
NYU SCPS X52.9544 Section 1 Unix System Calls

Fall 2004 Handout 4

Which ports on i5 already have a server bound to them?

1$ netstat -an -f inet -P tcp | head

TCP: IPv4
Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -------
. *.* 0 0 24576 0 IDLE
*.111 *.* 0 0 24576 0 LISTEN
. *.* 0 0 24576 0 IDLE
*.21 *.* 0 0 24576 0 LISTEN
*.515 *.* 0 0 24576 0 LISTEN
*.24346 *.* 0 0 24576 0 LISTEN

#!/bin/ksh
#Output the ports that already have a server bound to them.

netstat -an -f inet -P tcp |
awk ’NR > 4 {print $1}’ |
awk -F. ’{print $NF}’ |
sort -n |
uniq

exit 0

http://i5.nyu.edu/˜mm64/x52.9544/src/bound

Here’s the output of the above shellscript piped through pr -7 -l6 -s -t (minus lowercase L):

* 515 3306 8009 13782 28063 32786
21 939 4045 8080 13783 28064 51469
22 940 5987 11959 22370 32771 51471
25 941 8005 13722 24346 32774 51473
80 942 8008 13724 28062 32775 51474
111 2410

Bind a server to a port: Curry pp. 400−401, 404−405

The echo, daytime, and finger programs on acf.nyu.edu are called servers : they wait for
other programs called clients to ask for something, and then respond to the request. The program you write
for the previous homework was a client. Now you will write a server.

Each server listens to requests that arrive at a giv en port number. For example, the echo server on
www.uu.nl is bound to port number 7.

When run on i5.nyu.edu, the following server binds itself to port number 10566 on
i5.nyu.edu. Use INADDR_ANY instead of 128.122.253.142 to bind a server to a port on the host
on which it is running; see Curry p. 400 and tcp(7). I picked the big port number 10566 to lessen the
chance that some other server was using the same port number on i5.nyu.edu. Actually, 0566 are the

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 1 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

last four digits of my social security number:

1 long ss; /* Print a long with percent lowercase LD. */
2 printf ("The last four digits are %04ld.\n", ss % 10000);

The last four digits are 0566.

Only the superuser is allowed bind a server to a port number less than IPPORT_RESERVED (Curry pp.
412−413).

If several clients on several hosts try to connect to your server simultaneously, they will have to
wait in line. The second argument of listen (Curry pp. 369−370) gives the maximum length of this
queue. If more than this number of clients attempt to connect, the connect function in the unlucky
clients will return −1. listen will deposit the number ECONNREFUSED or ETIMEDOUT (#define’d
in the file /usr/include/errno.h) into the variable errno of the unlucky clients, causing perror
to print Connection refused or Connection timed out.

The accept system call (Curry p. 370) will make the server go to sleep until a client tries to
connect to it. Use the return value of accept as the file descriptor for all subsequent communication
with the client. It can be used as the first argument of either read (line 56) or write (line 64) For con-
venience, the server should call fdopen "r+" so that it could fprintf and fscanf instead of write
and read.

At line 69, after finishing its dialog with the client, the server could use the original file descriptor (s)
as the first argument of another call to accept. This would let the server sleep until another client
connect’s to it. To keep the server simple, we choose not to do this. This server will talk to only the first
client that connect’s to it, and will then exit.

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/myserver.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <ctype.h> /* for tolower */
4
5 #include <sys/types.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8
9 int main(int argc, char **argv)
10 {
11 const u_short port = 10566; /* sin_port field of struct sockaddr_in */
12 int s = socket(AF_INET, SOCK_STREAM, 0); /* file descriptor to accept a client */
13 struct sockaddr_in myaddress;
14 struct sockaddr_in clientaddress;
15 size_t length = sizeof clientaddress;
16 int client; /* file descriptor to talk to client */
17 char dotted[INET6_ADDRSTRLEN]; /* for inet_ntop */
18 char buffer[2];
19
20 if (s < 0) {
21 perror(argv[0]);
22 return 1;
23 }
24
25 bzero((char *)&myaddress, sizeof myaddress);
26 myaddress.sin_family = AF_INET;
27 myaddress.sin_port = htons(port);
28 myaddress.sin_addr.s_addr = INADDR_ANY;
29

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 2 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

30 if (bind(s, (struct sockaddr *)&myaddress, sizeof myaddress) != 0) {
31 perror(argv[0]);
32 return 2;
33 }
34
35 if (listen(s, SOMAXCONN) != 0) {
36 perror(argv[0]);
37 return 3;
38 }
39
40 client = accept(s, (struct sockaddr *)&clientaddress, &length);
41 if (client < 0) {
42 perror(argv[0]);
43 return 4;
44 }
45
46 if (inet_ntop(AF_INET, &clientaddress.sin_addr, dotted, sizeof dotted)
47 == NULL) {
48 perror(argv[0]);
49 return 5;
50 }
51
52 fprintf(stderr, "I have accepted a client whose IP address is %s.\n", dotted);
53
54 /* The service provided by this server is merely to input one character
55 and then output it in lowercase, followed by a newline. */
56 if (read(client, buffer, 1) != 1) {
57 perror(argv[0]);
58 return 6;
59 }
60
61 buffer[0] = tolower(buffer[0]);
62 buffer[1] = ’\n’;
63
64 if (write(client, buffer, sizeof buffer) != sizeof buffer) {
65 perror(argv[0]);
66 return 7;
67 }
68
69 if (shutdown(client, SHUT_RDWR) != 0) {
70 perror(argv[0]);
71 return 8;
72 }
73
74 return EXIT_SUCCESS;
75 }

Run the above program like this on its initial voyage:

1$ gcc -o ˜/bin/myserver myserver.c -lsocket -lnsl
2$ ls -l ˜/bin/myserver
3$ myserver Nothing is supposed to happen.

If myserver blows up, say

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 3 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

4$ echo $?

immediately afterwards to see its exit status. If myserver doesn’t blow up during the first 30 seconds,
kill it with control-c and run it in the background with nohup (KP p. 33, 35) so that it will not die
when you log out:

5$ nohup myserver &
6$ ps -f | more

7$ netstat -an -f inet -P tcp | awk ’2 <= NR && NR <= 4 || $1 ˜ /.10566$/’
TCP: IPv4

Local Address Remote Address Swind Send-Q Rwind Recv-Q State
-------------------- -------------------- ----- ------ ----- ------ -------

*.10566 *.* 0 0 24576 0 LISTEN

Then on any Internet host (including i5.nyu.edu itself) you can run mytelnet, or simply

$ telnet i5.nyu.edu 10566
A You type this line.
a It types this line and telnet types the next.
Connection closed by foreign host.

myserver return’s from main when it is done with its first and only client. If you want to kill
the server before it has talked to a client, use ps and kill -9.

If you try to rm a program while it is running, you may get the text file busy error message.
For example, you will get this message if you try to recompile a C program while it is running. Simply
kill -9 the process and then try to rm again. For a minute or two after the server terminates, the socket
will remain in the TIME_WAIT state:

8$ netstat -an -f inet -P tcp | grep 10566
i5.nyu.edu.10566 i5.nyu.edu.43734 32768 0 32768 0 TIME_WAIT

If you try to run the server again while the socket is still in this state, the bind in line 31 will give you

Address already in use

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 4 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl
#The same server, in Perl.
use Socket;

use FileHandle;
STDOUT->autoflush();

socket(S, AF_INET, SOCK_STREAM, 0) or die "$0: $!";
bind(S, sockaddr_in(10566, INADDR_ANY)) or die "$0: $!";
state();

listen(S, SOMAXCONN) or die "$0: $!";
state();

$clientaddress = accept(CLIENT, S) or die "$0: $!";
CLIENT->autoflush();

($port, $ip) = sockaddr_in($clientaddress);
print "I have accepted a client whose IP address is ",

inet_ntoa($ip), ".\n";
state();

$_ = <CLIENT>;
$_ =˜ tr/A-Z/a-z/; #Can remove the $_ =˜
print CLIENT $_; #Can remove the $_

shutdown(CLIENT, SHUT_RDWR) or die "$0: $!";
state();
exit 0;

sub state {
print ’State of socket is ’,

‘netstat -an -f inet -P tcp |\
awk ’NR > 4 && \$1 ˜ /\.10566\$/ {print \$NF}’ |\
tail -1‘;

}

http://i5.nyu.edu/˜mm64/x52.9544/src/myserver

9$ nohup myserver > myserver.log 2>&1 &

10$ telnet i5.nyu.edu 10566
Hello
hello
Connection closed by foreign host.

11$ cat myserver.log
State of socket is BOUND line 10
State of socket is LISTEN line 13
I have accepted a client whose IP address is 128.122.253.142.
State of socket is ESTABLISHED line 21
State of socket is TIME_WAIT line 28

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 5 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Serve more than one client simultaneously: Bach pp. 386−387; Curry pp. 350−352

No man can serve two masters.

—Matthew 6:24

To serve two or more clients, your server must read from and write to one of them while also
accept’ing another one. The easiest way to do both, simultaneously, is to hav e your server give birth
immediately after each accept’ance of a new client. The child will devote itself entirely to its dialog with
the new client, and will exit when it is done talking to the client. The parent, meanwhile, will have no
further relations to do with the new client. It will do nothing but accept additional clients.

In the following program, all i/o is performed with the file descriptor client. The other file
descriptor, s, is only for accept’ing new clients. If you want to use the standard i/o library, it therefore
makes sense to fdopen only the client file descriptor, not s. And since only the child, not the parent,
will perform the i/o, you should fdopen client in the child. The parent should do nothing with the
client file descriptor except close it immediately after the fork.

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/myserver2.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <ctype.h>
4
5 #include <sys/types.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8 #include <sys/wait.h>
9
10 int main(int argc, char **argv)
11 {
12 const u_short port = 10566; /* sin_port field of struct sockaddr_in */
13 int s = socket(AF_INET, SOCK_STREAM, 0); /* file descriptor to accept a client */
14 struct sockaddr_in myaddress;
15 struct sockaddr_in clientaddress;
16 size_t length = sizeof clientaddress;
17 int client; /* file descriptor to talk to client */
18 char dotted[INET6_ADDRSTRLEN]; /* for inet_ntop */
19 pid_t pid;
20 char c;
21 char buffer[2];
22 int status;
23
24 if (s < 0) {
25 perror(argv[0]);
26 return 1;
27 }
28
29 bzero((char *)&myaddress, sizeof myaddress);
30 myaddress.sin_family = AF_INET;
31 myaddress.sin_port = htons(port);
32 myaddress.sin_addr.s_addr = INADDR_ANY;
33
34 if (bind(s, (struct sockaddr *)&myaddress, sizeof myaddress) != 0) {
35 perror(argv[0]);
36 return 2;
37 }
38

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 6 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

39 if (listen(s, SOMAXCONN) != 0) {
40 perror(argv[0]);
41 return 3;
42 }
43
44 for (;;) {
45 client = accept(s, (struct sockaddr *)&clientaddress, &length);
46 if (client < 0) {
47 perror(argv[0]);
48 return 4;
49 }
50
51 if (inet_ntop(AF_INET, &clientaddress.sin_addr,
52 dotted, sizeof dotted) == NULL) {
53 perror(argv[0]);
54 return 5;
55 }
56
57 fprintf(stderr, "I have accepted a client whose IP address is %s.\n",
58 dotted);
59
60 pid = fork();
61 if (pid < 0) {
62 perror(argv[0]);
63 return 6;
64 }
65
66 if (pid == 0) {
67 /* Arrive here if I am the child. The service provided
68 by this server is merely to input one character and then
69 output it in lowercase, followed by a newline. */
70
71 if (read(client, &c, 1) != 1) {
72 perror(argv[0]);
73 return 1;
74 }
75
76 buffer[0] = tolower(c);
77 buffer[1] = ’\n’;
78
79 if (write(client, buffer, sizeof buffer) != sizeof buffer) {
80 perror(argv[0]);
81 return 2;
82 }
83
84 if (shutdown(client, SHUT_RDWR) != 0) {
85 perror(argv[0]);
86 return 3;
87 }
88
89 return EXIT_SUCCESS;
90 }
91
92 /* Arrive here if I am the parent. */

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 7 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

93 if (close(client) != 0) {
94 perror(argv[0]);
95 return 7;
96 }
97
98 /* Harvest any children that are ripe (i.e., zombies). */
99 while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
100 printf("child PID %d: ", pid);
101 if (WIFEXITED(status)) {
102 printf("exit status was %d.\n", WEXITSTATUS(status));
103 } else if (WIFSIGNALED(status)) {
104 printf("terminated by signal number %d.\n", WTERMSIG(status));
105 } else if (WIFSTOPPED(status)) {
106 printf("stopped by signal number %d.\n", WSTOPSIG(status));
107 } else {
108 fprintf(stderr, "%s: child %d came to unknown end.\n",
109 argv[0], pid);
110 return EXIT_FAILURE;
111 }
112 }
113 }
114
115 return EXIT_SUCCESS;
116 }

Run this server with nohup as shown above. Use ps and kill -9 to kill it when you no longer
want it to accept clients.

Instead of writing a server that gives birth to server-children, the superuser can have the inetd give
birth to server-children. See inetd(8) and inetd.conf(4).

In Perl, run in taint mode with -T (O’Reilly Perl book, p. 356) to prevent outsiders from making
mischief.

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/myserver2

1 #!/bin/perl -T
2 #The same server, in Perl.
3 use Socket;
4 use FileHandle;
5 use POSIX;
6
7 socket(S, AF_INET, SOCK_STREAM, 0) or die "$0: $!";
8 bind(S, sockaddr_in(10566, INADDR_ANY)) or die "$0: $!";
9 listen(S, SOMAXCONN) or die "$0: $!";
10
11 for (;;) {
12 $clientaddress = accept(CLIENT, S) or die "$0: $!";
13
14 ($port, $ip) = sockaddr_in($clientaddress);
15 print "I have accepted a client whose IP address is ",
16 inet_ntoa($ip), ".\n";
17
18 CLIENT->autoflush();
19
20 $pid = fork();
21 defined $pid or die "$0: $!";

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 8 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

22
23 if ($pid == 0) {
24 #Arrive here if I am the child.
25 $_ = <CLIENT>;
26 tr/A-Z/a-z/;
27 print CLIENT;
28 shutdown(CLIENT, SHUT_RDWR) or die "$0: $!";
29 exit 0;
30 }
31
32 #Arrive here if I am the parent.
33 close(CLIENT) or die "$0: $!";
34
35 while (waitpid(-1, WNOHANG)) {
36 if (WIFEXITED($?)) {
37 print "My child’s exit status was ",
38 WEXITSTATUS($?), "\n";
39 } elsif (WIFSIGNALED($?)) {
40 print "My child was terminated by signal number ",
41 WTERMSIG($?), ".\n";
42 } elsif (WIFSTOPPED($?)) {
43 print "My child was stopped by signal number ",
44 WSTOPSIG($?), ".\n";
45 } else {
46 print STDERR "$0: couldn’t find out how child $pid ended up.\n";
47 }
48 }
49 }
50
51 exit 0;

▼ Homework 4.1: write a server that can serve two or more clients simultaneously

Do not attempt this assignment until we discuss it in class. Write a server named myserver that
will simultaneously serve two or more clients running on any hosts as shown above. If myserver runs on
the host i5.nyu.edu, it should bind itself to port number 10000 plus the last four digits of your social
security number. nohup the server on the date when this assignment is due, and kill -9 it one week
later.

Hand in the myserver.c, the hostname of the host on which it is running (e.g., i5.nyu.edu),
the host’s IP address (e.g., 128.122.253.142), and the port number (e.g., 10566). Also put a note in
your World Wide Web home page giving the hostname and IP address of the machine where server runs,
the port number of server, Describe what it does and how to use it, i.e., what input, if any, the client must
send through the socket.

myserver can provide each client any service you wish, but you must use fscanf, fgetc, or
getc instead of read, and you must use fprintf, fputc, or putc instead of write. For example:

(1) myserver can merely output to each client a brief message such as You are client
number n. In this case, the server performs output but no input.

(2) Write an interactive server (performing both input and output) providing the service shown in
$S45/prog.c (on the web at
http://i5.nyu.edu/˜mm64/x52.9545/public_html/prog.c)

(3) If myserver is running on i5.nyu.edu, it can output to each client a picture of the moon.
Have the child popen the program /home1/m/mm64/bin/moon, and write a while-getc loop to
input bytes from moon and output them one-by-one through the socket to the client. This will make the

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 9 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

output of my moon program available to the whole Internet.

(4) Write an interactive server that will translate its input into Pig Latin.

Test your server with either telnet or mytelnet.
▲

Signals: Bach pp. 200−211; Curry pp. 239−282; KP pp. 150−152, 225−230; K&R pp. 200, 255

A signal is a small integer that can be fired at a process; To see all the signal numbers,

1$ man -s 3head signal
2$ kill -l | more minus lowercase L; ksh93(1) pp. 27−28

The file /usr/include/sys/iso/signal_iso.h defines a macro for each signal number:

3$ grep ’ˆ#define[][]*SIG[A-Za-z0-9_]’ /usr/include/sys/iso/signal_iso.h |
head -27

#define SIGHUP 1 /* hangup */
#define SIGINT 2 /* interrupt (rubout) */
#define SIGQUIT 3 /* quit (ASCII FS) */
#define SIGILL 4 /* illegal instruction (not reset when caught) */
#define SIGTRAP 5 /* trace trap (not reset when caught) */
#define SIGIOT 6 /* IOT instruction */
#define SIGABRT 6 /* used by abort, replace SIGIOT in the future */
#define SIGEMT 7 /* EMT instruction */
#define SIGFPE 8 /* floating point exception */
#define SIGKILL 9 /* kill (cannot be caught or ignored) */
#define SIGBUS 10 /* bus error */
#define SIGSEGV 11 /* segmentation violation */
#define SIGSYS 12 /* bad argument to system call */
#define SIGPIPE 13 /* write on a pipe with no one to read it */
#define SIGALRM 14 /* alarm clock */
#define SIGTERM 15 /* software termination signal from kill */
#define SIGUSR1 16 /* user defined signal 1 */
#define SIGUSR2 17 /* user defined signal 2 */
#define SIGCLD 18 /* child status change */
#define SIGCHLD 18 /* child status change alias (POSIX) */
#define SIGPWR 19 /* power-fail restart */
#define SIGWINCH 20 /* window size change */
#define SIGURG 21 /* urgent socket condition */
#define SIGPOLL 22 /* pollable event occured */
#define SIGSTOP 23 /* stop (cannot be caught or ignored) */
#define SIGTSTP 24 /* user stop requested from tty */
#define SIGCONT 25 /* stopped process has been continued */

4$ grep ’ˆ#define[][]*SIG_’ /usr/include/sys/iso/signal_iso.h |
head -20

#define SIG_DFL ((void (*)(int)) 0) /* restore the default action */
#define SIG_IGN ((void (*)(int)) 1) /* ignore the signal */
#define SIG_ERR ((void (*)(int))-1) /* bad return value of signal function */

Exceptions

An exception is a signal that the kernel automatically sends to any program that attempts an illegal
act. (A C++ ‘‘exception’’ is something else entirely; see Bjarne Stroustrup, The C++ Programming Lan-
guage, Third Edition .)

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 10 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/exception.c

1 #include <stdlib.h>
2
3 int main()
4 {
5 char *p = NULL;
6
7 for (;;) { /* deliberately suicidal loop: fill all of memory with A’s. */
8 *p++ = ’A’;
9 }
10
11 return EXIT_SUCCESS; /* Never reaches here. */
12 }

1$ gcc -o ˜/bin/exception -g exception.c minus lowercase g for gdb
2$ ls -l ˜/bin/exception.o
3$ exception
Memory fault(coredump)

4$ echo $? Must do this immediately after program’s demise.
267

5$ bc
obase = 2 request binary output
267 You type this.
100001011 It types this.

obase = 16 You type this.
267 You type this.
10B It types this: the lowest 7 bits of 10B is SIGSEGV.
control-d

6$ grep SIGSEGV /usr/include/sys/iso/signal_iso.h
#define SIGSEGV 11 /* segmentation violation */

7$ ls -l
-rw------- 1 mm64 users 72160 Mar 8 10:34 core
8$ rm core if you don’t plan to examine the core file with dbx.

Run the debugger

If you compiled with the -g option of gcc, you can examine the core file dumped by your
executable prog with

1$ gdb exception core
Program terminated with signal 11, Segmentation Fault.
#0 0x105c4 in main () at exception.c:8
8 *p++ = ’A’;
(gdb) print p
$1 = 0x0
(gdb) help
(gdb) run
(gdb) quit
2$

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 11 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

What happens if you try to change the value of a static const variable in C? What happens if
you try to change the value of a non-static const variable in C? What happens if you let the user
scanf the values of two double variables, a and b, and then try to printf a/b when b is zero? What
happens when the two variables are int’s?

Interrupts

An interrupt is a signal that one process sends to another. For example, when you type
control-c, control-\, or control-z at the terminal, the shell sends the signal #define’d in
/usr/include/signal.h to the process you are running.

The commands

1$ kill -9 12345 12345 is the PID number of a hapless program.
2$ kill -KILL 12345

send signal number 9 (SIGKILL) to the process whose PID number is 12345. The name kill is a mis-
nomer. You’re not necessarily killing the process; you’re merely sending it a signal. Most signals, how-
ev er, are deadly or narcotic. See kill(1) for the kill command, kill(2) for the kill system call:

3$ whatis kill
kill kill (1) - terminate or signal processes
kill kill (2) - send a signal to a process or a group of processes

ksh88 has $ERRNO; ksh93 doesn’t.

#!/bin/ksh88
#Send the SIGKILL signal to the process whose PID number is 12345.
#See Kernighan & Pike p. 140 for $?; pp. 93, 141-2 for 1>&2.

kill -KILL 12345
if [[$? -ne 0]]
then

echo $0: couldn\’t kill PID 12345, errno == $ERRNO 1>&2
exit 1

fi

exit 0

http://i5.nyu.edu/˜mm64/x52.9544/src/sigkill

4$ sigkill
kill: 12345: no such process
sigkill: couldn’t kill PID 12345, errno == 3

5$ grep ESRCH /usr/include/sys/errno.h
#define ESRCH 3 /* No such process */

The following shellscript needs the {curly braces} (KP pp. 168−169) because the precedence of ||
(KP pp. 143−144) is higher than that of ;. If you had used parentheses instead of curly braces, the echo
and exit would have been executed by another copy of the Korn shell. In that case, the exit would have
had no effect: it would have merely terminated the second copy.

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 12 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/ksh88
#Another way to do the same thing.

kill -KILL 12345 || {
echo $0: couldn\’t kill 12345, errno $ERRNO 1>&2
exit 1

}

exit 0

http://i5.nyu.edu/˜mm64/x52.9544/src/sigkill2

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/sigkill.c

1 /* Send the SIGKILL signal to the process whose PID number is 12345. */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <signal.h>
5
6 int main(int argc, char **argv)
7 {
8 if (kill(12345, SIGKILL) != 0) {
9 perror(argv[0]);
10 return EXIT_FAILURE;
11 }
12
13 return EXIT_SUCCESS;
14 }

#!/bin/perl
#Send the SIGKILL signal to the process whose PID number is 12345.

kill(’SIGKILL’, 12345) or die "$0: $!";
exit 0;

http://i5.nyu.edu/˜mm64/x52.9544/src/sigkill.pl

▼ Homework 4.2: send a signal to yourself

Tw o C functions that return the PID number of processes you might want to signal are getpid,
which returns the PID number of the process itself (like $$ in a shellscript or perlscript), and getppid,
which returns the PID number of the parent of the process. In Perl, the variable $$ is the PID of the pro-
cess. See perlvar(1), p. 8.

The Bell Labs chess program Belle was programmed to dump core whenever it sensed that it was
losing. Write a program that convincingly dumps core by sending itself the SIGSEGV signal with kill.
Use getpid or $$ to discover your own PID number. But first, sleep a few seconds and output some
garbage and a random error message.

Or write a program that stops itself with a SIGTSTP, in effect control-z’ing itself. Then say

1$ jobs

or

2$ ps

to verify that the process is alive but Stopped. Then restart the process with

3$ fg

to let it run to completion.

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 13 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

▲

Ignore a signal: Curry pp. 248−250

By default, most signals kill the process that receives them. Among the few exceptions are the sig-
nals that merely stop process the process: SIGSTOP and SIGTSTP.

The following programs make themselves ignore the SIGINT signal for 10 seconds. During this
time, you will not be able to kill them with a control-c. You will have to stop them with a
control-z (which is really a SIGTSTP) and then say kill -9 (which is really a SIGKILL).

#!/bin/ksh
#For trap, See KR p. 150-152, or ksh93(1) p. 31.

trap ’’ 2 #You can change 2 to INT.
i=1
while [[$i -le 10]]
do

echo I am ignoring the SIGINT signal.
sleep 1
let ++i

done

trap 2
while true
do

echo I am once again vulnerable to the SIGINT signal.
sleep 1

done

http://i5.nyu.edu/˜mm64/x52.9544/src/ignore

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/ignore.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <signal.h>
4 #include <unistd.h>
5
6 int main(int argc, char **argv)
7 {
8 int i;
9
10 if (signal(SIGINT, SIG_IGN) == SIG_ERR) {
11 perror(argv[0]);
12 return 1;
13 }
14
15 for (i = 1; i <= 10; ++i) {
16 printf("I am ignoring the SIGINT signal.\n");
17 sleep(1);
18 }
19
20 if (signal(SIGINT, SIG_DFL) == SIG_ERR) {
21 perror(argv[0]);
22 return 2;
23 }
24

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 14 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

25 for (;;) {
26 printf("I am once again vulnerable to the SIGINT signal.\n");
27 sleep(1);
28 }
29 }

#!/bin/perl
#%SIG is an associative array; see Handout 3, p. 12;
#Kernighan & Pike pp. 123-134.

$SIG{INT} = ’IGNORE’;
for ($i = 1; $i <= 10; ++$i) {

print "I am ignoring the SIGINT signal.\n";
sleep 1;

}

$SIG{INT} = ’DEFAULT’;
for (;;) {

print "I am once again vulnerable to the SIGINT signal.\n";
sleep 1;

}

http://i5.nyu.edu/˜mm64/x52.9544/src/ignore.pl

▼ Homework 4.3: refuse to stop

Write a program that will ignore the SIGTSTP signal, so that it can’t be stopped with control-z.
▲

Catch a signal and then resume what you were doing: Curry pp. 248−250

If you type control-c when runing vi, it merely beeps at you. If you type control-c when
runing gdb, it ignores you. Both programs then resume what they were doing before.

If the first argument of trap contains more than one command, they must be separated by semi-
colons. See KP p. 151.

#!/bin/ksh

trap ’echo Pitiful human, your control-c cannot harm me.’ 2

while true
do

echo I am prepared to handle the SIGINT signal.
sleep 1

done

http://i5.nyu.edu/˜mm64/x52.9544/src/resume

In C, the same signal handler can handle two different signals. The first argument of the handler tells
it which signal it received.

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/resume.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <signal.h>
4 #include <unistd.h>
5

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 15 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

6 void handle_sigint(int sig); /* function declaration */
7
8 int main(int argc, char **argv)
9 {
10 if (signal(SIGINT, handle_sigint) == SIG_ERR) {
11 perror(argv[0]);
12 return EXIT_FAILURE;
13 }
14
15 for (;;) {
16 printf("I am prepared to handle the SIGINT signal.\n");
17 sleep(1);
18 }
19
20 return EXIT_SUCCESS;
21 }
22
23 /* This function will be called whenever a SIGINT arrives. */
24
25 void handle_sigint(int sig) /* function definition */
26 {
27 printf("Pitiful human, your control-c (signal number %d) cannot harm me.\n",
28 sig);
29 }

#!/bin/perl

$SIG{INT} = ’handle_sigint’;

for (;;) {
print "I am prepared to handle the SIGINT signal.\n";
sleep(1);

}

#This subroutine will be called whenever a SIGINT arrives.

sub handle_sigint {
local($sig) = @_;
print "Pitiful human, your control-c (SIG$sig) cannot harm me.\n";

}

http://i5.nyu.edu/˜mm64/x52.9544/src/resume.pl

Catch a signal, set a variable, and resume what you were doing

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/set.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <signal.h>
4 #include <curses.h> /* for napms */
5
6 void handle_sigint(int sig);
7 void fascinator(void);
8 int fascinated = 1; /* fascinator returns when this becomes 0 */
9

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 16 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

10 int main(int argc, char **argv)
11 {
12 if (signal(SIGINT, handle_sigint) == SIG_ERR) {
13 perror(argv[0]);
14 return EXIT_FAILURE;
15 }
16
17 printf("Press control-c when you’re thoroughly hypnotized: ");
18 fascinator();
19
20 printf("\n");
21 printf("Okay, now we can go on to something else.\n");
22 return EXIT_SUCCESS;
23 }
24
25 /* Return from this function when fascinated becomes 0. */
26
27 void fascinator(void)
28 {
29 int i;
30 static char a[] = {’|’, ’/’, ’-’, ’\\’}; /* clockwise propeller */
31 const size_t n = sizeof a / sizeof a[0];
32
33 for (i = 0; fascinated; ++i) {
34 printf("\b%c", a[i % n]); /* backspace: *(Kr p. 38 */
35 fflush(stdout);
36 napms(250); /* sleep for milliseconds */
37 }
38 }
39
40 void handle_sigint(int sig) /* called upon receipt of SIGINT */
41 {
42 fascinated = 0;
43 }

For napms, See Curry pp. 264−267.

1$ gcc -o ˜/bin/set set.c -lcurses
2$ ls -l ˜/bin/set
3$ ˜/set because set is a word in the shell language

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 17 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl

$| = 1; #flush output buffer immediatey after each print
@a = (’|’, ’/’, ’-’, ’\\’);
$n = @a; #number of elements

$fascinated = 1;
$SIG{INT} = ’handle_sigint’;
print "Press control-c when you’re thoroughly hypnotized: ";

for ($i = 0; $fascinated; ++$i) {
print "\b$a[$i % $n]";
sleep 1;

}

print "\n";
print "Okay, now we can go on to something else.\n";
exit 0;

sub handle_sigint {
$fascinated = 0;

}

http://i5.nyu.edu/˜mm64/x52.9544/src/set.pl

Catch a signal and longjmp back to the top of the program

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/backtotop.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <setjmp.h>
4 #include <signal.h>
5
6 void handle_sigint(int sig);
7 void fascinator(void);
8 jmp_buf back_to_main;
9
10 int main(int argc, char **argv)
11 {
12 int i = setjmp(back_to_main);
13 if (i == 1) {
14 printf("\n");
15 printf("Okay, now we can go on to something else.\n");
16 /* other stuff */
17 return EXIT_SUCCESS;
18 }
19
20 if (signal(SIGINT, handle_sigint) == SIG_ERR) {
21 perror(argv[0]);
22 return EXIT_FAILURE;
23 }
24
25 printf("Press control-c when you’re thoroughly hypnotized: ");
26 fascinator();
27 }
28

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 18 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

29 /* Only a signal could let you escape from this function. */
30
31 void fascinator(void)
32 {
33 int i;
34 static char a[] = {’|’, ’/’, ’-’, ’\\’}; /* clockwise propeller */
35 const size_t n = sizeof a / sizeof a[0];
36
37 for (i = 0;; ++i) {
38 printf("\b%c", a[i % n]); /* backspace: *(Kr p. 38 */
39 fflush(stdout);
40 napms(250); /* sleep for milliseconds */
41 }
42 }
43
44 void handle_sigint(int sig) /* called upon receipt of SIGINT */
45 {
46 longjmp(back_to_main, 1);
47 }

For napms, see Curry pp. 215−216.

1$ gcc -o ˜/bin/backtotop backtotop.c -lcurses
2$ ls -l ˜/bin/backtotop
3$ backtotop

Catch the death-of-child signal: Bach pp. 213−217

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/sigchld.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <signal.h>
4 #include <setjmp.h>
5 #include <sys/wait.h>
6
7 void handle_sigchld(int sig);
8 jmp_buf alldone;
9
10 int main(int argc, char **argv)
11 {
12 pid_t pid;
13 int status;
14
15 if (setjmp(alldone) == 1) {
16
17 /* Arrive here after the child has died. */
18 pid = wait(&status);
19 printf("My child’s PID number was %d.\n", pid);
20 if (WIFEXITED(status)) {
21 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
22 }
23 return EXIT_SUCCESS;
24 }
25
26 if (signal(SIGCHLD, handle_sigchld) == SIG_ERR) {

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 19 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

27 perror(argv[0]);
28 return 1;
29 }
30
31 pid = fork();
32 if (pid < 0) {
33 perror(argv[0]);
34 return 2;
35 }
36
37 if (pid == 0) {
38 /* Arrive here if I am the child. */
39 execl("/bin/grep", "grep", "-q", "Yorick",
40 "/home/m/mm64/public_html/x52.9545/src/Shakespeare.complete",
41 (char *)0);
42 perror(argv[0]);
43 return 3; /* different from grep’s exit status */
44 }
45
46 /* Arrive here if I am the parent. */
47 for (;;) {
48 printf("Parent does other work here.\n");
49 /* The other work does not necessarily have to be inside a loop. */
50 sleep(1);
51 }
52 }
53
54 void handle_sigchld(int sig)
55 {
56 longjmp(alldone, 1);
57 }

1$ prog
Parent does other work here.
Parent does other work here.
Parent does other work here.
My child’s PID number was 5788.
My child’s exit status was 0.

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 20 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl -w
use POSIX; #for the W functions

$SIG{CHLD} = ’death_of_child’;

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
#Arrive here if I am the child.
sleep 3;
exit 0;

}

#Arrive here if I am the parent.
#Copy the standard input to the standard output until the death of child.
while (($c = getc()) ne ’’) {

print $c;
}

sub death_of_child {
print "My child is dead.\n";
exit 0;

}

http://i5.nyu.edu/˜mm64/x52.9547/src/sigchld.pl

▼ Homework 4.4: catch the death-of-child signal

The parent in Handout 15, pp. 11−13 does not break out of the while loop in lines 68−71 until the
user types control-d. Make it break out of the loop as soon as the user types control-d or as soon as
its child dies, whichever comes first.

Before the loop begins (in fact, even before giving birth), call signal to set up a handler named
handle_sigchld. The function handle_sigchld should simply change the value of a variable from
true to false. The parent will then shutdown, wait, and terminate itself. This is the ‘‘future
improvement’’ in Handout 15, p. 13.
▲

Set the alarm: Bach pp. 260−261 Curry pp. 243, 258−261 KP pp. 229−230

Your process can immediately send itself whatever signal it wishes by calling

1 if (kill(getpid(), SIGWHATEVER) != 0) {
2 perror(argv[0]);
3 return EXIT_FAILURE;
4 }

Your process can also ask the kernel to send it a SIGALRM signal in 30 seconds. Be sure to call
signal(SIGALRM before you call alarm:

5 #include <unistd.h>
6 void handle_sigalrm(int sig); /* function declaration atop .c file */
7
8 /* Be ready to handle the SIGALRM when it arrives. */
9 if (signal(SIGALRM, handle_sigalrm) == SIG_ERR) {
10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }
13

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 21 − All rights

reserved ©2004 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

14 /* Ask the kernel to send me a SIGALRM in 30 seconds. */
15 alarm(30);

Fall 2004 Handout 4 printed 1/9/04
12:08:37 AM − 22 − All rights

reserved ©2004 Mark Meretzky

