
NYU SCPS X52.9232 Section 6 C Programming, Part I

Fall 2006 Handout 8

Pass an array of strings

When we pass any type of array to a function, we’re actually passing the address of the first element
of the array. But each element of the array of Chinese years (Handout 6, pp. 4−5) contains the address of
the firstchar of a string. Therefore when we pass this array to a function, we’re passing the address of an
address of achar , i.e., a ‘‘pointer to pointer tochar ’’ .

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 v oid f(int n, char *a[]);
5 v oid g(int n, char **p);
6
7 i nt main()
8 {
9 c har *animal[] = {

10 "monkey",
11 "rooster",
12 "dog",
13 "pig",
14 "rat",
15 "ox",
16 "tiger",
17 "hare",
18 "dragon",
19 "snake",
20 "horse",
21 "sheep"
22 };
23 #define N (sizeof animal / sizeof animal[0])
24
25 f(N, animal);
26 g(N, animal);
27
28 return EXIT_SUCCESS;
29 }
30
31 /* Print an array of strings, one per line. */
32
33 void f(int n, char *a[]) /* empty [] as in Handout 7, p. 20, line 17 */
34 {
35 int i;
36
37 for (i = 0; i < n; ++i) {
38 printf("%s\n", a[i]);
39 }
40 }

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 1 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

41
42 /* Print an array of strings, one per line. */
43
44 void g(int n, char **p)
45 {
46 int i;
47
48 for (i = 0; i < n; ++i) {
49 printf("%s\n", p[i]);
50 }
51 }

Excerpt from stdio.h: K&R p. 102

1 #define NULL 0

Another way to indicate where an array ends

Instead of making a

#define N (sizeof animal / sizeof animal[0])

to determine the number of elements in an array, we can mark the end of the array with a dummy element.
This lets us dispense with the second argument off andg. UseNULL as the dummy element if the data
type of the elements is any kind of pointer.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 v oid f(char *a[]);
5 v oid g(char **p);
6
7 i nt main()
8 {
9 c har *animal[] = {

10 "monkey",
11 "rooster",
12 "dog",
13 "pig",
14 "rat",
15 "ox",
16 "tiger",
17 "hare",
18 "dragon",
19 "snake",
20 "horse",
21 "sheep",
22 NULL
23 };
24
25 f(animal);
26 g(animal);
27
28 return EXIT_SUCCESS;
29 }
30

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 2 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

31 /* Print an array of strings, one per line. */
32
33 void f(char *a[])
34 {
35 int i;
36
37 for (i = 0; a[i] != NULL; ++i) {
38 printf("%s\n", a[i]);
39 }
40 }
41
42 /* Print an array of strings, one per line. */
43
44 void g(char **p)
45 {
46 int i;
47
48 for (i = 0; p[i] != NULL; ++i) {
49 printf("%s\n", p[i]);
50 }
51 }

Command line arguments: K&R pp. 114−118; Ki pp. 263−264

We emphasized how to pass an array of strings to a function, because the command line arguments of
a C program are passed to themain function as an array of strings calledargv .

1$ prog hello 10 20 Unix
C:\TMP prog hello 10 20 DOS

1 #include <stdio.h>
2 #include <stdlib.h> /* for atoi and exit */
3 #include <string.h>
4
5 i nt main(int argc, char *argv[]) /* could also write char **argv */
6 {
7 i nt n;
8 i nt i;
9 c har **p;

10
11 printf("The command line contains %d words.\n", argc);
12 printf("There are %d command line arguments.\n", argc - 1);
13 printf("The name of this program is %s.\n", argv[0]);
14
15 if (argc > 1) {
16 printf("The first command line argument is %s.\n", argv[1]);
17 printf("The first command line argument contains %u characters.\n",
18 strlen(argv[1]));
19
20 if (argv[1][0] == ’-’) { /* Handout 6, p. 8 */
21 printf("The first command line argument starts with a dash.\n");
22 }
23
24 if (strcmp(argv[1], "bye") == 0) {
25 return EXIT_FAILURE;

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 3 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

26 }
27 }
28
29 if (argc > 2) {
30 printf("The second command line argument is %s.\n", argv[2]);
31 sscanf(argv[2], "%d", &n); /* K&R p. 246; cf. sprintf in Handout 6, p. 2 */
32 n = atoi(argv[2]); /* another way to do same thing, K&R p. 251 */
33 if (n > 100) {
34 printf("The second command line argument is greater than 100.\n");
35 }
36 }
37
38 /* Print the command line, one word per line. */
39 for (i = 0; i < argc; ++i) {
40 printf("%s\n", argv[i]);
41 }
42
43 /* Another way to write the same loop. */
44 for (p = argv; p < argv + argc; ++p) {
45 printf("%s\n", *p);
46 }
47
48 return EXIT_SUCCESS;
49 }

▼ Homework 8.1: check the command line arguments

Write a program that does two or more different things, depending on its command line arguments.
Make sure an argument exists before doing anything with it.For example, make sureargc > 3 before you
mentionargv[3] .

You get no credit if you ignore theelse if instructions in Handout 1.
▲

Three kinds of scope for variables

(1) Variables that are function arguments (e.g.,n in the line function) and variables declared inside
the curly brackets that enclose a function (e.g.,i in the first version of theline function) can be used only
within that function. See K&R p. 31; King pp. 185−188.

(2) Variables declaredstatic before the first function of a.c file can be used by all the functions
in that file but no others.For example, to make an array that can be used only by two functionspush and
pop , put the two functions in a file by themselves and declare the array at the top of the file with the
static keyword. Thesetwo functions are shown on K&R p. 77; King p. 188; K&R p. 83; King pp.
185−186 tells how to add thestatic keyword.

(3) Non-static variables declared before the first function of a.c file can be used in any function
of the program, including functions in other.c files. Theremust also be anextern declaration for the
variable at the start of every other.c file where the variable is used.

If the variable is to be used in many other.c files, write itsextern declaration in a.h file and
#include the .h file in all the other.c files. It is harmless to#include the .h file in the original.c
file as well.

Four kinds of storage classes for variables

(1) Variables that are function arguments and variables declared inside the curly brackets that enclose
a function (except for the ones declared to bestatic) are born when their function is called and die when
their function returns. This may happen many times as the program runs.If the declaration for one of these

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 4 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

variables contains an initialization, the initialization happens anew each time the variable is reborn.Other-
wise the variable is reborn with an unpredictable value.

1 v oid f(void)
2 {
3 i nt i = 10; /* initialized to 10 whenever f is called */
4 i nt j; /* initialized to an unpredictable value whenever f is called */
5 }

(2) Variables declared to bestatic inside the body of a function† and all variables declared before
the first function of a.c file live throughout the lifetime of a program. In other words, a value you store in
one of these variables will remain there until you replace it with a different value. Thesevariables are all
initialized to 0 unless you initialize them to something else. The initialization happens only once, at the
start of the program.For example, here are some external variables.

1 #include <stdio.h>
2 i nt i = 5; /* initialized to 5 once, at the start of the program. */
3 i nt j; /* initialized to 0 once, at the start of the program. */
4
5 i nt main()
6 {

(3) To allocate and free a block of memory whenever you want,#include <stdlib.h> and call
the functionsmalloc , realloc , and free .

(4) To allocate a block of memory in Unix which will outlive the program and which can be used by
other programs, call theshared memoryfunctions shmget , shmat , shmdt , shmctl , and shmop.
Shared memory is outside the scope of this operating-system independent course.

Excerpts from stdlib.h

In some versions of C, the declaration for themalloc function is written inmalloc.h instead of
stdlib.h .

Since the return value ofmalloc is of data typevoid * , it can be stored into any pointer.

1 t ypedef unsigned int size_t; may be a different data type on your machine
2
3 v oid *malloc(size_t n);
4 v oid *realloc(void *p, size_t n);
5 v oid free(void *p);

Dynamic memory allocation: K&R pp. 167−168, 252; King pp. 359−361

You must declare an array with aconstant expression:a number or an expression consisting only of
numbers (K&R p. 38).You can’t use a variable.

1 c har a[12]; /* legal */
2 c har a[12 + 1]; /* legal */
3 c har a[i]; /* illegal */

What do you do if the dimension has to be avariable expression:one containing variables? Pass the
dimension tomalloc to dynamically allocate a block of memory. The return value ofmalloc is the
address of the start of the block. Store the return value in a pointer variable so you can access the block as
if it were a big array.

† See the paragraph on K&R p. 83 just before Exercise 4−11; King pp. 186−187.

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 5 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

I use the format"%u" (see Handout 2) toprintf and scanf a variable of data typesize_t ,
because on my machinesize_t is really just another name forunsigned int as shown above. You
may have to use a different format (e.g."%lu") on your machine. See the last bullet on K&R p. 260.

Ir onclad rule 1. Whenever you call malloc , sav e its return value in a pointer variable. Never
change the value of the pointer variable. Don’t even ++ the pointer variable. Keep the pointer variable
unchanged, because later you will have to giv e it to thefree function or therealloc function.

Ir onclad rule 2. Whenever you call realloc , sav e its return value in a pointer variable. Never
change the value of the pointer variable. Don’t even ++ the pointer variable. Keep the pointer variable
unchanged, because later you will have to giv e it to the free function or another call of therealloc
function.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 i nt main()
5 {
6 s ize_t n; /* number of char’s in the block */
7 c har *p; /* hold address of first char in the block */
8
9 printf("How many char’s do you need in your array?\n");

10 scanf("%u", &n);
11
12 p = malloc(n);
13 if (p == NULL) {
14 printf("Can’t allocate %u bytes.\n", n);
15 return EXIT_FAILURE;
16 }
17
18 p[0] = ’ h’; /* the first byte in the block */
19 p[1] = ’ e’;
20 p[2] = ’ l’;
21
22 /* etc. */
23
24 p[n-1] = ’ \0’; /* the last byte in the block */
25
26 printf("%s\n", p);
27 printf("%u\n", ((size_t *)p)[-1]);
28
29 free(p); /* when you’re done with the block */
30 return EXIT_SUCCESS;
31 }

You can combine lines 12−13 to

32 if ((p = malloc(n)) == NULL) {

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 6 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

’h’ ’e’ ’l’ ’l’ ’o’ ’\0’6

p

To malloc a block that will be used to holdint ’s, makep a ‘‘pointer to int ’’ and multiply the
number ofint ’s by the size in bytes of eachint :

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 i nt main()
5 {
6 s ize_t n; /* number of int’s in the block */
7 i nt *p; /* hold address of the first int in the block */
8 i nt i; /* should really be size_t */
9

10 printf("How many int’s do you need in your array?\n");
11 scanf("%u", &n);
12 p = malloc(n * sizeof(int));
13 if (p == NULL) {
14 printf("Can’t allocate room for %u int’s.\n", n);
15 return EXIT_FAILURE;
16 }
17
18 p[0] = 31; /* the first int in the block */
19
20 /* etc. */
21
22 p[n-1] = 31; /* the last int in the block */
23
24 for (i = 0; i < n; ++i) {
25 printf("%d\n", p[i]);
26 }
27
28 free(p);
29 return EXIT_SUCCESS;
30 }

▼ Homework 8.2: how much can you malloc? (not to be handed in)

What is the largest number of bytes you can request ofmalloc before it gives you NULL? Is this
number (approximately) a power of 2?It’s approximately 3,249,000,000 on i5.nyu.edu (up from
134,000,000 on our previous machine, acf5.nyu.edu, and 67,000,000 on the one before that, acf4.nyu.edu).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9232/src/malloc.c

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 main()

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 7 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

5 {
6 s ize_t n;
7 c har *p;
8
9 f or (;;) {

10 printf("How many bytes should I allocate?\n");
11 scanf("%u", &n);
12
13 p = malloc(n);
14
15 if (p == NULL) {
16 printf("Can’t allocate %u bytes.\n", n);
17 } else {
18 printf("%u bytes were available. Try for more.\n", n);
19 system("ps -o vsz,comm | awk ’NR == 1 || $2 == \"a.out\"’");
20 free(p);
21 }
22 }
23 }

▲

The definition for a convenient function

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9232/src/mymalloc.c

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /* A llocate and return a pointer to n consecutive bytes of memory. */
5
6 v oid *mymalloc(size_t n)
7 {
8 v oid *p = malloc(n);
9

10 if (p == NULL) {
11 printf("Can’t allocate %u bytes.\n", n);
12 exit(EXIT_FAILURE);
13 }
14
15 return p;
16 }

You can split line 8 into

17 void *p;
18 p = malloc(n);

—but why would you want to? Or to obscure the code, you can change lines 8−10 to

19 void *p;
20
21 if ((p = malloc(n)) == NULL) {

just like the familiar

22 while ((c = getchar()) != EOF) {

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 8 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Make the block larger: K&R p. 252; King 367−368

Our firstmalloc program allocated a block ofn bytes of memory. If you need to enlarge the block
later, call realloc . The first argument ofrealloc is the address of the start of the existing block. The
second argument ofrealloc is the desired new size of the block in bytes,not the number of bytes that
you want to append to the block.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 i nt main()
5 {
6 c har *p = malloc(3);
7 i f (p == N ULL) {
8 printf("Can’t allocate 3 bytes.\n");
9 r eturn EXIT_FAILURE;

10 }
11
12 p[0] = ’ a’; /* the first byte in the block */
13 p[1] = ’ b’;
14 p[2] = ’ c’; /* the last byte in the block */
15
16 p = r ealloc(p, 5);
17 if (p == NULL) {
18 printf("Can’t allocate 5 bytes.\n");
19 return EXIT_FAILURE;
20 }
21
22 /* At this point, p[0], p[1], p[2] still contain ’a’, ’b’, ’c’. */
23 p[3] = ’ d’;
24 p[4] = ’ \0’; /* the last byte in the block */
25 printf("%s\n", p);
26
27 free(p);
28 return EXIT_SUCCESS;
29 }

The situation at line 15:

999

’a’

1000

p[0]

’b’

1001

p[1]

’c’

1002

p[2]

1003

p may still have its original value at line 21:

999

’a’

1000

p[0]

’b’

1001

p[1]

’c’

1002

p[2]

1003

p[3]

1004

p[4]

1005

Or by line 21p may have received a new value from therealloc :

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 9 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1999

’a’

2000

p[0]

’b’

2001

p[1]

’c’

2002

p[2]

2003

p[3]

2004

p[4]

2005

Input a line of unpredictable length

1 /* L et the user type in a line of any length, and then print it out. */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 i nt main()
6 {
7 s ize_t i = 0; /* number of characters the user has typed, plus 1 for
8 t he terminating ’\0’. */
9 c har *p; /* hold the address of 1st byte of allocated block */

10 char *q;
11 int c; /* each char read from input */
12
13 /* Create a 1-byte block big enough to hold the terminating
14 ’\0’ even if there are no input characters. */
15
16 p = malloc(++i);
17 if (p == NULL) {
18 printf("Can’t allocate %u bytes.\n", i);
19 return EXIT_FAILURE;
20 }
21
22 printf("Please type a line and press RETURN.\n");
23
24 while ((c = getchar()) != EOF && c != ’\n’) {
25 p[i-1] = c ; / * P ut c into the last byte of the block. */
26 q = r ealloc(p, ++i);
27 if (q == NULL) {
28 printf("Can’t allocate %u bytes.\n", i);
29 return EXIT_FAILURE;
30 }
31 p = q;
32 }
33 p[i-1] = ’ \0’; /* Put ’\0’ into the last byte of the block. */
34
35 printf("%s\n", p);
36 free(p);
37 return EXIT_SUCCESS;
38 }

A convenient function

—On the Web at
http://i5.nyu.edu/ ∼ mm64/x52.9232/src/mygetline.c

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 c har *mygetline(void);

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 10 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

5
6 i nt main()
7 {
8 c har *p;
9

10 printf("Please type one line and press RETURN.\n");
11 p = mygetline();
12
13 printf("%s\n", p);
14 free(p);
15 return EXIT_SUCCESS;
16 }
17
18 /* Let the user input a line of any length. Allocate a block of memory for the
19 line, excluding the RETURN that the user typed to terminate it. Store the line
20 in the block, including a terminating ’\0’, and return the address of the first
21 char of the block. */
22
23 char *mygetline(void)
24 {
25 size_t i = 0 ;
26 char *p;
27 char *q;
28 int c;
29
30 p = malloc(++i);
31 if (p == NULL) {
32 printf("Can’t allocate %u bytes.\n", i);
33 exit(EXIT_FAILURE);
34 }
35
36 while ((c = getchar()) != EOF && c != ’\n’) {
37 p[i-1] = c ;
38 q = r ealloc(p, ++i);
39 if (q == NULL) {
40 printf("Can’t allocate %u bytes.\n", i);
41 exit(EXIT_FAILURE);
42 }
43 p = q;
44 }
45
46 p[i-1] = ’ \0’;
47 return p;
48 }

▼ Homework 8.3: consolidate the realloc ’s

1 c onst int initial = 10; /* # of bytes to allocate initially */
2 c onst int increment = 3; /* # of additional bytes in each subsequent enlargement*/

Write these twoconst int ’s immediately before the first line of the definition of the function
mygetline . You get no credit if you write the numbers10 and 3 elsewhere in the program. If you
change the value of one or both of these two const int ’s (e.g., if you make initial 20) and recompile,
the program must still work correctly without any other change.

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 11 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Instead of allocating one byte before the loop begins, allocateinitial bytes. Allocateno addi-
tional memory during the firstinitial-1 iterations. Thenallocateincrement additional bytes during
one out of every increment subsequent iterations.

For example, the two const int ’s shown above must cause the following allocations. Before the
loop begins, you will give malloc an argument whose value is 10. Assuming that the user types a suffi-
ciently long string, you will callrealloc only on the tenth, thirteenth, sixteenth, nineteenth, etc., itera-
tions. Thefirst time you callrealloc , you will give it a second argument whose value is 13. The second
time you callrealloc , you will give it a second argument whose value is 16. The third time you call
realloc , you will give it a second argument whose value is 19; etc.

If the user types 11 or 14 or 17, etc., characters and then pressesRETURN, you will therefore allocate
one more byte more than you actually use to store the characters and the’\0’ . If the user types 10 or 13
or 16, etc., characters and then pressesRETURN, you will allocate two more bytes than you actually use to
store the characters and the’\0’ . If the user types 6 characters and then pressesRETURN, you will allo-
cate three more bytes than you actually use.Only if the user types 12 or 15 or 18, etc., characters and then
pressesRETURNwill you use every byte that you allocate to store the characters and the’\0’ .

The variablei performs a double duty in the above program: it counts how many characters the user
has typed, and it is given as an argument tomalloc andrealloc to specify how many bytes to allocate.
Let i continue in its first rôle, but create one new variable

3 s ize_t n; /* size in bytes of allocated block */

to be the argument ofmalloc andrealloc . We will always have i ≤ n. The wordsmalloc and
realloc must each appear in only one place as in the above program; no credit otherwise.You get no
credit if you store a dead value into a variable: see Handout 1, p. 17.

4 i nt i = 0; /* This 0 is a dead value: it’s never used. */
5
6 i = 1;
7 printf("%d\n", i);

▲

Divide a program into several .c files: K&R pp. 80−81; King pp. 309−313

You don’t hav eto write all the functions of a program in a single.c file. Hereis how to define the
main function infile1.c and the functionsf andg in a separate file calledfile2.c .

You may optionally write the word extern at the start of any of the four function declarations
below.

1 /* T his file1.c. */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 v oid f(void); /* function declaration */
6 v oid g(void); /* function declaration */
7
8 i nt main() /* function definition */
9 {

10 f();
11 g();
12
13 return EXIT_SUCCESS;
14 }

15 /* This is file2.c. */
16 #include <stdio.h>

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 12 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

17
18 void f(void); /* function declaration */
19 void g(void); /* function declaration */
20
21 void f(void) /* function definition */
22 {
23 printf("This is function f.\n");
24 }
25
26 void g(void) /* function definition */
27 {
28 printf("This is function g.\n");
29 }

1$ gcc file1.c file2.c

Write the function declarations in a .h file: K&R pp. 81−82; King pp. 307−308

Instead of writing the same lines at the start of each.c file, write them only once in a separate.h
file. Putthis .h file in the directory that contains the.c files of your program.

1 /* T his file is prog.h. */
2 v oid f(void);
3 v oid g(void);

4 /* T his file1.c. */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include "prog.h"
8
9 i nt main()

10 {
11 f();
12 g();
13
14 return EXIT_SUCCESS;
15 }

16 /* This is file2.c. */
17 #include <stdio.h>
18 #include "prog.h"
19
20 void f(void)
21 {
22 printf("This is function f.\n");
23 }
24
25 void g(void)
26 {
27 printf("This is function g.\n");
28 }

1$ gcc file1.c file2.c Don’t mention the.h file.

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 13 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

▼ Homework 8.4: package the stack in a separate file

Put the stack in a separate.c file for either the program in Handout 7, pp. 17−18 or Homeworks 7.7
or 7.8. Create the following.h file which can be#include ’d in any program that wants topush and
pop .

1 /* T his file is stack.h. */
2
3 v oid push(int n);
4 i nt pop(void);

Then create the following.c file which can be linked to any program that wants topush andpop .

5 /* T his file is stack.c. */
6
7 #include "stack.h"
8 #define MAXVAL 100
9

10 static int val[MAXVAL];
11 static int sp = 0;
12
13 /* Now write the definitions for the functions push and pop. */

The C++ language gives you a more explicit notation for creating groups of variables which can be
accessed only by specific functions.This group of variables, together with the functions that are allowed to
access them, is called aclass.
▲

Use a variable in two different .c files: K&R pp. 80−81; King pp. 309−310

To use a variable in several .c files, define it at the top ofone .c file without the wordsextern
andstatic . Write the initial value (default,0) in this definition:

1 i nt x = 10; /* variable definition */

At the top of every other.c file in which the variable is used, declare it to beextern without an initial-
ization:

2 extern int x; /* variable declaration */

It is unnecessary to write a copy of the declaration above the definition, but do it anyway:

3 extern int x; /* variable declaration */
4 i nt x = 10; /* variable definition */

Now that you have written the same declaration at the top of every .c file in which the variablex is men-
tioned, you can remove the declaration from every .c file and write it in a.h file instead:

5 /* T his file is prog.h. */
6 extern int x;

Compile a C or C++ program

i5 has the following compilers:

cc C
gcc GNU C
g++ GNU C++

We’l l usegcc as our example throughout.Give only the name of the.c file, not the names of the.h files,
as a command line argument togcc .

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 14 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1$ gcc prog.c Create an executable file nameda.out
2$ ls -l a.out a.out has itsx bits turned on.
3$ a.out Execute the C program.
4$ mv a.out prog Rename thea.out file prog

5$ gcc -o prog prog.c Create an executable file namedprog
6$ ls -l prog

7$ gcc -o ˜/bin/prog prog.c
8$ ls -l ˜/bin

${1%.c} is the shellscript’s first command line argument, with the trailing.c chopped off.

#!/bin/ksh

/usr/local/bin/gcc -o ˜/bin/${1%.c} $*

<Angle brackets> in an #include directive

The /usr/include directory and its descendants contain the.h files that will be#include ’d
by many programs:stdio.h , stdlib.h , math.h , etc. Do not specify the full path name of these.h
files when you#include them. Enclosethem in<angle brackets>, which will make the compiler auto-
matically add/usr/include to the start of their names before searching for them.Never write a full
pathname within angle brackets.

CC include files are in the directory/usr/include/CC .

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>

1$ cd /usr/include
2$ ls -l | more
-rw-r--r-- 1 root bin 9606 Nov 23 2004 math.h
-rw-r--r-- 1 root bin 11853 Jan 21 2005 stdio.h
-rw-r--r-- 1 root bin 9296 Jan 21 2005 stdlib.h

3$ ls *.h | wc -l
250

4$ cd sys
5$ pwd
/usr/include/sys

6$ ls -l | more
-rw-r--r-- 1 root bin 17028 Jan 25 2006 types.h

"Double quotes" in an #include directive

If you do not want the compiler to add/usr/include to the start of the.h file’s name, use
" double quotes" instead of<angle brackets>. For example, to#include a .h file that will be used by
only a few C programs,

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 15 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

#include "moon.h" /* relative pathname */
#include "/home1/m/mm64/46/moon/moon.h" /* full pathname */

If you’re always going to be in the directory that contains the.h file when you give the gcc com-
mand, you can write the relative pathname. Otherwise,write the full pathname.

The -I option of gcc

Suppose the filestdlib.h was in an unusual place on your machine, e.g., the directory
/usr/exclude instead of/usr/include . You could change all of your C programs from

#include <stdlib.h>

to

#include "/usr/exclude/stdlib.h"

but then you would have to change them back when you port the program to a new machine.

A better solution would be to keep the#include <stdlib.h> , but use the-I option ofgcc to
tell the C compiler to try to add another directory name in addition to/usr/include to the start of an
angle-bracketed name.

1$ gcc -I/usr/exclude -o prog prog.c no space after theI

You can write several -I options, each one naming another directory.

2$ gcc -I/usr/exclude -I.. -o prog prog.c .. is current dir’s parent

The -I option does not tellgcc where to find.c files; it tellsgcc where to find only the angle-
bracketed.h files.

Intermediate steps in a C compilation

1$ gcc -E prog.c > prog.i Createprog.i
2$ gcc -S prog.c Createprog.s
3$ gcc -c prog.c Createprog.o

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 16 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Compile a C program divided into several .c files
file1.c

file2.c

prog

gcc -o ˜/bin/prog file1.c file2.c

file1.c

file2.c

file1.o

gcc -c file1.c

file2.o

gcc -c file2.c

prog

gcc -o ˜/bin/prog \
file1.o file2.o

file1.c

file2.c file2.o

gcc -c file2.c

prog

gcc -o ˜/bin/prog \
file1.c file2.o

Give the .c files as command line arguments togcc in any order. Do not give the names of the.h
files as command line arguments togcc .

1$ gcc -o ˜/bin/prog file1.c file2.c

Compile the.c files individually and then link them together:

2$ gcc -c file1.c Createfile1.o
3$ gcc -c file2.c Createfile2.o
4$ gcc -o ˜/bin/prog file1.o file2.o

You can even giv e gcc a mixture of .c and.o files:

5$ gcc -c file2.c Createfile2.o
6$ gcc -o ˜/bin/prog file1.c file2.o

Libraries

If your program calls math library functions such assqrt , sin , cos , etc., add the-lm option
(minus lowercase LM) to the end of thegcc command.

When you specify a library with this-l option, the name of the file that contains the library is what-
ev er follows the-l , with a lib added to the front and a.a added to the end.For example, the name of
file that contains the library you specified with the-l option islibm.a .

By default,gcc assumes that every library is in the/usr/lib directory; you can specify a different
directory with a-L option before the-l option.

▼ Homework 8.5: create an executable moon

Copy the .h and.c files whose names start withmoon from the directory$S32 to yourbin direc-
tory. Compile them into an executable file namedmoon. Put the-lm option (‘‘math library’’, minus low-
ercase LM) at the end of thegcc command line that linksmoon together.

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 17 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1$ moon today
2$ moon 21 12 2006 day, month, year

▲

The file /usr/include/stdio.h contains the declarations for functions such asprintf and
scanf . See pp. 155−156 in K&R for declarations of functions that take a variable number of arguments.

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 18 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

#include <stdio.h>
#define N 5

int main()
{

printf("%d\n", N);
}

preprocessor

extern struct _iobuf {
int _cnt;
unsigned char *_ptr;
unsigned char *_base;
int _bufsiz;
short _flag;
char _file;

} _ iob[];

int printf(char *, ...);

int main()
{

printf("%d\n", 5);
}

compiler

.sdata
$$50:

.ascii "%d\X0A\X00"

.text
main:

subu $sp, 24
la $4, $$50
li $5, 5
jal printf
.end main

assembler

linker

prog.c

prog.i

prog.s

prog.o

prog

T _main
U _printf

T _main
T _printf
T start

symbol table

symbol table

extern struct _iobuf {
int _cnt;
unsigned char *_ptr;
unsigned char *_base;
int _bufsiz;
short _flag;
char _file;

} _ iob[];

int printf(char *, ...);

/usr/include/stdio.h

#include <stdio.h>
int printf(char *, ...)
{

write(_iob);
}

#include <stdio.h>
struct _iobuf

_iob[FOPEN_MAX];

printf.c

printf.o

data.c

data.o

/usr/lib/libc.a

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 19 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Differences betweenif and #if : K &R pp. 91−2; King pp. 288−289

The C preprocessor is a text editor, and #if is its ‘‘delete line(s)’’ i nstruction. Itis a conditional
compilation directive, like %IF in PL/I andAIF in IBM 360/370 assembler.

(1) The computer determines whether a#if is true or falsebefore the program runs.Each#if is
evaluated only once. On the other hand, the computer determines whether anif is trueas the program
runs. Ifan if is inside of a loop, it may be evaluated more than once.

(2) If the#if is true (i.e., the following expression is not zero), the#if line and the corresponding
#endif line are ignored. If the#if is false (i.e., the following expression is zero), the#if line and the
corresponding#endif line and all the lines between them are ignored.

(3) A #if can go anywhere in the program. Anif can go only inside a function.

(4) A #if does not require parentheses around the logical expression, and has no{ } . It is termi-
nated with a#endif . There are also#elif and#else directives.

(5) Because the computer determines whether a#if is true or false before the program runs, you
can’t use a variable in the logical expression. You can, however, use a macro created earlier with the word
#define .

Conditionally compile debugging code with#if

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define DEBUG 1
5
6 i nt main()
7 {
8 i nt debug;
9 i nt i = 10;

10
11 printf("Type 1 f or debugging, 0 for no debugging: ");
12 scanf("%d", &debug);
13
14 if (debug == 1) {
15 printf("i == %d\n", i);
16 }
17
18 #if DEBUG == 1
19 printf("i == %d\n", i);
20 #endif
21
22 return EXIT_SUCCESS;
23 }

See<assert.h> on K&R p. 253 for a convenient way to insert conditionally compiled debugging
statements.

Port the code to multiple platforms.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /* G ive each of the following #define’s a different number. */
5 #define UNIX 0
6 #define WINDOWS 1
7 #define MACINTOSH 2

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 20 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

8
9 #define MACHINE UNIX /* which machine will this program run on */

10
11
12 #if MACHINE == UNIX
13 #define BUFFSIZE 2000
14 char name[] = "Unix";
15 #endif
16
17 #if MACHINE == WINDOWS
18 #define BUFFSIZE 1000
19 char name[] = "Windows";
20 #endif
21
22 #if MACHINE == MACINTOSH
23 #define BUFFSIZE 1000
24 char name[] = "Macintosh";
25 #endif
26
27 int main()
28 {
29 char a[BUFFSIZE];
30
31 printf("Welcome to the %s.\n", name);
32
33 #if MACHINE == WINDOWS
34 printf("No one ever lost their job buying Microsoft.\n");
35 #endif
36
37 return EXIT_SUCCESS;
38 }

Tw o ways to create a new name for a data type: K&R pp. 146−147; King pp. 129−131

The variablesn1 , n2 , and n3 hold catalog numbers of products at the Bongdex Compiler Corpora-
tion. Today there are 30,000 products but soon there will be 40,000.If the variables that hold catalog num-
bers had beenint ’s and if sizeof(int) == 2 , we would then have to hunt down all of their declara-
tions and change them fromint to long :

1 i nt n1;
2 i nt n2;
3 i nt n3;

But far-sighted programmers declared them ascatno_t ’s instead ofint ’s, so that only one line
will have to be changed.

4 #define catno_t int /* Use either one, but not both, */
5 t ypedef int catno_t; /* of these two lines. */
6
7 c atno_t n1;
8 c atno_t n2;
9 c atno_t n3;

A typedef conventionally ends with_t . See size_t and ptrdiff_t in stddef.h (or
stdlib.h) for other examples oftypedef .

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 21 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Why did they invent typedef?

In the above example, we can use eithertypedef or #define to create the new data type
catno_t . But we can’t create the following new data typevision_t with a #define (unless we give
the#define an argument), because theint and the[N] are not contiguous.

1 #define N 2 /* left and right eyes */
2
3 i nt v1[N]; /* v1 is an array of two int’s: v1[0] and v1[1]. */
4 i nt v2[N];
5 i nt v3[N];

6 #define N 2
7 t ypedef int vision_t[N]; /* another name for an array of N int’s */
8
9 v ision_t v1;

10 vision_t v2;
11 vision_t v3;

1 t ypedef char airport_t[3];
2
3 c onst airport_t Kennedy = { ’J’, ’F’, ’K’};
4 c onst airport_t LaGuardia = {’L’, ’G’, ’A’};
5 c onst airport_t Newark = { ’E’, ’W’, ’R’};
6
7 printf("%.3s\n", LaGuardia); /* .3 because LGA has no terminating ’\0’ */

Create a structure: pp. 127−132

1 /* C reate two variables called january and p. */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 i nt main()
6 {
7 s truct {
8 i nt length; /* number of days */
9 double temperature; /* average temperature in Fahrenheit */

10 } january, *p; /* january is a structure, p is a ptr to a struct */
11
12 january.length = 31;
13 january.temperature = 32.5;
14 printf("%d %f\n", january.length, january.temperature);
15
16 /* Another way to do the same thing. Must give a value to
17 p before you can give a value to (*p).length or (*p).temperature */
18 p = &january;
19 (*p).length = 31;
20 (*p).temperature = 32.5;
21 printf("%d %f\n", (*p).length, (*p).temperature);
22
23 /* A better way to write lines 18-21. */
24 p = &january;
25 p->length = 31;
26 p->temperature = 32.5;
27 printf("%d %f\n", p->length, p->temperature);

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 22 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

28
29 return EXIT_SUCCESS;
30 }

Tw o abbreviations

Just as the!= operator is an abbreviation for the== and! operators, and the[] operator is an abbre-
viation for the+ and * operators (Handout 3, p. 10), the-> operator is an abbreviation for the* and .
operators. Inboth cases, the abbreviation makes the parentheses unnecessary.

before after
!(a == b) a != b
*(p+i) p[i]

(*p).field p->field

(*(p+i)).field (p+i)->field can combine the* and. to ->
p[i].field but simpler to combine the+ and* to []

Never use the notations shown in the ‘‘before’’ column above.

Create a name for this type of structure

We create a name for this type of structure with the declaration on lines 7−10 below, and create a
structure of this type with the declaration on line 16.I wrote the declarations for the variablesjanuary
andp within themain function because I will use them only within that function.I wrote the declaration
for the data typestruct month at the top of the file so I could usestruct month in other functions.

1 /* C reate a new data type named struct month,
2 and several variables of this type. */
3
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 s truct month { /* Create a name for a new data type. */
8 i nt length; /* number of days */
9 double temperature; /* average temperature in Fahrenheit */

10 };
11
12 void f(void);
13
14 int main()
15 {
16 struct month january; /* Create a variable of the new data type. */
17 struct month *p = &january;
18
19 p->length = 31;
20 p->temperature = 32.5;
21 printf("%d %f\n", p->length, p->temperature);
22
23 f();
24 return EXIT_SUCCESS;
25 }
26
27 void f(void)
28 {
29 struct month february;

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 23 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

30 /* etc. */
31 }

You can split line 17 to

17 struct month *p;
18 p = &january;

—but why would you want to?

Use typedef to create a name for this type of structure

Write atypedef declaration to create a name for your new data type. Then write separate declara-
tions to create structures of this type. This will let you avoid having to type the word struct over and
over again as in the above program.

1 /* C reate a new data type named month_t, and several variables of this type. */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 t ypedef struct { /* Create a name for a new data type. */
7 i nt length; /* number of days */
8 double temperature; /* average temperature in Fahrenheit */
9 } month_t;

10
11 void f(void);
12
13 int main()
14 {
15 month_t january; /* Create a variable of the new data type. */
16 month_t *p = &january;
17 p->length = 31;
18 p->temperature = 32.5;
19 printf("%d %f\n", p->length, p->temperature);
20
21 f();
22 return EXIT_SUCCESS;
23 }
24
25 void f(void)
26 {
27 month_t february;
28 /* etc. */
29 }

You can split line 16 to

16 month_t *p;
17 p = &january;

—but why would you want to?

Create an array of structures: pp. 132−136

If you have only one month, don’t bother to make it a structure. Simplydeclare two variables

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 24 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

int length; /* number of days */
double temperature; /* average temperature in Fahrenheit */

Create structures only when you have many months. The{ curly braces} on lines 15−26 are optional; those
on lines 14 and 27 are required.

1 /* P rint the number of days in the year and the temperature of the hottest
2 month. */
3
4 #include <stdio.h>
5 #include <stdlib.h>
6
7 t ypedef struct {
8 i nt length; /* number of days */
9 double temperature; /* average temperature in Fahrenheit */

10 } month_t;
11
12 int main()
13 {
14 month_t a[] = {
15 {31, 32.5}, /* January */
16 {28, 37.4}, /* February */
17 {31, 42.1}, /* March */
18 {30, 53.0}, /* April */
19 {31, 62.9}, /* May */
20 {30, 74.1}, /* June */
21 {31, 79.3}, /* July */
22 {31, 74.7}, /* August */
23 {30, 69.9}, /* September */
24 {31, 57.0}, /* October */
25 {30, 48.9}, /* November */
26 {31, 34.0} /* December */
27 };
28 #define N (sizeof a / sizeof a[0]) /* number of months */
29
30 int m;
31 int sum = 0;
32 double hottest = a[0].temperature;
33 month_t *p;
34
35 for (m = 0; m < N; ++m) {
36 sum += a[m].length;
37 if (a[m].temperature > hottest) {
38 hottest = a[m].temperature;
39 }
40 }
41
42 /* Another way to write the same loop. */
43 for (p = a; p < a + N; ++p) {
44 sum += p->length;
45 if (p->temperature > hottest) {
46 hottest = p->temperature;
47 }
48 }
49

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 25 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

50 printf("There are %d days in the year.\n", sum);
51 printf("The average temerature of the hottest month is %f.\n", hottest);
52 return EXIT_SUCCESS;
53 }

An array of structures with a string field

Assume thatsizeof(char *) == 2 and sizeof(int) == 2 . Each element of the array
therefore occupies 4 bytes:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

2000

a[0].nam

31

a[0].len

4000

a[1].nam

28

a[1].len

3000

a[2].nam

31

a[2].len

’J’

2000

’a’

2001

’n’

2002

’u’

2003

’a’

2004

’r’

2005

’y’

2006

’\0’

2007

’F’

4000

’e’

4001

’b’

4002

’r’

4003

’u’

4004

’a’

4005

’r’

4006

’y’

4007

’\0’

4008

’M’

3000

’a’

3001

’r’

3002

’c’

3003

’h’

3004

’\0’

3005

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 t ypedef struct { /* structure to hold information about one element */
5 c har *name; /* name of the month */
6 i nt length; /* number of days */
7 } month_t;
8
9 i nt main()

10 {
11 month_t a[] = {
12 {"January", 31},
13 {"February", 28},
14 {"March", 31},
15 {"April", 30},
16 {"May", 31},
17 {"June", 30},
18 {"July", 31},
19 {"August", 31},
20 {"September", 30},
21 {"October", 31},
22 {"November", 30},
23 {"December", 31}
24 };

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 26 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

25 #define N (sizeof a / sizeof a[0])
26
27 int i;
28 month_t *p;
29 int sum = 0;
30
31 for (i = 0; i < N; ++i) {
32 printf("%-9s %d\n", a[i].name, a[i].length);
33 sum += a[i].length;
34 }
35
36 /* Another way to write the same loop. */
37 for (p = a; p < a + N; ++p) {
38 printf("%-9s %d\n", p->name, p->length);
39 sum += p->length;
40 }
41
42 printf("There are %d days in a year.\n", sum);
43 return EXIT_SUCCESS;
44 }

What not to store in a structure

It would be redundant to store consecutive numbers in a column of an array of structures. In line 34
changea[i].number to i , and in line 44 changep->number to p-a . Then delete line 7 and the col-
umn of numbers that initializes thenumber field.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 t ypedef struct {
6 c har *name; /* name of element */
7 i nt number; /* atomic number */
8 double weight; /* atomic weight */
9 } e lement_t;

10
11 int main()
12 {
13 element_t a[] = {
14 {NULL, 0, 0.0}, /* Dummy, so subscript == atomic number */
15 {"hydrogen", 1, 1.0080}, /* Column two is a waste of space. */
16 {"helium", 2, 4.0026},
17 {"lithium", 3, 6.9390},
18 {"beryllium", 4, 9.0122},
19 };
20 #define N (sizeof a / sizeof a[0])
21
22 #define BUFFSIZE 256 /* number of bytes in input buffer */
23 char input[BUFFSIZE];
24
25 int i;
26 element_t *p;
27
28 printf("Please type an element and press RETURN.\n");

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 27 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

29 scanf("%s", input);
30
31 for (i = 1; i < N; ++i) {
32 if (strcmp(a[i].name, input) == 0) {
33 printf("%s has atomic number %d and atomic weight %.4f\n",
34 a[i].name, a[i].number, a[i].weight);
35 return EXIT_SUCCESS;
36 }
37 }
38 return EXIT_FAILURE;
39
40 /* Another way to write the same loop. */
41 for (p = a + 1; p < a + N; ++p) {
42 if (strcmp(p->name, input) == 0) {
43 printf("%s has atomic number %d and atomic weight %.4f\n",
44 p->name, p->number, p->weight);
45 return EXIT_SUCCESS;
46 }
47 }
48 return EXIT_FAILURE;
49 }

Examples of structuretypedef ’s

1 t ypedef struct {
2 i nt math; /* in the range 200 to 800 inclusive */
3 i nt verbal; /* in the range 200 to 800 inclusive */
4 } s at_t; /* Scholastic Aptitude Test */
5
6 t ypedef struct {
7 i nt systolic; /* contract: bigger number */
8 i nt diastolic; /* relax: smaller number */
9 } p ressure_t; /* blood pressure */

10
11 typedef struct {
12 double bust; /* in inches */
13 double waist; /* in inches */
14 double hips; /* in inches */
15 } measurements_t;

▼ Homework 8.6: rewrite using an initialized array of structures

Do only one of the following four programs. In each case, create a new data type with atypedef
struct . Then create and initialize an array of this new data type.

(1) Rewrite Homework 6.3 to use an initialized array of structures.Write only oneprintf in a
for loop. Loopthrough the array with a pointer to each element instead of an integer index. Theelements
of the array will be

1 planet_t a[] = {
2 { "Mercury", .27},
3 { "Venus", .85},
4 { "Earth", 1.00}, /* etc. */

(2) Rewrite the example in Handout 5, p. 3 to use one initialized array of structures instead of two
parallel initialized arrays. The variablep will now be a pointer to a structure; you will need no other

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 28 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

pointers. Remove the variablesi andq, and remove the loops in lines 18-27.

(3) Rewrite the answer to Homework 6.4.3 to use one initialized array of structures instead of two
parallel initialized arrays.Don’t use a pointer to a structure; use the month number as an integer index. To
simplify the program, make a dummy structure as the first array element:

1 month_t a[] = {
2 { NULL, 0}, /* dummy element to give January subscript 1 */
3 { "January", 31},
4 { "February", 28},
5 { "March", 31}, /* etc. */
6
7 i f (strcmp(a[month].name, input) == 0) {

(4) Write a C program with an initialized array of any kind of structure. Do something to the array:
e.g., loop through it searching for something, or print out its entire contents, or change some of the values
of its fields. Examples of tabular material suitable for storage in an array of structures include the Köchel
catalog of Mozart’s works, the periodic table of the elements, 501 Spanish Verbs, the NYU course catalog,
the discography of the Grateful Dead, the novels of Sinclair Lewis, the notes of the scale (giving their letter
names and vibrations per second), the ex-Soviet republics (name, area, population; see
/home1/m/mm64/46/data/ussr), the planets (name, distance from sun, diameter, length of year
[which is a function of the distance from sun]), the stars on the Main Sequence (spectral type and tempera-
ture—oh, be a fine girl, kiss me), ordinary people (name, address, and social security number), or the words
to a repetitious song or poem.

Write a program for historians of the French Revolution that will convert dates from the revolution-
ary calendar (e.g., 15 Thermidor of the year II) to our calendar. Write a program that will convert Jewish,
Islamic, or Chinese dates to our calendar, at least for this year.

For example, here is part of the initialization for an array of structures in a program that will make
change. (Use%for remainder.) Do not write the names and values of the coins anywhere except in the
array of structures. This will let us change to a foreign currency by changing only the array of structures,
not the rest of the program.

{1, "penny", "pennies"},
{5, "nickel", "nickels"},
{10, "dime", "dimes"}, /* etc. */

The user will type in a number of cents, and the program will print the shortest list of coins equal to that
amount. For example, if the user types 82 cents, the program will print

3 quarters
1 nickel
2 pennies

Convert Roman numerals to Arabic numerals:

{’I’, 1}, /* first field is a char */
{’V’, 5},
{’X’, 10}, /* etc. */

Print the words to ‘‘Old MacDonnald had a Farm’’:

{"pig", "oink"},
{"chicken", "cluck"},
{"cow", "moo"},

Ask for the user’s sign and tell their horoscope, or ask for their birthday and compute their sign:

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 29 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

{"Aries", "Ram", "Make time to read some poetry today."},
{"Taurus", "Bull", "Put your fist through a CRT this afternoon."},
{"Leo", "Lion", "Try using an odd number of parentheses."},

Or make Bond trivia quiz:

{1962, 60000000, "Sean Connery", "Dr. No"},
{1963, 79000000, "Sean Connery", "From Russia With Love"},
{1964, 125000000, "Sean Connery", "Goldfinger"},
{1965, 141000000, "Sean Connery", "Thunderball"},
{1967, 111000000, "Sean Connery", "You Only Live Twice"},
{1969, 65000000, "George Lazenby", "On Her Majesty’s Secret Service"},
{1971, 116000000, "Sean Connery", "Diamonds Are Forever"},
{1973, 126000000, "Roger Moore", "Live and Let Die"},

Convert foreign currency to US currency and vice versa. Thereare actually two different rates,
depending on the direction, so create an array each of whose elements is a structure containing two
double ’s in addition to the name of the country and the name of the currency.

Write the simplest possible program that will do the job. You will be graded on how easy your pro-
gram is to understand, not on how big it is. Did you accidentally declare any variables that you didn’t use?
Can you eliminate statements or temporary variables by reordering your statements?Will looping in a dif-
ferent direction make the loop easier to start or stop? Is there any repetitious code which can be eliminated
or banished to an array? That’s what arrays are for.
▲

Dynamically allocate memory for all the strings in an array of strings

The char *a[N] in the following program is not big enough to holdN strings. Itholds only the
address of the first character of each string—the strings themselves are stored elsewhere in additional mem-
ory. To make room to store each string in memory, it therefore does not suffice to merely declare

char *a[N];

For each string you must also callmalloc to allocate the additional memory. The call tomalloc (and
realloc) is in mygetline .

The complete program is not shown below. You must add the declaration and definition for the func-
tion mygetline .

1 /* L et the user input N strings. Allocate exactly enough memory to
2 hold a copy of each string, including the terminating ’\0’. The array
3 a[] holds the address of each of these N blocks. */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7
8 #define N 10 /* how many strings */
9

10 int main()
11 {
12 char *a[N];
13 int i;
14 char **p;
15
16 printf("Please type %d lines and press RETURN after each.\n", N);
17
18 for (i = 0; i < N; ++i) {
19 a[i] = mygetline();

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 30 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

20 printf("%s\n", a[i]);
21 }
22
23 /* Another way to do the same thing. */
24 for (p = a; p < a + N; ++p) {
25 *p = mygetline();
26 printf("%s\n", *p);
27 free(*p);
28 }
29
30 return EXIT_SUCCESS;
31 }

Dynamically allocate memory for all the strings in an array of structures

The complete program is not shown below. You must add the declaration and definition for the func-
tion mygetline .

1 /* L et the user input N structures. Each structure contains a pointer to a
2 s tring--the string is not stored in the structure itself. Allocate exactly
3 enough memory to hold a copy of each string, including the terminating ’\0’. */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7
8 #define N 10 /* how many structures */
9

10 typedef struct {
11 char *name;
12 int n;
13 } animal_t;
14
15 int main()
16 {
17 animal_t a[N];
18 int i;
19 animal_t *p;
20
21 printf("Please type a number and a name, %d times,\n", N);
22 printf("and press RETURN after each number and each name.\n");
23
24 for (i = 0; i < N; ++i) {
25 scanf("%d", &a[i].n);
26 a[i].name = mygetline();
27 printf("%d %s\n", a[i].n, a[i].name);
28 free(a[i].name);
29 }
30
31 /* Another way to do the same thing. */
32 for (p = a; p < a + N; ++p) {
33 scanf("%d", &p->n);
34 p->name = mygetline();
35 printf("%d %s\n", p->n, p->name);
36 free(p->name);
37 }

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 31 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

38
39 return EXIT_SUCCESS;
40 }

Fall 2006 Handout 8printed 12/21/06
10:29:27 AM − 32 − All rights

reserved ©2006 Mark Meretzky

