NYU SCPS X52.9544 Section 1 Unix System Calls

Spring 2008 Handout 2

The difference between a program and a process: Curry pp. 283; Bach pp. 146-151; KP pp. 33-35

A program is whatls lists; aprocessis whatps lists. Thesticky bit t is in Curry p. 125, Bach pp.
225-226.

1$ cd /usr/bin

2% Is -l

-r-Xr-Xr-x 5 root bin 240316 Jun 8 2006 vi
#1/bin/ksh

#Find all the files whose sticky bit is on.

find / -type f -perm -1000 -print 2> /dev/null

3% ps -Af | more

USER PID PPID %CPU STARTED TTY TIME COMMAND
root 0 0 0.0 Dec 12?7 09:32:11 [kernel idle]
root 1 0 0.0 Dec 127?77 9:58.93 /shin/init -a
root 1057 1 0.0 Dec 12?7 6:16.06 /usr/sbin/inetd
root 3747 1057 0.0 21:29:16 ?? 0:03.35 telnetd

mm64 3769 3747 0.0 21:29:17 ttyq9 0:02.46 -ksh (ksh)

mm64 5470 3769 0.0 22:03:44 ttyq9 0:00.19 vi process.ms

0
kernel

1

init

l
1057

inetd

l
3747
telnetd

7777[7777

jm——

/Ld ev/ttyq9

Spring 2008 Handout Zii%s e’ -1- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Give hirth to a child: Curry pp. 292-295; KP pp. 184-185; K&R pp. 167, 253
The string that you ge © system must use the Bourne shell syntax. The standard output of the
cal inline 7 will become part of the standard output of the following C program:

—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/system.c

1 #include <stdio.h>
2 #include <stdlib.h> /* for system */

©oo~NOOLh~W

O©CoOoO~NOOOUTA, WNPE

i nt main()

{
printf("The current month is\n");
f flush(stdout);

system("cal"); /* Don't need newline. */

system("cal 12 2000");

system("cal 12 2000 > $HOME/cal.out"); /* Bourne shell won't take tilde. */
system("who | we - I');

system("grep can\\'t /lyrics/stones/satisfaction");

system("grep \"can't\" /lyrics/stones/satisfaction");

return EXIT_SUCCESS;

1% grep can\'t /lyrics/stones/satisfaction KP p. 75
2$ grep "can't" /lyrics/stones/satisfaction

To get the exit status of the program rundystem , store the return value in dnt variable and
examine it with theWmacros inwait (2). Notevey process returns axiestatus: some are terminated or
stopped by a signal first.

—On the Web at
http://i5.nyu.edu/ mm64/x52.9544/src/systemexit.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>

i nt main(int argc, char **argv)
{
/ * blank and tab within the [] */
i nt status = system("who | grep -q "abc1234[\{]'™);

if (WIFEXITED(status)) {

printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
} elseif (WIFSIGNALED(status)) {

printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
} elseif (WIFSTOPPED(status)) {

printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
} else{

fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);

return EXIT_FAILURE;

return EXIT_SUCCESS;

Spring 2008 Handout Zii%se’ -2- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

My child’s exit status was 1.

system in perl

http://i5.nyu.edu/ nm64/x52.9544/src/systemexit
#l/bin/perl
use POSIX;

$status = system('who | grep -q \"abc1234[\t|\");

if (WIFEXITED($status)) {
print "My child’s exit status was ", WEXITSTATUS($status), ".\n";
} e Isif (WIFSIGNALED($status)) {
print "My child was terminated by signal number ", WTERMSIG($status), ".\n";
} e Isif (WIFSTOPPED($status)) {
print "My child was stopped by signal number ", WSTOPSIG($status), ".\n";
} else{
die "$0: couldn’t find out how child ended up.";

}

exit 0;

v Homework 2.1: get the childs exit status

Call system to give lrth to a child that produces an exit status but no outpaén print a message
determined by the exit status of the childet the child be one of the following programs, or a pipeline
ending with one of the following programs. Or write youmnochild in C, C++, Perl, or the shell language.

1$ mall -e ext status is 0 if you have mail

2$ grep -q word file ext status is O ifile containsword

3% cmp -s filel file2 ext status is O iflel andfile2 are identical

4$ sort -c file 2> /dev/null ext status is O ifile is already sorted

5% gcc -o /dev/null prog.c ext status is 0 iprog.c has no compilation errors
6$ test -f file ext status is O ifile exsts

7$ test -f file -a -w file ext status is O ifile exsts and is writable

8$ test -d directory ext status is O iflirectory ~ exsts

9% mkdir directory
10$ test ‘who | awk '{print $1}' | sort | uniq | wc -I -gt 20

11%$ true ext status always 0
12$ false ext status always 1
13$ /usr/sbin/ping -c 1 acf5.nyu.edu > /dev/null 2>&1 ext status is 0 ifs is online

Here are some machines you gamg :

andrew.cmu.edu Carnegie Mellon University
www.uquebec.ca Universite du Quebec
WWW.Unipi.it Universita degli Studi di Pisa

Spring 2008 Handout Z:i%se’ -3- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Give hirth to a child with a pipe from the parent to the child

popen runs another program and lets you send output to its standard pgloge sends an EOF
through the pipe and returns the exit status of the program rpog®n . You can store it in amt vari-
able and examine it with th&%macros:

—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/popen_to_child.c

1 #include <stdio.h>

2 #include <stdlib.h>
3 #include <sys/wait.h>
4
5 i nt main(int argc, char **argv)
6 {
7 FILE *lpr = popen("lpr", "w");
8 i nt status;
9
10 if (Ipr == NULL) {
11 perror(argv[0]);
12 return EXIT_FAILURE;
13 }
14
15 fprintf(lpr, "hello\n");
16 fprintf(lpr, "goodbye\n™);
17
18 status = pclose(lpr);
19
20 if (WIFEXITED(status)) {
21 printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
22 } elseif (WIFSIGNALED(status)) {
23 printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
24 } elseif (WIFSTOPPED(status)) {
25 printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
26 } else{
27 fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);
28 return EXIT_FAILURE;
29 }
30
31 return EXIT_SUCCESS;
32}
The string that you ge © popen is not limited to one programyou can change line 7 to
7 FILE *lpr = popen("sort | cat -n | pr -160 | Ipr", "w");

Use Bourne shell syntax.

Give birth to a child with a pipe from the child to the parent

—On the Web at
http://i5.nyu.edu/ Onm64/x52.9544/src/popen_to_parent.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/wait.h>

o o b~

nt main(int argc, char **argv)

i
{

Spring 2008 Handout Zii%se’ -4- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

7 FILE *wc = popen("who | awk {print $1} | sort | uniq | wc -I", "r");
8 i ntn; /* number of people logged in */
9 i nt status;
10
11 if (wc==NULL) {
12 perror(argv[0]);
13 return EXIT_FAILURE;
14 }
15
16 fscanf(wc, "%d", &n);
17 printf("There are %d people logged in.\n", n);
18
19 status = pclose(wc);
20 if ('WIFEXITED(status) || WEXITSTATUS(status) != EXIT_SUCCESS) {
21 fprintf(stderr, "%s: child came to grief somehow.\n", argv[0]);
22 return EXIT_FAILURE;
23 }
24
25 return EXIT_SUCCESS;
26}

You can callpopen several times in the same C program. This allows you teehaore than one
pipe coming into and/or going out of a C program (or a Perl program), which youheae'in a
shellscript.

popen in Perl

http://i5.nyu.edu/ nm64/x52.9544/src/popen

#l/bin/perl
use POSIX;

open(WC, 'who | awk \'{print $1}\' | sort | uniq | wc -l |') || die "$0: $!";
open(LPR, ’| Ipr) || die "$0: $!";

$_ =<WC>;
chomp;
print LPR "There are $_ people logged in.\n";

close WC;
#Should have checked WIFEXITED before calling WEXITSTATUS.
print 'The exit status of the wc -l was ', WEXITSTATUS($?), ".\n";

close LPR;
print "The exit status of the Ipr was ', WEXITSTATUS($?), ".\n";

exit 0;

v Homework 2.2: pipe data to sort

Make Homework 13.4 list eerything in alphabetical orderSmply use popen, fprintf |, and
pclose to pipe your C prograra’autput tosort+8

1 i nt main(int argc, char **argv)
2 {
3 opendir;

Spring 2008 Handout Zii%se’ -5- hesenea ©2008 Mark Meretzky

SCwoo~NOO O

CQowoo~NOOUODWNLPE

(=Y

OO, WN P

NYU SCPS X52.9544 Section 1 Unix System Calls

popen("sort”, "w");
f printf all the output into the pipe;

pclose;
closedir;

If you have done the extra credit parts of Howmrk 1.8, some lines of output will not v& rine
fields, sosort+8 won't work. Use

awk {print $NF, $0} | sort | sed 's/"["][" * I

instead. (Theed remove everything up to and including the first blank on each line.)
A

The hidden price of the system and popen functions: Curry pp. 292-295, 355-3%Yedipus Re

—On the Web at
http://i5.nyu.edu/ Onm64/x52.9544/src/hidden.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> /* for getpid */

i nt main()
{
printf("My PID is %d.\n\n", getpid());
system("ps -Af");
r eturn EXIT_SUCCESS;
}

1$ a.out | more selected output shown below
My PID is 14473.

USER PID PPID %CPU STARTED TTY TIME COMMAND
mm64 12577 11823 0.0 19:58:50 ttyg2 0:04.72 -ksh (ksh)

mm64 14473 12577 0.0 21:37:07 ttyg2 0:00.02 a.out

mm64 14478 14473 0.0 21:37:07 ttyg2 0:00.02 sh -c ps -Af

root 19059 14478 0.0 21:37:07 ttyg2 0:00.37 ps -Af

fork without exec

See Bach pp. 148, 192-200; Curry pp. 295-298; KP pp. 222223; Without Wmenby Ernest
Hemingway Einstein said that space is what you measure with a rule, time is what you measure with a
clock. To se the processes on andbws system, righht-click the task bar at the botton of the screen and
selectProcessManager

Why does the following program output three words instead of two?
—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/fork.c

#include <stdio.h> [* for printf and perror */
#include <stdlib.h> [* for EXIT_SUCCESS */
#include <unistd.h> /* for fork */

i nt main(int argc, char **argv)

{

Spring 2008 Handout Zii%se’ -6- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

7 printf("hello\n");
8
9 i f (fork() <0){
10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }
13
14 printf("goodbye\n™);
15 return EXIT_SUCCESS;
16}

1% gcc -0 “/binffork fork.c
2% Is -1 “/bin/fork

3$ fork
hello
goodbye
goodbye

Perl doesrt’require the empty parentheses in line 4. But C does, and I'm a C programmetr.

http://i5.nyu.edu/ Omm64/x52.9547/src/fork.pl
#l/bin/perl

print "hello\n™;
defined fork() or die "$0: $!";
print "goodbye\n";

exit 0;

Put the Perl program in yotlbin subdirectory and say

4$ cd “/bin
5% pwd

6$ chmod 755 fork.pl Make it executable: chang nmode torwxr-xr-x
7% Is -l fork.pl

8% fork.pl
hello

goodbye
goodbye

v Homework 2.3: always flush befoe forking
Remaore the\n from line 7 of the abee program. WIly does it nev outputhello twice, as well as
goodbye twice?

hellogoodbye
hellogoodbye

See IOLBF in setvbuf (3); Bach p. 239 ex. 1; Curry pp. 98-99.

In C, alvays do arfflush(stdout); (or better yet, afflush(NULL);) immediately before a
fork . In Perl, alvays do arautoflush
A

Spring 2008 Handout Zii%sey’ -7- hesenea ©2008 Mark Meretzky

NYU SCPS

X52.9544 Section 1

v Homework 2.4: hov many times will it print “hello”?

—On the Web at
http://i5.nyu.edu/

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>

©O© oo~NO OA~

i nt main(int argc, char **argv)
{
i f (fork() <0){
perror(argv[0]);
r eturn EXIT_FAILURE;
}

if (fork() <0){
perror(argv[0]);
return

}

if (fork() <0){
perror(argv[0]);
return

}

printf("hello\n");
return EXIT_SUCCESS;

1% gcc -0 “/bin/fork3 fork3.c
2% Is -1 “/bin/fork3
3% fork3 | cat -n

http://i5.nyu.edu/
#l/bin/perl

defined fork() or die "$0: $!";
defined fork() or die "$0: $!";
defined fork() or die "$0: $!";

print "hello\n";
exit 0;

EXIT_FAILURE;

EXIT_FAILURE;

Omm64/x52.9544/src/fork3.c

Onm64/x52.9547/src/fork3.pl

Unix System Calls

Put the Perl program in yotibin
4% cd “/bin
5% pwd

6% chmod 755 fork3.pl
7% Is -l fork3.pl
8% fork3.pl | cat -n

Spring 2008 Handout Zii3se’

subdirectory and say

Make it executable: chang nmode torwxr-xr-x

All rights
reserved

©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

How not to use fork
See erroEAGAINIn fork (2) andintro (2).

1 /* F or pedagogical purposes only. Do not try this! */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7
8 for(:){
9 i f (fork() <0){
10 perror(argvi0]);
11 return EXIT_FAILURE;
12 }
13 }
14}
1 #!/bin/perl
2 #For pedagogical purposes only. Do not try this!
3
4 for(){
5 defined fork() or die "$0: $!";
6 }
Parent and child
See Curry pp. 284-285, 295-298 e the PID number of each process,
1$ ps -Af | more ewery process (“all”)
2$ ps -f | more just your own
ub PID PPID C STIME TTY TIME CMD
mm64 1637 1635 0 09:00:52 pts/33 0:01 -ksh
etc.
The process in whichid>0 is called theparent; the one in whictpid==0 is called thechild.
The standard output of the child is automatically directed to the same destination as the standard output of
the parent.
1 /* E xcerpt from /usr/include/sys/types.h.
2 t ypedefint pid_t;
—On the Web at
http://i5.nyu.edu/ Onm64/x52.9544/src/parent.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h> /* for pid_t */
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7
8 pid_t pid,;
9
10 printf("My PID is %d and my parent’s PID is %d.\n", getpid(), getppid());
11 fflush(NULL);
12

Spring 2008 Handout Zii%se’ -9- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1

13 pid = fork();

Unix System Calls

14 if (pid<0){

15 perror(argv[0]);

16 return EXIT_FAILURE;

17 }

18

19 printf("My PID is %d and my parent’s PID is %d. fork returned %d.\n",
20 getpid(), getppid(), pid);

21

22 return EXIT_SUCCESS;

23}

3% gcc -0 “/bin/parent parent.c

4$ Is -l “/bin/parent

5% parent

My PID is 28983 and my parent’s PID is 23063.

My PID is 28983 and my parent’s PID is 23063. fork returned 28984.

My PID is 28984 and my parent’s PID is 28983. fork returned O.
The last two lines above will not always come out in this order.

before after

23063 23063
ksh ksh

28983 28983

parent parent

28984

parent

You can combine lines 13-14 to
13 if ((pid = fork()) < 0) {

Spring 2008 Handout Zii3s e’ -10-

before the fork
parent
child

parent

child

All rights
reserved

©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1

http://i5.nyu.edu/ Omm64/x52.9547/src/parent.pl
#l/bin/perl

use FileHandle; #for autoflush

STDOUT->autoflush(1);

$ppid = ‘ps -0 ppid= -p $$;
chomp $ppid,;
print "My PID is $$ and my parent’s PID is $ppid.\n";

$pid = fork();
defined $pid or die "$0: $!";

$ppid = ‘ps -0 ppid= -p $$;
chomp $ppid,;
print "My PID is $$ and my parent’s PID is $ppid. fork returned $pid.\n";

exit 0;

Unix System Calls

Make the parent and child do different things
See Curry pp. 296-298.
—On the Web at

http://i5.nyu.edu/ Omm64/x52.9544/src/differentl.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4 #include <unistd.h>
5
6 i nt main(int argc, char **argv)
7
8 pid_t pid = fork();
9 i f (pid<0){
10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }
13
14 if (pid==0){
15 printf("l am the child.\n");
16 } else{
17 printf("l am the parent.\n");
18 }
19
20 return EXIT_SUCCESS;
21}

1$ gcc -o “/bin/differentl differentl.c

2% Is -l “/bin/differentl

3% differentl

| am t he parent.

| am t he child.

The last two lines above will not always come out in this order.

Spring 2008 Handout Zii%se’ -11- hesehes

©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

http://i5.nyu.edu/ 0nm64/x52.9547/src/differentl.pl
#l/bin/perl
use FileHandle; #for autoflush
STDOUT->autoflush(1);

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
print "l am the child.\n";
} else{
print "l am the parent.\n";

}

exit 0;

The abee pogram appears to be a classic opportunity tafetben-else . But write it the fol-

lowing way instead, because the ctglddde will be short while the paresitode will go on and on.

Write the childs code before the parest’ Thechild’'s mde musialways end with areturn
main or with anexit (line 16):

—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/different2.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

i nt main(int argc, char **argv)
{
pid_t pid = fork();
i f (pid<0){
10 perror(argv[0]);
11 return EXIT_FAILURE;
12 }

O©CoOoO~NOOOUOTA, WNPE

14 if (pid==0){

15 printf("l am the child.\n");
16 return EXIT_SUCCESS;

17 }

19 printf("l am the parent.\n");
20 return EXIT_SUCCESS;

4$ gcc -o “/bin/different2 different2.c
5% Is -| “/bin/different2

6% different2

| am t he parent.

I am t he child.

Spring 2008 Handout Zii%s e’ -12- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

http://i5.nyu.edu/ 0nm64/x52.9547/src/different2.pl
#l/bin/perl
use FileHandle; #for autoflush
STDOUT->autoflush(1);

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
print "l am the child.\n";
exit 0;

}

print "I am the parent.\n";
exit 0;

exec without fork

See Bach pp. 217-227; Curry pp. 298-301; KP p. 220-222. The following program transforms itself
into cal by callingexecl . Itretains no trace of its previous identiy there is no way to undo the trans-
formation. Ifthe transformation succeeded, the statement(s) aftexdat (lines 11-12) will therefore
be destroyed before thdavea chance to eecute.

Always follow execl with aperror . Why is there no need to write lines 11-12 inin? What
does thdflush prevent?

fork creates a e process and adds it to the tree of processe=;| doesn't.
—On the Web at
http://i5.nyu.edu/ Onm64/x52.9544/srcl/execl.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>

4
5 i nt main(int argc, char **argv)
6 {
7 printf("l am about to transform myself into the cal program.\n");
8 f flush(NULL);
9
10 execl("/bin/cal", "cal", "9", "1752", (char *)0);
11 perror(argv[0]);
12 return EXIT_FAILURE;
13}

1% gcc -0 “/bin/execl execl.c
2% Is -1 “/bin/execl
3% execl
I am about to transform myself into the cal program.
September 1752
Sun Mon Tue Wed Thu Fri Sat
1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

die gives us no ontrol of the exit status numheao we sewarn and exit instead.

Spring 2008 Handout Zii%sey’ -13- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

http://i5.nyu.edu/ 0nm64/x52.9547/src/exec.pl
#l/bin/perl

use FileHandle;
STDOUT->autoflush(1);
print "I am about to transform myself into the cal program.\n";

exec {/bin/cal’} 'cal’, '9’, '1752’; #first arg has braces, not comma
warn "$0: $!";
exit 2; #a number different from any that could be retunned by cal

v Homework 2.5: what can go wrong with exec

(1) What error message do you get if you misspell thedaist? To verify that the error message
comes fronperror (or from thedie in Perl), remee theperror and try it again.

(2) What error message do you get if you try to turn yourself into a file whioke are off?

(3) What error message do you get if you try to turn yourself into a shellscript #iioiséksh
line is misspelled or absent? S#ein execve (2).

(4) Change line 10 to
execl("/bin/ls", "Is", "-I", "*.c", (char *)0);

Why doesnt this list everything in the current directory whose name ends witR What does it try to list
instead? SeKP pp. 220-221.
A

What the process retains after the exec

In the abwe example,cal inherits the following features (and more) from your C or C++ program.
See Bach pp. 149-151, 221; Curry pp. 299-30& (2).

(1) PID andPPID numbers
(2) owner and group

(3) currentdirectory

(4) controlterminal

(5) ervironment variables
(6) theumask

(7) theright to use all the currently open file descriptors, but the pregram should xercise this right
only for file descriptors 0, 1, and 2.

v Homework 2.6: verify that the exec’ed process retains the right to use all the cuently open file
descriptors

Direct the abee programs gandard output into a file:
1$ execl > “/outfile

Obsene that even &ter prog transforms itself int@al , its standard output is still directed to
“loutfile
A

Spring 2008 Handout Zii%s e’ -14- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

v Homework 2.7: the four flavors of exec

fixed number variable number
of arguments ofrguments
don't use$PATH || execl execv
use$PATH || execlp execvp

Each of these four functions ultimately calls the systemegaitve to perform the transformation.
See Bach pp. 217, 245 ex. 35; Curry p. 29&cl (2); execve (2).
Make the following changes in the amC pogram:

(1) Changdine 10to

execlp("cal", "cal", "9", "1752", (char *)0);

Does it still work?execlp callsgetenv("PATH")
(2) Addthe following array to the program

char *new_argv[] = {"cal", "9", "1752", (char *)0};
and change line 10 to
execv("/bin/cal", new_argv);

Does it still work? Whereelse hae we ®en an array of strings that holds the command line of a pro-
gram?

(3) Changdine 10to
execvp(“"cal", new_argv);
Does it still work?
A

Deceve a pocess about its own name
Write a program nhameegalname that prints out its own name:

#!/bin/ksh

echo My name is $0.
exit 0

Run it like this:

execl("/homel/a/abc1234/bin/realname”,

"othername”, "argl", "arg2", "arg3", (char *)0);
realname will output
My name is othername.

ps will also displayothername instead ofrealname . Is there an argument g@is that will display the
real name?

ps shaws that the Krn shell thinks that its name dksh instead ofksh. The Korn shelk parent
must therefore hee wn it like this:

execl("/bin/ksh", "-ksh", ...

The first thing that the &tn shell does is to look at its own name. If the name starts with a dashgrthe K
shell will execute the commands in itsvaer’s..profile file. Sedogin (1),ksh93 (1) p. 33. For other
programs that decide what to do by looking at their own names, see KP pp. 85-86.

Spring 2008 Handout Zii%se’ -15- hesenea ©2008 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

NYU SCPS X52.9544 Section 1

fork, exec, and wait

Unix System Calls

In peace sons bury fathers, but in war fathers bury sons.
—HerodotusThe
Histories I, 87
See Bach pp. 213-227; Curry pp. 301-309; KP pp. 222-225.
—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/forkexecwait.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
i nt main(int argc, char **argv)
{
pid_t pid = fork();
i nt status;
if (pid<0){
perror(argv[0]);
return 1,
}
if (pid==0){
/¥ Arrive here if | am the child. */
execl("/usr/xpg4/bin/grep",
"grep", "-q", ""abcl1234:", "/etc/passwd”, (char *)0);
perror(argv[0]);
return 3; I* different from grep’s exit status */
}
/¥ Arrive here if | am the parent. */
pid = wait(&status);
if (pid<0){
perror(argv[0]);
return 2;
}
printf("My child’s PID number was %d.\n", pid);
if (WIFEXITED(status)) {
printf("My child’s exit status was %d.\n", WEXITSTATUS(status));
}
else if (WIFSIGNALED(status)) {
printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
}
else if (WIFSTOPPED(status)) {
printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
}
else {
fprintf(stderr, "%s: couldn’t find out how child ended up.\n", argv[0]);

return 3;

Spring 2008 Handout Z:i%se’ -16-

All rights
reserved

©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

47 }
48
49 return EXIT_SUCCESS;
50}
1$ gcc -o “/bin/forkexecwait forkexecwait.c
2% Is -1 “/bin/forkexecwait
3% forkexecwait
My child’s PID number was 2759.
My child’s exit status was 1.
Seewait (2) for the various fheors of wait . Seesignal (3head) for a list of the signal numbers,
or

NOoO o~ WNPRE

4$ awk '$1 == "#define" && $2 ~ I"SIG/" /usr/include/sys/iso/signal_iso.h | more
#define SIGHUP 1 /* hangup */

#define SIGINT 2 / * i nterrupt (rubout) */

#define SIGQUIT 3 /* quit (ASCII FS) */

Bach p. 226:"Would it not be more natural to combine th@tsystem callsfork andexecl]into
one...? Ritchiesurmises thatork andexec exst as separate system calls, because when designing the
UNIX system, he and Thompson were able to adddHe system call without having to change much
code in the existing kernél.

The abwe dild callsexecl immediately after théork . But later children will hae dot of work
to do between thiork and theexecl . That's the real reason whfork andexecl are separate system
calls.

¥ Homework 2.8: examine the child$ eit status

Run the abee pogram. Gie /usr/xpg4/bin/grep different arguments to verify that the par
ent can get three different exit status numbers from the dbitdeans thagrep found what it was look-
ing for; 1 means thajrep didn’t find what it was looking for; 2 means that yaavegrep an incorrect
regular expression (e.gabc[) or a misspelled or read-protected filename. §esp (1).

Now misspell/usr/xpg4/bin/grep and verify that the child is unable éxecl it and returns
3.
A

v Homework 2.9: rewrite Homework 14.1

Rewrite Homevork 14.1 usindork , exec , andwait instead oystem .
A

v Homework 2.10: which is fastersystem or fork-exec-wait?
Write the smallest possible child:

#include <stdlib.h>
#include <unistd.h>

i nt main()

{

}

Write a C program that ges hirth to this child 1000 times usirgystem within afor loop. Time the C
program with/bin/time

_exit(EXIT_SUCCESS);

Spring 2008 Handout Zii%se’ -17- hesenea ©2008 Mark Meretzky

NYU SCPS

1$ /bin/time cal 4 2008 > /dev/null

real 0.0
user 0.0
Sys 0.0

X52.9544 Section 1

Unix System Calls

Then write another C program thateg birth to this child 1000 times usinfprk , execl , and wait

within afor
A

loop. Whichis faster?

fork-exec-wait in Perl

http://i5.nyu.edu/
#l/bin/perl
use POSIX;

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
#Arrive here if | am the child.

warn "$0: $!";
exit 3;

}

#Arrive here if | am the parent.
$pid = wait();
if ($pid < 0) {
die "$0: $!";
}

if (WIFEXITED($?)) {

}

elsif (WIFSIGNALED($?)) {

}

elsif (WIFSTOPPED($?)) {

}

else {

}

exit 0;

exec {/usr/xpg4/bin/grep’} 'grep’,

print "My child was terminated by signal number ", WTERMSIG($?), "\n";

Onm64/x52.9544/src/forkexecwait.pl

'-q’, "abc1234:’, 'letc/passwd’;

print "My child’s PID number was $pid.\n";

print "My child’s exit status was ", WEXITSTATUS($?), ".\n";

print "My child was stopped by signal number ", WSTOPSIG($?), ".\n";

die "$0: couldn’t find out how child ended up.";

1$ forkexecwait

My child’s PID number was 1701.

My child’s exit status was 1.

Spring 2008 Handout Zii%se’

-18- hesenea ©2008 Mark Meretzky

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

NYU SCPS X52.9544 Section 1 Unix System Calls

If we changed lines 4-5 to
$pid = fork() or die "$0: $!"
then we would die wheneer the$pid was zero. Buta zro$pid is not a cause for death—it just means
that I'm the child.

walit for a specific child
See Curry p. 304.

any dild child whose PID ipid
wait till child dies || wait(&status); waitpid(pid, &status, 0);
return immediately|| waitpid(-1, &status, WNOHANG); waitpid(pid, &status, WNOHANG);

A process can ge hirth to a second child without firstait 'ing for the elder child to dieThus a
process can be the parent of more than one child simultaneously.

wait returns the exit status of whiclee child dies first. Since different children run atfdient
speeds (as in life itself), this makes it impossible to predict which child will be harvestedvey eafjito
wait . That's why wait returns thePID of the harvested child.

To wait for a specific child, useaitpid instead ofvait :
—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/waitpid.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>

nt main(int argc, char **argv)

i
{

pid_t pid1 = fork();
pid_t pid2;
int status;
if (pid1<0){
perror(argv[0]);
return 1,
}
if (pidl==0)({
/* Arrive here if | am the first child. */
execl("/usr/xpg4/bin/grep",
"grep", "-q", ""abcl1234:", "/etc/passwd”, (char *)0);
perror(argv[0]);
return 3, I different from grep’s exit status */
}
/¥ Arrive here if | am the parent. */
pid2 = fork();
if (pid2<0){
perror(argv[0]);
return 2,
}
if (pid2==0)({

Spring 2008 Handout Zii3se’ -19- hesenea ©2008 Mark Meretzky

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80}

NYU SCPS X52.9544 Section 1 Unix System Calls

/¥ Arrive here if | am the second child. mailx -e returns
exit status O if there is mail waiting for you, 1 otherwise. */

execl("/bin/mailx", "mailx", "-e", (char *)0);
perror(argv[0]);
return 2, different from mail’s exit status */
}
/¥ Arrive here if | am the parent. I d on't necessarily have to wait

for my children in the order in which they were born. */

waitpid(pid2, &status, 0);
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) == 0) {

printf("There is mail waiting for you.\n");
} elseif (WEXITSTATUS(status) == 1) {
printf("There is no mail waiting for you.\n");
} else{
printf("My second child couldn’t turn into the mailx program.\n");
}
} else if (WIFSIGNALED(status)) {
printf("My second child (mailx) was terminated by signal number %d.\n",

WTERMSIG(status));
} elseif (WIFSTOPPED(status)) {
printf("My second child (mailx) was stopped by signal number %d.\n",
WSTOPSIG(status));

}

waitpid(pid1l, &status, 0);
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) == 0) {

printf("abc1234 has an account.\n");
} elseif (WEXITSTATUS(status) == 1) {
printf("abc1234 has no account.\n");
} elseif (WEXITSTATUS(status) == 2) {
printf("My first child (grep) couldn’t search /etc/passwd.\n");
} else{
printf("My first child couldn’t turn into the grep program.\n");
}
} else if (WIFSIGNALED(status)) {
printf("My first child (grep) was terminated by signal number %d.\n",

WTERMSIG(status));
} elseif (WIFSTOPPED(status)) {
printf("My first child (grep) was stopped by signal number %d.\n",
WSTOPSIG(status));

}

return EXIT_SUCCESS;

1% gcc -0 “/bin/waitpid waitpid.c
2% Is -1 “/bin/waitpid

3% waitpid

abc1234 has no account.
There is mail waiting for you.

Spring 2008 Handout Zii%se’ -20- hesenea ©2008 Mark Meretzky

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

NYU SCPS X52.9544 Section 1 Unix System Calls

Non-blocking wait
See Curry p. 305.
In all of the abwe exampleswait andwaitpid cause the process to block (i.egit\and do noth-
ing) until a child dies.To dways return immediately frorwaitpid , useWNOHANG
—On the Web at
http://i5.nyu.edu/ Onm64/x52.9544/src/wnohang.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>

nt main(int argc, char **argv)

i
{

pid_t pid = fork();
i nt status;
if (pid<0){
perror(argv[0]);
return EXIT_FAILURE;
}
if (pid==0){
/* Arrive here if | am the child. */
execl("/usr/xpg4/bin/grep",
"grep", "-q", ""abcl1234:", "/etc/passwd”, (char *)0);
perror(argv[0]);
return 3, I different from grep’s exit status */
}
/¥ Arrive here if | am the parent. */
if (waitpid(pid, &status, WNOHANG) == 0) {
printf("The child isn’t ready for harvesting yet, which is\n");
printf("okay because | have plenty of other work to do.\n");
} else if (WIFEXITED(status)) {
if (WEXITSTATUS(status) == 0) {
printf("abc1234 has an account.\n");
} elseif (WEXITSTATUS(status) == 1) {
printf("abc1234 has no account.\n");
} else{
printf("My child (grep) couldn’t search /etc/passwd.\n");
}
} else if (WIFSIGNALED(status)) {
printf("My child was terminated by signal number %d.\n", WTERMSIG(status));
} elseif (WIFSTOPPED(status)) {
printf("My child was stopped by signal number %d.\n", WSTOPSIG(status));
}
pid = waitpid(-1, &status, WNOHANG);
if (pid==0){
printf("l have no children which are ready to be harvested right now.\n");
} else{
printf("My child’s PID number was %d and his exit status was %d.\n",

Spring 2008 Handout Zii%s e’ -21- hesenea ©2008 Mark Meretzky

48
49
50
51
52
53
54
55
56
57
58
59

NYU SCPS X52.9544 Section 1

pid, WEXITSTATUS(status));
}

pid = wait(&status);
if (pid<0){
printf("l have no other children at all.\n");
} else{
printf("My child’s PID number was %d and his exit status was %d.\n
pid, WEXITSTATUS(status));

}

return EXIT_SUCCESS;

60}

1% gcc -0 “/bin/wnohang wnohang.c

2% Is -1 “/bin/'wnohang

3% wnohang

The child isn’t ready for harvesting yet, which is

okay because | have plenty of other work to do.

I h ave no children which are ready to be harvested right now.
My child’s PID number was 17109 and his exit status was 1.

http://i5.nyu.edu/ Onm64/x52.9544/src/wnohang.pl

Unix System Calls

#l/bin/perl
use POSIX;

$pid = fork();
defined $pid or die "$0: $!";

if ($pid == 0) {
#Arrive here if | am the child.
exec {/usr/xpg4/bin/grep’} 'grep’, -q’, "abcl1234:’, 'letc/passwd’;
warn "$0: $!";
exit 3;

}

#Arrive here if | am the parent.
if (waitpid($pid, WNOHANG)) {
if (WIFEXITED($?)) {
print "The child’s exit status is ", WEXITSTATUS($?), "\n";
}
exit 0;

}

print "The child isn’t ready for harvesting yet.\n";
wait();
if (WIFEXITED($?)) {
print "The child’s exit status is ", WEXITSTATUS($?), "\n";

}

exit 0;

Spring 2008 Handout Zii%se’ -22- hesenea ©2008

Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

4$ wnohang.pl
The child isn’t ready for harvesting yet.
The child’s exit status is 1

v Homework 2.11: write a shell: Curry pp. 103-105

Hand in only the last version of this prograiY¥ou get no credit if you hand in more than orer-v
sion.

(1) Write a program nameaysh (‘‘my shell”) that will take no @mmand line aguments. Iltwill
printf the word m1$ (followed by one blank) as a prompt, and tigess one line from the standard
input. Assumehat line of input contains exactly onend. Hereare three xamples of input thamysh
might receve:

date
cal
who

Give birth to a child that willexeclp itself into the program whose name was read from the standard
input. Theparent, meanwhile, showdait for the child and then cadixit

1 /* E xcerpt from the file /usr/include/sys/syslimits.h. */

2

3 /* M aximum number of bytes in a command line. See E2BIG in man intro(2). */
4 #define ARG_MAX 38912

0o ~NO O

©

10

12
13
14
15
16
17
18
19
20
21
22

declare an array of ARG_MAX characters named line;

printf the prompt;
f lush to make sure that the prompt is output immediately;
i f (gets(line) == NULL) {

fprintf an error message and exit;

}

fork;
if (I'm the child) {
/* Arrive here if I'm the child. */
execlp theline;
fprintf an error message and exit: the execlp must've failed,;

}

/¥ Arrive here if | am the parent */
waitpid for the child to die without the WNOHANG;
exit or return from main;

(2) Remae theexit from the end of the ale pogram, and wrap an infiniter loop around
what remains.mysh will now read in man lines of input and ge krth to the program named in each one.
break out of the main loop when you encounter the end of the standard input or thexitord

#include <string.h> [* for strcmp */

for(;){ /* main loop */
printf the prompt;
i f (gets(line) == NULL || strcmp(line, "exit") == 0) {
break out of the main loop;

}

do t he fork, exec, wait in lines 13-20 of the previous paragraph;

Spring 2008 Handout Zii%se’ -23- hesenea ©2008 Mark Meretzky

10
11
12

1
2
3
4

©O© oo~NO O

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

NYU SCPS X52.9544 Section 1 Unix System Calls

}
/¥ Arrive here when at end of input. */
exit;
Usefor(;;{ for the infinite loop (K&R p. 60).You get no credit if you sawhile(1}
(3) Allow each line of input to hae more than one word:
date
Is -l
grep ism$ /usr/dict/words mysh does not tad& dngle quotes.

Assume that the words are separated from each other by one or more blanks and/or tabs.

Heres an &le of a C program that splits a line into words, and stores a pointer to each word in
an array of pointers namegw_argv . Don't forget to store &har*)0 after the last word:

The second gument ofstrtok (K&R p. 250) contains one blank and one.tabtok is easier
to use than thetrpbrk in Curry p. 317.

—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/strtok.c

/* S tore the words in the line of input into an array of strings. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXWORDS 16

i nt main(int argc, char **argv)
{
char line[ARG_MAX];
char *new_argv[MAXWORDS]; [* an array of strings */
int i
int new_argc; [* the number of words in the line */

if (gets(line) == NULL) {

fprintf(stderr, "%s: requires one line of input.\n", argv[0]);
return 1,
}
for (i=0; i < MAXWORDS; ++i) {
new_argv(i] = strtok(i==0 ? line : NULL, " \t");
if (new_argv[i] == NULL) {
goto done;
}
}
fprintf(stderr, "%s: more than %d words\n", argv[0], MAXWORDS);
return 2;
done:;
new_argc = i;
new_argv[new_argc] = (char *)0;

/¥ Demonstrate that strtok works. */
for (i=0;i<new_argc; ++i) {

Spring 2008 Handout Zii%se’ -24- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

36 printf("%s\n", new_argvli]);
37 }
38
39 return EXIT_SUCCESS;
40}
2% prog
Is -l moe Yau type this.
Is It outputs this.
-l It outputs this.
moe It outputs this.
3%
In Perl, the regularxpression\s+ means| 11] *, where each pair of square bratk

enclose one blank and one.tdfwr documentation,

4% man -M /usr/local/lib/perl5/man 3 Text::ParseWords

http://i5.nyu.edu/ nm64/x52.9544/src/quotewords
#l/bin/perl
use POSIX;

$ =<STDIN>; #Input one line from the standard input.
chomp;

@new_argv = quotewords(\s+', 1, $_);
$new_argc = @new_argv;
print "\$new_argc == $new_argc.\n";

for ($i = 0; $i < $new_argc; ++8$i) {
print "$new_argv[$i]\n";

}

exit 0;

The parent should parse the command line into separate words before foalling Between the
parse and thérk , print out words innew_argv . In other words, mysh should operate lik the Korn
shell withset-x or the C shell wittsetecho . If new_argv contains no words (i.e., ifew_argc
equals zero), do not botherftoek . Otherwise, if the first wrd innew_argv isexit , break out of the
main loop. (Remee the cruder test foexit shown earlier.)

After thefork , the child nev has to callexecvp instead ofexeclp , and should us@ew_argv
as the second argumentefecvp .

(4) Before callingfork , the parent should see if the last word of the line is an amper¢@adl.
strcmp only once per line to do this: you do nowvad examine ag word except the last.)f so, the par
ent should remee the ampersand from theew_argv array (and subtract one fronew_argc). The
parent should then cdibrk only if new_argv still contains at least oneord. (In other words, dot’
give lirth to a child if some joker types in a command line consisting only of an ampersand.) And after
fork ’ing, the parent should merely print the ctslddD number instead okait 'ing for the child.

If you end mayp command lines with ampersands, it will cause you @ dirth to mary children
without wait 'ing for them to die. This will cause the machine to fill up with childrexiting to be har
vested. Atthe end of the maifor(;;{ loop (just before you go back to the top and print the prompt
again), harvest all the background children that are ready to be harvested (if any):

1 [* Arrive here if | am the parent. */

Spring 2008 Handout Zii%s e’ -25- hesenea ©2008 Mark Meretzky

19

20}

[

NYU SCPS X52.9544 Section 1 Unix System Calls

i f (the last word of the line of input to mysh was "&") {
print("Running PID %d in the background.\n", pid);
} else{
waitpid for that pid;
}

/ * Harvest any children that are ripe (i.e., zombies). */
while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
if (WIFEXITED
printf("Background PID %d terminated with exit status %d.\n",
pid, WEXITSTATUS(status));

} /* end of main for (;;) loop */

/¥ Don't bother to wait for last crop of children, if any. */
return EXIT_SUCCESS;
/* end of main */

There must be one or more blanks and/or tabs before the ampersand:

who
find /homel/a/abc1234 -type f -name core -print &
date

(5) If one of the words imew_argv starts with a dollar sign, replace the entire word (including the
leading dollar sign) with the value of the corresponding environnaeigble. Callgetenv .

(6) If one of the words imew_argv is an asterisk all by itself, reme that word fromnew_argv .
Insert in its place the names akgything in the current directorgach as a separate element in the
new_argv array Also add the correct amountrtew_argc . If the current directory is emptieave the
asterisk untouched.

(7) Before parsing the command line into separaiedgy callstrchr (Curry pp. 21-22) to see if
the command line contains# . If so, remwe the’# and all the characters after it by changing the
toa\0’

(8) 1 wish you could create a file:

#!l/homel/a/abc1234/bin/mysh
#This file is named shelly.
date

cal

who

and eecute it like this:
5% shelly

Thus far mysh has taken no command line arguments and reads from the standarddhpngemysh to
read from the standard input only if there are no command linements. Ithere is an argument, assume
it's a flename and read from it instead. If there is more than anerant, output an error message and
die. Outputhe prompt only ifp is coming from a terminal.

You must remee the’'\n’ after afgets but not after agets . See K&R pp. 164, 247.
fileno simply returns thefile field of the structure whose address igegias an ggument.

FILE *fp;

Spring 2008 Handout Zii%se’ -26- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

if (argc==1){
fp = stdin;
} elseif (argc == 2) {
f p = f open argv[l] as an input file;
c heck for fopen error
} else{
t 00 many arguments: exit or return from main;

}

/¥ start of main loop */
for () {
if (isatty(fileno(fp)) {
print the prompt;
}
if (fgets(line, sizeof line, fp) == NULL) {
end of input: break out of the main for loop
}
remove the '\n’ from the end of the line;
parse the line, store the individual words in new_argv;

In Perl, the filehandlARGVinputs from the files named as command line arguments, or from the

standard input if there were nogaments.-t stands for‘terminal”. Seepp. 140 and 85 respegtly in
the O'Reilly Programming Perl, 2nd. ed.

#l/bin/perl
if (@ARGV > 1) {
too many arguments: exit;

}

#start of main loop
for (;;) {
if (-t ARGV) {
print the prompt;
}
$ =<ARGV>;
etc.

(9) O For space cadets onlylnstead of reading the standard input witgeds loop, useyacc .
Allow the input to contain expressions such as

progl ; prog2

progl && prog2

progl || prog2

progl && prog? || prog3

progl && (prog2 || prog3)
progl && { prog2 || prog3}
progl argl arg2 arg3 && prog2

What precedences and associativities should these operate?s ha
A

v Homework 2.12: photograph a zombie: Bach pp. 148-149, 212-213; Curry p. 286

A process calls thexit function when it has finished itsonk. Even after callingexit , howeve,
an empty husk of the process continuesxiste Thisghoulish remnant, called zombie, senes only to
hold the exit status of the process until the parent harvests it by aadling(or waitpid or wait3).
wait then remwes the zombie.

Spring 2008 Handout Zii%sey’ -27- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

Thus the real effect adxit is to turn a process into a zombie. Zombies are rarely seen because the
parent of each process usually calst promptly. To verify that zombies exist, write a program that
fork ’s into two processes. Thehild shouldexit immediately thus turning itself into a zombieThe
parent shouldleep for 10 seconds (to @& the child time teexit) and should then caéixecl to trans-
form itself intops-Aj (for “job control”). Hand in your program and its output, showing a process
whose name isdefunct> . (In other versions of Unix, th&tatus of this process will b&).

1% a.out changes int@s -Aj before the following output appears.
USER PID PPID PGID SESS JOBCS TTY TIME COMMAND
mm64 19224 847 19224 19224 0S t typ7 0:01.20 -csh (csh)
root 21005 19224 21005 19224 1R +ttyp7 0:00.37 ps -Aj
mm64 20903 21005 21005 19224 1 <+ ttyp? 0:00.00 <defunct>

A

v Homework 2.13: who adopts an orphaned child? Bach p. 213; Curry p. 287

Write a program thaffork ’'s. The parent shouldxit immediately The child shouldsleep for
10 seconds (to gé the parent time texit) and should then print its paresifiD number by calling
getppid
A

dup2 in the Korn shell language: KP pp. 93, 141-142

The standard output (file descriptor 1) and standard error output (file descriptor 2) of a process are
usually directed to tw different destinationsThe 1>&2 in the following shellscript, hwever, tells echo
to direct all the data that it outputs through file descriptor 1 to the same destination used by file descriptor 2.
In other words, all the@rint ’s and fprintf(stderr 's in echo will now go to the same destination.
This common destination is the same as the destination that was originally used by the
fprintf(stderr 's.

#!/bin/ksh

if [[$#-ne 1]

then
echo $0: requires 1 command line argument 1>&2
exit 1

fi

echo | received the argument $1.
exit 0

Standad output tooutfile |, gandaid error output to terminal:
1% shelly argl arg2 arg3 > outfile

A World Wide Web gtevay is another example of a program whose standard output and standard
error output are directed to the same destination.

dup vs. dup2: Bach pp. 117-119, 144; Curry pp. 68-69, 312; KP pp. 223-225
The single system call

dup2(2, 1);
does the work which used to be done by the dygtem calls

close(1);
dup(2);

Spring 2008 Handout Zii%se’ -28- hesenea ©2008 Mark Meretzky

1
2
3
4
5
6

NYU SCPS X52.9544 Section 1 Unix System Calls

Redirect the standard output of a C program with dup2 and close: Bach pp. 117-119; Curry pp.
24-25, 105-106; KP pp. 223-224

The destination of output that yewite to file descriptor 1 (the standard output) is usually deter
mined by the command line that ran the program:

1$ prog > outfile
2$ prog | subsequent_prog
3% prog

The following program, heever, will always tale snd its standard output to the foetfile2
evan if you run it like this:

4% prog > outfilel

(1) At line 9, we're allowed to say

write(1, "hello”, 5);

(2) At line 15, we're allowed to say both of the following
write(1, "hello”, 5);
write(fd, "hello”, 5);
to send output to tavdifferent destinations.
(3) At line 20, we're still allowed to say both of the following
write(1, "hello”, 5);
write(fd, "hello”, 5);
but they now snd their output to the same destination, naroetfile2
(4) At line 25, we're allowed to say only

write(1, "hello”, 5);

which continues to send its outputdwtfile2 . Theprintf in line 26 ultimately callsvrite(1, . In
other words, we can still perform standard output, butit gmes tooutfile2

—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/dup2.c

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h> /* for O_CREAT */
#include <sys/stat.h> /* for S_IRUSR */
#include <sys/types.h>

#include <unistd.h> /* for dup2 */

nt main(int argc, char **argv)

i
{

int fd = open("outfile2", O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR);
if (fd<0){
perror(argv[0]);
return 1;
}
if (dup2(fd, 1) <0) {
perror(argv[0]);
return 2;
}

Spring 2008 Handout Zii%se’ -29- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

21 if (close(fd) !=0) {

22 perror(argv[0]);

23 return 3;

24 }

25

26 printf("hello\n");

27 return EXIT_SUCCESS;
28}

Seefreopen (3) for another way to do this.

v Homework 2.14: redirect the standard input

Write a program that callspen, dup2, and close to override the source of the standard input
specified on the command lindake the standard input from the fildev/tty instead. ¥rify that the
input comes from the terminalen if you say

1$ prog < infile
A

Give the child a different souice of standard input: Bach pp. 117-119; Curry pp. 311-318; KP pp.
223-224

A child automatically inherits the source of its parertandard input. The child can redirect its
standard input, hwever, before it transforms itself into a different program. The redirection wemithe
transformation.

—On the Web at
http://i5.nyu.edu/ Omm64/x52.9544/src/dup22.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <fcntl.h>

4 #include <sys/wait.h>
5 #include <unistd.h>

6
7 i nt main(int argc, char **argv)
8 {
9 pid_t pid = fork();
10 int fd;
11 int status;
12
13 if (pid<0){
14 perror(argv[0]);
15 return 1,
16 }
17
18 if (pid==0){
19 /¥ Arrive here if | am the child. */
20 fd = open('letter", O_RDONLY, 0);
21 if (fd<0){
22 perror(argv[0]);
23 return 1;
24 }
25
26 if (dup2(fd, 0) < 0) {
27 perror(argv[0]);
28 return 2;

Spring 2008 Handout Zii3se’ -30- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

29 }

30

31 if (close(fd) !=0) {

32 perror(argv[0]);

33 return 3;

34 }

35

36 execl("/usr/ucb/mailx", "mail", "def5678", (char *)0);
37 perror(argv[0]);

38 return 4,

39 }

40

41 /¥ Arrive here if | am the parent. */

42 wait(&status);

43 if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
44 printf("The letter was successfully mailed.\n");
45 return EXIT_SUCCESS;

46 } else{

a7 printf ("The letter was not mailed.\n");

48 return EXIT_FAILURE;

49 }

50}

v Homework 2.15: give the child a different destination for its standard output

Give Hrth to a child. Have the child change the destination of its standard outpben hae the
child transform itself into another program. The parent, meanwhilewaitl for the childs death. Yu
get no credit unless the third argumenbpén is written with the macroS_IRUSR, S_IWUSR etc. You
get no credit if you turn on grof thex bits of ary file. You get no credit if you use the ma@olIRDWR
You get no credit if you call thereat system call.

O Extra credit. Hae the child change both its standard input and its standard output.
A

v Homework 2.16: write a shell that accepts <, >, and >>
Changamysh to accept lines of standard inputditais:

prog

prog < infile

prog > outfile

prog < infile > outfile

prog argl arg2 arg3 < infile arg4 arg5 arg6 >> outfile &

where prog is the name of gnprogram andinfile and outfile are filenames.For simplicity,
assume there are one or more blanks and/or tabs on either side ©fa@aich
Between its birth and isxeclp , each child should call a function declared as

int redirect(int new_argc, char **new_argv);

This function should look for the redirection symbs|s>, etc., and change the chitd&andard input and
output to the requested source and destinafidre parent should kia rothing to do with the redirection
symbols.

If the child opens & file, it should gie O_RDONLYNdO to open as the second and thirdgar
ments. Ifthe child opens a file, it should gire O_CREAT|O_TRUNC|O_WRONLY andS_IRUSR|
S_IWUSR(i.e., rw-------) to open as the second and thirdgaments. Ifthe child opens &> file, it
should gie O_CREAT|O_WRONLYandS_IRUSR|S_IWUSR|S_IRGRP|S_IROTH to open as

Spring 2008 Handout Zii%se’ -31- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

the second and thirdguments. Thehild must also call

1 #include <sys/types.h>
2 #include <unistd.h>

i f (Iseek(fd, OL, SEEK_END) < 0) { /¥ Curry pp. 65-68 */
perror
exit

~NOo o hw

}

immediately afteppen’ing a>> file, assuming thatd holds the return value of ttopen .
Don't do it like this:

i f (strcmp(new_argv][i], "<"
open(, O_RDONLY, 0
dup2(, 0)
close
} else if (stremp(new_argv[i], ">"
open(, O_CREAT | O_TRUNC | O_WRONLY, S_ISUSR | S_IWUSR
dup2(, 1)
close
} else if (strcmp(new_argv][i], "2>"
10 open(, O_CREAT|O_TRUNC | O_WRONLY, S_ISUSR | S_IWUSR
11 dup2(, 2)
12 close
13 } else /*etc. */

©CoOo~NOOOUTA, WNPE

Instead, maf an aray of structures whose initialization is something like

1 /* T he second field is the file descriptor number. */
2 t ypedef struct {

3 -

4 } r edirect_t;

5

6 redirect_taf] ={

7 "< 0, O_RDONLY, 0},

8

9 St O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR},
10 "S> 1, O_CREAT | O_WRONLY, S_IRUSR | S _IWUSR},
11
12 {"2>", 2, O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR},
13 {"2>>", 2, O_CREAT | O_WRONLY, S_IRUSR | S _IWUSR},
14
15 {NULL, -1, 0, 0} /* end of data */
16 };

Remaore the>, <, >>, and the following filename from theew_argv array before giving birth, just
as you remeed the ampersand and asterigidove dl the subsequentevds two positions forward, includ-
ing the(char *)0 after the last word.

If you're really brae, try to usechsh or the-s option of passwd to change the senth field of
your line in theletc/passwd file to/homel/a/abc1234/bin/mysh . Seefinger (1), chsh (1).
A

Spring 2008 Handout Zii%se’ -32- hesenea ©2008 Mark Meretzky

NYU SCPS X52.9544 Section 1 Unix System Calls

http://i5.nyu.edu/ Cmm64/x52.9544/src/winner

#l/bin/perl

$_ =<STDIN>;
chomp($_); #Remove the trailing newline from $_.

if length($) =9 || $_=/XO1NH{
die "$0: Input line must be nine X’s, O’s, or blanks.";
}
#Insert a dash after the 3rd character and after the 6th character.

#For example, OOXXXOOXX becomes OOX-XXO-OXX.

$_ =S/ INLA2-3;

if (
$_ =" /([XO\1\1/ I #any row
$_="/([XQ])...\1..\1/ || #any column
$_ =" /([XQ])..-\1.-.\1/ || #the main diagonal
$_ =" /([XO])-\1.-\1/) { #the other diagonal
print "$1 is a winner.\n";
exit 0;

}

print "No one has won yet.\n";

exit 1;

O

Spring 2008 Handout Zii%se’ -33- hesenea ©2008 Mark Meretzky

