
NYU SCPS X52.9544 Section 1 Unix System Calls

Fall 2004 Handout 3

Server and client

In a conversation between two programs, the one that sends the first packet is the client ; the other
one is the server .

The server starts running first, and waits for a client to talk to it. In fact, the server probably runs 24
hours per day, and continues to run after the conversation is over. Moreover, a server probably talks to
many clients simultaneously.

Either the server or the client can terminate the conversation. In the following examples, the
daytime server at port 13 and the finger server at port 79 terminate the conversation. On the other
hand, the client who talks to the echo server at port 7 decides when it’s time to terminate.

/etc/services

See pp. 47−48; services(4); and

http://www.iana.org/assignments/port-numbers

sed outputs a copy of the /etc/services file with the comments stripped away. Inside the argu-
ment of awk, a regular expression must be surrounded by slashes. If the regular expresion contains a slash,
it must therefore be preceded by a backslash.

The following caret ˆ means ‘‘start of the second field’’, not ‘‘start of the entire line’’.

1$ sed ’s/#.*//’ /etc/services | awk ’$2 ˜ /ˆ(7|13|21|23|53|79|520)\//’ | more
echo 7/tcp
echo 7/udp
daytime 13/tcp
daytime 13/udp
ftp 21/tcp
telnet 23/tcp
domain 53/udp
domain 53/tcp
finger 79/tcp
route 520/udp router routed

What telnet really does

telnet is a client that lets you say whatever you want to any server that speaks TCP. When your
telnet terminates the conversation, it says Connection closed. When the server terminates the con-
versation, your telnet says (in iambic tetrameter) Connection closed by foreign host.

If you get no response from spider.let.uu.nl, try smail.let.uu.nl (131.211.194.45).

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 1 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

1$ telnet spider.let.uu.nl 7 What you type is in italics.
Trying 131.211.194.47...
Connected to spider.let.uu.nl.
Escape character is ’ˆ]’.
"And this also," said Marlow suddenly,
"And this also," said Marlow suddenly,
"has been one of the dark places of the earth."
"has been one of the dark places of the earth."
control-]
telnet> help
telnet> quit
Connection closed.
2$

The following server (daytime) requires no input from the client. When the server terminates your
conversation, telnet says Connection closed by foreign host:

3$ telnet www.urz.uni-heidelberg.de 13
Trying 129.206.218.89...
Connected to www.urz.uni-heidelberg.de.
Escape character is ’ˆ]’.
Fri Jan 9 06:00:57 2004
Connection closed by foreign host.
4$

5$ date
Fri Jan 9 00:00:57 EST 2004

The following server requires a newline, optionally preceded by a loginname:

6$ telnet www.urz.uni-heidelberg.de 79
Trying 129.206.218.89...
Connected to www.urz.uni-heidelberg.de.
Escape character is ’ˆ]’.
RETURN
User Real Name What Idle TTY Host Console Location

aaghajan Anoush Aghajani-Tl pine 0:02 *5 aixterm5 (128.84.46.130)
abender Andreas Bender 0:05 dtre aixterm4 (xog02.urz.uni-he)
ahillers Annette Hillers 0:05 dtre aixterm4 (xterm02.psi.uni-)
etc.
Connection closed by foreign host.
7$

8$ telnet www.urz.uni-heidelberg.de 79
Trying 129.206.218.89...
Connected to www.urz.uni-heidelberg.de.
Escape character is ’ˆ]’.
aaghajanRETURN
User Real Name What Idle TTY Host Console Location

aaghajan Anoush Aghajani-Tl pine 0:05 *5 aixterm5 (128.84.46.130)
Connection closed by foreign host.
9$

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 2 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

Sockets: Curry p. 391

Each computer that is connected to the Internet is called a host . A socket is like a pipe, except that
(1) the same socket can be used for both input and output, and (2) the two processes can run on different
hosts. The process that runs on the host where you’re logged in is called the local process; the one on the
other host is the remote process.

The address family of a socket tells how far apart the two processes are allowed to be. A socket
whose address family is AF_UNIX (Curry p. 367) can be used only for communication between two pro-
cesses that are running on the same Unix machine. An AF_UNIX socket is given a name and is stored in a
directory, so you can see it with ls -l. It’s similar to a named pipe:

1$ cd /tmp
2$ ls -l | grep ’ˆs’ | more
srwxrwxrwx 1 mysqlu mysqlg 0 Nov 7 21:29 mysql.sock
srwxr-xr-x 1 root root 0 Nov 7 21:29 psb_back_socket
srwxr-xr-x 1 root root 0 Nov 7 21:29 psb_front_socket

A socket whose address family is AF_INET (Curry p. 399) can be used for communication between
two processes that are running on different hosts. An AF_INET socket is given a port number instead of a
name and directory.

Communicate via a socket: Bach pp. 383−388; Curry pp. 398−399, 401−404, 405−407

Every host on the Internet has an IP address ; Curry calls it an host address on pp. 393−394. For
example, the IP address of the host smail.let.uu.nl (Universiteit Utrecht in the Netherlands) is

1$ /usr/sbin/nslookup smail.let.uu.nl
Server: CMCL2.NYU.EDU
Address: 128.122.253.92

written with three dots separating the four octets.

There is a server named echo at port 7 on the host smail.let.uu.nl that is waiting for you to
send it data. It will send a copy of the data back to you.

1 /* Excerpts from /usr/include/sys/socket.h. */
2
3 /* Address family: the first argument of socket, and the sin_family field
4 of struct sockaddr_in. */
5 #define AF_UNIX 1 /* two processes on the same Unix machine */
6 #define AF_INET 2 /* two processes on different hosts, IPv4 */
7 #define AF_INET6 26 /* two process on different hosts, IPv6 */
8
9 /* Socket type: the second argument of the socket function. */
10 #define SOCK_STREAM 1 /* stream socket (TCP) */
11 #define SOCK_DGRAM 2 /* datagram socket (UDP) */
12
13 /* The second argument of the shutdown function. */
14 #define SHUT_RD 0 /* Disables further receive operations */
15 #define SHUT_WR 1 /* Disables further send operations */
16 #define SHUT_RDWR 2 /* Disables further send and receive operations
17
18 /* Maximum queue length specifiable by listen. */
19 #define SOMAXCONN 1024

20 /* Excerpts from /usr/include/sys/types.h. */
21 typedef unsigned short u_short;

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 3 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

22 typedef unsigned int u_int;

23 /* Excerpts from /usr/include/netinet/in.h. */
24
25 /* Only the superuser can bind to a port whose number is smaller than this.
26 Curry pp. 412-413. */
27 #define IPPORT_RESERVED 1024
28
29 /* Ports > IPPORT_USERRESERVED are reserved for servers, not necessarily
30 run by the superuser. */
31 #define IPPORT_USERRESERVED 5000
32
33 /* Tell server to accept a connection on any interface, Curry pp. 400, 405. */
34 #define INADDR_ANY 0x00000000
35
36 typedef uint32_t in_addr_t;
37
38 struct in_addr {
39 union {
40 struct { uint8_t s_b1, s_b2, s_b3, s_b4; } _S_un_b;
41 struct { uint16_t s_w1, s_w2; } _S_un_w;
42 in_addr_t _S_addr;
43 } _S_un;
44 };
45
46 #define s_addr _S_un._S_addr
47
48 struct sockaddr_in { /* Internet socket address */
49 u_short sin_family; /* address family: AF_UNIX or AF_INET */
50 u_short sin_port; /* port number from /etc/services */
51 struct in_addr sin_addr; /* 32-bit IP address from nslookup */
52 char sin_zero[8]; /* padding */
53 };

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/socket.c

1 /* Write one character to the program at port 7 (echo) of smail.let.uu.nl
2 Then read one character back. */
3
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/types.h>
7 #include <sys/socket.h>
8
9 int main(int argc, char **argv)
10 {
11 const int s = socket(AF_INET, SOCK_STREAM, 0); /* file descriptor */
12 struct sockaddr_in echo;
13 char buffer[INET6_ADDRSTRLEN]; /* for inet_ntop */
14 int i; /* return value of inet_pton */
15 char c = ’A’;
16
17 if (s < 0) {
18 perror(argv[0]);
19 return 1;

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 4 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

20 }
21
22 bzero((char *)&echo, sizeof echo); /* fill the echo structure with zeroes */
23 echo.sin_family = AF_INET; /* Internet address family: IPv4 */
24 echo.sin_port = htons(7); /* echo is at port number 7 */
25
26 /* IP address of smail.let.uu.nl: */
27 i = inet_pton(AF_INET, "131.211.194.40", &echo.sin_addr);
28 if (i == 0) {
29 fprintf(stderr, "%s: bad dotted string to IP address\n", argv[0]);
30 return 2;
31 }
32
33 if (i != 1) {
34 perror(argv[0]); /* bad address family */
35 return 3;
36 }
37
38 if (inet_ntop(AF_INET, &echo.sin_addr, buffer, sizeof buffer) == NULL) {
39 perror(argv[0]);
40 return 4;
41 }
42 printf("Trying %s...\n", buffer);
43
44 if (connect(s, (struct sockaddr *)&echo, sizeof echo) != 0) {
45 perror(argv[0]);
46 return 5;
47 }
48
49 printf("Connected to smail.let.uu.nl.\n");
50
51 if (write(s, &c, 1) != 1) {
52 perror(argv[0]);
53 return 6;
54 }
55
56 c = ’\0’; /* Prove that the same character comes back from the server. */
57
58 if (read(s, &c, 1) != 1) {
59 perror(argv[0]);
60 return 7;
61 }
62
63 printf("%c\n", c);
64
65 if (shutdown(s, SHUT_RDWR) != 0) { /* Curry pp. 128-409 */
66 perror(argv[0]);
67 return 8;
68 }
69
70 printf("Connection closed.\n");
71 return EXIT_SUCCESS;
72 }

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 5 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

2$ gcc -o ˜/bin/socket socket.c -lsocket -lnsl ‘‘Networking Services Library’’
3$ ls -l ˜/bin/socket
4$ socket
Trying 131.211.194.40...
Connected to smail.let.uu.nl.
A
Connection closed.
5$

Network byte order: Curry pp. 397−398; htons(3), htonl(3)

Use use type punning to print the contents of s byte-by-byte:

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/byteorder.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4 #include <netinet/in.h>
5
6 int main(int argc, char **argv)
7 {
8 unsigned short s = 0x1234; /* decimal 4660, binary 00010010 00110100 */
9 char *p = (char *)&s; /* Let the value of p be the address of s. */
10
11 printf("The value of s is hexadecimal %04X.\n", s);
12 printf("The address of s is hexadecimal %08X.\n", p);
13 printf("The number of bytes in s is %d.\n\n", sizeof s);
14
15 printf("The contents of address %08X is hexadecimal %02X.\n", p, p[0]);
16 printf("The contents of address %08X is hexadecimal %02X.\n\n", p + 1, p[1]);
17
18 printf("htons returns %04X.\n", htons(s)); /* "host to network short" */
19 return EXIT_SUCCESS;
20 }

You could split line 9 to

9 char *p;
10 p = (char *)&s; /* Let the value of p be the address of s. */

—but why would you want to?

1$ gcc -o ˜/bin/byteorder byteorder.c
2$ ls -l ˜/bin/byteorder
3$ byteorder
The value of s is hexadecimal 1234.
The address of s is hexadecimal 1FFFF8E0.
The number of bytes in s is 2.

The contents of address 1FFFF8E0 is hexadecimal 34.
The contents of address 1FFFF8E1 is hexadecimal 12.

htons returns 3412.

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 6 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

34
00110100

12
00010010

1FFFF8DF 1FFFF8E0 1FFFF8E1 1FFFF8E2

▼ Homework 3.1: find the byte order on your machine at work

What is the sizeof and byte order on your machine of these three variables:

1 short s = 0x1234;
2 int i;
3 long l = 0x12345678;
4
5 if (sizeof(int) == 2) {
6 i = 0x1234;
7 } else if (sizeof(int) == 4) {
8 i = 0x12345678;
9 } else {
10 fprintf(stderr, "sizeof(int) == %d\n", sizeof(int));
11 }

▲

socket in Perl: pp. 217, 348−355, 498−500 in O’Reilly Perl book

We saw inet_aton, sockaddr_in, and connect in X52.9547 Handout 1, p. 25.

#!/bin/perl
#Output one line to the echo server at port 7 of smail.let.uu.nl
#(131.211.194.40). Then input the line back from the server.

use Socket; #for AF_INET, etc.
use FileHandle; #for autoflush

socket(S, AF_INET, SOCK_STREAM, 0) or die "$0: $!";
S->autoflush(); #pp. 130, 444 in O’Reilly Perl book

$ip = inet_aton(’131.211.194.40’) or die "$0: inet_aton failed";
$address = sockaddr_in(7, $ip) or die "$0: sockaddr_in failed";

print "Trying 131.211.194.40...\n";
connect(S, $address) or die "$0: $!";
print "Connected to smail.let.uu.nl.\n";

print S "hello\n"; #Write one line to the socket.
$line = <S>; #Read one line from the socket.
print $line;

shutdown(S, SHUT_RDWR) or die "$0: $!";
print "Connection closed.\n";
exit 0;

http://i5.nyu.edu/˜mm64/x52.9544/src/socket.pl

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 7 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

1$ chmod 755 socket.pl Make the perlscript executable: rwxr-xr-x
2$ mv socket.pl ˜/bin if the perlscript is not already in ˜/bin
3$ ls -l ˜/bin/socket.pl
4$ socket
Trying 131.211.194.40...

socket in Jav a:

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/Echo.java

1 import java.io.*;
2 import java.net.*;
3
4 class Echo {
5 static public void main(String[] argv) {
6 try {
7 System.out.println("Trying 131.211.194.40...");
8 Socket echo = new Socket("131.211.194.40", 7);
9 System.out.println("Connected to smail.let.uu.nl.");
10
11 OutputStream out = echo.getOutputStream();
12 InputStream in = echo.getInputStream();
13
14 byte[] buffer = new byte[100];
15 buffer[0] = ’A’;
16 out.write(buffer, 0, 1);
17
18 buffer[0] = ’\0’;
19 int len = in.read(buffer);
20 if (len > 0) {
21 System.out.write(buffer, 0, len);
22 }
23 System.out.print(’\n’);
24
25 echo.close();
26 }
27
28 catch (UnknownHostException e) {
29 e.printStackTrace(System.err);
30 }
31
32 catch (IOException e) {
33 e.printStackTrace(System.err);
34 }
35
36 System.out.println("Connection closed.");
37 System.exit(0);
38 }
39 }

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 8 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

1$ javac Echo.java Run the java compiler.
2$ ls -l Echo.class
3$ java Echo Run the java interpreter (a.k.a the Java Virtual Machine).
Trying 131.211.194.40...
Connection closed.

telnet

▼ Homework 3.2: write your own version of telnet

Write a rudimentary version of telnet named mytelnet. Hand in only the last version; no credit
otherwise.

In C, start by changing the name of socket.c to mytelnet.c. In Perl, start by changing the
name of socket to mytelnet.

(1) Instead of hardwiring the IP address 131.211.194.47 into the program, hardwire the fully
qualified domain name spider.let.uu.nl. After all, human beings prefer names.

1 /* Excerpts from the file /usr/include/netdb.h ("net database"),
2 Curry pp. 393-396 */
3
4 struct hostent { /* excerpts from the fields of this structure */
5 int h_length; /* number of bytes in the address */
6 char **h_addr_list; /* ptr to ptr to first byte in the address */
7 };
8
9 /* If gethostbyname fails, it will put one of the following values into
10 the variable h_errno: */
11
12 #define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
13 #define TRY_AGAIN 2 /* Non-Authoritative Host not found, or SERVERFAIL */
14 #define NO_RECOVERY 3 /* Non recoverable errors, FORMERR, REFUSED, NOTIMP */
15 #define NO_DATA 4 /* Valid name, no data record of requested type */
16 #define NO_ADDRESS NO_DATA /* no address, look for MX record */

The following program can be modified to output every IP address of the host
spider.let.uu.nl, but you should use only the first IP address in your homework. See K&R p. 52 for
the following use of ?:.

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/gethostbyname.c

1 /* Output the IP address of www.uu.nl. */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <netdb.h> /* network data base */
5
6 extern int h_errno;
7
8 int main(int argc, char **argv)
9 {
10 struct hostent *p = gethostbyname("www.uu.nl");
11 int a; /* loop through the host’s IP addresses */
12 int b; /* loop through the octets of each IP address */
13
14 if (p == NULL) {
15 fprintf(stderr, "%s: gethostbyname error number %d\n", argv[0], h_errno);

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 9 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

16 return EXIT_FAILURE;
17 }
18
19 printf("Each address consists of %d octets.\n", p->h_length);
20
21 for (a = 0; p->h_addr_list[a] != NULL; ++a) {
22 for (b = 0; b < p->h_length; ++b) {
23 printf("%d%c", p->h_addr_list[a][b] & 0xFF,
24 b < p->h_length - 1 ? ’.’ : ’\n’);
25 }
26 }
27
28 return EXIT_SUCCESS;
29 }

1$ prog
Each address consists of 4 octets.
131.211.194.47

A pointer to a pointer

In the above program, p->h_addr_list can be treated as a two-dimensional array, i.e., it can be
given two subscripts. This is true of any char ** in C:

char **h_addr_list;
char **argv;

argv[0][0] first character of the first word on the command line
argv[0][1] second character of the first word on the command line
argv[0][2] third character of the first word on the command line

argv[1][0] first character of the second word on the command line
argv[1][1] second character of the second word on the command line
argv[1][2] third character of the second word on the command line

argv[2][0] first character of the third word on the command line
argv[2][1] second character of the third word on the command line
argv[2][2] third character of the third word on the command line

Remove the sign extension with &: K&R pp. 44−45, 48−49

23 printf("%d%c", p->h_addr_list[a][b] & 0xFF,

binary
p->h_addr_list[0][0] 10000011

p->h_addr_list[0][0] with sign extension 11111111 11111111 11111111 10000011
& 0xFF 00000000 00000000 00000000 11111111

p->h_addr_list[0][0] & 0xFF 00000000 00000000 00000000 10000011

Perl gethostbyname is now unnecessary, since both of the following do the same thing:

inet_aton(’spider.let.uu.nl’)
inet_aton(’131.211.194.47’)

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 10 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

(2) Instead of hardwiring the fully qualified domain name spider.let.uu.nl into the program,
let the user specify it as the first command line argument:

2$ gcc -o ˜/bin/mytelnet mytelnet.c -lsocket -lnsl
3$ ls -l ˜/bin/mytelnet
4$ mytelnet spider.let.uu.nl
Trying 131.211.194.47...
Connected to spider.let.uu.nl.
A
Connection closed.
5$

First, if there is not exactly one command line argument, output an error message to stderr and
exit with a non-zero exit status. In C,

1 if (argc != 2) {
2 fprintf(stderr, "%s: requires exactly one command line argument.\n",
3 argv[0]);
4 return 1;
5 }

In Perl,

if (@ARGV != 1) { #@ARGV is in a scalar context
die "$0: requires exactly one command line argument.";

}

Now that we’ve verified that there is an argument, pass it to gethostbyname in C, or to
inet_aton in Perl. In C, the first command line argument is argv[1]; in Perl, the first command line
argument is $ARGV[0]:

1 entry = gethostbyname(argv[1]); /* C */
2 $ip = inet_aton($ARGV[0]) or die "$0: inet_aton failed"; #Perl

(3) Instead of hardwiring the port number 7 into the program, let the user specify it as the second
command line argument:

6$ gcc -o ˜/bin/mytelnet mytelnet.c -lsocket -lnsl
7$ ls -l ˜/bin/mytelnet
8$ mytelnet spider.let.uu.nl 7
Trying 131.211.194.47...
Connected to spider.let.uu.nl.
A
Connection closed.
9$

In C, the second command line argument is argv[2]; In Perl, the second command line argument is
$ARGV[1]. But first, output an error message to stderr, and exit with a non-zero exit status if there
are not exactly two command line arguments. In C,

1 if (argc != 3) {
2 fprintf(stderr, "%s: requires exactly 2 command line arguments.\n",
3 argv[0]);
4 return 1;
5 }

In Perl,

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 11 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

if (@ARGV != 2) { #@ARGV is in a scalar context
die "$0: requires exactly 2 command line arguments.";

}

Then make sure that the second argument is not the null string. Then make sure that every character in the
second argument is a digit. Then convert the second argument from string to integer. In C,

1 #include <string.h> /* for strlen, strspn, and size_t */
2
3 size_t length;
4
5 if (argc != 3) {
6 error message and exit;
7 }
8
9 length = strlen(argv[2]);
10 if (length <= 0) {
11 error message and exit;
12 }
13
14 if (strspn(argv[2], "0123456789") != length) { /* K&R p. 250 */
15 error message and exit;
16 }
17
18 echo.sin_port = htons(atoi(argv[2])); /* K&R p. 251 */

In Perl, it’s much easier to validate the second argument. Write a regular expression in /slashes/ (as
in awk). \d is a wildcard whose meaning is the same as [0-9], and + means ‘‘one or more’’. The opera-
tor !˜ means ‘‘does not match’’.

if ($ARGV[1] !˜ /ˆ\d+$/) {
die "$0: second argument $ARGV[1] must be a port number\n";

}

(4) If the user specifies only one command line argument, use the port number of the telnet server
by default. Call getservbyname (Curry pp. 396−397) to find the port number of the telnet server,
and store it in the sin_port field.

1 /* Excerpt from the file /usr/include/netdb.h. */
2 struct servent {
3 int s_port; /* port number */
4 };

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/getservbyname.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <netdb.h>
4
5 int main(int argc, char **argv)
6 {
7 struct servent *p = getservbyname("telnet", "tcp");
8
9 if (p == NULL) {
10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 12 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

13
14 printf("decimal\t%d\n", p->s_port);
15 printf( "hex\t%04X\n", p->s_port);
16
17 return EXIT_SUCCESS;
18 }

10$ gcc -o ˜/bin/getservbyname getservbyname.c
11$ ls -l ˜/bin/getservbyname getservbyname
12$ getservbyname
decimal 5888
hex 1700 17 in hex is 23 in decimal.

You don’t need to apply htons in C or C++ to the return value of getservbyname: the bytes that
getservbyname returns are already in network order.

#!/bin/perl

$port = getservbyname(’telnet’, ’tcp’) or die "$0: couldn’t find telnet";

print "$port\n";
exit 0;

13$ getservbyname
23

Unfortunately, you won’t be able to use mytelnet to connect to the telnet server at port 23: it
speaks a complicated protocol that we won’t cover in class.

(5) In C, use fputc and fgetc (K&R pp. 246−247; see fputc(3) and fgetc(3)) instead of
write and read. Call fdopen (Handout 2, pp. 18−19; Curry p. 101) only once. The "r+" argument of
fdopen will let you input and output (K&R p. 242). The setbuf will make you flush automatically
ev ery time you output to the socket; see K&R p. 243.

fclose normally does two things for you: it flushes the buffer and then severs the connection
between your program and a file. But there is no need to call fclose here, because the buffer never needs
flushing (thanks to setbuf), and because we’re using shutdown to sever the connection with the server.

★ putchar, fputc, and putc can output either a char or an int, but the return value of
getchar, fgetc, and getc must be stored in an int; see K&R p. 16. Therefore you should use an
int variable to hold the character going to and coming from the socket.

(For your information, the %c format of printf or fprintf can output either a char or an int,
but the %c format of scanf or fscanf can input only a char.)

1 int s = socket(...;
2 FILE *fp;
3
4 printf Trying in line 42 of socket.c;
5 Call connect(s, ... in line 44 of socket.c;
6 printf Connected to in line 49 of socket.c;
7
8 fp = fdopen(s, "r+");
9 if (fp == NULL) {
10 perror(argv[0]);
11 return whatever exit number you’re up to;
12 }
13 setbuf(fp, NULL); /* like Perl autoflush */

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 13 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

14
15 Call fprintf(fp, "%c", c) instead of write(s, &c, 1) in line 51 of socket.c;
16 Call fscanf(fp, "%c", &c) instead of read(s, &c, 1) in line 58 of socket.c;
17 printf the character;
18 Call shutdown;
19 printf Connection closed.

(6) So far, mytelnet outputs and inputs exactly one character (an uppercase A à la Nathaniel
Hawthorne) to and from the socket. Change it to do this to every character read from the standard input.

Output the message

Escape character is ’ˆd’.

immediately after the Connected to message, and then write a traditional while-getchar loop to
input characters one at a time from the standard input. As in the previous section of this Homework, use an
int variable to hold each character. During each loop, output the character to the socket with one fputc.
Then to make sure that the socket really works, put a ’\0’ into the variable that held the character. Then
input one character from the socket into the same variable with fgetc. Finally, output the character in the
variable to the standard output with putchar.

When you run mytelnet with its standard input and output connected to the terminal keyboard and
screen, everything you type will be echoed on the screen via spider.let.uu.nl. The characters you
type are in italics :

14$ mytelnet spider.let.uu.nl 7
Trying 131.211.194.47...
Connected to spider.let.uu.nl.
Escape character is ’ˆd’.
"And this also," said Marlow suddenly,
"And this also," said Marlow suddenly,
"has been one of the dark places of the earth."
"has been one of the dark places of the earth."
control-d
Connection closed by foreign host.
My child’s exit status was 0.
15$

(7) The server at the remote end of our socket (in this case echo on spider.let.uu.nl) per-
forms input and output in a predictable order and quantity. It always begins by inputting one byte, not out-
putting. And ev ery time it inputs one byte, it outputs exactly one byte immediately afterwards.

Not all servers will be so tame. For example, some produce output but accept no input. Others per-
form input and output in an unpredictable order and quantity.

When conducting a dialog with such a server, it may be impossible for mytelnet to know whether
it should input or output at any giv en moment. The easiest way to attempt both, simultaneously, is to split
mytelnet into a parent and a child. Let one of them continuously attempt output, the other continuously
attempt input:

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/mytelnet.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <sys/types.h>
5 #include <sys/wait.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8 #include <unistd.h>

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 14 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

9
10 int main(int argc, char **argv)
11 {
12 int s = socket(AF_INET, SOCK_STREAM, 0);
13 struct sockaddr_in address;
14 char buffer[INET6_ADDRSTRLEN];
15 pid_t pid;
16 int status;
17 int i; /* getchar requires an int: KR p. 16 */
18 char c; /* write requires a char: KR p. 170 */
19
20 if (s < 0) {
21 perror(argv[0]);
22 return 1;
23 }
24
25 bzero((char *)&address, sizeof address);
26 address.sin_family = AF_INET;
27 address.sin_port = htons(7);
28
29 /* IP address for spider.let.uu.nl: */
30 i = inet_pton(AF_INET, "131.211.194.47", &address.sin_addr);
31 if (i == 0) {
32 fprintf(stderr, "%s: bad dotted string to IP address\n", argv[0]);
33 return 2;
34 }
35
36 if (i != 1) {
37 perror(argv[0]);
38 return 3;
39 }
40
41 if (inet_ntop(AF_INET, &address.sin_addr, buffer, sizeof buffer) == NULL) {
42 perror(argv[0]);
43 return 4;
44 }
45 printf("Trying %s...\n", buffer);
46
47 if (connect(s, (struct sockaddr *)&address, sizeof address) != 0) {
48 perror(argv[0]);
49 return 5;
50 }
51
52 printf("Connected to spider.let.uu.nl.\n"
53 "Escape character is ’ˆd’.\n");
54
55 pid = fork();
56 if (pid < 0) {
57 perror(argv[0]);
58 return 6;
59 }
60
61 if (pid == 0) {
62 /* The child will copy from the server to the stdout. */

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 15 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

63 while (read(s, &c, 1) == 1) {
64 putchar(c);
65 }
66
67 fprintf(stderr, "Connection closed by foreign host.\n");
68 return EXIT_SUCCESS;
69 }
70
71 /* The parent will copy from the stdin to the server. */
72 while ((i = getchar()) != EOF) {
73 c = i;
74 write(s, &c, 1);
75 }
76
77 if (shutdown(s, SHUT_RDWR) != 0) { /* terminate the while loop in line 63 */
78 perror(argv[0]);
79 return 7;
80 }
81
82 wait(&status);
83 if (WIFEXITED(status)) {
84 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
85 }
86 return EXIT_SUCCESS;
87 }

16$ gcc -o ˜/bin/mytelnet mytelnet.c -lsocket -lnsl
17$ ls -l ˜/bin/mytelnet
18$ mytelnet

Retrofit features (1) through (6) into the above program. Call fdopen (with the "r+" argument)
and setbuf before the fork. As in the previous section, the parent should call shutdown but not
fclose. The child should call neither: only one process has to call shutdown. The characters you type
are in italics .

19$ mytelnet spider.let.uu.nl 7
Trying 131.211.194.47...
Connected to spider.let.uu.nl.
Escape character is ’ˆd’.
"And this also," said Marlow suddenly,
"And this also," said Marlow suddenly,
"has been one of the dark places of the earth."
"has been one of the dark places of the earth."
control-d
Connection closed by foreign host.
My child’s exit status was 0.
20$

▲

A future improvement to mytelnet

The above child will loop as long as the parent does, because the echo server inputs and outputs
equal numbers of bytes. Other servers, however, may input and output unequal numbers of bytes.

An example of this is the daytime server at port 13: it inputs nothing, but outputs one line. In this
case, the child would encounter the end-of-input from the socket and voluntarily exit while the parent is

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 16 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

still alive and waiting for standard input. The user must then type a control-d to the parent to make the
parent exit:

1$ mytelnet spider.let.uu.nl 13
Friday, January 09, 2004 12:08:35 AM-EST
Connection closed by foreign host. It types this.
control-d You have to type this.
My child’s exit status was 0. It types this.
2$

To eliminate the need for the control-d, later in the course the parent will check for the death-of-
child signal (SIGCHLD in Curry pp. 243−244 and signal(3); SIGCLD in Bach p. 449 and p. 212, figure
7.14) during each loop, and terminate the loop as soon as the child exits.

Specify port number 79 for the finger server. You must write one line of data to the remote
finger before it will write data back to you. write a \n to get a list of everyone who is logged in;
write abc1234\n to get information about one person.

3$ mytelnet acf2.nyu.edu 79
RETURN just press RETURN to see everyone
control-d

4$ mytelnet acf2.nyu.edu 79
root RETURN or type any other login name
control-d

Chicken out with fdopen

You can fprintf a file only if you fopen it first. But suppose you open the file because you plan
to use write instead of fprintf. Then immediately after the open, you chicken out and wish you
could use fprintf instead.

It’s not too late:

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/fdopen.c

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #include <fcntl.h>
5 #include <sys/types.h>
6 #include <sys/stat.h>
7 #include <unistd.h>
8
9 int main(int argc, char **argv)
10 {
11 int fd = open("/home/a/abc1234/outfile",
12 O_CREAT | O_TRUNC | O_WRONLY,
13 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
14 FILE *fp;
15
16 if (fd < 0) {
17 perror(argv[0]);
18 return 1;
19 }
20
21 fp = fdopen(fd, "w");
22 if (fp == NULL) {

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 17 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

23 perror(argv[0]);
24 return 2;
25 }
26
27 fprintf(stderr, "fd == %d, fp->_file == %d\n", fd, fp->_file);
28 fprintf(fp, "hello\n");
29
30 if (fclose(fp) != 0) {
31 perror(argv[0]);
32 return 3;
33 }
34
35 return EXIT_SUCCESS;
36 }

fd == 3, fp->_file == 3

fdopen is just like fopen, except that fdopen does not call open:

1 FILE *fopen(char *filename, char *mode)
2 {
3 int arg2;
4 mode_t arg3;
5
6 if (mode[0] == ’r’) {
7 arg2 = O_RDONLY;
8 arg3 = 0;
9 } else if (mode[0] == ’w’) {
10 arg2 = O_CREAT | O_TRUNC | O_WRONLY;
11 arg3 = S_IRUSR | S_IWUSR;
12 } else {
13 fprintf(stderr, "illegal mode %s\n", mode);
14 }
15
16 return fdopen(open(filename, arg2, arg3), mode);
17 }

▼ Homework 3.3: fdopen an input file

open an input file. Then fdopen it and fscanf some data from it. Echo the data to the standard
output to verify that the fscanf worked.
▲

—Source code on the Web at http://i5.nyu.edu/˜mm64/x52.9544/src/strerror.c

1 #include <stdio.h> /* for printf */
2 #include <stdlib.h> /* for EXIT_SUCCESS */
3 #include <string.h> /* for strerror */
4
5 int main()
6 {
7 int i;
8 const char *p; /* p is a read-only pointer */
9
10 for (i = 0; (p = strerror(i)) != NULL; ++i) {
11 printf("%3d: %s\n", i, p);
12 }

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 18 − All rights

reserved ©2004 Mark Meretzky



NYU SCPS X52.9544 Section 1 Unix System Calls

13
14 return EXIT_SUCCESS;
15 }

0: Error 0
1: Not owner
2: No such file or directory
3: No such process
4: Interrupted system call

147: Host is down
148: No route to host
149: Operation already in progress
150: Operation now in progress
151: Stale NFS file handle

Fall 2004 Handout 3 printed 1/9/04
12:00:57 AM − 19 − All rights

reserved ©2004 Mark Meretzky


