
NYU SCPS X52.9544 Section 1 Unix System Calls

Spring 2008 Handout 2

The difference between a program and a process: Curry pp. 283; Bach pp. 146−151; KP pp. 33−35

A program is whatls lists; aprocessis whatps lists. Thesticky bit t is in Curry p. 125, Bach pp.
225−226.

1$ cd /usr/bin
2$ ls -l
-r-xr-xr-x 5 root bin 240316 Jun 8 2006 vi

#!/bin/ksh
#Find all the files whose sticky bit is on.

find / -type f -perm -1000 -print 2> /dev/null

3$ ps -Af | more
USER PID PPID %CPU STARTED TTY TIME COMMAND
root 0 0 0.0 Dec 12 ?? 09:32:11 [kernel idle]
root 1 0 0.0 Dec 12 ?? 9:58.93 /sbin/init -a
root 1057 1 0.0 Dec 12 ?? 6:16.06 /usr/sbin/inetd
root 3747 1057 0.0 21:29:16 ?? 0:03.35 telnetd
mm64 3769 3747 0.0 21:29:17 ttyq9 0:02.46 -ksh (ksh)
mm64 5470 3769 0.0 22:03:44 ttyq9 0:00.19 vi process.ms

0
kernel

1
init

1057
inetd

3747
telnetd

3769
ksh

5470
vi

/dev/ttyq9

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 1 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Give birth to a child: Curry pp. 292−295; KP pp. 184−185; K&R pp. 167, 253

The string that you give to system must use the Bourne shell syntax. The standard output of the
cal in line 7 will become part of the standard output of the following C program:

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/system.c

1 #include <stdio.h>
2 #include <stdlib.h> /* for system */
3
4 i nt main()
5 {
6 printf("The current month is\n");
7 f flush(stdout);
8
9 s ystem("cal"); /* Don’t need newline. */

10 system("cal 12 2000");
11 system("cal 12 2000 > $HOME/cal.out"); /* Bourne shell won’t take tilde. */
12
13 system("who | wc - l");
14 system("grep can\\’t /lyrics/stones/satisfaction");
15 system("grep \"can’t\" /lyrics/stones/satisfaction");
16
17 return EXIT_SUCCESS;
18 }

1$ grep can\’t /lyrics/stones/satisfaction KP p. 75
2$ grep "can’t" /lyrics/stones/satisfaction

To get the exit status of the program run bysystem , store the return value in anint variable and
examine it with theWmacros inwait (2). Notev ery process returns an exit status: some are terminated or
stopped by a signal first.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/systemexit.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4
5 i nt main(int argc, char **argv)
6 {
7 / * b lank and tab within the [] */
8 i nt status = system("who | grep -q ’ˆabc1234[\t]’");
9

10 if (WIFEXITED(status)) {
11 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
12 } else if (WIFSIGNALED(status)) {
13 printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
14 } else if (WIFSTOPPED(status)) {
15 printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
16 } else {
17 fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);
18 return EXIT_FAILURE;
19 }
20
21 return EXIT_SUCCESS;

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 2 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

22 }

My child’s exit status was 1.

system in perl

#!/bin/perl
use POSIX;

$status = system(’who | grep -q \’ˆabc1234[\t]\’’);

if (WIFEXITED($status)) {
print "My child’s exit status was ", WEXITSTATUS($status), ".\n";

} e lsif (WIFSIGNALED($status)) {
print "My child was terminated by signal number ", WTERMSIG($status), ".\n";

} e lsif (WIFSTOPPED($status)) {
print "My child was stopped by signal number ", WSTOPSIG($status), ".\n";

} e lse {
die "$0: couldn’t find out how child ended up.";

}

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9544/src/systemexit

▼ Homework 2.1: get the child’s exit status

Call system to give birth to a child that produces an exit status but no output.Then print a message
determined by the exit status of the child.Let the child be one of the following programs, or a pipeline
ending with one of the following programs. Or write your own child in C, C++, Perl, or the shell language.

1$ mail -e exit status is 0 if you have mail
2$ grep -q word file exit status is 0 iffile containsword
3$ cmp -s file1 file2 exit status is 0 iffile1 andfile2 are identical
4$ sort -c file 2> /dev/null exit status is 0 iffile is already sorted
5$ gcc -o /dev/null prog.c exit status is 0 ifprog.c has no compilation errors

6$ test -f file exit status is 0 iffile exists
7$ test -f file -a -w file exit status is 0 iffile exists and is writable
8$ test -d directory exit status is 0 ifdirectory exists
9$ mkdir directory
10$ test ‘who | awk ’{print $1}’ | sort | uniq | wc -l‘ -gt 20

11$ true exit status always 0
12$ false exit status always 1

13$ /usr/sbin/ping -c 1 acf5.nyu.edu > /dev/null 2>&1 exit status is 0 ifis is online

Here are some machines you canping :

andrew.cmu.edu Carnegie Mellon University
www.uquebec.ca Universite du Quebec
www.unipi.it Università degli Studi di Pisa

▲

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 3 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Give birth to a child with a pipe from the parent to the child

popen runs another program and lets you send output to its standard input.pclose sends an EOF
through the pipe and returns the exit status of the program run bypopen . You can store it in anint vari-
able and examine it with theWmacros:

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/popen_to_child.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4
5 i nt main(int argc, char **argv)
6 {
7 FILE *lpr = popen("lpr", "w");
8 i nt status;
9

10 if (lpr == NULL) {
11 perror(argv[0]);
12 return EXIT_FAILURE;
13 }
14
15 fprintf(lpr, "hello\n");
16 fprintf(lpr, "goodbye\n");
17
18 status = pclose(lpr);
19
20 if (WIFEXITED(status)) {
21 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
22 } else if (WIFSIGNALED(status)) {
23 printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
24 } else if (WIFSTOPPED(status)) {
25 printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
26 } else {
27 fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);
28 return EXIT_FAILURE;
29 }
30
31 return EXIT_SUCCESS;
32 }

The string that you give to popen is not limited to one program.You can change line 7 to

7 FILE *lpr = popen("sort | cat -n | pr -l60 | lpr", "w");

Use Bourne shell syntax.

Give birth to a child with a pipe from the child to the parent

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/popen_to_parent.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4
5 i nt main(int argc, char **argv)
6 {

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 4 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

7 FILE *wc = popen("who | awk ’{print $1}’ | sort | uniq | wc -l", "r");
8 i nt n; /* number of people logged in */
9 i nt status;

10
11 if (wc == NULL) {
12 perror(argv[0]);
13 return EXIT_FAILURE;
14 }
15
16 fscanf(wc, "%d", &n);
17 printf("There are %d people logged in.\n", n);
18
19 status = pclose(wc);
20 if (!WIFEXITED(status) || WEXITSTATUS(status) != EXIT_SUCCESS) {
21 fprintf(stderr, "%s: child came to grief somehow.\n", argv[0]);
22 return EXIT_FAILURE;
23 }
24
25 return EXIT_SUCCESS;
26 }

You can callpopen several times in the same C program. This allows you to have more than one
pipe coming into and/or going out of a C program (or a Perl program), which you can’t hav e in a
shellscript.

popen in Perl

#!/bin/perl
use POSIX;

open(WC, ’who | awk \’{print $1}\’ | sort | uniq | wc -l |’) || die "$0: $!";
open(LPR, ’| lpr’) || die "$0: $!";

$_ = <WC>;
chomp;
print LPR "There are $_ people logged in.\n";

close WC;
#Should have checked WIFEXITED before calling WEXITSTATUS.
print ’The exit status of the wc -l was ’, WEXITSTATUS($?), ".\n";

close LPR;
print ’The exit status of the lpr was ’, WEXITSTATUS($?), ".\n";

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9544/src/popen

▼ Homework 2.2: pipe data to sort

Make Homework 13.4 list everything in alphabetical order. Simply usepopen , fprintf , and
pclose to pipe your C program’s output tosort +8 .

1 i nt main(int argc, char **argv)
2 {
3 opendir;

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 5 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

4 popen("sort", "w");
5
6 f printf all the output into the pipe;
7
8 pclose;
9 c losedir;

10 }

If you have done the extra credit parts of Homework 1.8, some lines of output will not have nine
fields, sosort +8 won’t work. Use

awk ’{print $NF, $0}’ | sort | sed ’s/ˆ[ˆ][ˆ]* //’

instead. (Thesed remove everything up to and including the first blank on each line.)
▲

The hidden price of the system and popen functions: Curry pp. 292−295, 355−357;Oedipus Rex

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/hidden.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h> /* for getpid */
4
5 i nt main()
6 {
7 printf("My PID is %d.\n\n", getpid());
8 s ystem("ps -Af");
9 r eturn EXIT_SUCCESS;

10 }

1$ a.out | more selected output shown below
My PID is 14473.

USER PID PPID %CPU STARTED TTY TIME COMMAND
mm64 12577 11823 0.0 19:58:50 ttyq2 0:04.72 -ksh (ksh)
mm64 14473 12577 0.0 21:37:07 ttyq2 0:00.02 a.out
mm64 14478 14473 0.0 21:37:07 ttyq2 0:00.02 sh -c ps -Af
root 19059 14478 0.0 21:37:07 ttyq2 0:00.37 ps -Af

fork without exec

See Bach pp. 148, 192−200; Curry pp. 295−298; KP pp. 222−223;Men Without Women by Ernest
Hemingway. Einstein said that space is what you measure with a rule, time is what you measure with a
clock. To see the processes on a Windows system, righht-click the task bar at the botton of the screen and
selectProcess Manager .

Why does the following program output three words instead of two?

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/fork.c

1 #include <stdio.h> /* for printf and perror */
2 #include <stdlib.h> /* for EXIT_SUCCESS */
3 #include <unistd.h> /* for fork */
4
5 i nt main(int argc, char **argv)
6 {

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 6 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

7 printf("hello\n");
8
9 i f (fork() < 0) {

10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }
13
14 printf("goodbye\n");
15 return EXIT_SUCCESS;
16 }

1$ gcc -o ˜/bin/fork fork.c
2$ ls -l ˜/bin/fork

3$ fork
hello
goodbye
goodbye

Perl doesn’t require the empty parentheses in line 4. But C does, and I’m a C programmer.

#!/bin/perl

print "hello\n";
defined fork() or die "$0: $!";
print "goodbye\n";

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9547/src/fork.pl

Put the Perl program in your˜/bin subdirectory and say

4$ cd ˜/bin
5$ pwd

6$ chmod 755 fork.pl Make it executable: change mode torwxr-xr-x
7$ ls -l fork.pl

8$ fork.pl
hello
goodbye
goodbye

▼ Homework 2.3: always flush before forking

Remove the\n from line 7 of the above program. Why does it now outputhello twice, as well as
goodbye twice?

hellogoodbye
hellogoodbye

See_IOLBF in setvbuf (3); Bach p. 239 ex. 1; Curry pp. 98−99.

In C, always do anfflush(stdout); (or better yet, anfflush(NULL);) immediately before a
fork . In Perl, always do anautoflush .
▲

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 7 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

▼ Homework 2.4: how many times will it print ‘‘hello’’?

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/fork3.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4
5 i nt main(int argc, char **argv)
6 {
7 i f (fork() < 0) {
8 perror(argv[0]);
9 r eturn EXIT_FAILURE;

10 }
11
12 if (fork() < 0) {
13 perror(argv[0]);
14 return EXIT_FAILURE;
15 }
16
17 if (fork() < 0) {
18 perror(argv[0]);
19 return EXIT_FAILURE;
20 }
21
22 printf("hello\n");
23 return EXIT_SUCCESS;
24 }

1$ gcc -o ˜/bin/fork3 fork3.c
2$ ls -l ˜/bin/fork3
3$ fork3 | cat -n

#!/bin/perl

defined fork() or die "$0: $!";
defined fork() or die "$0: $!";
defined fork() or die "$0: $!";

print "hello\n";
exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9547/src/fork3.pl

Put the Perl program in your˜/bin subdirectory and say

4$ cd ˜/bin
5$ pwd

6$ chmod 755 fork3.pl Make it executable: change mode torwxr-xr-x
7$ ls -l fork3.pl
8$ fork3.pl | cat -n

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 8 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

How not to use fork

See errorEAGAIN in fork (2) andintro (2).

1 /* F or pedagogical purposes only. Do not try this! */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7 {
8 f or (;;) {
9 i f (fork() < 0) {

10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }
13 }
14 }

1 #!/bin/perl
2 #For pedagogical purposes only. Do not try this!
3
4 f or (;;) {
5 defined fork() or die "$0: $!";
6 }

Parent and child

See Curry pp. 284−285, 295−298.To see the PID number of each process,

1$ ps -Af | more every process (‘‘all’’)
2$ ps -f | more just your own

UID PID PPID C STIME TTY TIME CMD
mm64 1637 1635 0 09:00:52 pts/33 0:01 -ksh

etc.

The process in whichpid > 0 is called theparent; the one in whichpid == 0 is called thechild.
The standard output of the child is automatically directed to the same destination as the standard output of
the parent.

1 /* E xcerpt from /usr/include/sys/types.h.
2 t ypedef int pid_t;

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/parent.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h> /* for pid_t */
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7 {
8 pid_t pid;
9

10 printf("My PID is %d and my parent’s PID is %d.\n", getpid(), getppid());
11 fflush(NULL);
12

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 9 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

13 pid = f ork();
14 if (pid < 0) {
15 perror(argv[0]);
16 return EXIT_FAILURE;
17 }
18
19 printf("My PID is %d and my parent’s PID is %d. fork returned %d.\n",
20 getpid(), getppid(), pid);
21
22 return EXIT_SUCCESS;
23 }

3$ gcc -o ˜/bin/parent parent.c
4$ ls -l ˜/bin/parent
5$ parent
My PID is 28983 and my parent’s PID is 23063. before the fork
My PID is 28983 and my parent’s PID is 23063. fork returned 28984. parent
My PID is 28984 and my parent’s PID is 28983. fork returned 0. child
The last two lines above will not always come out in this order.

23063
ksh

28983
parent

23063
ksh

28983
parent

28984
parent

before after

parent

child

You can combine lines 13−14 to

13 if ((pid = fork()) < 0) {

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 10 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl
use FileHandle; #for autoflush
STDOUT->autoflush(1);

$ppid = ‘ps -o ppid= -p $$‘;
chomp $ppid;
print "My PID is $$ and my parent’s PID is $ppid.\n";

$pid = fork();
defined $pid or die "$0: $!";

$ppid = ‘ps -o ppid= -p $$‘;
chomp $ppid;
print "My PID is $$ and my parent’s PID is $ppid. fork returned $pid.\n";

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9547/src/parent.pl

Make the parent and child do different things

See Curry pp. 296−298.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/different1.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7 {
8 pid_t pid = fork();
9 i f (pid < 0) {

10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }
13
14 if (pid == 0) {
15 printf("I am the child.\n");
16 } else {
17 printf("I am the parent.\n");
18 }
19
20 return EXIT_SUCCESS;
21 }

1$ gcc -o ˜/bin/different1 different1.c
2$ ls -l ˜/bin/different1
3$ different1
I am t he parent.
I am t he child.
The last two lines above will not always come out in this order.

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 11 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl
use FileHandle; #for autoflush
STDOUT->autoflush(1);

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
print "I am the child.\n";

} e lse {
print "I am the parent.\n";

}

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9547/src/different1.pl

The above program appears to be a classic opportunity to useif-then-else . But write it the fol-
lowing way instead, because the child’s code will be short while the parent’s code will go on and on.

Write the child’s code before the parent’s. Thechild’s code mustalways end with areturn from
main or with anexit (line 16):

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/different2.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7 {
8 pid_t pid = fork();
9 i f (pid < 0) {

10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }
13
14 if (pid == 0) {
15 printf("I am the child.\n");
16 return EXIT_SUCCESS;
17 }
18
19 printf("I am the parent.\n");
20 return EXIT_SUCCESS;
21 }

4$ gcc -o ˜/bin/different2 different2.c
5$ ls -l ˜/bin/different2
6$ different2
I am t he parent.
I am t he child.

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 12 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl
use FileHandle; #for autoflush
STDOUT->autoflush(1);

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
print "I am the child.\n";
exit 0;

}

print "I am the parent.\n";
exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9547/src/different2.pl

exec without fork

See Bach pp. 217−227; Curry pp. 298−301; KP p. 220−222. The following program transforms itself
into cal by callingexecl . It retains no trace of its previous identity, so there is no way to undo the trans-
formation. If the transformation succeeded, the statement(s) after theexecl (lines 11−12) will therefore
be destroyed before they hav ea chance to execute.

Always follow execl with a perror . Why is there no need to write lines 11−12 in anif ? What
does thefflush prevent?

fork creates a new process and adds it to the tree of processes;execl doesn’t.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/execl.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4
5 i nt main(int argc, char **argv)
6 {
7 printf("I am about to transform myself into the cal program.\n");
8 f flush(NULL);
9

10 execl("/bin/cal", "cal", "9", "1752", (char *)0);
11 perror(argv[0]);
12 return EXIT_FAILURE;
13 }

1$ gcc -o ˜/bin/execl execl.c
2$ ls -l ˜/bin/execl
3$ execl
I am a bout to transform myself into the cal program.

September 1752
Sun Mon Tue Wed Thu Fri Sat

1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

die gives us no control of the exit status number, so we usewarn and exit instead.

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 13 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl

use FileHandle;
STDOUT->autoflush(1);
print "I am about to transform myself into the cal program.\n";

exec {’/bin/cal’} ’cal’, ’9’, ’1752’; #first arg has braces, not comma
warn "$0: $!";
exit 2; #a number different from any that could be retunned by cal

http://i5.nyu.edu/ ∼ mm64/x52.9547/src/exec.pl

▼ Homework 2.5: what can go wrong with exec

(1) What error message do you get if you misspell the firstcal ? To verify that the error message
comes fromperror (or from thedie in Perl), remove theperror and try it again.

(2) What error message do you get if you try to turn yourself into a file whosex bits are off?

(3) What error message do you get if you try to turn yourself into a shellscript whose#!/bin/ksh
line is misspelled or absent? See#! in execve (2).

(4) Change line 10 to

execl("/bin/ls", "ls", "-l", "*.c", (char *)0);

Why doesn’t this list everything in the current directory whose name ends with.c ? What does it try to list
instead? SeeKP pp. 220−221.
▲

What the process retains after the exec

In the above example,cal inherits the following features (and more) from your C or C++ program.
See Bach pp. 149−151, 221; Curry pp. 299−300;fork (2).

(1) PID andPPID numbers

(2) owner and group

(3) currentdirectory

(4) controlterminal

(5) environment variables

(6) theumask

(7) theright to use all the currently open file descriptors, but the new program should exercise this right
only for file descriptors 0, 1, and 2.

▼ Homework 2.6: verify that the exec’ed process retains the right to use all the currently open file
descriptors

Direct the above program’s standard output into a file:

1$ execl > ˜/outfile

Observe that even after prog transforms itself intocal , its standard output is still directed to
˜/outfile .
▲

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 14 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

▼ Homework 2.7: the four flavors of exec

fixed number variable number
of arguments ofarguments

don’t use$PATH execl execv

use$PATH execlp execvp

Each of these four functions ultimately calls the system callexecve to perform the transformation.

See Bach pp. 217, 245 ex. 35; Curry p. 299;execl (2); execve (2).

Make the following changes in the above C program:

(1) Changeline 10 to

execlp("cal", "cal", "9", "1752", (char *)0);

Does it still work?execlp callsgetenv("PATH") .

(2) Addthe following array to the program

char *new_argv[] = {"cal", "9", "1752", (char *)0};

and change line 10 to

execv("/bin/cal", new_argv);

Does it still work? Whereelse have we seen an array of strings that holds the command line of a pro-
gram?

(3) Changeline 10 to

execvp("cal", new_argv);

Does it still work?
▲

Deceive a process about its own name

Write a program namedrealname that prints out its own name:

#!/bin/ksh

echo My name is $0.
exit 0

Run it like this:

execl("/home1/a/abc1234/bin/realname",
"othername", "arg1", "arg2", "arg3", (char *)0);

realname will output

My name is othername.

ps will also displayothername instead ofrealname . Is there an argument ofps that will display the
real name?

ps shows that the Korn shell thinks that its name is-ksh instead ofksh . The Korn shell’s parent
must therefore have run it like this:

execl("/bin/ksh", "-ksh", ...

The first thing that the Korn shell does is to look at its own name. If the name starts with a dash, the Korn
shell will execute the commands in its owner’s.profile file. Seelogin (1), ksh93 (1) p. 33. For other
programs that decide what to do by looking at their own names, see KP pp. 85−86.

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 15 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

fork, exec, and wait

In peace sons bury fathers, but in war fathers bury sons.
—Herodotus,The

Histories, I, 87

See Bach pp. 213−227; Curry pp. 301−309; KP pp. 222−225.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/forkexecwait.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7 {
8 pid_t pid = fork();
9 i nt status;

10
11 if (pid < 0) {
12 perror(argv[0]);
13 return 1;
14 }
15
16 if (pid == 0) {
17 /* Arrive here if I am the child. */
18 execl("/usr/xpg4/bin/grep",
19 "grep", "-q", "ˆabc1234:", "/etc/passwd", (char *)0);
20 perror(argv[0]);
21 return 3; /* different from grep’s exit status */
22 }
23
24 /* Arrive here if I am the parent. */
25 pid = wait(&status);
26 if (pid < 0) {
27 perror(argv[0]);
28 return 2;
29 }
30 printf("My child’s PID number was %d.\n", pid);
31
32 if (WIFEXITED(status)) {
33 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
34 }
35
36 else if (WIFSIGNALED(status)) {
37 printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
38 }
39
40 else if (WIFSTOPPED(status)) {
41 printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
42 }
43
44 else {
45 fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);
46 return 3;

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 16 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

47 }
48
49 return EXIT_SUCCESS;
50 }

1$ gcc -o ˜/bin/forkexecwait forkexecwait.c
2$ ls -l ˜/bin/forkexecwait
3$ forkexecwait
My child’s PID number was 2759.
My child’s exit status was 1.

Seewait (2) for the various flavors of wait . Seesignal (3head) for a list of the signal numbers,
or

4$ awk ’$1 == "#define" && $2 ˜ /ˆSIG/’ /usr/include/sys/iso/signal_iso.h | more
#define SIGHUP 1 / * h angup */
#define SIGINT 2 / * i nterrupt (rubout) */
#define SIGQUIT 3 /* quit (ASCII FS) */

Bach p. 226: ‘‘Would it not be more natural to combine the two system calls [fork andexecl] into
one...? Ritchiesurmises thatfork andexec exist as separate system calls, because when designing the
UNIX system, he and Thompson were able to add thefork system call without having to change much
code in the existing kernel.’’

The above child callsexecl immediately after thefork . But later children will have alot of work
to do between thefork and theexecl . That’s the real reason why fork andexecl are separate system
calls.

▼ Homework 2.8: examine the child’s exit status

Run the above program. Give /usr/xpg4/bin/grep different arguments to verify that the par-
ent can get three different exit status numbers from the child.0 means thatgrep found what it was look-
ing for; 1 means thatgrep didn’t find what it was looking for; 2 means that you gav egrep an incorrect
regular expression (e.g.,[abc[) or a misspelled or read-protected filename. Seegrep (1).

Now misspell/usr/xpg4/bin/grep and verify that the child is unable toexecl it and returns
3.
▲

▼ Homework 2.9: rewrite Homework 14.1

Rewrite Homework 14.1 usingfork , exec , andwait instead ofsystem .
▲

▼ Homework 2.10: which is faster, system or fork-exec-wait?

Write the smallest possible child:

1 #include <stdlib.h>
2 #include <unistd.h>
3
4 i nt main()
5 {
6 _exit(EXIT_SUCCESS);
7 }

Write a C program that gives birth to this child 1000 times usingsystem within a for loop. Time the C
program with/bin/time :

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 17 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

1$ /bin/time cal 4 2008 > /dev/null

real 0.0
user 0.0
sys 0.0

Then write another C program that gives birth to this child 1000 times usingfork , execl , and wait
within a for loop. Whichis faster?
▲

fork-exec-wait in Perl

#!/bin/perl
use POSIX;

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
#Arrive here if I am the child.
exec {’/usr/xpg4/bin/grep’} ’grep’, ’-q’, ’ˆabc1234:’, ’/etc/passwd’;
warn "$0: $!";
exit 3;

}

#Arrive here if I am the parent.
$pid = wait();
if ($pid < 0) {

die "$0: $!";
}
print "My child’s PID number was $pid.\n";

if (WIFEXITED($?)) {
print "My child’s exit status was ", WEXITSTATUS($?), ".\n";

}

elsif (WIFSIGNALED($?)) {
print "My child was terminated by signal number ", WTERMSIG($?), ".\n";

}

elsif (WIFSTOPPED($?)) {
print "My child was stopped by signal number ", WSTOPSIG($?), ".\n";

}

else {
die "$0: couldn’t find out how child ended up.";

}

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9544/src/forkexecwait.pl

1$ forkexecwait
My child’s PID number was 1701.
My child’s exit status was 1.

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 18 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

If we changed lines 4−5 to

8 $pid = fork() or die "$0: $!"

then we would die whenever the$pid was zero. Buta zero$pid is not a cause for death—it just means
that I’m the child.

wait for a specific child

See Curry p. 304.

any child child whose PID ispid

wait till child dies wait(&status); waitpid(pid, &status, 0);

return immediately waitpid(-1, &status, WNOHANG); waitpid(pid, &status, WNOHANG);

A process can give birth to a second child without firstwait ’ing for the elder child to die.Thus a
process can be the parent of more than one child simultaneously.

wait returns the exit status of whichever child dies first. Since different children run at different
speeds (as in life itself), this makes it impossible to predict which child will be harvested by a given call to
wait . That’s why wait returns thePID of the harvested child.

To wait for a specific child, usewaitpid instead ofwait :

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/waitpid.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7 {
8 pid_t pid1 = fork();
9 pid_t pid2;

10 int status;
11
12 if (pid1 < 0) {
13 perror(argv[0]);
14 return 1;
15 }
16
17 if (pid1 == 0) {
18 /* Arrive here if I am the first child. */
19 execl("/usr/xpg4/bin/grep",
20 "grep", "-q", "ˆabc1234:", "/etc/passwd", (char *)0);
21 perror(argv[0]);
22 return 3; /* different from grep’s exit status */
23 }
24
25 /* Arrive here if I am the parent. */
26 pid2 = f ork();
27 if (pid2 < 0) {
28 perror(argv[0]);
29 return 2;
30 }
31
32 if (pid2 == 0) {

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 19 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

33 /* Arrive here if I am the second child. mailx -e returns
34 exit status 0 if there is mail waiting for you, 1 otherwise. */
35 execl("/bin/mailx", "mailx", "-e", (char *)0);
36 perror(argv[0]);
37 return 2; /* different from mail’s exit status */
38 }
39
40 /* Arrive here if I am the parent. I d on’t necessarily have to wait
41 for my children in the order in which they were born. */
42
43 waitpid(pid2, &status, 0);
44 if (WIFEXITED(status)) {
45 if (WEXITSTATUS(status) == 0) {
46 printf("There is mail waiting for you.\n");
47 } else if (WEXITSTATUS(status) == 1) {
48 printf("There is no mail waiting for you.\n");
49 } else {
50 printf("My second child couldn’t turn into the mailx program.\n");
51 }
52 } else if (WIFSIGNALED(status)) {
53 printf("My second child (mailx) was terminated by signal number %d.\n",
54 WTERMSIG(status));
55 } else if (WIFSTOPPED(status)) {
56 printf("My second child (mailx) was stopped by signal number %d.\n",
57 WSTOPSIG(status));
58 }
59
60 waitpid(pid1, &status, 0);
61 if (WIFEXITED(status)) {
62 if (WEXITSTATUS(status) == 0) {
63 printf("abc1234 has an account.\n");
64 } else if (WEXITSTATUS(status) == 1) {
65 printf("abc1234 has no account.\n");
66 } else if (WEXITSTATUS(status) == 2) {
67 printf("My first child (grep) couldn’t search /etc/passwd.\n");
68 } else {
69 printf("My first child couldn’t turn into the grep program.\n");
70 }
71 } else if (WIFSIGNALED(status)) {
72 printf("My first child (grep) was terminated by signal number %d.\n",
73 WTERMSIG(status));
74 } else if (WIFSTOPPED(status)) {
75 printf("My first child (grep) was stopped by signal number %d.\n",
76 WSTOPSIG(status));
77 }
78
79 return EXIT_SUCCESS;
80 }

1$ gcc -o ˜/bin/waitpid waitpid.c
2$ ls -l ˜/bin/waitpid
3$ waitpid
abc1234 has no account.
There is mail waiting for you.

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 20 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Non-blocking wait

See Curry p. 305.

In all of the above examples,wait andwaitpid cause the process to block (i.e., wait and do noth-
ing) until a child dies.To always return immediately fromwaitpid , useWNOHANG:

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/wnohang.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7 {
8 pid_t pid = fork();
9 i nt status;

10
11 if (pid < 0) {
12 perror(argv[0]);
13 return EXIT_FAILURE;
14 }
15
16 if (pid == 0) {
17 /* Arrive here if I am the child. */
18 execl("/usr/xpg4/bin/grep",
19 "grep", "-q", "ˆabc1234:", "/etc/passwd", (char *)0);
20 perror(argv[0]);
21 return 3; /* different from grep’s exit status */
22 }
23
24 /* Arrive here if I am the parent. */
25
26 if (waitpid(pid, &status, WNOHANG) == 0) {
27 printf("The child isn’t ready for harvesting yet, which is\n");
28 printf("okay because I have plenty of other work to do.\n");
29 } else if (WIFEXITED(status)) {
30 if (WEXITSTATUS(status) == 0) {
31 printf("abc1234 has an account.\n");
32 } else if (WEXITSTATUS(status) == 1) {
33 printf("abc1234 has no account.\n");
34 } else {
35 printf("My child (grep) couldn’t search /etc/passwd.\n");
36 }
37 } else if (WIFSIGNALED(status)) {
38 printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
39 } else if (WIFSTOPPED(status)) {
40 printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
41 }
42
43 pid = waitpid(-1, &status, WNOHANG);
44 if (pid == 0) {
45 printf("I have no children which are ready to be harvested right now.\n");
46 } else {
47 printf("My child’s PID number was %d and his exit status was %d.\n",

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 21 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

48 pid, WEXITSTATUS(status));
49 }
50
51 pid = wait(&status);
52 if (pid < 0) {
53 printf("I have no other children at all.\n");
54 } else {
55 printf("My child’s PID number was %d and his exit status was %d.\n",
56 pid, WEXITSTATUS(status));
57 }
58
59 return EXIT_SUCCESS;
60 }

1$ gcc -o ˜/bin/wnohang wnohang.c
2$ ls -l ˜/bin/wnohang
3$ wnohang
The child isn’t ready for harvesting yet, which is
okay because I have plenty of other work to do.
I h ave no children which are ready to be harvested right now.
My child’s PID number was 17109 and his exit status was 1.

#!/bin/perl
use POSIX;

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
#Arrive here if I am the child.
exec {’/usr/xpg4/bin/grep’} ’grep’, ’-q’, ’ˆabc1234:’, ’/etc/passwd’;
warn "$0: $!";
exit 3;

}

#Arrive here if I am the parent.
if (waitpid($pid, WNOHANG)) {

if (WIFEXITED($?)) {
print "The child’s exit status is ", WEXITSTATUS($?), "\n";

}
exit 0;

}

print "The child isn’t ready for harvesting yet.\n";
wait();
if (WIFEXITED($?)) {

print "The child’s exit status is ", WEXITSTATUS($?), "\n";
}

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9544/src/wnohang.pl

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 22 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

4$ wnohang.pl
The child isn’t ready for harvesting yet.
The child’s exit status is 1

▼ Homework 2.11: write a shell: Curry pp. 103−105

Hand in only the last version of this program.You get no credit if you hand in more than one ver-
sion.

(1) Write a program namedmysh (‘‘my shell’’) that will take no command line arguments. Itwill
printf the word m1$ (followed by one blank) as a prompt, and thengets one line from the standard
input. Assumethat line of input contains exactly one word. Hereare three examples of input thatmysh
might receive:

date
cal
who

Give birth to a child that willexeclp itself into the program whose name was read from the standard
input. Theparent, meanwhile, shouldwait for the child and then callexit .

1 /* E xcerpt from the file /usr/include/sys/syslimits.h. */
2
3 /* M aximum number of bytes in a command line. See E2BIG in man intro(2). */
4 #define ARG_MAX 38912

5 declare an array of ARG_MAX characters named line;
6
7 printf the prompt;
8 f lush to make sure that the prompt is output immediately;
9 i f (gets(line) == NULL) {

10 fprintf an error message and exit;
11 }
12
13 fork;
14 if (I’m the child) {
15 /* Arrive here if I’m the child. */
16 execlp the line;
17 fprintf an error message and exit: the execlp must’ve failed;
18 }
19
20 /* Arrive here if I am the parent */
21 waitpid for the child to die without the WNOHANG;
22 exit or return from main;

(2) Remove the exit from the end of the above program, and wrap an infinitefor loop around
what remains.mysh will now read in many lines of input and give birth to the program named in each one.
break out of the main loop when you encounter the end of the standard input or the wordexit :

1 #include <string.h> /* for strcmp */
2
3 f or (;;) { /* main loop */
4 printf the prompt;
5 i f (gets(line) == NULL || strcmp(line, "exit") == 0) {
6 break out of the main loop;
7 }
8 do t he fork, exec, wait in lines 13-20 of the previous paragraph;

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 23 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

9 }
10
11 /* Arrive here when at end of input. */
12 exit;

Usefor (;;) { for the infinite loop (K&R p. 60).You get no credit if you saywhile (1) { .

(3) Allow each line of input to have more than one word:

date
ls -l
grep ism$ /usr/dict/words mysh does not take single quotes.

Assume that the words are separated from each other by one or more blanks and/or tabs.

Here’s an example of a C program that splits a line into words, and stores a pointer to each word in
an array of pointers namednew_argv . Don’t forget to store a(char *)0 after the last word:

The second argument ofstrtok (K&R p. 250) contains one blank and one tab. strtok is easier
to use than thestrpbrk in Curry p. 317.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/strtok.c

1 /* S tore the words in the line of input into an array of strings. */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5
6 #define MAXWORDS 16
7
8 i nt main(int argc, char **argv)
9 {

10 char line[ARG_MAX];
11 char *new_argv[MAXWORDS]; /* an array of strings */
12 int i;
13 int new_argc; /* the number of words in the line */
14
15 if (gets(line) == NULL) {
16 fprintf(stderr, "%s: requires one line of input.\n", argv[0]);
17 return 1;
18 }
19
20 for (i = 0; i < MAXWORDS; ++i) {
21 new_argv[i] = s trtok(i == 0 ? line : NULL, " \t");
22 if (new_argv[i] == NULL) {
23 goto done;
24 }
25 }
26
27 fprintf(stderr, "%s: more than %d words\n", argv[0], MAXWORDS);
28 return 2;
29
30 done:;
31 new_argc = i ;
32 new_argv[new_argc] = (char *)0;
33
34 /* Demonstrate that strtok works. */
35 for (i = 0; i < new_argc; ++i) {

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 24 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

36 printf("%s\n", new_argv[i]);
37 }
38
39 return EXIT_SUCCESS;
40 }

2$ prog
ls -l moe You type this.
ls It outputs this.
-l It outputs this.
moe It outputs this.
3$

In Perl, the regular expression\s+ means[] [] * , where each pair of square brackets
enclose one blank and one tab. For documentation,

4$ man -M /usr/local/lib/perl5/man 3 Text::ParseWords

#!/bin/perl
use POSIX;

$_ = <STDIN>; #Input one line from the standard input.
chomp;

@new_argv = quotewords(’\s+’, 1, $_);
$new_argc = @new_argv;
print "\$new_argc == $new_argc.\n";

for ($i = 0; $i < $new_argc; ++$i) {
print "$new_argv[$i]\n";

}

exit 0;

http://i5.nyu.edu/ ∼ mm64/x52.9544/src/quotewords

The parent should parse the command line into separate words before callingfork . Between the
parse and thefork , print out words innew_argv . In other words,mysh should operate like the Korn
shell withset -x or the C shell withset echo . If new_argv contains no words (i.e., ifnew_argc
equals zero), do not bother tofork . Otherwise, if the first word innew_argv is exit , break out of the
main loop. (Remove the cruder test forexit shown earlier.)

After the fork , the child now has to callexecvp instead ofexeclp , and should usenew_argv
as the second argument ofexecvp .

(4) Before callingfork , the parent should see if the last word of the line is an ampersand.(Call
strcmp only once per line to do this: you do not have to examine any word except the last.)If so, the par-
ent should remove the ampersand from thenew_argv array (and subtract one fromnew_argc). The
parent should then callfork only if new_argv still contains at least one word. (In other words, don’t
give birth to a child if some joker types in a command line consisting only of an ampersand.) And after
fork ’ing, the parent should merely print the child’s PID number instead ofwait ’ing for the child.

If you end many command lines with ampersands, it will cause you to give birth to many children
without wait ’ing for them to die. This will cause the machine to fill up with children waiting to be har-
vested. Atthe end of the mainfor (;;) { loop (just before you go back to the top and print the prompt
again), harvest all the background children that are ready to be harvested (if any):

1 / * A rrive here if I am the parent. */

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 25 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

2
3 i f (the last word of the line of input to mysh was "&") {
4 print("Running PID %d in the background.\n", pid);
5 } else {
6 waitpid for that pid;
7 }
8
9 / * Harvest any children that are ripe (i.e., zombies). */

10 while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
11 if (WIFEXITED
12 printf("Background PID %d terminated with exit status %d.\n",
13 pid, WEXITSTATUS(status));
14 }
15 }
16 } /* end of main for (;;) loop */
17
18 /* Don’t bother to wait for last crop of children, if any. */
19 return EXIT_SUCCESS;
20 } /* end of main */

There must be one or more blanks and/or tabs before the ampersand:

who
find /home1/a/abc1234 -type f -name core -print &
date

(5) If one of the words innew_argv starts with a dollar sign, replace the entire word (including the
leading dollar sign) with the value of the corresponding environment variable. Callgetenv .

(6) If one of the words innew_argv is an asterisk all by itself, remove that word fromnew_argv .
Insert in its place the names of everything in the current directory, each as a separate element in the
new_argv array. Also add the correct amount tonew_argc . If the current directory is empty, leave the
asterisk untouched.

(7) Before parsing the command line into separate words, callstrchr (Curry pp. 21−22) to see if
the command line contains a’#’ . If so, remove the ’#’ and all the characters after it by changing the
’#’ to a’\0’ .

(8) I wish you could create a file:

#!/home1/a/abc1234/bin/mysh
#This file is named shelly.
date
cal
who

and execute it like this:

5$ shelly

Thus far mysh has taken no command line arguments and reads from the standard input.Changemysh to
read from the standard input only if there are no command line arguments. Ifthere is an argument, assume
it’s a filename and read from it instead. If there is more than one argument, output an error message and
die. Outputthe prompt only iffp is coming from a terminal.

You must remove the ’\n’ after afgets but not after agets . See K&R pp. 164, 247.

fileno simply returns the_file field of the structure whose address is given as an argument.

1 FILE *fp;
2

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 26 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

3 i f (argc == 1) {
4 f p = s tdin;
5 } else if (argc == 2) {
6 f p = f open argv[1] as an input file;
7 c heck for fopen error
8 } else {
9 t oo many arguments: exit or return from main;

10 }
11
12 /* start of main loop */
13 for (;;) {
14 if (isatty(fileno(fp)) {
15 print the prompt;
16 }
17 if (fgets(line, sizeof line, fp) == NULL) {
18 end of input: break out of the main for loop
19 }
20 remove the ’\n’ from the end of the line;
21 parse the line, store the individual words in new_argv;

In Perl, the filehandleARGVinputs from the files named as command line arguments, or from the
standard input if there were no arguments.-t stands for ‘‘terminal’’. Seepp. 140 and 85 respectively in
the O’ReillyProgramming Perl, 2nd. ed.

#!/bin/perl
if (@ARGV > 1) {

too many arguments: exit;
}

#start of main loop
for (;;) {

if (-t ARGV) {
print the prompt;

}
$_ = <ARGV>;
etc.

(9) ✎ For space cadets only. Instead of reading the standard input with agets loop, useyacc .
Allow the input to contain expressions such as

prog1 ; prog2
prog1 && prog2
prog1 || prog2
prog1 && prog2 || prog3
prog1 && (prog2 || prog3)
prog1 && { prog2 || prog3 }
prog1 arg1 arg2 arg3 && prog2

What precedences and associativities should these operators have?
▲

▼ Homework 2.12: photograph a zombie: Bach pp. 148−149, 212−213; Curry p. 286

A process calls theexit function when it has finished its work. Even after callingexit , howev er,
an empty husk of the process continues to exist. Thisghoulish remnant, called azombie,serves only to
hold the exit status of the process until the parent harvests it by callingwait (or waitpid or wait3).
wait then removes the zombie.

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 27 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Thus the real effect ofexit is to turn a process into a zombie. Zombies are rarely seen because the
parent of each process usually callswait promptly. To verify that zombies exist, write a program that
fork ’s into two processes. Thechild shouldexit immediately, thus turning itself into a zombie.The
parent shouldsleep for 10 seconds (to give the child time toexit) and should then callexecl to trans-
form itself into ps -Aj (for ‘‘job control’’). Hand in your program and its output, showing a process
whose name is<defunct> . (In other versions of Unix, theStatus of this process will beZ).

1$ a.out changes intops -Aj before the following output appears.
USER PID PPID PGID SESS JOBC S TTY TIME COMMAND
mm64 19224 847 19224 19224 0 S t typ7 0:01.20 -csh (csh)
root 21005 19224 21005 19224 1 R + t typ7 0:00.37 ps -Aj
mm64 20903 21005 21005 19224 1 <+ t typ7 0:00.00 <defunct>

▲

▼ Homework 2.13: who adopts an orphaned child? Bach p. 213; Curry p. 287

Write a program thatfork ’s. The parent shouldexit immediately. The child shouldsleep for
10 seconds (to give the parent time toexit) and should then print its parent’s PID number by calling
getppid .
▲

dup2 in the Korn shell language: KP pp. 93, 141−142

The standard output (file descriptor 1) and standard error output (file descriptor 2) of a process are
usually directed to two different destinations.The1>&2 in the following shellscript, however, tells echo
to direct all the data that it outputs through file descriptor 1 to the same destination used by file descriptor 2.
In other words, all theprint ’s and fprintf(stderr ’s in echo will now go to the same destination.
This common destination is the same as the destination that was originally used by the
fprintf(stderr ’s.

#!/bin/ksh

if [[$# -ne 1]]
then

echo $0: requires 1 command line argument 1>&2
exit 1

fi

echo I received the argument $1.
exit 0

Standard output tooutfile , standard error output to terminal:
1$ shelly arg1 arg2 arg3 > outfile

A World Wide Web gateway is another example of a program whose standard output and standard
error output are directed to the same destination.

dup vs. dup2: Bach pp. 117−119, 144; Curry pp. 68−69, 312; KP pp. 223−225

The single system call

dup2(2, 1);

does the work which used to be done by the two system calls

close(1);
dup(2);

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 28 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Redirect the standard output of a C program with dup2 and close: Bach pp. 117−119; Curry pp.
24−25, 105−106; KP pp. 223−224

The destination of output that youwrite to file descriptor 1 (the standard output) is usually deter-
mined by the command line that ran the program:

1$ prog > outfile
2$ prog | subsequent_prog
3$ prog

The following program, however, will always take send its standard output to the fileoutfile2
ev en if you run it like this:

4$ prog > outfile1

(1) At line 9, we’re allowed to say

write(1, "hello", 5);

(2) At line 15, we’re allowed to say both of the following

write(1, "hello", 5);
write(fd, "hello", 5);

to send output to two different destinations.

(3) At line 20, we’re still allowed to say both of the following

write(1, "hello", 5);
write(fd, "hello", 5);

but they now send their output to the same destination, namelyoutfile2 .

(4) At line 25, we’re allowed to say only

write(1, "hello", 5);

which continues to send its output tooutfile2 . Theprintf in line 26 ultimately callswrite(1, . In
other words, we can still perform standard output, but it now goes tooutfile2 .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/dup2.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <fcntl.h> /* for O_CREAT */
4 #include <sys/stat.h> /* for S_IRUSR */
5 #include <sys/types.h>
6 #include <unistd.h> /* for dup2 */
7
8 i nt main(int argc, char **argv)
9 {

10 int fd = open("outfile2", O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR);
11 if (fd < 0) {
12 perror(argv[0]);
13 return 1;
14 }
15
16 if (dup2(fd, 1) < 0) {
17 perror(argv[0]);
18 return 2;
19 }
20

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 29 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

21 if (close(fd) != 0) {
22 perror(argv[0]);
23 return 3;
24 }
25
26 printf("hello\n");
27 return EXIT_SUCCESS;
28 }

Seefreopen (3) for another way to do this.

▼ Homework 2.14: redirect the standard input

Write a program that callsopen , dup2 , and close to override the source of the standard input
specified on the command line.Take the standard input from the file/dev/tty instead. Verify that the
input comes from the terminal even if you say

1$ prog < infile

▲

Give the child a different source of standard input: Bach pp. 117−119; Curry pp. 311−318; KP pp.
223−224

A child automatically inherits the source of its parent’s standard input. The child can redirect its
standard input, however, before it transforms itself into a different program. The redirection survives the
transformation.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9544/src/dup22.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <fcntl.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6
7 i nt main(int argc, char **argv)
8 {
9 pid_t pid = fork();

10 int fd;
11 int status;
12
13 if (pid < 0) {
14 perror(argv[0]);
15 return 1;
16 }
17
18 if (pid == 0) {
19 /* Arrive here if I am the child. */
20 fd = open("letter", O_RDONLY, 0);
21 if (fd < 0) {
22 perror(argv[0]);
23 return 1;
24 }
25
26 if (dup2(fd, 0) < 0) {
27 perror(argv[0]);
28 return 2;

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 30 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

29 }
30
31 if (close(fd) != 0) {
32 perror(argv[0]);
33 return 3;
34 }
35
36 execl("/usr/ucb/mailx", "mail", "def5678", (char *)0);
37 perror(argv[0]);
38 return 4;
39 }
40
41 /* Arrive here if I am the parent. */
42 wait(&status);
43 if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
44 printf("The letter was successfully mailed.\n");
45 return EXIT_SUCCESS;
46 } else {
47 printf ("The letter was not mailed.\n");
48 return EXIT_FAILURE;
49 }
50 }

▼ Homework 2.15: give the child a different destination for its standard output

Give birth to a child. Have the child change the destination of its standard output.Then have the
child transform itself into another program. The parent, meanwhile, willwait for the child’s death. You
get no credit unless the third argument ofopen is written with the macrosS_IRUSR, S_IWUSR, etc. You
get no credit if you turn on any of thex bits of any file. You get no credit if you use the macroS_IRDWR.
You get no credit if you call thecreat system call.

✎ Extra credit. Have the child change both its standard input and its standard output.
▲

▼ Homework 2.16: write a shell that accepts <, >, and >>

Changemysh to accept lines of standard input like this:

prog
prog < infile
prog > outfile
prog < infile > outfile
prog arg1 arg2 arg3 < infile arg4 arg5 arg6 >> outfile &

where prog is the name of any program andinfile and outfile are filenames.For simplicity,
assume there are one or more blanks and/or tabs on either side of each< and>.

Between its birth and itsexeclp , each child should call a function declared as

int redirect(int new_argc, char **new_argv);

This function should look for the redirection symbols<, >, etc., and change the child’s standard input and
output to the requested source and destination.The parent should have nothing to do with the redirection
symbols.

If the child opens a< file, it should give O_RDONLYand0 to open as the second and third argu-
ments. Ifthe child opens a> file, it should giveO_CREAT | O_TRUNC | O_WRONLY andS_IRUSR |
S_IWUSR(i.e., rw-------) to open as the second and third arguments. Ifthe child opens a>> file, it
should give O_CREAT | O_WRONLYandS_IRUSR | S_IWUSR | S_IRGRP | S_IROTH to open as

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 31 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

the second and third arguments. Thechild must also call

1 #include <sys/types.h>
2 #include <unistd.h>
3
4 i f (lseek(fd, 0L, SEEK_END) < 0) { /* Curry pp. 65−68 */
5 perror
6 exit
7 }

immediately afteropen ’ing a >> file, assuming thatfd holds the return value of theopen .

Don’t do it like this:

1 i f (strcmp(new_argv[i], "<"
2 open(, O_RDONLY, 0
3 dup2(, 0)
4 c lose
5 } else if (strcmp(new_argv[i], ">"
6 open(, O_CREAT | O_TRUNC | O_WRONLY, S_ISUSR | S_IWUSR
7 dup2(, 1)
8 c lose
9 } else if (strcmp(new_argv[i], "2>"

10 open(, O_CREAT | O_TRUNC | O_WRONLY, S_ISUSR | S_IWUSR
11 dup2(, 2)
12 close
13 } else /* etc. */

Instead, make an array of structures whose initialization is something like

1 /* T he second field is the file descriptor number. */
2 t ypedef struct {
3 . ..
4 } r edirect_t;
5
6 r edirect_t a[] = {
7 { "<", 0, O_RDONLY, 0},
8
9 { ">", 1, O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR},

10 {">>", 1, O_CREAT | O _WRONLY, S_IRUSR | S _IWUSR},
11
12 {"2>", 2, O_CREAT | O _TRUNC | O_WRONLY, S_IRUSR | S_IWUSR},
13 {"2>>", 2, O_CREAT | O _WRONLY, S_IRUSR | S _IWUSR},
14
15 {NULL, -1, 0, 0} /* end of data */
16 };

Remove the>, <, >>, and the following filename from thenew_argv array before giving birth, just
as you removed the ampersand and asterisk.Move all the subsequent words two positions forward, includ-
ing the(char *)0 after the last word.

If you’re really brave, try to usechsh or the-s option of passwd to change the seventh field of
your line in the/etc/passwd file to /home1/a/abc1234/bin/mysh . Seefinger (1), chsh (1).
▲

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 32 − All rights

reserved ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

#!/bin/perl

$_ = <STDIN>;
chomp($_); #Remove the trailing newline from $_.

if (length($_) != 9 || $_ =˜ /[ˆXO]/) {
die "$0: Input line must be nine X’s, O’s, or blanks.";

}

#Insert a dash after the 3rd character and after the 6th character.
#For example, OOXXXOOXX becomes OOX-XXO-OXX.

$_ =˜ s/(...)(...)(...)/\1-\2-\3/;

if (
$_ =˜ /([XO])\1\1/ || #any row
$_ =˜ /([XO])...\1...\1/ || #any column
$_ =˜ /([XO])..-.\1.-..\1/ || #the main diagonal
$_ =˜ /([XO])-.\1.-\1/) { #the other diagonal

print "$1 is a winner.\n";
exit 0;

}

print "No one has won yet.\n";
exit 1;

http://i5.nyu.edu/ ∼ mm64/x52.9544/src/winner

Spring 2008 Handout 2printed 4/9/08
1:41:29 PM − 33 − All rights

reserved ©2008 Mark Meretzky

