C. To illustrate that the system calls are equally accessible inperl andC, students will be given
the following examples in both languages.

1. directoryand file access withopendir , readdir , closedir , andstat

2. createa child process withfork , exec , andwait

3. sharedmemory withshmget , shmread , shmwrite , shmctl

4. SOCK_STREAMsockets withsocket , connect , bind , listen , accept

10. Miscellaneous

A. formats

B. subroutines,local , packages

C. convert sed , awk, find , and C header files toperl : s2p , a2p , find2perl , h2ph

D. theperl debugger

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 5 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Introduction

Information about perl

(1) Programming perl by Larry Wall and Randal L. Schwartz. O’Reilley & A ssociates; ISBN
0-937175-64-1.

(2) Leraning perl by Randal L. Schwartz. O’Reilley & A ssociates; ISBN 0-56592-042-2.

(3) theUnix manual page: display on screen withman perl , print out withman -t perl .

(4) thecomp.lang.perl newsgroup; usenn

(5) Don’t bother the author:

1$ finger lwall@jpl-devvax.jpl.nasa.gov lowercase LWALL
[jpl-devvax.jpl.nasa.gov]

Login name: lwall In real life: Larry Wall
Directory: /u/sfoc/lwall Shell: /usr/etc/exp
Last login Sun Apr 11, 1993 on ttyp1 from vaccine.netlabs.
Mail last read Tue May 24 21:58:59 1994
No Plan.

A Unix pipeline

Output the login name of everyone who is logged into two or more terminals:

1$ who
operator console Apr 30 14:14
bidof ttyp0 May 25 08:10 (128.122.128.214)
nabutvsk ttyp1 May 25 10:28 (128.122.128.214)
laik ttyp2 May 25 12:01 (128.122.150.94)
bidof ttyp3 May 25 10:12 (128.122.128.61:0)

2$ who | awk ’{print $1}’
operator
bidof
nabutvsk
laik
bidof

3$ who | awk ’{print $1}’ | sort
bidof
bidof
laik
nabutvsk
operator

4$ who | awk ’{print $1}’ | sort | uniq -d
bidof

An interpreter script (shellscript, perlscript, awkscript, etc.)

(1) Putthe script in thebin subdirectory of your home directory.

(2) Scriptsmay be written in any one of several languages; the#! on the first line shows which one.

(3) Typechmod to turn on itsx bits.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 6 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(4) Typerehash after creating any new program (including a shellscript or perlscript).

#!/bin/sh
#Output the login name of everyone who is logged into two
#or more terminals.

who | awk ’{print $1}’ | sort | uniq -d

1$ ls -l twoormore
-rw-r--r-- 1 meretzky 165 May 25 12:09 twoormore

2$ chmod 755 twoormore
3$ ls -l twoormore
-rwxr-xr-x 1 meretzky 165 May 25 12:09 twoormore

4$ rehash

5$ twoormore Run the program.
bidof

A perlscript to produce the same output

1 #!/bin/perl
2 #Output the login name of everyone who is logged into two
3 #or more terminals.
4
5 f oreach (‘who‘) {
6 ($loginname) = split;
7 $count{$loginname} = $count{$loginname} + 1;
8 i f ($count{$loginname} == 2) {
9 print "$loginname\n";

10 }
11 }

The following task is just as easy as a perlscript, but would be harder as a shellscript. In fact, you
would probably have to resort toawk.

1 #!/bin/perl
2 #Everyone is allowed to use one terminal. If someone is using
3 #more than one terminal, output the names of the second, third,
4 #fourth, etc. terminals that they’re using.
5
6 f oreach (‘who‘) {
7 ($loginname, $terminal) = split;
8 $count{$loginname} = $count{$loginname} + 1;
9 i f ($count{$loginname} >= 2) {

10 print "$terminal\n";
11 }
12 }

1$ perlscript
ttyp3

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 7 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

A perlscript that creates a list

1$ ps -acux
USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
meretzky 26721 41.7 0.6 1164 960 q6 R 0:00 ps
root 16226 23.5 0.4 968 660 ? R 1 194:05 sendmail
rmchndrn 26671 17.0 0.9 2356 1524 r0 R 0:19 lwraster
root 26715 1.2 0.2 416 296 s6 S < 0:00 login

1 #!/bin/perl
2 #If someone is using more than one terminal, kill all their processes
3 #except for those running on their first terminal.
4
5 #Make a list of the doomed terminals.
6 f oreach (‘who‘) {
7 ($loginname, $terminal) = split;
8 $count{$loginname} = $count{$loginname} + 1;
9 i f ($count{$loginname} >= 2) {

10 push (@doomed, $terminal); #Put the $terminal on the @doomed list.
11 }
12 }
13
14 #Kill each process running on a dooomed terminal.
15 foreach (‘ps -acux‘) {
16 ($loginname, $pid, $cpu, $mem, $sz, $rss, $tt) = split;
17 foreach $terminal (@doomed) {
18 if ($tt eq substr($terminal, -2)) {
19 print "killing $pid on terminal $terminal\n";
20 kill 9, $pid;
21 }
22 }
23 }

Print the numbers from 1 to 10

The shell language cannot perform arithmetic, compare two numbers, or even print a number. To
perform these tasks, a program written in the shell language (i.e., a shellscript) must run other programs,
which are underlined in the following example. Theshell language is a language foir running other pro-
grams; it can do nothing else.

#!/bin/sh

i=1
while [$i -le 10]
do

echo $i
i=‘expr $i + 1‘

done

1 #!/bin/perl
2
3 $i = 1 ;
4 while ($i <= 10) {
5 print "$i\n";

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 8 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

6 $i = $i + 1 ;
7 }

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 9 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Three ways to run perl: pp. 4−5

(1) In response to the C shell prompt

Put ’ single quotes’ around any command line argument that contains unusual characters such as\ .

1$ perl -e ’print "hello\n";’ Final semicolon is optional.
hello

(2) As one command in a shellscript

1 #!/bin/sh
2 #This file is named shelly.
3
4 date
5 perl -e ’print "hello\n";’
6 whoami

1$ shelly
Wed Nov 22 13:31:00 EST 2006
hello
mm64

(3) As a perlscript

You will often run a shellscript that contains oneperl command and nothing else:

1 #!/bin/sh
2
3 perl -e ’print "hello\n";’

In this case, it is faster and simpler to write a perlscript instead of a shellscript:

1 #!/bin/perl
2 #This file is named perlscript.
3
4 print "hello\n";

1$ perlscript

A perlscript can be more than one statement:

1 #!/bin/perl
2
3 print "* * * * * * =====================\n";
4 print " * * * * * =====================\n";
5 print "* * * * * * =====================\n";
6 print " * * * * * =====================\n";
7 print "* * * * * * =====================\n";
8 print "=================================\n";
9 print "=================================\n";

10 print "=========E pluribus unum=========\n";
11 print "=================================\n";
12 print "=================================\n";

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 10 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Scalar variables
You don’t hav eto declare variables: they pop into existence as soon as you mention them.See pp.

79−93 for the operators in an expression.

1 #!/bin/perl
2
3 $i = 1 ;
4 $j = 2 ;
5 $k = $i + $ j;
6
7 print $k, "\n";
8 print $k, "\n";
9 print $i + $j, "\n";

2$ perlscript
3
3

▼ Homework 10.4: omit the, " \n"

What happens if you omit the two occurrences of, " \n" from the above perlscript?
▲

Division and remainder

1 #!/bin/perl
2
3 print 38 / 5, "\n";
4 print int(38/5), "\n\n";
5
6 print 38 % 5, "\n";
7 print 39 % 5, "\n";
8 print 40 % 5, "\n";

1$ perlscript
7.5999999999999996
7

3 because 38 is 3 more than a multiple of 5
4 because 39 is 4 more than a multiple of 5
0 because 40 is a multiple of 5

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 11 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

String variables

Any variable can hold a number or a string:

1 #!/bin/perl
2
3 $segment = "+=";
4 $short = $segment . $segment;
5 $long = $segment x 30;
6
7 print $short, "\n";
8 print $long, "\n";

1$ perlscript
+=+=
+=

Variables are initialized to 0 or the null string

If you use the value of a variable without first assigning a value to it, the variable is automatically
given a default initial value. Thecontext in which the variable is used determines whether this default ini-
tial value will be 0 or the null string.

1 #!/bin/perl
2
3 $n = 1 0;
4 $s = " hello";
5
6 print $n + $u, "\n";
7 print $s . $v, "\n";

1$ perlscript
10
hello

In the above example, the variables$u and$v are undefined before theprint ’s and defined after
theprint ’s. To test if a variable is defined,

if (defined $u) {
if (! defined $u) { p. 82 for!

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 12 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Input and output
You can remove the STDOUTand STDIN (but not the< >): they’re the default. You can change

STDOUTto STDERR.

The assignment statement stores the entire line of input, including the terminating\n , into the vari-
able$year . This line may consist of any string, not just a number.

1 #!/bin/perl
2
3 print STDOUT "What year is this? ";
4 $year = <STDIN>;
5 print STDOUT "In ", 1997 - $year, " years,\n";
6 print STDOUT "Hong Kong goes back to Chinese rule.\n";

A quoted string may occupy more than one line (p. 69):

1 #!/bin/perl
2
3 print "What year is this? ";
4 $year = <>;
5 print "In ", 1997 - $year, " years,
6 Hong Kong goes back to Chinese rule.\n";

▼ Homework 10.5: input and output a variable

Write a perlscript to conduct a dialog such as

How old are you? 38
That’s 266 dog years!

▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 13 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Quotation marks

Singles and doubles

Like C but unlike the shell,perl requires quotes around every variable. perl has the same three
kinds of quotes that the shell has:’ single’ , " double" , and ‘ back quotes‘ .

You can use variables and\n within single quotes but not within double quotes:

1 #!/bin/perl
2
3 $i = 1 00;
4
5 #Three ways to do the same thing:
6 print $i, "\n";
7 print $i . "\n";
8 print "$i\n";
9

10 print "You have just won $i dollars.\n";
11 print ’You have just won $i dollars.\n’;

1$ perlscript
100
100
You have just won $i dollars.\n

These rules also apply in the shell language:

2$ echo "$HOME"
/home1/m/mm64

3$ echo ’$HOME’
$HOME

Back quotes

1 #!/bin/perl
2
3 $a = ’ date’;
4 print "$a\n";
5
6 $a = " date";
7 print "$a\n";
8
9 $a = ‘ date‘;

10 print "$a"; #$a contains a \n
11
12 print ‘date‘;
13 print ‘who | wc -l‘;

1$ perlscript
date
date
Wed Nov 22 13:31:00 EST 2006
Wed Nov 22 13:31:00 EST 2006
9

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 14 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 10.6: print the total size in bytes of the files in the current directory

Assume that the current directory contains only files, so you don’t hav eto worry about subdirecto-
ries. Loopthrough all the lines output byls -l with a foreach loop. split the first four fields of
each line into variables named$perms , $links , $owner , and $size . Sum up the$size of each file
in a variable named$sum. After the loop is over, print thesum.

You can initialize$sum = 0; if it makes you feel more secure, but it isn’t necessary.

✎ Extra credit. Also output the average size in bytes of all the files. Create a variable named
$count and increment it every time we loop through another line. Assume that the current directory con-
tains at least one file, so you don’t hav eto worry about division by zero.

1$ ls -l
-r--r--r-- 1 meretzky 5045 May 4 12:31 p.associative.ms
-rw-r--r-- 1 meretzky 823 May 5 13:13 p.input.ms
drw-r--r-- 1 meretzky 512 May 5 12:28 mysubdirectory

▲

Input chunks of various size

To input an entire line,

$a = <STDIN>;

To input everything up to and including the next colon,

$/ = ’:’; #The default value of $/ is "\n", p. 113.
$a = <STDIN>;

To input everything up to the end of the input file,

undef $/; #Remove the value of $/.
$a = <STDIN>;

To input a single byte,

$n = read(STDIN, $a, 1);

To input exactly four bytes,

$n = read(STDIN, $a, 4);

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 15 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

‘‘ while’’ and ‘‘for’ ’ l oops
See p. 88 for the six relational operators==, <=, etc.

Always enclose the body of the loop in{ curly braces} . Unlike C, perl requires the curly braces
ev en if the body contains only one statement.

1 #!/bin/perl
2 #Print the numbers from 1 to 10, one per line.
3
4 $i = 1 ;
5
6 while ($i <= 10) {
7 print "$i\n";
8 $i = $ i + 1 ;
9 }

As in C, afor loop is another notation for awhile loop. It lets you write the three vital statistics
all on one line:

1 #!/bin/perl
2 #Print the numbers from 1 to 10, one per line.
3
4 f or ($i = 1; $i <= 10; $i = $i + 1) {
5 print "$i\n";
6 }

▼ Homework 10.7: write a program with nestedfor loops

Write a program with twofor loops and twoprint ’s whose output is

1$ perlscript
Lucy in the sky with diamonds
Lucy in the sky with diamonds
Lucy in the sky with diamonds
Aaaaaaaaaaaaaaaaaaaaaaaaaahhh

Lucy in the sky with diamonds
Lucy in the sky with diamonds
Lucy in the sky with diamonds
Aaaaaaaaaaaaaaaaaaaaaaaaaahhh

▲

Geometric progression, right justification

1 #!/bin/perl
2 #Output the powers of 2 from 1 to 64 inclusive, one per line.
3
4 f or ($i = 1; $i <= 64; $i = $i * 2) {
5 printf STDOUT "%2d\n", $i;
6 }

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 16 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1$ perlscript
1
2
4
8

16
32
64

printf conversion characters

1 #!/bin/perl
2
3 print "decimal octal hex\n";
4
5 f or ($i = 0; $i < 32; $i = $i + 1) {
6 printf "%7d %7o %7X\n", $i, $i, $i;
7 }

1$ perlscript
decimal octal hex

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 10 8 etc.

1 #!/bin/perl
2
3 print "hex ascii\n";
4
5 f or ($i = ord(’ ’); $i < ord(’˜’); $i = $i + 1) {
6 printf "%3d %c\n", $i, $i, $i;
7 }

2$ perlscript
hex ascii

32
33 !
34 "
35 #
36 $
37 %
38 &
39 ’
40 (etc.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 17 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 10.8: A Hundred Bottles of Beer on the Wall

Write a perlscript to output the words of this song. Between verses, output an empty line and

sleep 1;

▲

▼ Homework 10.9: the New York State Thruway

Write a perlscript to output eight signs at intervals of 10 miles, heading north. Right-justify the num-
bers. Outputan empty line after each sign.

+--------------+
| A lbany 108 |
| Montreal 328 |
| B uffalo 388 |
+--------------+

+--------------+
| A lbany 98 |
| Montreal 318 |
| B uffalo 378 |
+--------------+

+--------------+
| A lbany 88 |
| Montreal 308 |
| B uffalo 368 |
+--------------+ etc.

▲

An infinite loop: p. 96

1 #!/bin/perl
2
3 f or (;;) {
4 print "It was a dark and stormy night.\n";
5 print "Some Indians were sitting around a campfile.\n";
6 print "Then their chief rose and said:\n\n";
7 }

Pipe the output of the above perlscript intomore :

1$ perlscript | more

A loop that always iterates at least once: p. 94

1 #!/bin/perl
2
3 s rand;
4
5 print "Welcome to Russian Roulette.\n";
6 print "Any number of players can take turns.\n";
7 print "To pull the trigger when you see the ->, press RETURN.\n\n";
8
9 do {

10 print ’-> ’;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 18 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

11 $dummy = <>;
12 } while rand(6) >= 1; #one in six chance of death
13
14 print "BANG!\n";

1 #!/bin/perl
2
3 s rand;
4
5 print "Welcome to Russian Roulette.
6 Any number of players can take turns.
7 To pull the trigger when you see the ->, press RETURN.\n\n";
8
9 do {

10 print ’-> ’;
11 $dummy = <>;
12 } until rand(6) < 1; #one in six chance of death
13
14 print "BANG!\n";

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 19 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

‘‘ if ’ ’ statements
Like C, perl requires(parentheses) around the logical expression. Unlike C, perl requires

{ curly braces} around the body of anif ev en if the body consists of only a single statement.

See p. 88 for the relational operators==, eq , etc.; p. 89 for the logical operators&&, || , etc.; p. 103
for regular expressions within/ slashes/ ; p. 82 for the pattern binding operator=˜ ; and p. 84 for the file
test operators-r , -w , etc.

1 #!/bin/perl
2
3 $a = 1 ;
4 $b = 2 ;
5
6 if ($a == $b) {
7 print "They’re equal.\n";
8 }
9

10 if ($a >= 20) {
11 print "It’s greater than 20.\n";
12 }
13
14 if (‘who | wc -l‘ >= 20) {
15 print "At least 20 people are logged in right now.\n";
16 }
17
18 $a = ’yes’;
19 $b = ’y’;
20
21 if ($a eq $b) {
22 print "They’re equal.\n";
23 }
24
25 if (‘whoami‘ ne ’abc1234’) {
26 print "Sorry, only abc1234 has permission to run this perlscript.\n";
27 exit 1; #Non-zero exit status indicates failure in Unix.
28 }

1 #!/bin/perl
2
3 $a = < STDIN>; #You can omit the STDIN.
4
5 if ($a =˜ /ˆy/) { #The ˆy between the slashes is a regular expression.
6 print "The value of the variable starts with a y,\n";
7 print "and I think anything that starts with a y means yes.\n";
8 }
9

10 if (‘date‘ =˜ /ˆFri/) {
11 print "Today is Friday.\n";
12 }
13
14 if (‘who | wc -l‘ >= 20 && ‘date‘ =˜ /ˆFri/) {
15 print "Aw, give up: At least 20 people are logged in, and it’s Friday.\n";
16 exit 1;
17 }

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 20 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

18
19 if (-r bigfile) {
20 print "I have permission to read the file bigfile.\n");
21 }

▼ Homework 10.10: output the names of the filesystems that are full

Loop through all the lines output bydf with a foreach loop. split the first five fields of each
line into variables named$filesystem , $total , $used , $free , $percent . If $percent is
greater than or equal to 90,print the$filesystem and the$percent . (You can ignore the%at the
end of the value of$percent .)

1$ df
Filesystem Total kbytes kbytes %
node kbytes used free used Mounted on
/dev/rz0a 15823 13452 789 94% /
/dev/rz0h 1233086 1084272 25506 98% /usr
/dev/rz1h 1233086 706012 403766 64% /home1
/dev/rz2h 1233086 987754 122024 89% /home2
/dev/ra35c 1914797 1545621 177697 90% /home3

2$ perlscript
/dev/rz0a 94%
/dev/rz0h 98%
/dev/ra35c 90%

✎ Extra credit. Use the statement

chop $percent;

to remove the last character from the variable$percent . Useprintf "%-20s %5d\n", to left-jus-
tify the $filesystem and right-justify the$percent .
▲

▼ Homework 10.11: total size in bytes of the files in the current directory

An earlier exercise looped through every line output byls -l to sum up the size of everything in the
current directory. Change it so that it sums up only the files, not the subdirectories.Add $size to $sum
only if $perms begins with a dash.

Also print the average size of all the files. Create a variable named$count that is incremented
only when we encounter a file, not a subdirectory. After theforeach loop is over, write anif to prevent
us from dividing by zero if$count is zero.
▲

if-then-else

You will often need a pair of consecutive if ’s of which exactly one will be true: never both and
never neither.

1 #!/bin/perl
2
3 $a = 1 ;
4 $b = 2 ;
5
6 if ($a == $b) {
7 print ’equal’;
8 }
9

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 21 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

10 if ($a != $b) {
11 print ’not equal’;
12 }

1 #!/bin/perl
2
3 $a = 1 ;
4 $b = 2 ;
5
6 if ($a == $b) {
7 print ’equal’;
8 } e lse {
9 print ’not equal’;

10 }

1 #!/bin/perl
2 #A t hree-way if: three possibilities
3
4 $a = 1 ;
5 $b = 2 ;
6
7 if ($a == $b) {
8 print ’equal’;
9 } e lsif ($a < $b) {

10 print ’less than";
11 } else {
12 print "greater than";
13 }

1 #!/bin/perl
2 #A f our-way if: four possibilities
3
4 $a = 1 ;
5 $b = 2 ;
6
7 if ($a == $b) {
8 print "equal";
9 } e lsif ($a < $b) {

10 print "less than";
11 } elsif ($a > $b + 100) {
12 print "much greater than";
13 } else {
14 print "greater than, but not all that much greater than";
15 }

▼ Homework 10.12: what kind of election year is this?

Write a perlscript that asks the user to type in the current year. Then output exactly one of the fol-
lowing three statements. Use the%operator andelsif .

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 22 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

This is a presidential election year. (multiple of 4)
This is a congressional election year. (2 more than a multiple of 4)
This is a local election year. (none of the above)

▲

▼ Homework 10.13: simplify the following if statements

Make the following statements more elegant. Donot change their output.

1 #Example 1. This is how they programmed before they invented else.
2 $c = 1 0;
3 if ($a == $b) {
4 $c = 2 0;
5 }

1 #Example 1. Use process of elimination.
2 if ($a == $b) {
3 print ’equal’;
4 } e lsif ($a != $b) {
5 print ’not equal’;
6 }

1 #Example 2. Use process of elimination.
2 if ($a == $b) {
3 print ’equal’;
4 } e lsif ($a < $b) {
5 print ’less than’;
6 } e lsif ($a > $b) {
7 print ’greater than’;
8 }

1 #Example 3. Use the distributive law: a * c + b * c == (a + b) * c
2 if ($a == $b) {
3 print "equal.\n";
4 exit 0;
5 } e lse {
6 print "not equal.\n";
7 exit 0;
8 }

1 #Example 4. Use the distributive law: c * a + c * b == c * (a + b)
2 if ($a == $b) {
3 print ’They are ’;
4 print "equal.\n";
5 } e lse {
6 print ’They are ’;
7 print "not equal.\n";
8 }

1 #Example 5. Never write a "null else" in perl.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 23 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

2 if ($a == $b) {
3 print ’equal’;
4 } e lse {
5 }

1 #Example 6. Never write a "null then" in perl.
2 if ($a == $b) {
3 } e lse {
4 print ’not equal’;
5 }

1 #Example 7.
2 if ($a == $b) {
3 exit 0;
4 } e lse {
5 print "Let’s keep going.\n";
6 }

1 #Example 8.
2 if ($a == $b) {
3 print "Let’s keep going.\n";
4 } e lse {
5 exit 0;
6 }

1 #Example 9. Use && (p. 89).
2 if ($a == $b) {
3 i f ($c == $d) {
4 print "Both pairs are equal.\n";
5 }
6 }

1 #Example 10. Use || (p. 89).
2 if ($a == $b) {
3 print "At least one pair is equal.\n";
4 } e lsif ($c == $d) {
5 print "At least one pair is equal.\n";
6 }

1 #Example 11.
2 if ($profit >= $loss) {
3 print "We’re in the black.\n";
4 }
5
6 if ($profit == $loss) {
7 print "But only barely.\n";
8 }

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 24 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #Example 12.
2 if ($a != $b) {
3 i f ($a < $b) {
4 print ’less than’;
5 } else {
6 print ’greater than’;
7 }
8 } e lse {
9 print ’equal’;

10 }

▲

Swap the ‘‘then’’ and the ‘‘else’’

Because the last example is so important, we show the solution.Change the first logical expression
from != to == to swap the ‘‘then’’ and the ‘‘else’’ :

1 if ($a == $b) {
2 print ’equal’;
3 } e lse {
4 i f ($a < $b) {
5 print ’less than’;
6 } else {
7 print ’greater than’;
8 }
9 }

Next, combine the consecutive wordselse if to elsif , and remove one pair of{ curly braces} and one
level of indentation:

1 if ($a == $b) {
2 print ’equal’;
3 } e lsif ($a < $b) {
4 print ’less than’;
5 } e lse {
6 print ’greater than’;
7 }

▼ Homework 10.14: simplify the following if statement

1 if ($a != $b) {
2 i f ($a >= $b) {
3 i f ($a > $b + 100) {
4 print ’much greater than’;
5 } else {
6 print ’greater than, but not all that much greater than’;
7 }
8 } else {
9 printf ’less than’;

10 }
11 } else {
12 print ’equal’;
13 }

▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 25 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

‘‘ unless’’ means ‘‘if not’’

Here are two ways to do the same thing.Was this a good idea?

1 #!/bin/perl
2
3 $profit = 1;
4 $loss = 2;
5
6 if ($profit < $loss) {
7 print "We’re in the red.\n";
8 }
9

10 unless ($profit >= $loss) {
11 print "We’re in the red.\n";
12 }

Similarly, until meanswhile not .

A shorthand for ‘ ‘if ’ ’ or ‘ ‘unless’’: p. 94

All of the above if andunless constructions can contain one or more statements.The (parenthe-
ses) and{ curly braces} are always required.

If your if or unless contains only a single statement, however, you can remove the(parentheses)
and{ curly braces} , and put theif or unless at the end of the statement:

1 #!/bin/perl
2
3 $profit = 1;
4 $loss = 2;
5
6 print "We’re in the red.\n" if $profit < $loss;
7 print "We’re in the red.\n" unless $profit >= $loss;

1$ perlscript
We’re in the red.
We’re in the red.

A shorthand for ‘‘while’ ’ or ‘ ‘until’’: p. 94

Here are three ways to write the same infinite loop.You can use the third way only when the loop
contains exactly one statement:

1 #!/bin/perl
2
3 f or (;;) {
4 print "This is an infinite loop containing one statement.\n";
5 }
6
7 while (1) {
8 print "This is an infinite loop containing one statement.\n";
9 }

10
11 print "This is an infinite loop containing one statement.\n" while 1;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 26 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Write as simply as possible

You don’t hav eto use every feature of the language, at least not at the beginning. For example, if you
know C, you can rewrite this loop on p. 246

rand($.) < 1 && ($it = $_) while <>;

as

while (<>) {
if (rand($.) < 1) {

$it = $_;
}

}

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 27 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

File i/o

Standard output

The standard output of any Unix program can be directed to any file or hardware device (e.g., any ter-
minal), or can be directed through a pipe into another program as input, or can be stored in a shell variable.
The destination of the standard output is specified on the command line that runs the program, not in the
program itself:

1 #!/bin/perl
2
3 print STDOUT "hello\n";

1$ perlscript to your terminal’s sreen
2$ perlscript > outfile destroy previous contents ofoutfile
3$ perlscript >> outfile append to existing file
4$ perlscript > /another/directory/outfile

5$ perlscript > /dev/ttypa someone else’s terminal’s screen
6$ perlscript > /dev/gizmo another hardware device
7$ perlscript > /dev/null black hole

8$ perlscript | anotherprog
9$ perlscript | lpr send the output directly to the printer
10$ anotherprog ‘perlscript‘ use output of perlscript as command line arg of anotherprog

#!/bin/sh
#This is a Bourne shellscript.
#Store the output of perlscript in the variable x.

x=‘perlscript‘
echo $x #Make sure the assignment statement worked.

File output in perl

If your perlscript is to send all of its output to one destination (e.g., one output file or one terminal),
the standard output shown above will suffice. Butif output is to be sent to more than one destination (e.g.,
several output files, or an output file and a terminal), use the following machinery.

The first argument of theopen function (p. 162) is called afilehandle; it tells subsequentprint ’s
where to send their output to.A fi lehandle is written in all uppercase. The second argument ofopen can
begin with either> or >>.

open returns a non-zero number for success.A Unix error message should always consist of the
name of the program, a colon, a blank, and message itself.perl gives values automatically to certain spe-
cial variables with non-alphanumeric names.The special variable$0 is the name of the program (p. 114),
and the special variable$! is the error message (p. 115).

1 #!/bin/perl
2
3 #Open an output file in the current directory.
4 if (open(OUTFILE1, ’> outfile’) == 0) {
5 print STDERR "$0: $!\n";
6 exit 1;
7 }
8
9 #Open an output file in some other directory.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 28 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

10 if (open(OUTFILE2, ’> /usr/outfile’) == 0) {
11 print STDERR "$0: $!\n";
12 exit 1;
13 }
14
15 print OUTFILE1 "hello\n";
16 print OUTFILE2 "goodbye\n";
17
18 close OUTFILE1;
19 close OUTFILE2;
20 exit 0;

On my machine, I have no permission to create a file in the/usr directory, so line 11 outputs

perlscript: Permission denied

Tw o shorthands: p. 95

Thedie command (p. 137)print ’s its string, the name of the perlscript, the line number, and a\n
to theSTDERRandexit ’s with a non-zero exit status to indicate failure. We can change lines 5−6 above
to

die "$0: $!";

In C andperl , the followingif ’s do not necessarily compare both pairs of numbers:

if ($a == $b && $c == $d) {
if ($a == $b || $c == $d) {

1 #!/bin/perl
2
3 #Open an output file in the current directory.
4 open(OUTFILE1, ’> outfile’) || die "$0: $!";
5
6 #Open an output file in some other directory.
7 open(OUTFILE2, ’> /usr/outfile’) || die "$0: $!";
8
9 print OUTFILE1 "hello\n";

10 print OUTFILE2 "goodbye\n";
11
12 close OUTFILE1;
13 close OUTFILE2;
14 exit 0;

On my machine, thedie in line 7 prints

perlscript: Permission denied at perlscript line 7.

▼ Homework 10.15: output to two terminals

You canopen a terminal or any other hardware device in the same way that youopen a file:

open(TERMINAL ’> /dev/ttypa’) || die "$0: $1";

The Unix commandwho lists the terminals that are currently in use; prepend/dev/ to the name of each
terminal.

Pick two terminals at which other people are logged in. Write a perlscript thatopen ’s the two termi-
nals andprint ’s a line to both of them. Thenclose the terminals.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 29 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▲

▼ Homework 10.16: output to every terminal

Use foreach and chop to loop through the names of all the terminals currently in use.During
each loop,open a terminal,print a line to it, andclose the terminal.
▲

Output to a pipe

1 #!/bin/perl
2
3 #Pipe output directly to the printer.
4 open(LPR, ’| lpr’) || die "$0: $!";
5
6 #Pipe to the printer, but alphabetize and number the lines along the way.
7 open(SORTLPR, ’| sort | cat -n | lpr’) || die "$0: $!";
8
9 print LPR "hello\n";

10 print LPR "goodbye\n";
11
12 print SORTLPR "hello\n";
13 print SORTLPR "goodbye\n";
14
15 close LPR;
16 print "The exit status of the lpr was $?.\n";
17 close SORTLPR;
18 exit 0;

The above perlscript outputs two files to the printer:

hello
goodbye

1 goodbye
2 hello

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 30 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Standard input

The standard input of any Unix program can be taken from any file or hardware device (e.g., any ter-
minal), or can be the output of another program taken through a pipe. The source of the standard output is
specified on the command line that runs the perlscript, not in the perlscript itself:

1 #!/bin/perl
2
3 $a = < STDIN>;
4 print "I have just input the following line:\n";
5 print $a;

1$ perlscript from your terminal’s keyboard
2$ perlscript < infile from an input file
3$ perlscript < /another/directory/infile

4$ perlscript < /dev/ttypa from someone else’s terminal’s keyboard
5$ perlscript < /dev/gizmo another hardware device
6$ perlscript < /dev/null zero bytes of input

7$ previousprog | perlscript
8$ echo $a | perlscript

#!/bin/sh
#This is a Bourne shellscript.
#Feed three lines of data into the perlscript’s standard input.

perlscript <<\!
moe
larry
curly
!

File input in perl

If your perlscript is to take all of its input from one source (e.g., one input file or one terminal), the
standard input shown above will suffice. Butif input is to be taken from more than one source (e.g., several
input files, or an input file and a terminal), use the following machinery. The < is optional in the second
argument ofopen .

1 #!/bin/perl
2
3 #Open an input file in the current directory.
4 open(INFILE1, ’< infile’) || die "$0: $!";
5
6 #Open an input file in some other directory.
7 open(INFILE2, ’< /usr/infile’) || die "$0: $!";
8
9 $a = < INFILE1>;

10 $b = <INFILE2>;
11
12 close INFILE1;
13 close INFILE2;
14 exit 0;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 31 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Input from a pipe

1$ cal
May 1994

S M Tu W Th F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

It’s traditional to deposit each line of input into the special variable$_ (pp. 6−7, 112):

1 #!/bin/perl
2
3 #Take input from cal. It produces a calendar of the current month.
4 open(CAL, ’cal |’) || die "$0: $!";
5
6 $_ = < CAL>;
7 $_ = < CAL>;
8 $_ = < CAL>;
9 $_ = < CAL>;

10
11 chop $_;
12 if ($_ eq ’ 8 9 10 11 12 13 1 4’) {
13 print "This month has a Friday the Thirteenth.\n";
14 }
15
16 close CAL;
17 print "The exit status of the cal was $?.\n";
18 exit 0;

Change lines 11−12 to any one of

if ($_ eq " 8 9 10 11 12 13 1 4\n") {
if ($_ =˜ /ˆ 8/) {
if ($_ =˜ / 14$/) {
if (/ 14$/) {

Loop through lines of input

1 #!/bin/perl
2
3 open(CAL, ’cal |’) || die "$0: $!";
4
5 $_ = < CAL>;
6 while ($_ ne ’’) {
7 c hop $_;
8 i f (/ 1 4$/) {
9 print "This month has a Friday the Thirteenth.\n";

10 last; #just like break in C
11 }
12 $_ = <CAL>;
13 }
14
15 close CAL;
16 exit 0;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 32 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Simplify the above example

= is an operator in C andperl , just as+ and- are:

$a + 10
$_ = <CAL>

Therefore$a + 10 and$_ = <CAL> are both expressions, and any expression can be used as part of a
larger expression:

($a + 10) * $b perform addition and multiplication in the same expression
($_ = <CAL>) ne ’’ perform assignment and comparison in the same expression

In both cases, the parentheses are necessary to execute the operator with lower precedence before the opera-
tor with higher precedence. See the precedence chart on p. 79.

1 #!/bin/perl
2
3 open(CAL, ’cal |’) || die "$0: $!";
4
5 while (($_ = <CAL>) ne ’’) {
6 c hop $_;
7 i f (/ 1 4$/) {
8 print "This month has a Friday the Thirteenth.\n";
9 l ast; #just like break in C

10 }
11 }
12
13 close CAL;
14 exit 0;

C programmers use the same idiom to compress awhile loop:

1 i nt c;
2
3 c = getchar();
4 while (c != EOF) {
5 putchar(c);
6 c = getchar();
7 }
8
9 while ((c = getchar()) != EOF) {

10 putchar(c);
11 }

Simplify the above example: pp. 6, 8, 66

A string counts as ‘‘true’’ if it is n ot the null string. Therefore you can change

while (($_ = <CAL>) ne ’’) {

to

while ($_ = <CAL>) {

The special variable $_

If you don’t specify which variable you want tochop , split , or print , perl will use $_ by
default. If you don’t specify which variable you want to store the value of<CAL> into, perl will use $_
by default. If you don’t specify which variable you want to store each line into in aforeach loop,perl

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 33 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

will use$_ by default. $_ is reminiscent ofit in Macintosh Hypertalk.

Thewhile loop will keep going as long as the expression in the parentheses is neither 0 nor the null
string ’’ . Therefore thene ’’ is redundant and may be omitted.

1 #!/bin/perl
2
3 open(CAL, ’cal |’) || die "$0: $!";
4
5 while (<CAL>) {
6 c hop;
7 i f (/ 1 4$/) {
8 print "This month has a Friday the Thirteenth.\n";
9 l ast; #just like break in C

10 }
11 }
12
13 close CAL;
14 exit 0;

If the input was coming from the standard input rather than a file that weopen ’ed ourselves, we
could say (p. 7)

1 #!/bin/perl
2 #Copy the standard input to the standard output.
3
4 while (<>) {
5 #Each time we arrive here, $_ is the next line read from input.
6 print; #perl prints $_ by default.
7 }

Why don’t we need a\n in the aboveprint ?

The special variable $.

$. gets a new value each time we perform input with a filehandle, i.e., each time we use the value of
<CAL>or <>:

1 #!/bin/perl
2 #Copy the standard input to the standard output.
3 #Add a line number and a blank to the start of each line.
4
5 while (<>) {
6 print "$. $_";
7 }

1$ perlscript < /etc/passwd
1 r oot:*:0:1:root:/:/bin/csh
2 nobody:Nologin:-2:-2:nobody:/:/bin/date
3 operator:*:5:28:operator:/home1/acf/operations/operator:/bin/csh
4 r is:Nologin:11:11:ris:/usr/adm/ris:/bin/sh
5 daemon:*:1:1:daemon:/:

▼ Homework 10.17: different ways of numbering the lines of input

In place of the aboveprint , what would the following ones do?

1 print $. - 1, " $_";

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 34 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

2 print $. + 999, " $_";
3 print 1001 - $., " $_";
4 print 10 * $., " $_";
5 print 1 + ($. - 1) % 10, " $_";

What goes wrong when you try

6 print "$. - 1 $_";

You can use a variable within double quotes, but you can’t perform arithmetic there.
▲

▼ Homework 10.18: output only every other line

Write a perlscript that takes in lines of standard input and outputs a copy of only the odd numbered
lines. Use$. and the%operator in anif inside thewhile loop. Writeanother perlscript that outputs
only the even numbered lines.
▲

▼ Homework 10.19: how much disk space is held back?

1$ df
Filesystem Total kbytes kbytes %
node kbytes used free used Mounted on
/dev/rz0a 15823 13452 789 94% /
/dev/rz0h 1233086 1033172 76606 93% /usr
/dev/rz1h 1233086 706050 403728 64% /home1
/dev/rz2h 1233086 982109 127669 88% /home2
/dev/ra35c 1914797 1539204 184114 89% /home3

Is theTotal column the sum of theused and free columns? Writea perlscript that takes
lines of input from thedf command, and outputs three columns: the name of the filesystem (column 1 of
the input), theTotal kbytes of the filesystem (column 2 of the input), and theTotal kbytes minus
the sum of theused andfree . What determines theamount of disk space that is held back (i.e., counted
as neitherused nor free)?

Ignore the first two lines of input: do no computation until line 3. Use$. in anif .

2$ perlscript
Filesystem total heldback
/dev/rz0a 15823 1582
/dev/rz0h 1233086 123308
/dev/rz1h 1233086 123308
/dev/rz2h 1233086 123308
/dev/ra35c 1914797 191479

▲

Tw o different ways to loop through the lines output by a program

You now know two ways to do the same thing.The first is easier to write; the second uses less mem-
ory.

1 #!/bin/perl
2
3 f oreach (‘prog‘) {
4 do s omething to $_;
5 }
6
7 open(PROG, ’prog |’) || die "$0: $!";

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 35 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

8 while (<PROG>) {
9 do s omething to $_;

10 }
11 close PROG;

Loop through a list of filenames: p. 78

Instead of looping through the lines of an input file, you can loop through a list of filenames:

1 #!/bin/perl
2
3 while (<*>) {
4 print "$_\n";
5 }
6
7 while (<*.c>) {
8 print "$_\n";
9 }

10
11 while (</other/directory/*.c>) {
12 print "$_\n";
13 }

Things you can do to the files whose names you loop through: Quick Reference Guide, p. 8

The parentheses around the argument ofunlink are required; without them,unlink would think
that its argument was the entire expression$_ || die "$0: $!" . Apparently, the precedence of|| is
higher than that of theunlink operator. See pp. 11, 22, 86−87.

1 unlink($_) || die "$0: $!";
2
3 r ename($_, "new$_") || die "$0: $!";
4 r ename($_, ’/new/directory/new$_’) || die "$0: $!";
5
6 c hmod(0755, $_) || die "$0: $!";
7 c hown(123, 456, $_) || die "$0: $!";
8
9 s ystem(’cp’, $_, "new$_") || die "$0: could not copy $_";

10 system(’cp’, $_, "/new/directory/new$_") || die "$0: could not copy $_";

▼ Homework 10.20: clean up the current directory

To test if a file is owned by the person who is running the perlscript,

if (-o $filename) {

To test if a file is not owned by the person who is running the perlscript,

if (! -o $filename) {

To test if no one has fed a file as input into any program in the last two weeks,

if (-A $file > 14) {

Write a perlscript that will loop through all the files in the current directory and remove (i.e.,
unlink) every one that is owned by someone else, or hasn’t been looked at in two weeks, or contains no
bytes, or is not a text file, or whose size is greater than 100,000 bytes, or whose name iscore , or some
combination ofthe above. See p. 82 for! , p. 89 for && and || , and p. 84 for the file test operators.Be
careful not to remove your perlscript.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 36 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 37 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Lists

An array can hold a list

Put a$ in front of the name of a variable or individual element of an array. Like C, perl requires
[square brackets] around the subscript. By default, subscripts start at zero.

1 #!/bin/perl
2
3 $a[0] = ’moe’;
4 $a[1] = ’larry’;
5 $a[2] = ’curly’;
6 $a[3] = 10;
7
8 print "$a[0]\n";
9 print "$a[1]\n";

10 print "$a[2]\n";
11 print "$a[3]\n";
12
13 print "$#a\n"; #the subscript of the last element in the array (p. 14)

1$ perlscript
moe
larry
curly
10
3

The special variable $[(p. 114)

By default, the subscripts of every array start at 0.To make them start at 1, say

$[= 1;

at the start of your perlscript.Don’t think about what would happen if you changed the value of$[after
you deposited values into an array.

Multiple assignments

Put a@in front of the name of an entire array:

1 #!/bin/perl
2 #Another way to load the same list of values into an array.
3
4 @a = (’moe’, ’larry’, ’curly’, 10);
5
6 print "$a[0]\n";
7 print "$a[1]\n";
8 print "$a[2]\n";
9 print "$a[3]\n";

10
11 print "$#a\n";

To store all the lines of a program’s output in an array,

@a = ‘prog‘;

To copy all the elements of one array into another,

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 38 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

@b = @a;

To empty out an array (p. 19),

@a = (); #Now $#a will be -1.

A l ist of values does not have to be stored in an array. It can also be stored in a list of individual vari-
ables:

1 #!/bin/perl
2
3 ($x, $y, $z, $w) = (’moe’, ’larry’, ’curly’, 10);
4
5 print "$x\n";
6 print "$y\n";
7 print "$z\n";
8 print "$w\n";

1$ perlscript
moe
larry
curly
10

Use an array to avoid a list of ‘‘elsif ’ ’s

1 #!/bin/perl
2
3 @animal = (
4 ’ monkey’, #0
5 ’ rooster’, #1
6 ’ dog’, #2
7 ’ pig’, #3
8 ’ rat’, #4
9 ’ ox’, #5

10 ’tiger’, #6
11 ’hare’, #7
12 ’dragon’, #8
13 ’snake’, #9
14 ’horse’, #10
15 ’sheep’ #11
16);
17
18 print ’What year is this? ’;
19 $year = <>;
20 print "This is the year of the $animal[$year % 12].\n";

1$ perlscript
What year is this? 1994
This is the year of the dog.

1 #!/bin/perl
2
3 print ’What year is this? ’;
4 $year = <>;
5 $remainder = $year % 12;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 39 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

6
7 if ($remainder == 0) {
8 print "This is the year of the monkey.\n";
9 } e lsif ($remainder == 1) {

10 print "This is the year of the rooster.\n";
11 } elsif ($remainder == 2) {
12 print "This is the year of the dog.\n";
13 } elsif (

Scalar context vs. array context: pp. 18−20

The value of the expression<STDIN> can be either a scalar (a single number or string) or a list,
depending on the context:

1 $a = < STDIN>; Value of<STDIN> is one line of input.
2 @a = <STDIN>; Value of<STDIN> is every line of input.

The value of the expression@acan be either a scalar or a list, depending on the context:

1 $count = @a; Value of@ais the number of elements in@a.
2 @b = @a; Value of@ais every element of@a.
3
4 if (@a > 0) {
5 print "The array contains at least one element.\n";
6 } e lse {
7 print "The array contains no elements.\n";
8 }

▼ Homework 10.21: don’t hardcode the size of the array

How can you avoid hardcoding the12 in theprint in the Chinese year program?
▲

▼ Homework 10.22: does ‘‘print’’ supply a scalar context or an array context?

Create an array named@acontaining several elements. What happens when you

1 print @a, "\n";
2 print "@a\n";

▲

Loop through a list

You can loop through a list of numbers with eitherfor or foreach :

1 f or ($i = 0; $i <= 4; $i = $i + 1) {
2 f oreach $i (0, 1, 2, 3, 4) {
3 f oreach $i (0 .. 4) { pp. 19, 89−91
4 f oreach $prime (2, 3, 5, 7, 11, 13, 17, 19, 23) {
5 f oreach $year (1914 .. 1918, 1939 .. 1945) {
6 f oreach $i ($[.. $#a) {
7 f oreach $i (@a) {
8 f oreach $i (‘prog‘) {
9 f oreach (‘prog‘) {

but you must loop through a list of strings withforeach :

1 #!/bin/perl
2

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 40 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

3 f oreach $things (’flowers’, ’young girls’, ’husbands’, ’soldiers’,
4 ’ graveyards’) {
5
6 print "Where have all the $things gone?\n";
7 }

1$ perlscript
Where have all the flowers gone?
Where have all the young girls gone?
Where have all the husbands gone?
Where have all the soldiers gone?
Where have all the graveyards gone?

1 #!/bin/perl
2 #Produce the same output as above.
3
4 f oreach (’flowers’, ’young girls’, ’husbands’, ’soldiers’, graveyards) {
5 print "Where have all the $_ gone?\n";
6 }

Loop through an array

1 #!/bin/perl
2 #Produce the same output as above.
3
4 @things = (’flowers’, ’young girls’, ’husbands’, ’soldiers’, graveyards);
5
6 f oreach (@things) {
7 print "Where have all the $_ gone?\n";
8 }

▼ Homework 10.23: loop through the perlscript’s command line arguments

Loop through the@ARGVarray. Assume that each command line argument of the perlscript is the
name of a terminal currently logged in.Within the loop,open each terminal,print an annoying mes-
sage on its screen, andclose the terminal.

Or build your own version of the Unixrm command by naming your perlscriptrm. Assume that
each command line argument of theperlscript is the name of a file.Within the loop, use therename
command to move each file to the$HOME/.trash directory. Add $$ (p. 113) to the end of the name of
each file as you move it.

1 if (@ARGV <= 0) {
2 die "$0: requires at least one command line argument\n";
3 }

▲

Several ways to loop through an array

1 #!/bin/perl
2
3 f or ($i = $[; $i <= $#ARGV; $i = $i + 1) {
4 do s omething to $ARGV[$i];
5 }
6
7 $count = grep(do something to $_, @ARGV); #Use grep in a scalar context.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 41 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

8 @a = grep(do something to $_, @ARGV); #Use grep in an array context.
9

10 while (@ARGV) { #Use @ARGV in a scalar context.
11 $argument = shift @ARGV; #Omit the @ARGV, p. 181
12 do something to $argument;
13 }

Nested loops

1 #!/bin/perl
2 #Output the Cartesian product.
3
4 f oreach $leaning (’liberal’, ’moderate’, ’conservative’) {
5 f oreach $party (’Democrat’, ’Republican’) {
6 print "$leaning $party\n";
7 }
8 }

1$ perlscript
liberal Democrat
liberal Republican
moderate Democrat
moderate Republican
conservative Democrat
conservative Republican

Could you print all the Democrats first, followed by all the Republicans? Could you print out the
move instruction in your favorite assembly language with every combination of addressing modes?

▼ Homework 10.24: the 12 days of Christmas

Write a perlscript to output all the lyrics with an array such as

1 $[= 1 ; # Let the subscripts go from 1 to 12 instead of 0 to 11.
2
3 @gift = (
4 ’ partridge in a pear tree’,
5 ’ turtledoves’,
6 ’ French hens’
7) ;

▲

▼ Homework 10.25: clean up several directories

An earlier exercise looped through all the files in one directory and removed some of them. Beef it
up to clean up several directories.

Usechdir to travel to from one directory to another:

1 #!/bin/perl
2
3 c hdir ’/new/directory’ || die "$0: $!";
4
5 while (<*>) {
6 print "$_\n";
7 }

Put the above statements in aforeach loop that will loop through the directory names.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 42 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 43 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Subroutines: pp. 50−53, 99−102

1 #!/bin/perl
2
3 print "There’s a man who lives a life of danger\n";
4 print "To everyone he meets he stays a stranger\n";
5 print "With every move he makes, another chance he takes\n";
6 print "Odds are he won’t live to see tomorrow.\n\n";
7
8 &chorus;
9

10 print "Beware of pretty faces that you find\n";
11 print "A pretty face can hide an evil mind\n";
12 print "Be careful what you say, or you’ll give yourself away\n";
13 print "Odds are he won’t live to see tomorrow.\n\n";
14
15 &chorus;
16
17 print "Swinging on the Riviera one day\n";
18 print "Lying in a Bombay alley the next day\n";
19 print "Don’t let the wrong words slip while kissing persuasive lips\n";
20 print "Odds are he won’t live to see tomorrow.\n\n";
21
22 &chorus;
23
24 sub chorus
25 {
26 foreach (1 .. 2) {
27 print "Secret Agent Man, Secret Agent Man\n";
28 print "They’ve given you a number, and taken ’way your name.\n";
29 }
30
31 print "\n";
32 }

▼ Homework 10.26: use an array

Print the three verses with a singleprint statement instead of the 12print ’s used above. Do this
with an array named@verse that will contain three elements. Each element will be a string containing
four lines.

1 @verse = (
2
3 " There’s a man who lives a life of danger
4 To everyone he meets he stays a stranger
5 With every move he makes, another chance he takes
6 Odds are he won’t live to see tomorrow.",
7
8 " Beware of pretty faces that you find
9 A pretty face can hide an evil mind

10 Be careful what you say, or you’ll give yourself away
11 Odds are he won’t live to see tomorrow.",
12
13 #etc.

▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 44 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Arguments and return value

You rarely need thereturn statement, pp. 53, 99, 173.

1 #!/bin/perl
2
3 $i = 1 0;
4 $sum = &sum($i, 20);
5 print "The sum is $sum.\n";
6
7 s ub sum {
8 $count = @_;
9 print "I received $count command line arguments.\n";

10 print "The first argument is $_[0], the second is $_[1].\n";
11 $_[0] + $_[1];
12 }

1$ perlscript
I r eceived 2 command line arguments.
The first argument is 10, the second is 20.
The sum is 30.

Call by reference

Call by reference allows a subroutine to change the value of a variable passed to it.

1 #!/bin/perl
2
3 $i = 1 0;
4 &f($i);
5 print "The new value of \$i is $i.\n";
6
7 s ub f {
8 i f (@_ <= 0) {
9 die "$0: the function f requires at least one argument";

10 }
11 $_[0] = $_[0] + 1;
12 }

1$ perlscript
The new value of $i is 11.

Call by value

Call by value prohibits a subroutine from changing the value of a variable passed to it.Warning:
without the wordlocal , you would get call by reference.

1 #!/bin/perl
2
3 $i = 1 0;
4 $j = 2 0;
5 &f($i, $j);
6 print "The value of \$i is $i.\n";
7
8 s ub f {
9 die "$0: the function f requires at least two arguments" if @_ <= 0;

10 local($firstarg, $secondarg) = @_;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 45 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

11 $firstarg = $firstarg + 1;
12 }

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 46 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Associative arrays

What associative arrays are for: pp. 29−32

The first two examples are real C programs; the third is imaginary.

1 /* I nput a month number (1 to 12), output the number of days in the
2 month (1 to 31). */
3
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 i nt length[] = {
8 0, / * d ummy, so that January will have subscript 1 */
9 31, /* January */

10 28, /* February */
11 31, /* March */
12 30, /* April */
13 31, /* May */
14 30, /* June */
15 31, /* July */
16 31, /* August */
17 30, /* September */
18 31, /* October */
19 30, /* November */
20 31 /* December */
21 };
22 const int n = 12;
23
24 main (int argc, char **argv)
25 {
26 int month;
27
28 scanf ("%d", &month);
29
30 if (1 <= month && month <= n) {
31 printf ("It has %d days.\n", length[month]);
32 exit (0);
33 } else {
34 fprintf (stderr, "%s: input must be in range 1 to %d inclusive\n",
35 argv[0], n);
36 exit (1);
37 }
38 }

1 /* I nput a month name, output the number of days in the month (1 to 31). */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5
6 t ypedef struct {
7 c har *name; /* name of the month */
8 i nt length; /* number of days */
9 } month;

10
11 month a[] = {

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 47 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

12 {"January", 31},
13 {"February", 28},
14 {"March", 31},
15 {"April", 30},
16 {"May", 31},
17 {"June", 30},
18 {"July", 31},
19 {"August", 31},
20 {"September", 30},
21 {"October", 31},
22 {"November", 30},
23 {"December", 31}
24 };
25 const int n = 12;
26
27 main (int argc, char **argv)
28 {
29 char monthname[100];
30 month *p;
31
32 scanf ("%s", monthname);
33
34 for (p = a; p < a + n; ++p) {
35 if (strcmp(p->name, monthname) == 0) {
36 printf ("It has %d days.\n", p->length);
37 exit (0);
38 }
39 }
40
41 fprintf (stderr, "%s: input must be name of a month\n", argv[0]);
42 exit (1);
43 }

1 /* I nput a month name, output the number of days in the month (1 to 31). */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5
6 i nt length[];
7 c onst int n = 12;
8
9 main (int argc, char **argv)

10 {
11 char monthname[100];
12
13 length["January"] = 31;
14 length["February"] = 28;
15 length["March"] = 30;
16 length["April"] = 30;
17 length["May"] = 31;
18 length["June"] = 30;
19 length["July"] = 31;
20 length["August"] = 31;
21 length["September"] = 30;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 48 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

22 length["October"] = 31;
23 length["November"] = 30;
24 length["December"] = 31;
25
26 scanf ("%s", monthname);
27 if (length[monthname] != 0) {
28 printf ("It has %d days.\n", length[monthname]);
29 exit (0);
30 } else {
31 fprintf (stderr, "%s: input must be name of a month\n", argv[0]);
32 exit (1);
33 }
34 }

1 #!/bin/perl
2 #Input a month name, output the number of days in the month (1 to 31).
3
4 $length{’January’} = 31;
5 $length{’February’} = 28;
6 $length{’March’} = 30;
7 $length{’April’} = 30;
8 $length{’May’} = 31;
9 $length{’June’} = 30;

10 $length{’July’} = 31;
11 $length{’August’} = 31;
12 $length{’September’} = 30;
13 $length{’October’} = 31;
14 $length{’November’} = 30;
15 $length{’December’} = 31;
16
17 $monthname = <>;
18 chop $monthname
19
20 if (defined $length{$monthname}) {
21 print "It has $length{$monthname} days.\n";
22 exit 0;
23 } else {
24 die "$0: input must be name of a month\n";
25 }

1 #!/bin/perl
2 #Input a month name, output the number of days in the month (1 to 31).
3
4 %length = (
5 ’ January’, 31,
6 ’ February’, 28,
7 ’ March’, 30,
8 ’ April’, 30,
9 ’ May’, 31,

10 ’June’, 30,
11 ’July’, 31,
12 ’August’, 31,
13 ’September’, 30,
14 ’October’, 31,

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 49 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

15 ’November’, 30,
16 ’December’, 31
17);
18
19 $monthname = <>;
20 chop $monthname;
21
22 if (defined $length{$monthname}) {
23 print "It has $length{$monthname} days.\n";
24 exit 0;
25 } else {
26 die "$0: input must be name of a month\n";
27 }

Another natural use for an associative array

1$ echo $HOME
/home1/m/mm64

2$ echo $LOGNAME
mm64

1 #!/bin/perl
2
3 print "$ENV{’HOME’}\n"; #the environment variable $HOME
4 print "$ENV{’LOGNAME’}\n"; #the environment variable $LOGNAME
5
6 print "$ARGV[0]\n"; #the first command line argument
7 print "$ARGV[1]\n"; #the second command line argument
8 print "$ARGV[2]\n"; #the third command line argument

How much memory is each person using?

1$ ps -acux
USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
meretzky 28773 0.0 0.1 376 148 p8 I 0:02 csh
meretzky 9329 0.0 0.5 1048 844 p8 R 0:00 ps
meretzky 9328 0.0 0.1 348 104 p8 S 0:00 csh
abc1234 9327 0.0 0.0 0 0 p8 Z 0:00 <exiting>
meretzky 9180 0.0 0.1 344 176 p8 S 0:00 vi

2$ ps -acux | tail +2
meretzky 28773 0.0 0.1 376 148 p8 I 0:02 csh
meretzky 9329 0.0 0.5 1048 844 p8 R 0:00 ps
meretzky 9328 0.0 0.1 348 104 p8 S 0:00 csh
abc1234 9327 0.0 0.0 0 0 p8 Z 0:00 <exiting>
meretzky 9180 0.0 0.1 344 176 p8 S 0:00 vi

1 #!/bin/perl
2
3 $[= 1 ;
4 open(PS, "ps -acux | tail +2 |") || die "$0: $!";
5
6 while (<PS>) {

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 50 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

7 @F = split;
8 $sum{$F[1]} = $sum{$F[1]} + $F[5];
9 }

10
11 foreach $loginname (keys(%sum)) {
12 print "$loginname\t$sum{$loginname}\n";
13 }

nabutvsk 596
dube 1092
goodmanj 348
volchan 372
bogomolv 684

To loop through the array in alphabetical order, say

foreach $loginname (sort keys(%sum)) {

▼ Homework 10.27: how much time has each person used?

Write a perlscript to loop through the lines output byps -acux and sum up theTIME instead of the
SZ. Usesplit to deposit theTIME into $F[$#F - 1] (the next-to-last element of the array@F. Then
split $F[$#F - 1] into two halves at the colon:

($minutes, $seconds) = split(’:’, $F[$#F - 1]);

Do the extra variables$number_of_fields and$time make the perlscript easier to understand
or annoyingly verbose:

1 @F = split;
2 $number_of_fields = $#F;
3 $time = $F[$number_of_fields - 1];
4 ($minutes, $seconds) = split(’:’, $time);

▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 51 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Implicit input-dri ven looping

Emulate grep and awk with the -n option: p. 355

A perlscript is often nothing more than a loop that processes each line of input:

1 #!/bin/perl
2 #Output the lines of input that are too long to print on a page.
3
4 while (<>) {
5 i f (length($_) > 80) {
6 print $_;
7 }
8 }

1 #!/bin/perl
2 #Output the lines of input that are too long to print on a page.
3
4 while (<>) {
5 print if length > 80;
6 }

In this case, use the-n option instead of writing an explicitwhile loop:

1 #!/bin/perl -n
2 #Output the lines of input that are too long to print on a page.
3
4 print if length > 80;

1$ perl -ne ’print if length > 80;’ Final semicolon is optional.
2$ perl -ne ’print "$.\n" if length > 80’
3$ perl -ne ’print "$. $_" if length > 80’

When you combine two or more command line arguments such as-p and -e into the single argu-
ment-pe , thee must come last.

▼ Homework 10.28: find all the anti’s

Fill in the single-quoted string so that

1$ perl -ne ’ ???’ / usr/dict/words

will output all the lines in the file/usr/dict/words that start withanti .
▲

Autosplit mode: p. 352

1 #!/bin/perl
2
3 while (<>) {
4 @F = split;
5 print "The first word on the line is $F[0]\n";
6 }

1 #!/bin/perl -n
2
3 @F = split;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 52 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

4 print "The first word on the line is $F[0]\n";

1 #!/bin/perl -an
2
3 print "The first word on the line is $F[0]\n";

1$ who | perl -ane ’print "$F[0]\n"’

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 53 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Regular expressions: pp. 103−106

Print the lines of input that contain a given string

Always write a regular expression within/ slashes/ .

1 #!/bin/perl
2
3 while (<>) {
4 i f ($_ =˜ /mania/) {
5 print $_;
6 }
7 }

1 #!/bin/perl
2
3 while (<>) {
4 print $_ if $_ =˜ /mania/;
5 }

1 #!/bin/perl
2
3 while (<>) {
4 print if /mania/;
5 }

1 #!/bin/perl -n
2
3 print if /mania/;

1$ perl -ne ’print if /mania/’ /usr/dict/words | more

Try phobia, esque, etc.

Regular expressions containing ˆ

Search for your favorite prefixes: macro, mega, micro, octo, over, under, Italo, para, pre, pseudo,
voodo, etc.

1 perl -ne ’print if /ˆanti/’ /usr/dict/words | more
2 ls -l | t ail +2 | perl -ne ’print if /ˆ-/’ List only the files.
3 ls -l | t ail +2 | perl -ne ’print if /ˆd/’ List only the directories.
4 ls -l | t ail +2 | perl -ane ’print "$F[7]\n" if /ˆd/’
5 perl -ne ’print if /ˆ#/’ prog.c
6 perl -ne ’print if ! /ˆ#/’ prog.c
7 perl -ne ’print unless /ˆ#/’ prog.c
8 perl -ne ’print unless /ˆC/’ prog.f Output the Fortran program sans comments.

Regular expressions containing ˆ and $

Search for your favorite suffixes: able, mania, maniac, ocracy, phobiac, oxide, tomy (as in
‘‘ lobotomy’’), ist, ity, eqsue, fish, etc.

1 perl -ne ’print if /phobia$/’ /usr/dict/words | more

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 54 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

2 perl -ne ’print if /:/bin/csh$/’ /etc/passwd | more bad
3 perl -ne ’print if mx:/bin/csh$x’ /etc/passwd | more p.125
4 perl -ne ’print unless mx:/bin/csh$’ /etc/passwd | more
5 perl -ne ’print if /ˆ$/’ prog.c | wc -l
6 perl -ne ’print unless /ˆ$/’ prog.c | lpr
7 perl -ne ’print if /\ˆ/’ search for a caret
8 perl -ne ’print if /\$/’ search for a dollar sign
9 perl -ne ’print if /\\/’ search for a backslash

▼ Homework 10.29: search for pathalogical lines

Search for lines whose first character is a caret.Search for lines whose last character is a dollar sign.
Search for lines whose first two characters are a backslash and a caret.
▲

The . wildcard

1 perl -ne ’print if /separate/’ /usr/dict/words
2 perl -ne ’print if /seperate/’ /usr/dict/words
3 perl -ne ’print if /sep.rate/’ /usr/dict/words

4 perl -ne ’print if /ˆc.k/’ /etc/passwd
5 perl -ne ’print if /\./’

6 perl -ne ’print if /ˆ...u.$/i’ /usr/dict/words case insensitive, p. 125
7 perl -ne ’print if /ˆ...u./i’ /usr/dict/words
8 perl -ne ’print if /...u.$/i’ /usr/dict/words
9 perl -ne ’print if /...u./i’ /usr/dict/words

10 perl -ne ’print if /ˆb.g$/i’ /usr/dict/words
11 perl -ne ’print if /ˆp.t$/i’ /usr/dict/words

List the files that anyone can execute:

12 ls -l | perl -ne ’print if /ˆ-........x/’ /usr/dict/words
13 ls -l | perl -ne ’print if /ˆ-.{8}x/’ /usr/dict/words p. 103 for{}

▼ Homework 10.30: Capitalism, Communism, Nationalism

The Twentieth Century has been a battleground of conflicting isms, from absenteeism to Zionism.
List the isms (i.e., words that end with ‘‘ism’’ in either upper or lowercase) in/usr/dict/words that
are at least six characters long. Pipe the output ofperl into

pr -4 -l22 -t minus lowercase L twenty-two

to output the isms in four columns of 22 lines each.
▲

The [] wildcard

. any character at all
[ABCDEFGHIJKLMNOPQRSTUVWXYZ] any uppercase letter
[A-Z] any uppercase letter; no space on either side of dash, can’t say [Z-A]

Suppose you had a file of names, one per line:

perl -ne ’print if /ˆ[A-K]/’ names > ak
perl -ne ’print if /ˆ[L-Z]/’ names > lz

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 55 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

perl -ne ’print if /ˆ[A-K]/i’ names > ak
perl -ne ’print if /ˆ[A-Ka-k]/’ names > ak

[a-z] any lowercase letter
[A-Za-z] any letter; can’t say [A-z] —see/usr/pub/ascii
[a-zA-Z] another way to do the same thing

[0123456789] any digit
[0-9] any digit
\d any digit, p. 104

[0-7] any octal digit
[0-9A-Fa-f] any hexadecimal digit
[A-Za-z0-9_] any character allowed in a C or C++ variable name
\w any character allowed in a C or C++ variable name, p. 104
[\ t\n] a blank, a tab, or a newline
\s a blank, a tab, or a newline, p. 104

perl -ne ’print if /[02468]$/’ assume each line ends with a number; search for even

perl -ne ’print if /ˆ[0-9][0-9][0-9][0-9][0-9]$/’ United States zip code
perl -ne ’print if /ˆ\d\d\d\d\d$/’ United States zip code, p. 104
perl -ne ’print if /ˆ\d{5}$/’ United States zip code, p. 103
perl -ne ’print unless /ˆ\d{5}$/’

perl -ne ’print if /ˆ[A-Z][0-9][A-Z] [0-9][A-Z][0-9]$/’ Canadian zip code
perl -ne ’print if /ˆ[A-Z]\d[A-Z] \d[A-Z]\d$/’ Canadian zip code

perl -ne ’print if /\[/’ search for a [
perl -ne ’print if /\]/’ search for a [

Would a line consisting of only the three charactersABCbe output if you fed it into

perl -ne ’print if /ˆ[ABC]$/’
perl -ne ’print if /[ABC]/’

▼ Homework 10.31: Bonfire of the Vanities

Before losing consciousness, he was able to give his mother the first letter—R—
and five possibilities for the second letter—E, F, B, R, P—of the license plate of
the luxurious Mercedes-Benz that ran him down on Bruckner Boulevard and sped
off.

—Chapter 12

Write a command that will output the number of words in/usr/dict/words that match the
above description and that are at most seven characters long. Output only one line, containing only one
number. Search for both upper and lowercase: don’t missRPM.

Use length and&& inside the conditional expression of theperl if . Pipe the output ofperl
-ne into wc -l . Or dispense withwc -l and write a perlscript with an explicit while loop and aprint
statement after thewhile loop.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 56 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 10.32: abc1234

How many lines in the file/etc/passwd begin with login names of the formabc1234 ? Search
for lines that start with three lowercase letters, four digits, and a colon. Output only one line, containing
only one number. A colon is not a special character in a regular expression, so you need no\ in front of it.
▲

▼ Homework 10.33: 737-3783

Write a perlscript namedspelledby to output all the words in/usr/dict/words that are
spelled by your seven-digit phone number. Use someone else’s number if yours contains a zero or one.
Search for both upper and lowercase.

No luck? Try your first three and last four digits separately; or your first four and last three, etc.
Remove theˆ and$ only as a last resort.

2 abc 6 mno
3 def 7 prs there’s no q
4 ghi 8 tuv
5 j kl 9 wxy there’s no z

▲

▼ Homework 10.34: administrative aid for the NYU School of Continuing Education

Write a perlscript nameddaycount that will output how many of the specified week days there are
in a given month. Thefirst argument must consist of exactly one uppercase letter followed by exactly two
lowercase letters. Spell ThursdayThu, to make it easy to use the first word output bydate as the first
argument ofdaycount . Output only one line, containing only one number. For example,

1$ daycount Tue 11 2006
4

This perlscript must take exactly three command line arguments: output an error message otherwise.Make
sure that

$#ARGV == 2
@ARGV == 3

If the user typed the three command line arguments correctly, daycount must output only one line,
containing only one number and nothing else.

To count how many Sundays there are, count the lines that have a digitin the first field:

2$ cal 11 2006
November 2006

S M Tu W Th F S
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

1 #!/bin/perl
2 #Not a complete perlscript.
3
4 open (CAL, ’cal 11 2006 |’
5
6 while (<CAL>) {
7 i f ($. >= 3) {
8 @F = split;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 57 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

9 i f ($F[0] =˜ /[0-9]/) {
10 $count = $count + 1;
11 }
12
13 while (<CAL>) {
14 if ($. >= 3) {
15 @F = split;
16 ++$count if $F[0] =˜ /\d/;
17

To count the Mondays, search for lines that have a digit in $F[1] . To count the Tuesdays, search for lines
that have a digit in $F[2] .

But don’t write a chain of seven elsif ’s. Use an associative array:

1 %a = (
2 ’ Sun’, 0,
3 ’ Mon’, 1,
4 ’ Tue’, 2, #etc.

Use$ARGV[0] (the first command line argument) as the subscript of the associative array:

$a{$ARGV[0]}

Use$a{$ARGV[0]} (a number in the range 0 through 7 inclusive) as the subscript of the array@F:

$F[$a{$ARGV[0]}]

Use$F[$a{$ARGV[0]}] as the left operand o the=˜ .
▲

Parentheses and|

1 perl -ne ’print if /prochoice|prolife/’
2 perl -ne ’print if /pro(choice|life)/’
3 perl -ne ’print if /(pro|anti)(choice|life|abortion)/’
4 perl -ne ’print if /ˆ(..)*$/’ a line of even length
5 perl -ne ’print unless /ˆ(..)*$/’ a line of odd length

[ˆ] wildcard

[A-Z] any uppercase letter
[] !"#$%&’()*+,./0123456789:;<=>?@[\ˆ_‘abcdefghijklmnopqrstuvwxyz{|}˜-]
[ˆABCDEFGHIJKLMNOPQRSTUVWXYZ] any character except an uppercase letter
[ˆA-Z] any character except an uppercase letter
[ˆABC] any character except an uppercaseA, B, or C
[ˆA] any character except an uppercaseA

perl -ne ’print if /q[ˆu]/i’ /usr/dict/words
QED
Qatar

perl -ne ’print if /q$/i’ /usr/dict/words
Iraq

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 58 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

perl -ne ’print if /q([ˆu]|$)/i’ /usr/dict/words p. 103
Iraq
QED
Qatar

See the wildcard abbreviations on p. 104:\d , \dD , etc.

The difference between [ˆ and ‘‘unless’’

perl -ne ’print if /[ˆA]/’ every line that contains a character other thanA
perl -ne ’print unless /A/ every line that has noA
ABC suppose you input this line to the last twoperl ’s

Search for a number or word that is not part of a longer number or word

To search for the number100 without finding longer numbers such as21003 ,

1 perl -ne ’print if /100/’
2 perl -ne ’print if /[ˆ0-9]100[ˆ0-9]/’ Does this output every line that contains100?
3 perl -ne ’print if /\D100\D/’ p. 104
4 perl -ne ’print if /ˆ100$/’
5 perl -ne ’print if /(ˆ|\D)100(\D|$)/’

To search for a variable namedmax without finding longer names such asmaximumor xmax,

6 perl -ne ’print if /max/’
7 perl -ne ’print if /[ˆA-Za-z0-9_]max[ˆA-Za-z0-9_]/’
8 perl -ne ’print if /\Wmax\W/’ p. 104
9 perl -ne ’print if /(ˆ|\W)max(\W|$)/’

10 perl -ne ’print if /\bmax\b/’ word boundary, p. 103

▼ Homework 10.35: find theHIV newsgroups

The network news is divided by topic intonewsgroups,i.e., bulletin boards; seeman -t nn . The
names of the newsgroups are listed one per line by

nngrep -a | grep -v ’ˆConnecting’ | more

Write one perl command to output only the names of each newsgroups whose name containsHIV .
Search for uppercase and lowercase. TherewereHIV newsgroups on November 22, 2006.
▲

Search for a non-printing character

The file/usr/pub/ascii shows that the first and last printable characters (except for the tab) are
blank and tilde. The wildcard

[- ˜] one blank after the[

would therefore match all of them (except for the tab), and the wildcard

[- ˜] one blank after the[, one tab before the]

would match all of them.To search for lines containing a non-printing character,

perl -ne ’print if /[ˆ -˜]/’ one blank after thê, one tab before the]
perl -ne ’print if /[ˆ\x20-\x7E\x09]/’ p. 104

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 59 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 10.36: search for unusual execute permission: pp. 54−55

The fourth character of every line (except the first) output byls -l is a dash or a lowercasex , right?

1$ cd $m46/handout
2$ ls -l | tail +2
drwxr-xr-x 2 mm64 users 10 Jan 31 2001 answer
-r--r--r-- 1 mm64 users 1307 Nov 22 13:30 handout10.ms

Search for all the lines in the output ofls -l /usr/bin | tail +2 whose fourth character is neither a
dash nor a lowercasex . Useunless .
▲

What can go wrong with a wildcard with [square brackets]

Never use[square brackets] unless you are writing more than one character in them:

1 grep ’[ABC]’ good
2 grep ’[AB]’ good
3 grep ’[A]’ bad ☞
4 grep ’A’ good

You need no dash when you write two consecutive characters in[square brackets] :

5 grep ’[A-C]’ good
6 grep ’[A-B]’ bad
7 grep ’[AB]’ good

See the top of p. 104:

8 perl -ne ’print if /[ABC]/’
9 perl -ne ’print if /[A-C]/’

10 perl -ne ’print if /[A\-C]/’
11 perl -ne ’print if /[AC-]/’

What the asterisk is for: p. 103

Never write an asterisk in a regular expression without a character or wildcard immediately to the left
of it. .* (i.e., dot star) in a regular expression has the same meaning as* in the shell language.

1 perl -ne ’print if /ˆ[A-K]/’ names > ak no leading blanks
2 perl -ne ’print if /ˆ [A-K]/’ names >> ak one leading blank
3 perl -ne ’print if /ˆ [A-K]/’ names >> ak two leading blanks
4 perl -ne ’print if /ˆ [A-K]/’ names >> ak three leading blanks

5 perl -ne ’print if /ˆ *[A-K]/’ names > ak zero or more leading blanks

6 perl -ne ’print if /21210040/’ separated by no characters
7 perl -ne ’print if /212.10040/’ separated by one character
8 perl -ne ’print if /212..10040/’ separated by two characters
9 perl -ne ’print if /212...10040/’ separated by three characters

10 perl -ne ’print if /212.{3}10040/’ separated by three characters, p. 103

10 perl -ne ’print if /212.*10040/’ separated by zero or more characters
11 perl -ne ’print if /212.+10040/’ separated by one or more characters
12 perl -ne ’print if /212.+?0040/’ separated by zero or one characters

11 perl -ne ’print if /ˆanti.*ism$/i’ /usr/dict/words
12 perl -ne ’print if /ˆanti/’ /usr/dict/words | perl -ne ’print if /ism$/’

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 60 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

13 perl -ne ’print if /A/’ Search for lines containing one or moreA’s
14 perl -ne ’print if /A.*A/’ Search for lines containing two or moreA’s.
15 perl -ne ’print if /A.*A.*A/’ Search for lines containing three or moreA’s.
16 perl -ne ’print unless /’A.*A.*A/’ Search for lines containing less than threeA’s.

Examples of regular expressions using [ˆ] and *

To output the lines that contain phone numbers in area code 212 (i.e., lines that contain212 with no
digits ahead of them):

1 perl -ne ’print if /ˆ[ˆ0-9]*212/’
2 perl -ne ’print if /ˆ\D*212/’ p. 104

To output the lines in the file/etc/passwd with no password,

3 perl -ne ’print if /ˆ[ˆ:]*::/’ /etc/passwd
4 perl -ne ’@F = split(/:/, $_); print if length($F[1]) == 0’ /etc/passwd
5 perl -ne ’@F = split(/:/); print if length($F[1]) == 0’ /etc/passwd
6 perl -ne ’@F = split(/:/); print if $F[3] == 2048’ /etc/passwd

7 perl -ne ’print if /A/’ lines with one or moreA’s
8 perl -ne ’print if /ˆ[ˆA]*A[ˆA]*$/’ lines with exactly oneA
9 perl -ne ’print if /ˆ[ˆA]*A[ˆA]*A[ˆA]*$/’ lines with exactly twoA’s

1 #!/bin/perl
2 Print every line of input that has an odd number of single quotes.
3
4 print "$. $_" unless /ˆ([ˆ’]*’[ˆ’]*’[ˆ’]*)*$/;

To output the name of every directory on the machine, one per line, run thisfind command in the
background because it takes so long:

1$ find / -type d -print > $HOME/find.out &

To output the name of every directory on the third level (e.g.,/usr/dict , /home1/a , /home1/m , etc.),
grep for the lines that have exactly two slashes:

2$ ps -lx When you no longer seefind , then you can...
3$ perl -ne ’print if /ˆ/[ˆ/]*/[ˆ/]*$/’ find.out wrong
4$ perl -ne ’print if m:ˆ/[ˆ/]*/[ˆ/]*$:’ find.out right, p. 125

Search for the most common bug in C

To output the lines inprog.c that containif (a = b) , wherea andb are any expressions,

1 perl -ne ’print if /if *(.*=.*)/’ prog.c
2 perl -ne ’print if /if *(.*[ˆ=]=[ˆ=].*)/’ prog.c
3 perl -ne ’print if /if *(.*[ˆ<>!=]=[ˆ=].*)/’ prog.c

Allow zero or more blanks between the word if and the left parentheses. The first version finds lines such
as

if (a = b)

but unfortunately it also finds lines such as

if (a == b)

—exacly what we want to avoid. Thesecond version is smart enough to avoid if (a == b) , but unfortu-
nately it still finds line such as

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 61 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

if (a != b)
if (a <= b)

How not to write regular expressions

Here are three ways of doing the same thing. Write only the first one.

1 perl -ne ’printr if /moe/’ good
2 perl -ne ’print if /moe.*/’ bad
3 perl -ne ’print if /moe.*$/’ bad

Similarly, here are three ways of doing the same thing. Write only the first one.

4 perl -ne ’print if /moe/’ good
5 perl -ne ’print if /.*moe/’ bad
6 perl -ne ’print if /ˆ.*moe/’ bad

Why aren’t the following lines three ways of doing the same thing?

7 perl -ne ’print if /212’
8 perl -ne ’print if /\D*212’ \D means[ˆ0-9] , p. 104
9 perl -ne ’print if /ˆ\D*212’

3212 suppose you input this line to the last threegrep ’s

▼ Homework 10.37: a facetious example

Write a perlscript to output all the lines in/usr/dict/words that contain all five vowels in
alphabetical order, with each vowel appearing exactly once.‘‘ Y’ ’ is not a vowel. Searchfor both upper and
lowercase. Examples:abstemious, facetious.
▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 62 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Tagged regular expressions: pp. 104−106
Each time you use a regular expression, you automatically give values to the three variables$‘ , $&,

and$’ (pp. 111−112):

1 #!/bin/perl -n
2 #Look for lines of input containing a zip code.
3
4 if ($_ =˜ /[0-9][0-9][0-9][0-9][0-9]/) {
5 print "Line $. contains the zip code $&.\n";
6 print "The part of line $. before the zip code was $‘.\n";
7 print "The part of line $. after the zip code was $’.\n";
8 }

You could change line 4 to

if ($_ =˜ /\d\d\d\d\d/) {
if ($_ =˜ /\d{4}) {

In the above example,$& was the entire section of the line matched by the regular expression (in this
case, the five digits). To store only a part of this section into a variable, put parentheses in the regular
expression:

1 #!/bin/perl -n
2 #Look for lines of input containing phone number.
3
4 if ($_ =˜ /(\d{3})-(\d{3}-\d{4})/) {
5 print "The area code is $1 and the phone number is $2.\n";
6 print "The area code and phone number together are $&.\n";
7 }

You can also say (pp. 125−126)

1 #scalar context
2 $success_or_failure = ($_ =˜ /(\d{3})-(\d{3}-\d{4})/);
3
4 #array context
5 ($areacode, $pohonenumber) = ($_ =˜ /(\d{3})-(\d{3}-\d{4})/);
6 ($areacode, $pohonenumber) = /(\d{3})-(\d{3}-\d{4})/;

▼ Homework 10.38: don’t be deceived by a longer number

Change the zip code example above so that it matches only those numbers that are exactly five digits
long. Requirethat the zip code be preceded by the start of the line or a non-digit; require that the zip code
be followed by the end of the line or a non-digit. Allow nine-digit as well as five-digit zip codes:

/\d{5}(-\d{4})?/ ? means zero or one (i.e., optional), p. 104

▲

▼ Homework 10.39: look for assembly language labels

Write a perlscript with the-n option that will input an assembly language file and output every label
that is defined.A label is defined by following it with a colon.Just to be safe, look at a sample of your
own local assembly language first.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 63 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

$$11:
.ascii "Tell me a knock-knock joke.\X0A\X00":1

main:
subu $sp, 296
sw $31, 28($sp)

$32:
addu $8, $25, 1
ble $8, 10, $32

▲

▼ Homework 10.40: list the unreferenced labels

In the above example, the label$32 was referenced (i.e., mentioned) in the ‘‘branch if less than or
equal’’ i nstruction. Writea perlscript that will output all the labels that are defined but never referenced.

open the input file of assembly language. As you read each line, use each defined label as the sub-
script in an associative array. Store a zero into each element of the associative array:

$a{$label} = 0;

When you are done,close the file. Thenopen the file again. Thistime, count how many times the label
is referenced: simply increment the value of each array element whenever you encounter a reference to the
corresponding label.

$a{$label} = $a{$label} + 1;

When you are done, loop through the associative array and print every subscript whose value is still zero.
▲

Use $1, $2, $3 inside the regular expression

Output the lines that contain a double character:

perl -ne ’print if /aa/’ /usr/dict/words
perl -ne ’print if /bb/’ /usr/dict/words
perl -ne ’print if /cc/’ /usr/dict/words

Write \1 instead of$1 inside the regular expression (p. 104):

perl -ne ’print if /(.)\1/’ /usr/dict/words a better way
accept
too

Output the lines that begin with a double character:

perl -ne ’print if /ˆ(.)\1/’ /usr/dict/words
eel
ooze

Output the lines that begin and end with the same character:

perl -ne ’print if /ˆ(.).*\1$/i’ /usr/dict/words
algebra
Celtic

Output the lines that contain a triple character:

perl -ne ’print if /’(.)\1\1/i’ /usr/dict/words
IEEE Institute of Electrical and Electronics Engineers
viii Roman numeral 8

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 64 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

▼ Homework 10.41: illegal, immoral, fattening —Alexander Woollcott (1887−1943)

Find all the words in/usr/dict/words that start with a lowercase ‘‘i’ ’, followed by a double let-
ter. Restrict yourself to words of at least six characters. What do most of these words have in common?
▲

Look for mor e than one pair of characters

per -ne ’print if /(.)\1(.)\2/i’ /usr/dict/words
raccoon
Tallahassee

per -ne ’print if /(.)\1(.)\2$/i’ /usr/dict/words
Tallahassee
tattoo

perl -ne ’print if /(.)\1..*(.)\2/i’ /usr/dict/words
ballyhoo
booboo
butterball

perl -ne ’print if /ˆ(.)\1..*(.)\2$/i’ /usr/dict/words
eelgrass

perl -ne ’print if /(.)\1.*(.)\2.*(.)\3/i’ /usr/dict/words
committee
Mississippi
Tennessee

▼ Homework 10.42: repeated strings of characters

Find all the words in/usr/dict/words that contain two consecutive copies of the same group of
four characters. Use this method:

perl -ne ’print if /(...)\1/i’ /usr/dict/words
alfalfa
clinging
instantaneous
murmur

▲

▼ Homework 10.43: lines composed of two identical parts

Find all the words in/usr/dict/words that are composed of three identical parts.Each part
must consist of one or more characters. Ignore the difference between upper and lowercase. Usethis
method:

perl -ne ’print if /’ˆ(..*)\1$/’ /usr/dict/words
beriberi
ii
murmur
tutu

▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 65 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Search for palindromes

Output the three-character palindromes:

perl -ne ’print if /’ˆ(.).\1$/i’ /usr/dict/words
eye
gag

Output the four-character palindromes:

perl -ne ’print if /’ˆ(.)(.)\2\1$/i’ /usr/dict/words
peep
toot

perl -ne ’print if /’ˆ(.)(.)\1\2$/i’ /usr/dict/words not palindromes
Mimi
papa
perl -ne ’print if /’ˆ(..)\1$/i’ /usr/dict/words does the same thing

Output the five-character palindromes:

perl -ne ’print if /’ˆ(.)(.).\2\1$/i’ /usr/dict/words
Ababa Addis
madam Madam, I’m Adam.

▼ Homework 10.44: six- and seven-character palindromes: hallah, reviver

Output the six- and seven-character palindromes in the file/usr/dict/words .
▲

Look for useless mov instructions

Imagine an assembly language where the register names arer0 , r1 , r2 , ..., r9 . The following
grep command outputs the lines in an assembly language file that contain uselessmov instructions, i.e.,
mov r0,r0 or mov r1,r1 .

perl -ne ’print if /mov (r[0-9]),\1/’ file.s

What a regular expression can’t do

There are some things that can’t be described with a regular expression. For example, you can’t ser-
ach for the syntactically correct lines in a file of arithmetic expressions:

1+2*3 correct
(1+2)*3 correct
(1+2(*3 incorrect

In fact, you can’t even serach for palindromes of any length, only for palindromes of a specific length.For
these and other searching tasks, we’ll have to use variables as well as regular expressions, or resort to
yacc .

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 66 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Substitute commands: pp. 174−176

Emulate sed with the -p option: p. 355

The first half of the substitue command (e.g.,old) is a regular expression.

1 #!/bin/perl
2 #Output a copy of the input, with every "old" changed to "new".
3
4 while (<>) {
5 $_ =˜ s /old/new/g;
6 print;
7 }

1 #!/bin/perl -n
2
3 $_ =˜ s /old/new/g;
4 print;

1 #!/bin/perl -p
2
3 $_ =˜ s /old/new/g;

1$ perl -pe ’$_ =˜ s/old/new/g;’ < infile > outfile
2$ perl -pe ’s/old/new/g’ < infile > outfile
3$ perl -pi -e ’s/old/new/g’ file edit thefile : pp. 353−354

Edit more than one file

1 #!/bin/perl -pi
2 #Edit every file given to the perlscript as a command line argument.
3 #See pp. 240, 353.
4
5 s /Acme/Bongdex/g;
6 s /1993/1994/g;

1$ perlscript *.c

‘‘ s’’ calisthenics I

The following commands can also be used insed , ed , andvi .

3
0100
00012345
123456789

s/ˆ0*//; Remove leading zeros.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 67 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

3
100
12345
123456789

s/ˆ/000000000/; Right-justify the numbers with leading zeros (two steps).

0000000003
000000000100
00000000012345
000000000123456789

s/.*(.{9})$/$1/; Remove all but last 9 characters; don’t need$.

000000003
000000100
000012345
123456789

s/.../$&,/g; Insert commas every 3 digits.

000,000,003,
000,000,100,
000,012,345,
123,456,789,

s/,$//; Remove trailing comma.

000,000,003
000,000,100
000,012,345
123,456,789

s/ˆ[0,]*//; Remove leading zeros and commas.

3
100
12,345
123,456,789

s/ˆ/$/; Add a leading dollar sign.
s/$/.00/; Add a trailing.00

$3.00
$100.00
$12,345.00
$123,456,789.00

s/ˆ/ /; Right-justify the numbers with leading blanks (two steps).

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 68 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

$3.00
$100.00
$12,345.00
$123,456,789.00

s/ˆ.*(.{15})$/$1/; Remove all but last 15 characters; don’t need$.

$3.00
$100.00

$12,345.00
$123,456,789.00

‘‘ s’’ calisthenics II

Garrent Leung

s/ {2,}/ /g; Reduce space between words to a single blank, p. 103

Garrent Leung

s/(.*) (.*)/$2, $1/;

Leung, Garrent

s/ (.).*$/ $1./;

Leung, G.

s/ˆ(.)(.*,)(.)/$3$1 $1$2$3/;

GL Leung, G.

s/ˆ...//;

Leung, G.

s/ˆ(.{6}).*,/$1,/; Truncate the last name to at most 6 characters.

Leung, G.

s/,/------,/; Pad the last name with- ’s to 6 characters (two steps).

Leung------, G.

s/ˆ(.{6}).*,/$1,/;

Leung-, G.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 69 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

s/./$& /g; Double space.
s/ $//; Remove trailing blank.

L e u n g - , G .

s/(.) /$1/g; Remove the double space.

Leung-, G.

Mor e examples of s commands

1 perl -pi -e ’s/\bmax\b/MAX/g’ prog.c
2 perl -pi -e ’s/-(\d+)/($1)/g’ prog.c

Could you change pp. 113−114 to pp. 113−4?

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 70 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Data transformation

▼ Homework 10.45: perlscript to convert Roman numerals to Arabic numerals

Insert sixs commands into the following perlscript so that it will also translate Roman numerals that
contain subtraction, i.e.,iv , ix , xl , xc , cd , and cm. Insert these new commands in the right place in the
list. Add the finalg only if necessary.

1 #!/bin/perl -pi
2 #Input one roman numeral per line, and output the corresponding
3 #arabic numeral.
4 #For example, CCXXXI becomes 231.
5
6 c hop $_;
7 $_ =˜ t r/a-z/A-Z/; #p. 194
8
9 s /I/+1/g;

10 s/V/+5/;
11
12 s/X/+10/g;
13 s/L/+50/;
14
15 s/C/+100/g;
16 s/D/+500/;
17
18 s/M/+1000/g;
19
20 eval "print $_";
21 print "\n";

▲

English to Pig Latin

#!/bin/perl -pi
#Translate English to lowercase Pig Latin: owercaselay igpay atinlay

#If the word starts with a vowel, prefix a ’w’.
s/\b([aeiou])/w$1/gi;

#Chop off first letter, move it to end, and add "ay".
s/\b([a-z])([a-z]+)/$2$1ay/gi;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 71 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Great Moments in Computer History: The First Fortran Compiler (1957)

1 #!/bin/perl -pi
2 #Fully parenthesize Fortran expressions
3 #using binary + - * / ** (no unary + or -)
4 # * becomes)*(
5 # / becomes)/(
6 # + becomes))+((
7 # - becomes))-((
8 #Finally, add ((to the start of the line and)) to the end.
9 #For example,

10 # A+B becomes ((A))+((B))
11 # A+B*C becomes ((A))+((B)*(C))
12 # A+B*C**D becomes ((A))+((B)*(C**D))
13 #The algorithm adds more parentheses than are strictly necessary.
14 #It works correctly even if the input already has some parentheses.
15
16 s/\+/))+((/g;
17 s/-/))-((/g;
18
19 #Temporarily change ** to @ so that subsequent substitute commands
20 #will not mistake ** for two multiplication symbols.
21 #Use * to search for an asterisk.
22 s/**/@/g;
23
24 s/*/)*(/g;
25 s:/:)/(:g;
26
27 #Now that multiplication has been processed, change exponentiation back to **.
28 s/@/**/g;
29
30 #Add leading ((and trailing)).
31 s/ˆ/((/;
32 s/$/))/;

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 72 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Output the name of every .c file that has not yet been compiled into a .o file

file1.c

file2.c

prog
gcc -o ˜/bin/prog file1.c file2.c

file1.c

file2.c

file1.o
gcc -c file1.c

file2.o
gcc -c file2.c

prog
gcc -o ˜/bin/prog \

file1.o file2.o

file1.c

file2.c file2.o
gcc -c file2.c

prog
gcc -o ˜/bin/prog \

file1.c file2.o

1 1$ g cc -o prog file1.c file2.c Create executable fileprog

2 2$ g cc -c file1.c Create object filefile1.o
3 3$ g cc -c file2.c Create object filefile2.o
4 4$ g cc -o prog file1.o file2.o Create executable fileprog

5 5$ g cc -o prog file1.c file2.o Create executable fileprog

1 #!/bin/perl
2 #Output the name of every .c file in the current directory that does
3 #not have a corresponding .o file in the current directory. See p. 206.
4
5 while (<*.o>) {
6 s /o$/c/;
7 $a{$_} = 1;
8 }
9

10 while (<*.c>) {
11 print "$_\n" if $a{$_} != 1;
12 }

Reverse the order of the two operands on each line of assembly language

compiler | assembler
compiler | perl -pe ’s/ (.*),(.*)$/ $2,$1/’ | assembler

before after
mov r0,r1 mov r1,r0
add r2,_max add _max,r2
cmp a,$1000 cmp $1000,a

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 73 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

edit a command line argument of a shellscript

Name this perlscriptchmod and put it in yourbin directory to create your own version of the Unix
chmod command.

1 #!/bin/perl
2 #User-friendly version of chmod. The user can write the 9
3 #permission bits as the 9 characters familiar from the output of ls -l,
4 #rather than as 3 octal digits. Sample usage: instead of
5 # 1 $ c hmod 644 filename
6 #just say
7 # 2 $ c hmod rw-r--r-- filename
8 #or even
9 # 3 $ c hmod rw-r--r filename

10
11 if (@ARGV != 2) {
12 die "$0: must have two arguments0;
13 }
14 $_ = $ARGV[0];
15
16 #If the user typed less than 9 characters, right-pad the string
17 #with dashes until it is 9 characters long.
18 s/$/---------/;
19 s/ˆ(.{9}).*$/$1/;
20
21 #Why must zero be last? rwxr---wx
22 s/--x/1/g;
23 s/-w-/2/g;
24 s/-wx/3/g;
25 s/r--/4/g;
26 s/r-x/5/g;
27 s/rw-/6/g;
28 s/rwx/7/g;
29 s/---/0/g;
30
31 chmod(oct($_), $ARGV[1]) || die "$0: $!";

▼ Homework 10.46: user friendly search for phone numbers

Write a perlscript namedspelledby2 that takes one phone number as its command line argument
and outputs all the words in/usr/dict/words that are spelled by that number. For example,

1$ spelledby2 7373783
reserve

Make sure that there is exactly one command line argument and that it does not contain a zero or a one:

if (@ARGV != 1 || $ARGV[0] =˜ /[01]/) {
error message

Use a list ofs commands such as

s/2/[ABCabc]/g

to transform the first argument from a seven-digit number to a seven-wildcard regular expression. There
should also be ans command to remove dashes from the phone number; where in the list should it go for
the greatest speed? Add a leadingˆ and a trailing$ to the regular expression.

If your phone number spells no words, runspelledby2 separately on the first three digits and the
last four digits, etc. No change tospelledby2 should be necessary to run it on a number with less than

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 74 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

seven digits.
▲

normalize social security numbers

Haphazard social security numbers such as those in the following file (ss.data)

134-46-0561
134 46 0562

134460563
SS Num 134-46-0564
134-46-056
134,46,0565 is my Social Security number.

can be fed to the following perlscript (ss.normal) to output them in a standard form:

1 #!/bin/perl -pi
2
3 #Remove all characters except the digits and the newlines.
4 s /[ˆ0-9\n]//g;
5
6 #If the line does not consist of exactly 9 digits, change it
7 #to 9 question marks.
8 s /.*/?????????/ unless /ˆ.{9}/;
9

10 #Insert the 3 dashes. Do you really need the $3?
11 s/ˆ(...)(..)(....)/$1-$2-$3/;

1$ ss.normal < ss.data
134-46-0561
134-46-0562
134-46-0563
134-46-0564
???-??-????
134-46-0565

▼ Homework 10.47: normalize phone numbers

Suppose you had a file of hapazardly formatted phone numbers. Write a perlscript to normalize
them.

(479) 934-0364 (???) 934-0364
(273)750-3644 (???) 750-3644
575-464-4227 (???) 464-4227
(750)-495-1111 (???) 495-1111
239-2222 (???) 239-2222
(212) BAD-NEWS (212) ???-????
(17-33) 197-750-1117 (???) ???-????
(479)269-1554 (???) 269-1554
(419)069-1554 (419) ???-????

Your perlscript should consist of exactly seven s commands:

(1) Remove all the non-digits.

(2) If the line consists of exactly seven characters, add three leading question marks to hold the place of
the area code.

(3) If the line consists of exactly three characters, add seven trailing question marks to hold the place of
the phone number.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 75 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

(4) If the line consists of a 1 followed by exactly ten characters, remove the leading 1.

(5) If the line now does not consist of exactly ten characters, change it to ten question marks.

(6) If the first digit of the area code is a 0, or the middle digit of the area code is neither a 1 nor a 0,
change the area code to three question marks. Use ones command with theunless modifier.

(7) If the first digit of the phone number is a 0 or a 1, change the phone number to seven question marks.

(8) Addthe parentheses, blank, and dash. Do you really need the$3?
▲

Sort playing cards in order of increasing rank

Suppose you have a file of playing cards, one per line.The first column is the rank and the second
column is the suit:

A S
2 C
Q H
J D

1 #!/bin/perl
2 #Sort playing cards, one per line, in order of increasing rank.
3 #Ignore the suits.
4 #Add "14 " to start of every line that begins with "A" or "a".
5
6 perl -pe ’
7 s /ˆ/2 / if /ˆ2/;
8 s /ˆ/3 / if /ˆ3/;
9 s /ˆ/4 / if /ˆ4/;

10 s/ˆ/5 / if / ˆ5/;
11 s/ˆ/6 / if / ˆ6/;
12 s/ˆ/7 / if / ˆ7/;
13 s/ˆ/8 / if / ˆ8/;
14 s/ˆ/9 / if / ˆ9/;
15 s/ˆ/10 / if / ˆ10/;
16 /s/ˆ/11 / if / ˆJ/i;
17 /s/ˆ/12 / if / ˆQ/i;
18 /s/ˆ/13 / if / ˆK/i;
19 /s/ˆ/14 / if / ˆA/i;
20 ’ |
21 sort -n |
22 perl -pe ’s/ˆ[ˆ]* //’ #Remove everything up to and including 1st blank

Could you telescope the list of 14s commands into a single s command by using an associative
array?

%a = (
’A’, 14,
’K’, 13,
’Q’, 12, #etc.

▼ Homework 10.48: sort whatever you want

Write a perlscript namedcustomsort that sorts its lines of input into an order other than alphabeti-
cal or numerical.For example, if your input consists of one chemical element per line, sort them in order
of increasing atomic number. Just do the first ten elements:H, He, Li , Be, B, C, N, O, F, andNe.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 76 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

before after
H H
O He
He Li
Li B
B O
O O

▲

A combination of sed and awk

#!/bin/perl -i
#Renumber the error messages. See pp. 174-6 for e option of s command.

$count = 1;

while (<>) {
s/(\berror\s*\(\s*)\d+(\s*\))/$1 . $count++ . $2/ge;
print;

}

▼ Homework 10.49: add binary constants to C

C lets you write integers in decimal, octal, and hex. Addbinary:

100 decimal
0100 octal
0x100 hex
0b100 binary

Whenever it sees the regular expression/0b[01]+/ , your perlscript should change it to the corresponding
decimal number (or hex number, whichever is easier).
▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 77 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Convert other languages to perl: pp. 377−378

Convert sed to perl

#!/bin/sed -f
#This file is a sedscript named little.sed.

s/Acme/Bongdex/g
s/1993/1994/g

1$ s2p little.sed > perlscript
2$ ls -l perlscript Make sures2p created theperlscript .
3$ chmod a+x perlscript
4$ perlscript < infile > outfile

Convert awk to perl

#!/bin/awk -f
#This file is an awkscript named little.awk.

{sum += $1}
END {print sum}

1$ a2p little.awk > perlscript
2$ ls -l perlscript Make surea2p created theperlscript .
3$ chmod a+x perlscript
4$ perlscript < infile > outfile

find commands

1$ find / -type d -print
2$ find / -type f -print
3$ find / -type f -print > find.out &

4$ cd
5$ find . -type d -print
6$ find . -type f -print
7$ find . -type f -name core -print
8$ find . -type f -name ’*.c’ -print
9$ find . -type f -user abc1234 -print
10$ find . -type f -user abc1234 -o -user def5678 -print
11$ find . -type f ’!’ -user abc1234 -print
12$ find . -type f -atime 14 -print
13$ find . -type f -atime +14 -print
14$ find . -type f -atime -14 -print

Convert find to perl

1$ find2perl . -type d -print > perlscript
2$ ls -l perlscript Make sure find2perl created theperlscript .
3$ chmod a+x perlscript
4$ perlscript > outfile

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 78 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Convert a C .h file to a perl .ph file: p. 396

/* This file is named little.h. */

#define N 10
#define X 20

1$ h2ph < little.h > little.ph Use< if you’re not the superuser.
2$ ls -l little.ph

1 #This is the little.ph file created by h2ph.
2 s ub N {10;} #a subroutine that returns the value 10
3 s ub X {20;} #a subroutine that returns the value 20

1 #!/bin/perl
2 #This is a perlscript that requires the above little.ph file.
3 #"require" in perl means the same thing as "#include" in C.
4
5 r equire ’little.ph’; #First move little.ph to /usr/local/lib/perl directory.
6
7 print &N, "\n"; #N and X are user-defined subroutines: pp. 4, 50-53.
8 print &X, "\n";

Expect

The standard book on Expect is

Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs
by Don Libes; O’Reilly & Associates, 1994; ISBN 1-56592-090-2
http://www.oreilly.com/catalog/expect/
http://www.mel.nist.gov/msidstaff/libes/

The Expect home page ishttp://expect.nist.gov/

Programs that require a dialog

ftp
telnet

nslookup
mail and the other mail readers
nn and the other news readers
dbx , gdb , and the other interactive debuggers
ksh requires the user to press control-z, control-c, etc.
vi and the other screen editors

passwd
fsck

Anonymous ftp

The Tcl home pagehttp://sunscript.sun.com/ tells where to get Tcl via anonymousftp .
Ominously, the Nameprompt has a space after its final colon, but thePassword prompt doesn’t (Libes
pp. 165−166).

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 79 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1$ cd
2$ ftp ftp.sunlabs.com
Connected to rocky.sunlabs.com.
220 rocky FTP server (Version 4.125 Fri May 16 21:40:31 PDT 1997) ready.
Name (ftp.sunlabs.com:mm64): anonymous
331 Guest login ok, send your email address as password.
Password:mark.meretzky@nyu.edu
230- Guest login ok, access restrictions apply.
230- Local time is: Sat Feb 28 09:28:09 1998
230
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/tcl
250 CWD command successful.
ftp> ls -l "| more"
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
total 307030
-rw-rw-r-- 1 19663 51 8261 Jan 23 17:07 README
-rw-r--r-- 1 19663 staff 11628 Nov 26 18:29 tcl8.0p2.patch.gz
-rw-r--r-- 1 19663 staff 2449543 Nov 26 18:29 tcl8.0p2.tar.Z
-rw-r--r-- 1 19663 staff 1522374 Nov 26 18:29 tcl8.0p2.tar.gz
226 Transfer complete.
ftp> binary
200 Type set to I.
ftp> get tcl8.0p2.patch.gz
200 PORT command successful.
150 Opening BINARY mode data connection for tcl8.0p2.patch.gz (11628 bytes).
226 Transfer complete.
11628 bytes received in 0.42 seconds (27 Kbytes/s)
ftp> quit
221 Goodbye.
3$

expect and send

The following script conducts the dialog withtelnet . An expect command with an argument
means ‘‘wait until I receive the following string’’, or until$timeout seconds have passed, or until end-of-
file is received from the spawned process, whichever comes first. Therefore even if Nameis never received,
you would (eventually) still progress from line 8 to line 9.We’l l fix this later.

Thanks to the terminal driver, the argument ofsend must contain\r instead of the usual Unix\n .
After all, the key that a human being actually hits isRETURN, not LINEFEED (Libes pp. 79−80).As in
Tcl, the double quotes are unnecessary except when they enclose whitespace.

The expect command receives whatever output the child wrote to itsstdout , stderr , or con-
trolling tty . After all, all three of these would normally appear on the user’s screen. Thesend command
sends input to the child which the child can read from either itsstdin or controllingtty .

See Libes pp. 217−218 for the-- on line 1.

1$ which expect
/opt/sfw/bin/expect

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 80 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/opt/sfw/bin/expect --
2 #Get the file tcl8.0p2.patch.gz via anonymous ftp.
3
4 c d
5 s et timeout 60 ;#default 10 seconds; -1 wait forever; 0 no wait
6 s pawn ftp ftp.sunlabs.com
7
8 expect "Name" ;#no colon
9 s end "anonymous\r" ;#carriage return

10
11 expect "Password:" ;#no space after colon
12 send "mark.meretzky@nyu.edu\r"
13
14 expect "ftp> "
15 send "cd pub/tcl\r"
16
17 expect "ftp> "
18 send "binary\r"
19
20 expect "ftp> "
21 send "get tcl8.0p2.patch.gz\r"
22
23 expect "ftp> "
24 send "quit\r"
25
26 exit 0

The interact command: Libes pp. 8−9, 82−83

The interact command lets the user take over:

1 #!/opt/sfw/bin/expect --
2
3 c d
4 s et timeout 60
5 s pawn ftp ftp.sunlabs.com
6
7 expect "Name"
8 s end "anonymous\r"
9

10 expect "Password:"
11 send "mark.meretzky@nyu.edu\r"
12
13 expect "ftp> "
14 send "cd pub/tcl\r"
15
16 expect "ftp> "
17 send "ls -l \"| more \"\r"
18
19 interact ;#Put terminal in raw mode, Libes pp. 324, 344.

To sav ethe user from having to watch the whole dialog, surround part of the program with a pair of
log_user commands. Thesend_user command is the same as the Tcl commandputs , except that
puts automatically appends a\n . (And send_error is like puts stderr , Libes pp. 187−188).

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 81 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/opt/sfw/bin/expect --
2
3 c d
4 s end_user "Connecting to ftp.sunlabs.com...\n" ;#newline
5 l og_user 0
6 s pawn ftp ftp.sunlabs.com
7
8 expect "Name"
9 s end "anonymous\r"

10
11 expect "Password:"
12 send "mark.meretzky@nyu.edu\r"
13
14 expect "ftp> "
15 send "cd pub/tcl\r"
16 log_user 1
17
18 interact

Carriage return vs. newline: Libes pp. 72, 78−79

send_user "hello\n" ;#just like printf("hello\n"); in a C program
expect_user "hello\n"

send "hello\r" ;#makes the spawned process receive hello\n
expect "hello\r\n" ;#from a spawned process that sent hello\n

Verify the above send.

Theexpect command with no arguments (Libes pp. 98, 104) reads all of the child’s standard output
and standard error output and copies it to the standard output of the Expect script. The command termi-
nates wheneof is encountered or when$timeout seconds have elapsed, whichever comes first.Without
theexpect command, you would see nothing.

1 #!/opt/sfw/bin/expect --
2
3 s pawn od -Ad -cvw1 ;#octal dump the characters, addresses in decimal
4 s end "hello\r"
5 expect ;#and wait 10 seconds for timeout
6 exit 0

The output is

spawn od -Ad -cvw1
hello
0000000 h
0000001 e
0000002 l
0000003 l
0000004 o
0000005 \n

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 82 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

The I/O redirections performed by Expect: Libes pp. 174−175, 210−211, 291−293

child
process

arguments

standard input

input from/dev/tty

standard output
standard error output
output to/dev/tty
exit status

spawn

send

expect

wait

The spawn command connects the child process’s standard input, standard output, and standard
error to a pseudoterminal.To change these defaults, spawn a shell that will overlay itself with the shell
exec command (Libes pp. 291−293):

spawn /bin/sh -c "exec cal 13 1998 2> errorfile"

The data directed from a child process into theexpect command is copied to the standard output of
the Expect script, unless you saylog_user 0 .

Please email me if you can run ftp interactively from a perlscript.

Modify the following example so that it drives ftp instead ofbc . Doesftp write to its standard
output or its/dev/tty (or both)? Doesftp read from its standard input or its/dev/tty (or both)?
Will ftp flush its output buffer when writing to a pipe, or will it flush only when writing output to a termi-
nal? Canthe perlscript directftp ’s output to a pseudoterminal? Does the Perl standard library contain
subroutines to do all this?For a discussion of the problems surroundingOpen2 in Perl, see pp. 344−345,
455−457 in the O’ReillyProgramming Perl, 2nd ed.

Can the perlscript read theftp prompts with the<> operator? Doyou have to change the input
record separator variable$/ ? Or should you read the prompts with thegetc function?

1 #!/bin/perl
2 use IPC::Open2;
3 use FileHandle;
4
5 $pid = open2(*IN, *OUT, ’bc’);
6 defined $pid || die "$0: $!";
7 autoflush OUT 1; #flush automatically after each print OUT
8
9 print OUT "1+2\n";

10 $line = <IN>;
11 print $line;
12
13 close IN;
14 close OUT;
15 exit 0;

The standard output of the perlscript is

3

1 #!/opt/sfw/bin/expect --
2
3 s pawn bc
4 s end "1+2\r"
5
6 expect "\n" ;#As soon as we receive one line of standard output from bc,
7 c lose ;#send an eof to bc.
8 exit 0

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 83 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

A process can tell the difference

A Unix process can tell if its standard output has been directed to a terminal:

if (isatty(1)) { /* C & C++; and #include <unistd.h> */
if [-t 1]; then #Bourne shell
if [[-t 1]]; then #Korn shell
if (-t 1) { #Perl
if {$tcl_interactive} { ;#Tcl, Tk, Expect

A child spawned byexec believes that its standard output has not been redirected to a terminal.

1 #!/usr/local/bin/tclsh
2 #Make ls believe its standard output is not directed to a terminal.
3
4 puts [exec ls]
5 exit 0

curly single-column output
larry
moe

But a child spawned byspawn believes that its standard output has been redirected to a terminal.

1 #!/opt/sfw/bin/expect --
2 #Make ls believe its standard output is directed to a terminal.
3 s pawn ls
4
5 expect
6 exit 0

curly larry moe multi-column output

Deliberately bug-prone example

What will this C program print?

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 main()
5 {
6 printf ("hello\n");
7 _exit(0); /* underscore exit */
8 }

1$ cc prog.c
2$ a.out Direct a.out ’s standard output to screen; it outputshello .
3$ a.out | cat Direct a.out ’s standard output to pipe; it outputs nothing.

Expect with a pattern-action pair: Libes p. 75

Let’s verify the above claim that a process that outputshello\n will cause anexpect command
to receivehello\r\n :

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 84 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/opt/sfw/bin/expect --
2
3 s pawn echo hello
4
5 expect "hello\r\n"
6 s end_user "I received hello CR LF.\n"
7 exit 0

Even if the patternhello\r\n is never seen, the script will still print the message. That’s because an
expect command with a pattern will terminate when the pattern is first seen, or wheneof is encountered,
or when$timeout seconds have elapsed, whichever comes first.

To print the message only if the pattern is seen, giveexpect a pattern-action pair:

1 #!/opt/sfw/bin/expect --
2
3 s pawn echo hello
4
5 expect "hello\r\n" {send_user "I received hello CR LF.\n"}
6 exit 0

Syntax for multiple pattern-action pairs: Libes pp. 75−77, 158−160

(1) You’re allowed to omit the action of the last pattern-action pair. Therefore it’s conventional to list
the pattern with the biggest action last, and the patterns with the smallest actions (often error conditions)
first. Otherthan that, it doesn’t matter what order you list them in.

1 #Fragment of an expect script that spawns ftp.
2
3 expect "ftp> "
4 s end "cd $dirname\r"
5
6 expect full_buffer {exit 5} \
7 t imeout {exit 4} \
8 eof {exit 4} \
9 " No such file or directory.\r\n" {exit 3} \

10 "Not a directory.\r\n" {exit 2} \
11 "Permission denied.\r\n" {exit 1} \
12 "CWD command successful.\r\n"
13
14 #Action for "CWD command was successful.\r\n" goes
15 #here.

(2) The patterndefault meanstimeout or eof , whichever happens first (Libes p. 101):

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 85 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 expect "ftp> "
2 s end "cd $dirname\r"
3
4 expect full_buffer {exit 5} \
5 default {exit 4} \
6 " No such file or directory.\r\n" {exit 3} \
7 " Not a directory.\r\n" {exit 2} \
8 " Permission denied.\r\n" {exit 1} \
9 " CWD command successful.\r\n"

10
11 #Action for "CWD command was successful.\r\n" goes
12 #here.

(3) Eliminate the backslashes as in the Tclif-elseif command:

1 expect full_buffer {
2 exit 5
3 } default {
4 exit 4
5 } "No such file or directory.\r\n" {
6 exit 3
7 } "Not a directory.\r\n" {
8 exit 2
9 } "Permission denied.\r\n" {

10 exit 1
11 } "CWD command successful.\r\n"
12
13 #Action for "CWD command was successful.\r\n" goes
14 #here.

(4) You can also give theexpect command exactly one argument, of a list of the above arguments.
I simply surrounded them with a pair of curly braces:

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 86 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 expect {
2 f ull_buffer {
3 exit 5
4 }
5
6 default {
7 exit 4
8 }
9

10 "No such file or directory.\r\n" {
11 exit 3
12 }
13
14 "Not a directory.\r\n" {
15 exit 2
16 }
17
18 "Permission denied.\r\n" {
19 exit 1
20 }
21
22 "CWD command successful.\r\n"
23 }
24
25 #Action for "CWD command was successful.\r\n" goes
26 #here.

expect_before and expect_after: Libes pp. 101, 259−268

A conscientious programmer should write a pattern foreof , timeout , and full_buffer in
ev ery expect command. You can avoid this repetition with theexpect_before andexpect_after
commands.

Control structur e in Expect

1$ is my shell prompt, and? is mymail prompt:

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 87 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

2$ mailx
Mail $Revision: 4.2.4.2 $ Type ? for help.
"/usr/spool/mail/mm64": 4 messages 3 unread

1 abc1234 Sun May 10 10:30 13/293 "Dodsworth"
>U 2 def5678 Sun May 10 11:30 12/290 "help"

U 3 ghi9012 Sun May 10 11:45 12/288 "Olaf Stapledon"
U 4 abc1234 Sun May 10 11:46 12/289 "help"

? R2
To: def5678
Subject: Re: help

˜r /home1/m/mm64/helpfile
"/home1/m/mm64/helpfile" 1/29
.
EOT
? d2
? R4
To: abc1234
Subject: Re: help

˜r /home1/m/mm64/helpfile
"/home1/m/mm64/helpfile" 1/29
.
EOT
? d4
? q
3$

Since themail prompt? is a special character to theexpect commands in lines 19, 52, and 55, it
must be preceded by a\ . And since the\ is a special character in Tcl, it too must be preceded by a\ . See
Libes, pp. 73, 121, for the$ anchor when looking for a prompt.

The array element$expect_out(buffer) in line 24 contains all the characters that were
received by the most recent successfulexpect —one line of text, ending with\r\n .

At line 35, the variable$letters contains a list of four elements, each of which is a list of two ele-
ments:

{1 Dodsworth} {2 help} {3 {Olaf Stapledon}} {4 help}

1 #!/opt/sfw/bin/expect --
2 #Mail a helpfile to everyone whose subject was "help"
3
4 s pawn mailx
5
6 expect {
7 " No mail for mm64\r\n" {
8 exit 0
9 }

10
11 "Type \\? for help.\r\n"
12 }
13 expect "\r\n" ;#4 messages, 3 unread
14
15 #Loop until we encounter the ? prompt.
16 set letters {}

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 88 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

17 while {1} {
18 expect {
19 "\\? $" {
20 break
21 }
22
23 "\r\n" {
24 set line $expect_out(buffer)
25 set llen [llength $line]
26
27 set subject [lindex $line [expr $llen - 1]]
28 set n [lindex $line [expr $llen - 8]]
29
30 set letter [list $n $subject]
31 lappend letters $letter
32 }
33 }
34 }
35
36 foreach letter $letters {
37 set subject [lindex $letter 1]
38 if {[string compare $subject "help"] == 0} {
39 set n [lindex $letter 0]
40
41 send "R$n\r" ;#Reply
42 expect "\r\n"
43 expect "\r\n"
44 expect "\r\n"
45
46 send "˜r /home/m/mm64/helpfile\r" ;#read file
47 expect "\r\n"
48
49 send ".\r"
50 expect "EOT\r\n"
51
52 expect "\\? $"
53 send "d$n\r" ;#delete letter
54
55 expect "\\? $"
56 }
57 }
58
59 send "q\r" ;#quit from mail
60 exit 0

The $expect_out array:
Libes pp. 73, 96, 253

Eachexpect command takes all the input received since the previousexpect and stores it into
$expect_out(buffer) , replacing the previous contents of this array element.This input includes
(and ends with) the characters that were matched by theexpect ’s pattern. Iftheexpect had no pattern,
all the input until end-of-file or timeout is copied into$expect_out(buffer) .

Eachexpect also takes only the characters that were matched by the pattern and stores them into
$expect_out(0,string) , replacing the previous contents of this array element. Put no space

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 89 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

alongside the comma.

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s et timeout 60
5 s pawn ftp ftp.sunlabs.com
6 expect "\r\n"
7
8 puts "The entire line (including the CRLF) is \"$expect_out(buffer)\"."
9 puts "The length of \$expect_out(0,string) is [string length $expect_out(0,string)]."

10
11 close
12 log_user 1

The entire line (including the CRLF) is "Connected to rocky.sunlabs.com.
".
The length of $expect_out(0,string) is 2.

Tw o simple examples of the timeout pattern

Don’t wait for ev er f or user input:
Libes pp. 77−78, 112−113

#!/bin/sh

echo Please say yes or no. Defaults to null string after 10 seconds.
answer=‘timed-read‘

1 #!/usr/local/bin/expect --
2 #This script is named timed-read.
3
4 expect "\n" {send $expect_out(buffer)}

The deluxe version is

#!/bin/sh

echo Please say yes or no. Defaults to no after 60 seconds.
answer=‘timed-read 60 no‘

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 90 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/usr/local/bin/expect --
2 #This script is named timed-read.
3
4 if { $argc != 2} {
5 puts stderr "usage: $argv0 timeout default"
6 exit 2
7 }
8
9 s et timeout [lindex $argv 0]

10
11 expect {
12 default {
13 send [lindex $argv 1]
14 exit 1
15 }
16
17 "\n" {
18 send [string trimright $expect_out(buffer) "\n"]
19 exit 0
20 }
21 }

Let a non-interactive process run for at most 1 minute:
Libes pp. 98−100

What would go wrong without theeval in line 7?

If you don’t need the messages and exit status, you can simply give theexpect command no argu-
ments. Whatwould go wrong with noexpect command at all after thespawn?

1$ maxtime 60 prog arg1 arg2 arg3

1 #!/usr/local/bin/expect --
2 #This script is named maxtime.
3
4 s et timeout [lindex $argv 0]
5 s et progname [lindex $argv 1]
6
7 eval spawn [lrange $argv 1 end]
8
9 expect {

10 timeout {
11 puts "$progname timed out after $timeout seconds."
12 exit 1
13 }
14
15 eof {
16 puts "$progname finished in less than $timeout seconds."
17 exit 0
18 }
19 }

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 91 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Four notations for patterns

My expect interpreter dumped core when I wrote the-nocase and-re options together.

(1) Exact match (Libes pp. 134−135):

expect -ex "a*b" ;#look for one asterisk between a and b

(2) Case-insensitive match (Libes p. 139):

expect -nocase "a*b" ;#look for one asterisk between a and b, in either case

(3) Glob patterns, as in the shell (Libes pp. 87−94):

1$ rm a*b
expect -gl "a*b" ;#look for anything (or nothing) between a and b
expect "a*b" ;#-gl is the default
expect -gl "-gl" ;#look for minus lowercase gl

(4) Regular expressions (Libes pp. 107−127):

2$ grep ’a.*b’
expect -re "a.*b" ;#look for anything (or nothing) between a and b

Backslashes in Tcl

What would go wrong without the{ curly braces} and backslashes?

1 puts {Here are [square brackets].}
2 puts "Here are \[square brackets\]."
3 puts "Here are \[square brackets]."

The output is

Here are [square brackets].
Here are [square brackets].
Here are [square brackets].

The above examples suggest that curly braces are simplest, but curly braces make it impossible to put
special characters such as\t and\n into the string:

1 puts {Here\tare [square brackets].}
2 puts "Here\tare \[square brackets\]."
3 puts "Here\tare \[square brackets]."

The output is

Here\tare [square brackets].
Here are [square brackets].
Here are [square brackets].

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 92 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Backslashes in glob patterns and regular expressions:
Libes p. 91

The following command expects a line ending with an uppercase letter from a previously spawned
child. Thelast two characters of the argument of the command are carriage return and newline:

expect "\[A-Z]\r\n" ;#good

The following command expects an uppercase letter followed by the four characters ‘‘backslash low-
ercase r backslash lowercase n’’. Thosefour characters are the last four characters of the argument.

expect {[A-Z]\r\n} ;#bad

Look for one backslash:
Libes pp. 91−94

You must write a double backslash to give a single backslash to a command:

puts "\\" ;#Output one backslash (and one newline).

You must therefore write a quadruple backslash to give a double backslash to a command:

expect -gl "\\\\" {send "I received one backslash."}
expect -re "\\\\" {send "I received one backslash."}
expect -ex "\\" {send "I received one backslash."}

expect -re "\\" error from theexpect command: a single backslash is not a legal regular expression
expect -re "\\\" lexical error from theexpect interpreter: missing closing quote

Tagged regular expressions:
Libes pp. 111−112, 115−116, 124−125

1$ date
Wed May 6 10:21:50 EDT 1998

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s pawn date
5 expect -re "(...) (...) (..) (..:..:..) (...) (....)\r\n"
6
7 puts "\$expect_out(buffer) == \"$expect_out(buffer)\""
8 puts "\$expect_out(0,string) == \"$expect_out(0,string)\""
9

10 puts "\$expect_out(1,string) == \"$expect_out(1,string)\""
11 puts "\$expect_out(2,string) == \"$expect_out(2,string)\""
12 puts "\$expect_out(3,string) == \"$expect_out(3,string)\""
13 puts "\$expect_out(4,string) == \"$expect_out(4,string)\""
14 puts "\$expect_out(5,string) == \"$expect_out(5,string)\""
15 puts "\$expect_out(6,string) == \"$expect_out(6,string)\""
16
17 log_user 1

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 93 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

$expect_out(buffer) == "Wed May 6 10:15:09 EDT 1998
"
$expect_out(0,string) == "Wed May 6 10:15:09 EDT 1998
"
$expect_out(1,string) == "Wed"
$expect_out(2,string) == "May"
$expect_out(3,string) == " 6"
$expect_out(4,string) == "10:15:09"
$expect_out(5,string) == "EDT"
$expect_out(6,string) == "1998"

To avoid storing the leading blank into$expect_out(3,string) when the date is a single digit,

expect -re "(...) (...) +(\[0-9]+) (..:..:..) (...) (....)\r\n"

Expect one line and remove the trailing \r\n:
Libes pp. 112−113, 135−136, 145−147

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s et timeout 60
5 s pawn ftp ftp.sunlabs.com
6
7 expect -re "\r\n"
8 puts "\$expect_out(buffer) == \"$expect_out(buffer)\""
9

10 set line [string range $expect_out(buffer) 0 [
11 expr [string length $expect_out(buffer)] - 3
12]]
13 puts "\$line == \"$line\""
14
15 close
16 log_user 1

$expect_out(buffer) == "Connected to rocky.sunlabs.com.
"
$line == "Connected to rocky.sunlabs.com."

If you don’t like the placement of the[square brackets] in lines 10−12, you could write

set line [string range $expect_out(buffer) 0 \
[expr [string length $expect_out(buffer)] - 3]]

with a backslash.

The most common use of a tagged regular expression is to remove the \r\n from the end of each
line of input. What would go wrong if we changed the wildcard[ˆ\r] in line 7 to just a dot?

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 94 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s et timeout 60
5 s pawn ftp ftp.sunlabs.com
6
7 expect -re "(\[ˆ\r]*)\r\n"
8 puts "\$expect_out(buffer) == \"$expect_out(buffer)\""
9 puts "\$expect_out(0,string) == \"$expect_out(0,string)\""

10 puts "\$expect_out(1,string) == \"$expect_out(1,string)\""
11
12 close
13 log_user 1

$expect_out(buffer) == "Connected to rocky.sunlabs.com.
"
$expect_out(0,string) == "Connected to rocky.sunlabs.com.
"
$expect_out(1,string) == "Connected to rocky.sunlabs.com."

The order in which the patterns are tried:
Libes p. 190

The patterns are tried in the order in which you write them.For example

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s pawn echo ba
5
6 expect {
7 " a" {puts "Found a."}
8 " b" {puts "Found b."}
9 }

10
11 puts "\$expect_out(buffer) == \"$expect_out(buffer)\""
12 puts "\$expect_out(0,string) == \"$expect_out(0,string)\""
13
14 log_user 1

The output shows that the pattern in the above line 8 was never giv en a chance to match, even though
it appeared in the input earlier than the pattern in line 7:

Found a.
$expect_out(buffer) == "ba"
$expect_out(0,string) == "a"

To force the patterns to match in the order in which they appear in the input, anchor them with a lead-
ing caret (Libes pp. 73−74):

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 95 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s pawn echo ba
5
6 expect {
7 " ˆa" {puts "Found a."}
8 " ˆb" {puts "Found b."}
9 }

10
11 puts "\$expect_out(buffer) == \"$expect_out(buffer)\""
12 puts "\$expect_out(0,string) == \"$expect_out(0,string)\""
13
14 log_user 1

Now the output is

Found b.
$expect_out(buffer) == "b"
$expect_out(0,string) == "b"

This caret does not mean ‘‘beginning of line’’ as in grep . It means ‘‘beginning of the input that has
not yet been read into$expect_out(buffer) by a previous successful match’’. For example, the pat-
tern in the following line 12 matches even though theb is not at the start of an input line.

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s pawn echo ab
5
6 expect "a" {
7 puts "Found a."
8 puts "\$expect_out(buffer) == \"$expect_out(buffer)\""
9 puts "\$expect_out(0,string) == \"$expect_out(0,string)\""

10 }
11
12 expect "ˆb" {
13 puts "Found b."
14 puts "\$expect_out(buffer) == \"$expect_out(buffer)\""
15 puts "\$expect_out(0,string) == \"$expect_out(0,string)\""
16 }
17
18 log_user 1

The output is

Found a.
$expect_out(buffer) == "a"
$expect_out(0,string) == "a"
Found b.
$expect_out(buffer) == "b"
$expect_out(0,string) == "b"

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 96 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Recommendation: write the most specific pattern first.
Libes pp. 189−191

Since the patterns are tried in the order in which you write them, you can simplify the later patterns
by writing the most specific ones first.

For example,ftp responses begin with three-digit numbers.Numbers in the two hundreds indicate
success; other numbers indicate failure:

ftp> cd pub
250 CWD command successful.
ftp> cd pubb
550 pubb: No such file or directory.
ftp> quit
221 Goodbye.

Assume that you’ve been expecting the input one line at a time. Instead of expecting a response line this
way,

1 expect {
2 - re "ˆ(\[ˆ2]\[ˆ\r]*)\r\n" {puts "good"}
3 - re "ˆ(2\[ˆ\r]*)\r\n" {puts "bad"}
4 }

you should write the most specific pattern first:

1 expect {
2 - re "ˆ(2\[ˆ\r]*)\r\n" {puts "bad"}
3 - re "ˆ(\[ˆ\r]*)\r\n" {puts "good"}
4 }

The most specific patterns will usually be those for errors, as above. And the actions associated with
errors will usually be the shortest:

1 expect {
2 " No such file or directory.\r\n" {exit 1}
3 " Permission denied.\r\n" {exit 2}
4 " \r\n" {
5 do l ots
6 and lots
7 and lots of stuff
8 }
9 }

Since you can omit the action of the last pattern-action pair (Libes p. 94), put the error patterns first and the
normal pattern last to avoid distending theexpect command:

1 expect {
2 " No such file or directory.\r\n" {exit 1}
3 " Permission denied.\r\n" {exit 2}
4 " \r\n"
5 }
6
7 do l ots
8 and lots
9 and lots of stuff

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 97 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

Silly example of tagged regular expressions

Suppose the user types the following line of words:

Happy families are all alike.

During the first iteration of thewhile loop, the regular expression in line 14 will match the word Happy .
During the second iteration, the regular expression in line 10 will match the space after the word Happy .
During the third iteration, the regular expression in line 14 will match the word families . During the
second iteration, the regular expression in line 10 will match the space after the wordfamilies .

But without the caret in line 10, the regular expression in line 10 would match the space after the
word Happy during the first iteration. In this case, line 10 would set$expect_out(buffer) set to
"Happy " , and would set$expect_out(0,string) to " " . The word Happy would never be
matched by the regular expression in line 14.

1 #!/usr/local/bin/expect --
2 s et timeout 60
3
4 while {1} {
5 expect_user {
6 eof {
7 break
8 }
9

10 -re "ˆ\[ˆA-Za-z]+" {
11 send_user $expect_out(buffer)
12 }
13
14 -re "ˆ(\[A-Za-z])(\[A-Za-z]*)" {
15 send_user "$expect_out(2,string)$expect_out(1,string)ay"
16 }
17 }
18 }

appyHay amiliesfay reaay llaay likeaay.

A case where Tcl doesn’t need the backslash before the dollar sign

You don’t need the backslash if the character after the dollar sign is neither a{ left curly brace nor a
character that could start a variable name.

puts "\$hello" ;#Output a dollar sign followed by the word "hello".
puts "hello$" ;#Output the word "hello" followed by a dollar sign.

I f orgot my password

It would still work without the"Login incorrect" in lines 13−15, but you’d hav eto wait for the
expect in line 12 to time out.And without thewait in line 14 the zombie children would persist longer
(Libes pp. 105−106).

We can speed it up by trying more then one password pertelnet , until we receive aConnection
closed by foreign host.

1 #!/usr/local/bin/expect --
2
3 s et passwords {"bond" "Bond" "bondj" "jbond" "misterbond" "james" "007"}
4
5 s et timeout 60

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 98 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

6 l og_user 0
7 f oreach password $passwords {
8 s pawn telnet hostname.nyu.edu
9 expect -re "login: $" {send "loginname\r"}

10 expect -re "Password: $" {send "$password\r"}
11
12 expect {
13 "Login incorrect" {
14 close; wait
15
16 #close
17 #puts "The spawned child’s PID number was [lindex [wait] 0]"
18 }
19
20 "Last login:" {
21 puts $password
22 exit 0
23 }
24 }
25 }
26
27 puts "No password worked."
28 exit 1

On which hosts is a program running?
Libes p. 122

1 #!/usr/local/bin/expect --
2
3 #hostname, loginname, password
4 s et hosts {
5 { "hostname0.nyu.edu" "loginname0" "password0"}
6 { "hostname1.nyu.edu" "loginname1" "password1"}
7 { "hostname2.nyu.edu" "loginname2" "password2"}
8 }
9

10 log_user 0
11
12 foreach host $hosts {
13 set hostname [lindex $host 0]
14 spawn telnet $hostname
15 expect -re "login: $" {send "[lindex $host 1]\r"}
16 expect -re "Password: $" {send "[lindex $host 2]\r"}
17
18 expect -re "\[%#:\$] $" {send \
19 "ps -al | awk ’NR >= 2 && \$NF == \"prog\"’ | wc -l | tr -d ’ ’\r"
20 }
21 expect "\r\n" ;#The ps line gets echoed back.
22 expect {
23 "ˆ0\r\n" {}
24 -re "\[1-9]" {puts $hostname}
25 }
26
27 close; wait

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 99 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

28 }
29
30 log_user 1

There’s often a pause before an incorrect password is rejected.Therefore we could speed up the
above loopspawn ’ing manytelnet ’s simultaneously

Spawn id’s:
Libes pp. 233−234

Thespawn command gives a value to the variablespawn_id .

1 s pawn prog0
2 s et spawn_id0 $spawn_id
3
4 s pawn prog1
5 s et spawn_id1 $spawn_id
6
7 #Go back and expect and send with prog0:
8 s et spawn_id $spawn_id0
9 expect blah blah blah

10 send blah blah blah
11
12 #Now expect and send with prog1:
13 set spawn_id $spawn_id1
14 expect blah blah blah
15 send blah blah blah

Poll many children simultaneously:
Libes pp. 237−238

1 #!/usr/local/bin/expect --
2
3 s et children {"prog0" "prog1" "prog2" "prog3" "prog4"}
4 s et spawn_ids {}
5
6 f oreach child $children {
7 s pawn $child
8 l append spawn_ids $spawn_id
9 }

10
11 set timeout 0 ;#Don’t let the expect command wait.
12
13 while {1} {
14 foreach spawn_id $spawn_ids {
15 expect -re "whatever" {send "whatever"}
16 }
17 }

If different children need different patterns and actions, give the -i option to theexpect command
in Libes pp. 247−248.

Sources and destinations

expect read fromspawn ’ed process: Libes pp. 71−72
send write tospawn ’ed process: Libes pp. 72−73

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 100 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

expect_user read from standard input: Libes pp. 192−193, 209
send_user write to standard output: Libes pp. 185−187, 209
send_error write to standard error output: Libes pp. 187−192

expect_tty read from/dev/tty : Libes p. 210
send_tty write to /dev/tty : Libes pp. 210−211

You can even expect from andsend to a file (regular file, terminal, named pipe, etc.): Libes pp.
289−290.

Libes p. 188: the difference between

puts "hello"
send_user "hello"

(1) puts is buffered;send_user is unbuffered.

(2) puts outputs a trailing newline;send_user doesn’t.

(3) Theoutput ofsend_user is saved by the log_file command (Libes pp. 180−182); the output of
puts isn’t.

Let the script regain control after an interact

Suppose I type

One degree is <3.14159/180>

in vi ’s input mode. As soon as I hit the>, the line changes to

One degree is .01745

Since I’m still in input mode, I continue typing

One degree is .01745 radians.

The<3.14159/180> was nev er input into the file being edited byvi (Libes p. 324): it was merely
echoed onto the screen by the-echo in line 12 (Libes pp. 333−335).I wiped it off the screen by sending a
control-L tovi in line 14. Of course, you must get out ofvi ’s input mode (line 13) before sending it a
control-L.

Another design would have been to have the< send a colon tovi to move the cursor to the bottom of
the screen when typing the input forbc .

See Libes pp. 99−100 for theeval in line 9.

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 101 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

1 #!/usr/local/bin/expect --
2
3 l og_user 0
4 s pawn bc
5 s et spawn_id_bc $spawn_id
6 s end "scale = 5\r"
7 expect "\r\n"
8
9 eval spawn vi [lrange $argv 1 end]

10 set spawn_id_vi $spawn_id
11
12 interact -echo -re "<(\[ˆ>]*)>" {
13 send "\033" ;#ESC to get out of input mode for the control-L.
14 send "\014" ;#Control-L to refresh the screen
15 send "a" ;#Go back into input mode.
16
17 set spawn_id $spawn_id_bc
18 send "$interact_out(1,string)\r"
19 expect "\r\n"
20 expect -re "(\[ˆ\r]*)\r\n"
21
22 set spawn_id $spawn_id_vi
23 send "$expect_out(1,string)"
24 }
25
26 log_user 1

anonymous ftp

1$ whois uwm.edu | more
point your browser athttp://www.uwm.edu

Let’s use the ‘‘file transfer program’’ to get a copy Scott Yanoff’s list of interesting Internet resources
from his hostftp.csd.uwm.edu at the Computing Services Division of the University of Wisconsin at
Mil waukee. (Hishome page ishttp://www.cs.uwm.edu/public/yanoff). It’s a file named
inet.services.txt in the directory/pub .

2$ cd Go to a directory in which you can create a file.
3$ ftp ftp.csd.uwm.edu
Name (ftp.csd.uwm.edu:abc1234): anonymous Be anonymous.
331 Guest login ok, send ident as password.
Password: abc1234@acf4.nyu.edu Type your network address.

ftp> pwd where are you onftp.csd.uwm.edu
ftp> cd /pub
ftp> pwd

ftp> ls short listing
ftp> dir long listing, like ls -l
ftp> dir . "| more" long listing, like ls -l | more
ftp> dir . listing Copy long listing into file onacf4 .
output to local-file: listing? y

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 102 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9546 Section 1 Unix Tools

ftp> control-z Stopftp .
4$ more listing Peruse the listing; press space bar orq.
5$ fg Startftp .

ftp> ascii ascii before getting text file,binary before binary file
ftp> get inet.services.txt
ftp> quit

6$ ls -l listing inet.services.txt
7$ pr -l60 inet.services.txt | lpr minus lowercase L sixty

The World Wide Web interface to ftp

Instead of giving thetelnet command, simply point your web browser (lynx, mosaic, netscape,
etc.) atthe URL

ftp://ftp.csd.uwm.edu/pub/inet.services.txt

▼ Homework 10.50: copy a file to acf4 by anonymous ftp (not to be handed in)

Get the Yanoff l ist for yourself.
▲

Fall 2006 Handout 10printed 11/22/06
1:30:59 PM − 103 − All rights

reserved ©2006 Mark Meretzky

