abrwiNPE

~N O

O©CoO~NOOUILE,WNPE

NYU SCPS X52.9232 Section 6 C Programming, Part |

Fall 2006 Handout 5

The comma operator: K&R pp. 62-63, 209; King pp. 94-94

You're allowed to write only at most ona&pgession in each of the three sections ébrg;)
(line 2):

d = dest;

f or (s = source; s < source + N; ++s) {
do something;
++d;

}

If you'd like to write two expressions in a place that allows only one, use the binary opertigoin two
expressions into one bigpression. Théeft subexpression isrduated before the right subexpression.

f or (s = source, d = dest; s < source + N; ++s, ++d) {
do something;

}

Use the comma operator only in the first and third sectionsoof; 2

Copying char’s: K&R pp. 105-6
Here are fie ways to cop the firstN bytes from an arragource to an arraydest . We dways
copyN bytes, gen if we encounter &0’ byte.

#include <stdio.h>
#include <stdlib.h>

#include <string.h> [* for memcpy */

#define SIZE 256 /¥ number of elements in each array */
#define N 10 /¥ number of bytes to copy */

main()

{

char source[SIZE];
char dest[SIZE];

int i; [* index */
char *s; /* pointer into source[] */
char *d; I* pointer into dest[] */

/* Method 1 */
for (i=0;i<N;++){
dest][i] = sourceli]; /* Copy one byte from source to dest. */

}

/¥ Method 2 */
for (s =source, d = dest; s < source + N; s++, d++) {

Fdl 2006 Handout 165643 -1- hesenea ©2006 Mark Meretzky

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48}

NYU SCPS X52.9232 Section 6 C Programming, Part |

*d = *g; [* Copy one byte from source to dest. */
}
/¥ Method 3 */
S = source;
d = dest;
while (s <source + N) {
*d - *S;
S++;
d++;
}
/¥ Method 4 */
S = source;
d = dest;
while (s <source + N) {
*d++ = *s++;
}
/¥ Method 5: K&R p. 250; King pp. 151-152. */
memcpy(dest, source, N);

exit(EXIT_SUCCESS);

Numerical values of relational expressions:
K&R pp. 41-42, 206; King pp. 64-66

Relational expressions suchas= b are actually numericalxpressions. Theivalue is alvays of
data typent :1 for true,0 for false.

1 #include <stdio.h>
2 #include <stdlib.h>

3
4 main()
5 {
6 i nta, b;
7
8 printf("Please type two numbers, pressing RETURN after each.\n");
9 scanf("%d%d", &a, &b);
10
11 printf("%d\n", a == b); I* Prints 1 or 0. */
12 exit(EXIT_SUCCESS);
13}
The relational expression in control structures such as
if @==Db){
while (a == b) {

for (i=0;i<=10; ++i) {

is actually a numericalx@ression. licounts as'true” if i ts value isany non-zero numbeiand “false” i f
its vale is zero (p. 56)For example, ifa equalsb, then the alue of the gpressiona==b is 1 and the fol-
lowing if is therefore true:

if (a == b) {

Fdl 2006 Handout 8165643 -2- hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |

Use the numerical value of a relational expression.

The parentheses on lines 26 and 36 are unnecessahas higher precedence than in the table
on K&R p. 53; King p. 595.

1 /* P rint the number of questions the student answered correctly. */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 main()
6 {
7 i nt correct[] = {242, 238, 231, 225, 215, 207}, [* correct answers */
8 i nt student[] = {242, 238, 230, 225, 215, 208}; /* student’s answers */
9
10 #define N 6
11
12 int i
13 int *p, *q;
14 int count=0;
15
16 /¥ Five ways to write the same loop. */
17
18 for (i=0;i<N;++){
19 if (correct[i] == student[i]) {
20 ++count;
21 }
22 }
23
24 for (i=0;i<N;++){
25 /¥ count = count + (correct[i] == student][i]); */
26 count += (correct[i] == student][i]);
27 }
28
29 for (p = correct, g = student; p < correct + N; ++p, ++q) {
30 it (p=="0){
31 ++count;
32 }
33 }
34
35 for (p = correct, g = student; p < correct + N; ++p, ++q) {
36 count += (*p ==*q);
37 }
38
39 printf("There are %d correct answers.\n", count);
40 exit(EXIT_SUCCESS);
41}

This program has twweaknesses. (Mou need tvo pointers,p andq, even though you needed only one
indexi . (2) You get a bug if you accidentally made the arraysdififerent lengths. Both problems will
disappear when we rewrite theaharrays as a single “array of structures”.

Numerical values of logical expressions:
K&R pp. 41-42, 207-208; King pp. 64-66

The left and right operands && are usually thought of as logical expressions:

Fdl 2006 Handout 81656430 -3- hesenea ©2006 Mark Meretzky

©CoOoO~NOOOUOTA,WNPE

10
11
12
13
14
15
16
17
18

NYU SCPS X52.9232 Section 6 C Programming, Part |

a==">b&& c ==
But we nav know thata == b andc ==d are actually arithmeticxpressions. Thealue of the expression
a==">b&& c ==

is alays of data typent . The value is 1 if the values of both operandsaamg non-zero numbers; the
value is 0 otherwise Similarly, the value of| is 1 if the \alue of either operand* eny non-zero number;
the value is 0 otherwiseFinally, the value of the unary operatoris O if the value of its operand &y
non-zero number; the value is 1 otherwise.

For example, ifa equalsb andc equalsd, then the value of thexpressiona==b is 1, the value of
the expressiorc==d is 1, the value of thexpressiora==b && c==d is 1, and the follwing if is there-
fore true:

if @==b && c == d){

Short circuiting: K&R pp. 41-42, 52; King p. 66

In the expression

a*b+c*d
both multiplications are @lays performed, but it is impossible to predict which onevéduated first. (No
one knows or cares.) But in the expression

a==">b&& c ==
both comparisons are notalys performed, and it is possible to predict which one/éiuated first when
both are performed.

The left operand o&& is aways esaluated first. The right operand igaluated only if the left one
was mon-zero. lfthe left operand is zero, there is no point in proceeding—we alreadythke@nswer.

Similarly, the left operand off is aways evaluated first. The right operand igaluated only if the
left one was zero. If the left operand is non-zero, there is no point in proceeding—we alreadie&no
answer.

Use && to avoid nested ifs

/ * o ther languages: */
if(!=0 {
if(@a/b==c{
printf("The quotient is c.\n");

}

}

[* C: */

if(b!=0&& a/b==nc){
printf("The quotient is c.\n");

}

/¥ Other languages: */
if (>=0&&i<N){

if (alil==b){
printf("ali] equals b.\n");
}

}

* or both operands

Fdl 2006 Handout 3165643 -4- hesenea ©2006 Mark Meretzky

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PO OWoOoO~NOOUOD»WNLPE

B

NYU SCPS

* C:¥

if ((>0&&i<N&&alij==hb){
printf("ali] equals b.\n");

}

/¥ Other languages: */
if (p!=NULL){

X52.9232 Section 6

if (*p!="\0"){
printf("The string has at least one character in it.\n");
}
}
* C:¥

if (p!= NULL && *p 1= \0") {

printf("The string has at least one character in it.\n");

Use || to &oid repeating the same body

/ * i nelegant */
if (a==0>b) {

printf("At least one pair is equal.\n");
} elseif (c==d){

printf("At least one pair is equal.\n");

}

/ * elegant */
if(@a=b | c==4d){
printf("At least one pair is equal.\n");

}
Compare Handout 1, pp. 30-31:

—On the Web at
http://i5.nyu.edu/ 0nm64/x52.9232/src/leap2.c

#include <stdio.h>

main()

{

i ntyear;

printf("Please type a year and press RETURN: ");
scanf("%d", &year);

if (year % 4 ==0 && (year % 100 !=0 || year % 400 == 0)) {

printf("%d is a leap year.\n", year);
} else{
printf("%d is not a leap year.\n", year);
}
Fal 2006 Handout 315545 "° -5-

All rights
reserved

C Programming, Part |

©2006 Mark Meretzky

OO, WN B

7
8
9
10
11
12
13
14
15

NYU SCPS X52.9232 Section 6

The replacement text of a maap does not hae to be a rumber.

i ntcl, [* catalog numbers */

i ntc2;

i ntc3;

i nti; /* loop counter to draw row of dashes */

printf("%d", c1);

#define CATNO int
#define FORMAT "%d"

CATNO c1;
CATNO c2;
CATNO c3;
int i [* loop counter to draw row of dashes */

printf(FORMAT, cl);

C Programming, Part |

If you migrate to a platform whodat ’s are not big enough to hold a catalog numb@u can

change lines 7-8 to

16 #define CATNO long
17 #define FORMAT "%ld" /* percent lowercase LD */

Three rules for writing #define’s: K&R pp. 89-90; King pp. 277-288

(1) If the#define expands into tw or more tokens, put parentheses around them.

#define N 280 /¥ number of days in the pregnancy */
#define N (10 * 28) /* ten lunar months */
#define EOF (-1) [* end of file (p. 16): see /usr/include/stdio.h */

#define TAX 1020
#define TAX (610+395+15) [* federal, state, city */

What goes wrong in line 12 if line 7 omits the parentheses of line 67

#define TAX (610+395+15) [* federal, state, city */

i nt oldtax; /* last year's */

i nt newtax; /* this year’s */

oldtax = TAX;

newtax = 2 * TAX; /* My taxes doubled this year. */

What two morals does the following example teach?

13 #define b -10

All rights

14
15 printf("%d\n" a-b);
(2) If the#define expands into tw or nmore statements, put curly brackets around them.
1 #define DEBUGX printf("%d\n", x)
2 #define DEBUGXY {printf("%d\n", x); printf("%d\n", y);}
What goes wrong in line 17 if line 4 omits the parentheses of line 2?
3 #define DEBUGX printf("%d\n", x)
Fal 2006 Handout 31545 "° -6-

reserved

©2006 Mark Meretzky

4
5
6
7
8
9

10

11

12

13

14

15

16

17

1

1
2
3
4
5
6
7

©O© oo~NO

N -

NYU SCPS X52.9232 Section 6

C Programming, Part |

#define DEBUGXY {printf("%d\n", x); printf("%d\n", y);}

i ntx,y;

if(x <0 {
DEBUGKX;
}

it (x!=y){
DEBUGKXY;
}

if (x<0) DEBUGX;
if (x!=y) DEBUGXY;

(3) Parenthesizevery argument in #define line.

#define SQUARE(x) ((x) * (%))

What goes wrong in line 8 if line 2 omits the inner parentheses of ling?1?

#define SQUARE(x) (X *x)
inti=2;
intj=3;
printf("%d\n", SQUARE()); [* It prints 4. */

printf("%d\n", SQUARE(i + j)); /* It prints 11; should be 25. */

A useful macio that requires parentheses

You can omit the dimension from the square brackets in an array initialization (p. 86). éss sa

you the trouble of counting the list of values.

char s[] = /* Handout 4, pp. 3-4, lines 1-3 */

int correct[] ={ /* Handout 5, p. 3, line 7 */

Unfortunately the omitted number often has to appear elsewhere in the prog@rmaxample, gen

if we remose the numbe6 from the square braeks in the array in Handout 5, p. 3, line 7, we would still

have © write 6 in the macro definition in line 10.

The epressionsizeof correct is the number of bytes in the enticerrect array The
expressiorsizeofcorrect[0] is the number of bytes in the first element of the arfideir quotient

is the number of elements in the array.

This works for all data types on all machines. It will m&kchange its alue automatically if you
add nev array elements: you no longerveaip count them yourself and type their numb&ese K&R pp.
132-136; King pp. 338—-339 for a more complicated example with an array of structures.

i nt correct[] = {242, 238, 231, 225, 215, 207},

/* n umber of elements in the correct array */
#define N (sizeof correct / sizeof correct[0])

An example of a maco with an argument

double ffreeze = 32;
double fboil = 212;

Fadl 2006 Handout Bi5564 A0 -

[* freezing point in Fahrenheit*/
/* boiling point in Fahrenheit */

hesenea ©2006 Mark Meretzky

(6 N

o~NO®

10

12
13

NOoO o~ WNPRE

8
9
10

NYU SCPS X52.9232 Section 6 C Programming, Part |

double cfreeze = (ffreeze - 32.0) * 5.0/ 9.0; /* freezing point in celsius */
double cboll = (fboil - 32.0) *5.0/9.0; /* freezing point in celsius */

/* R eturn the celsius temperature corresponding to the given fahrenheit. */
#define CELSIUS() (((f) - 32.0) *5.0/9.0)

double ffreeze = 32; /[* freezing point in Fahrenheit */
double fboil = 212; /* boiling point in Fahrenheit */

double cfreeze = CELSIUS(ffreeze);
double cboil = CELSIUS(fboil);

An example of a maco with an argument

/ * an a rray whose subscripts range from -10 to 10 inclusive */
i nta[21];
#define A(i) (a[(i) + 10])

f or (i = -10; i <= 10; ++i) {
printf("%d\n", A(i));
}

Better yet,

/ * an a rray whose subscripts range from -N to N inclusive */
#define N 10
int a[2*N+1];

11 #define A(i) (a[(i) + N])

12
13
14
15

for (i=-N;i<=N;++i){
printf("%d\n", A(0));
}

32-bit signed and unsigned integer values

Fdl 2006 Handout 31656430 -8- hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |
(signed)
int bit pattern unsigned bit pattern
4294967295 11111111111111121211111211112211112
4294967294 11111111112111112211121211111211110
4294967293 1111111111111112211111111111211101
4294967292 11111111112111112211111211111111100
4294967291 11111111112111122111111111111011
4294967290 1111111111211112211121211111111010
2147483653 10000000000000000000000000000101
2147483652 10000000000000000000000000000100
2147483651 10000000000000000000000000000011
2147483650 10000000000000000000000000000010
2147483649 10000000000000000000000000000001
2147483648 10000000000000000000000000000000
2147483647 01111111111111112121111221111211111 2147483647 0111111111112111112211122111112211
2147483646 0111111111111111212111122111111110 2147483646 01111111111212111112211122111112110
2147483645 011111111111111112111111111111101 2147483645 011111111111211111221111211111101
2147483644 011111111111111122111122111111100 2147483644 0111111111121211111221111211111100
2147483643 01111111111111112121111221111111011 2147483643 011111111111211111221111211111011
2147483642 011111111111111121211112121111111010 2147483642 0111111111121211111221111211111010
5 000000000000000000000000000000101 5 00000000000000000000000000000101
4 000000000000000000000000000000100 4 00000000000000000000000000000100
3 000000000000000000000000000000011 3 00000000000000000000000000000011
2 000000000000000000000000000000010 2 00000000000000000000000000000010
1 000000000000000000000000000000001 1 00000000000000000000000000000001
0 000000000000000000000000000000000 0 00000000000000000000000000000000
-1 11111221212121212111111111111122111111
-2 11111111122111222111122211122111110
-3 11111111122111122111122111122111101
-4 1111111112211112211122211122111100
-5 1111111112211111211112211112111011
-6 1111111112211112211112211111111010
-2147483643 100000000000000000000000000000101
-2147483644 100000000000000000000000000000100
-2147483645 100000000000000000000000000000011
-2147483646 100000000000000000000000000000010
-2147483647 100000000000000000000000000000001
-2147483648 100000000000000000000000000000000

The bits of an integer are numbered from right to left, starting &t @. 32-bit intger, the leftmost
bit is therefore bit 31. Bit 0 is called th@west bit or thelow order bit. Bit 31 is called theop bit or the

high oder bit.

Bit 0 is theone's pace, bit 1 is thetwo’s gace, bit 2 is thefour's gace, etc. Insigned values, the
top bit is called theign bit. It is 1 for ngative rumbers, 0 otherwise.

Why is the integer -1 represented a$111111112111111111121222111111111
Think of a car odometer running backward:

rinted 12/21/06
10:28:41 AM

Fdl 2006 Handout

(thirty-tw o 1's)?

hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |

0003

0002

0001

0000 zero

9999 negative one
9998 negative two

1111 is the binary equalent of 9999.

If you want zero to b80000000000000000000000000000000 , positive me to be
00000000000000000000000000000001 , and positie e plus ngative e to be 0, then the defini-
tion of n@aive me is forced on you:

wWN B

N

o Ol

O~NO O WN PP

00000000000000000000000000000001 positive one
+1121111122112122112221122111221111 negative one
00000000000000000000000000000000 zero
00000000000000000000000000000010 positive two
+11111112221112221112221112221111210 negative two
00000000000000000000000000000000 zero
00000000000000000000000000000011 positive three
+1111111221112211212211212111111101 negative three
00000000000000000000000000000000 zero
00000000000000000000000000000100 positive four
+11121111212211221112211122111211100 negative four
00000000000000000000000000000000 zero
i nti="0; [* all ones: KR p. 49 */
printf("%d\n", i); [* prints -1 */
printf("%u\n", i); [* prints 4294967295 */
charc="0; * all ones */
inti=c;
printf("%d\n", i); [* -1 if char is signed, 255 if char is unsigned */

Sign extension: K&R p. 198

Thanks to sign>dension,il equalssl, i2 equalss2, and i3 equalsus. If there were no sign

extension, the value d2 in line 5 would be 65,535 instead of —1.

short sl =1; I* binary 0000000000000001 */
i ntil=s1,; * binary 00000000000000000000000000000001 */
short s2 = -1; [* binary 1111212221212111111°%
i nti2 =s2; [*binary 1111111111121222211111112122211111 %/
unsigned short us = 65535; [* binary 1111112111221112 %/
i nti3 =us; /* binary 000000000000000011111111212111111 %/

Left shift and right shift: K&R pp. 49, 206; King p. 452

Here are four ways to double the valué of
i nti=10; /* 00000000000000000000000000001010 */

Fdl 2006 Handout 81656430 -10- hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |

2

3 i =i*2; / * 00000000000000000000000000010100 */
4 i *=2;

5

6 i = i<<1; | * << e xecutes faster than * */

7 i <<=1;

Here are four ways to hahhe value of :

8 i nti=10; /* binary 00000000000000000000000000001010 */

9

10 i =il 2 ; / * b inary 00000000000000000000000000000101 */
11 i /=2

12

13 i = i>1; |/ * >> e xecutes faster than / */

14 i >>=1;

(1) When left shifting apdata type, zeroes enter from the right as showrmeabo

(2) When right shiftingnt , long , short , or signedchar , the sign bit propagates (i.extea
copies of the sign bit enter from the left):

15 unsigned u=-4; [* binary 11111112111112111121112121112121100 */
16 u >>=1; /*binary 1111121111121111212111212111211111110%
17 ¥ Nowu==-2.%

(3) When right shiftingunsigned , unsignedlong , unsignedshort or unsignedchar
zeroes enter from the left.

Bitwise “and”, “or”, “exclusi ve a”, and “not”: K&R pp. 48-49, 204, 207; King pp. 453-457
Addition and subtraction are complicated because there is carrying ovimgrrdor example,

O 0 1 1
+ 0 1 0 1
1 0 0 O

Bitwise “and” and “or’’ etc. are simpler than addition and subtraction because there is no carrying or
borrowving. Eachplace is independent of the adjacent placesjust like 16- or 32-track stereokFor exam-
ple, bitwise “and’yields a 1 if the tw hits abae it are 1, and yields 0 otherwise:

0O 0 1 1
& 0 1 0 1
0O 0 0 1

Bitwise “or’’ yields a 1 if either (or both) of the tvbits abave it are 1, and yields 0 otherwise:

0 0 1 1
| o0 1 0 1
0 1 1 1

Bitwise “exclusive a”’ yields a 0 if the tw bits abwe it are the same, and yields 1 otherwise:

O 0 1 1
0 1 0 1
0 1 1 O

Bitwise “one’'s mmplement’yields a 1 if the bit abe it is 0, and yields 1 otherwise:

Fdl 2006 Handout 8165643 -11- hesenea ©2006 Mark Meretzky

O~NO O WN PP

abrwdNPE

a b~ wNPE

OO, WN B

NYU SCPS X52.9232 Section 6 C Programming, Part |

0 1
1 0
/ * Assume int’'s are 4 bytes. */
inti=1; /* binary 00000000000000000000000000000001 */
intj=2; /* binary 00000000000000000000000000000010 */
intk=i&j; /* binary 00000000000000000000000000000000 */
k =i]j ; / * b inary 00000000000000000000000000000011 */
k =i~ j ; / * b inary 00000000000000000000000000000011 */
k =7i [* binary 1111111111111112122221111111212210%*/
Turn one bit on with “or”
charc="A’; /* Put the byte 01000001 into ¢ (ASCII code of 'A"). */
c =c| 32 I* Put the byte 01100001 into ¢ (ASCII code of 'a’). */
c |=32; [* A better way to write line 3. */
c |=(@1<<b) /* An even better way to write line 3. */
0100 0001 A
| 00100000 32
0110 0001 ‘a’

You can write0Ox20 , 040, or (1<<5) instead 0f32, but (1<<5) is the best because it shows you
which bit is on. The parentheses are unnecessary in line 5 in the elample; see K&R p. 53; King p.
595.

Turn one bit off with “and”
charc="a); [* Put the byte 01100001 into ¢ (ASCII code of 'a’). */
c & 223; [* Put the byte 01000001 into ¢ (ASCII code of 'A"). */

223; /* A better way to write line 3. */
"(1<<5); /* An even better way to write line 3. */

0110 0001 ‘a’
& 11011111 223

0100 0001 A

You can writeOXDF, Oxdf , 0337, or "(1<<5) instead oR23, but™(1<<5) is the best because it
shows which bit is ¢f The parentheses are necessary in line 5 of theeabmmple.

Thus aw bit in ary char , int , short , long , unsignedshort , unsigned , or unsigned
long can be turned on orfoindividually. You can also turn groups of bits on anfitofether: the xam-
ple in paragraph 3 of K&R p. 49 turnd diie six lav bits of x. See the remarks there about independence
of word length.

Hide the ugliness with macros with arguments.

charc,d, e;

inti,j, k

c |=(@1<<b) /* Turn on bit 5 of c. */
d |=(@1<<6); /* Turn on bit 6 of d. */
e |=(A<<7); /* Turn on bit 7 of e. */

Fdl 2006 Handout 31656430 -12- hesenea ©2006 Mark Meretzky

8

9
10
11
12
13
14

=Y

[
CQOwoo~NOOUODWNLPE

11
12
13
14
15
16
17
18
19
20
21
22
23
24

NYU SCPS

i &="7(1<<8)
j &="(1<<09);
k &=7(1<<10);

it (c>>2)&1)==1){
it ((d>>3)&1)==0){
it (e>>4)&1)1=0){

X52.9232 Section 6 C Programming, Part |

/* Turn off bit 8 of i. */
[* Turn off bit 9 of j. */
/* Turn off bit 10 of k. */

/* True if bit2 of cis 1. */
/* True if bit 3 of d is 0. */
/* True if bit 4 of e is not 0. */

Don't write the |='s and &=" s directly: hide them in#define 's. | wish we could mak a
#define with two holes in it, for the insertion of a different variable and a different bit position each time
it is used:

/* T urn on a bit in a variable. */
#define TURNON (| = (1 <<))

If the first argument of the follwing #define ’s is achar , the second argument must be a humber
in the range 0 to 7 inclug. If the first agument of the follwing #define ’sis anint , the second gu-
ment must be a number in the range @*sizeof(int)-1 inclusive. If the first agument of the fol-
lowing #define ’sis along , the second argument must be a number in the range 0 to
8*sizeof(long)-1 inclusive.

/* T urn on a bit in a variable. */

#define TURNON(variable, bit) ((variable) [= (1 << (bit)))
/* T urn off a bit in a variable.
King p. 455 */

#define TURNOFF(variable,

Type a tilde: K&R pp. 48-49;

bit) ((variable) &="(1 << (bit)))
/* V alue of this expression is 1 if the bit is on, O otherwise. */
#define TEST(variable, bit) (((variable) >> (bit)) & 1)
char ¢c,d, e;

int i}, k;

TURNON(c, 5);
TURNON(, 6);
TURNON(e, 7);

TURNOFF(i, 8);
TURNOFF(, 9);
TURNOFF(k, 10);

if (TEST(c, 2) ==1){
if (TEST(d, 3)==0){
if (TEST(e, 4) I=0) {

v Homework 5.1: redo the binary part of Homework 1.8

Redo the extra credit part of Homark 1.8 (Handout 1, pp. 19-21) usirg and& instead of and
% Or simply use the macr@EST. Which is easier to write, and whiclxeeutes &ster? Starfrom the
answer in Handout 3, pp. 16-17.
A

rinted 12/21/06
10:28:41 AM

Fdl 2006 Handout -13- hesenea ©2006 Mark Meretzky

A WNPE

O~NO O WNPE

NYU SCPS X52.9232 Section 6 C Programming, Part |

v Homework 5.2: Invent a TOGGLE #define

Invent a#define calledTOGGLEwith the same tew aguments aJ URNOMNNd TURNOFF It will
complement the specified bit of the specifiediable, leaving all the other bits in the variable unchanged.
Use “bitwise exclusie a”, K&R p. 48; King p. 453.

TOGGLEwvould be used as shown betoHand in only thetdefine line and its one-sentence com-
ment; do not hand in an example ofth®OGGLEwvould be used.You get no credit ifTOGGLEoes not
have wo aguments.

i nti=1;
TOGGLE(, 3); /*Now i==9.%
TOGGLE(), 3); /* Now i == 1 again. */

A

Prevent sign extension

#include <stddef.h>
wchar_t beta = 0x03B2; /* Unicode lowercase Greek beta */

printf("%c%.c",
beta >> 8 & OxFF, * high-order byte */
beta & OxFF /* low-order byte */

)

B

v Homework 5.3: add &en parity

Write a C program calledarity that reads input one character at a time. Read K&R pp. 15-17;
King pp. 121-122 and use the classitile-getchar loop on K&R p. 17 ¥u get no credit unless you
makec anint .

As it reads each charactparity should count he mary of its lowest seen hits arel’s. Do this
with afor loop that iterates exactly 7 times for each input character.

You get no credit if youfor loop TESTs or counts the top bit.Do not assume that the top bit of
each input character is 0; you get no credit if you rely on this assumption.

Then turn on or turn 6the top bit so that the total numberld$ will be even. For example, change
01000011 to 11000011 , but leave 01000001 unchanged. Finallyoutput each character with
putchar

Use TURNONTURNOFF and TEST. Since this homeork and the next both usEURNON
TURNOFFand TEST, write these#define 's in a £parate header file callbéit.h in the same directory
as your.c files and

#include "bit.h"

immediately after thétinclude 's that hae <angle brackts>. You get no credit for Homeorks 5.4 or
5.3 unless you hand lnit.h . You get no credit for Homeorks 5.4 or 5.3 if apymacro inbit.h has an
odd number of parentheses in its replacement text.

Do not use an array or pointers. Each character should be input, processed, and output before the

next character is inputYour program must ha exactly onewhile , onefor , twoif ’s (one of which has
anelse), onegetchar , oneputchar , noprintf 's, no scanf s, and three variables; no credit other
wise. Nameahemc (the ASCII code of each characteb) (the induction variable of ther loop), and
count (to count hav many1'’s there are inc) You get no credit if you writeount=0 in more than one
place.

Fdl 2006 Handout 8165643 -14- hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |

Create a short text file calléitel containing lines such as

It is a truth universally acknowledged, that a single man
in possession of a good fortune must be in want of a wife.

Feedfilel toparity and collect the output in an output file calfée?2

1% parity < filel > file2
2% od -bvw1 file2 | more See an octal dump &ife2

Do not attempt to displafle2 directly on the screen or printer: nyaof the characters it contains will
be non-printing.To verify thatparity = worked correctlyfeed its output to the next homark. You get
no credit for Homeorks 5.3 or 5.4 unless you hand in the output of Hoaonk 5.4.

A

v Homework 5.4: display bytes in binary

Write a C program calledisparity that will read its input one character at a time plarity
and output each character on a line by itself as dighand 0’s. Unlike parity , disparity must not
count thel’s andO’s.

Run the programparity anddisparity as follawvs. Printfilel andfile3 , butnot file2

1% parity < filel > file2
2% disparity < file2 > file3

3$ Ipr -Pth_hp4si_1 parity.c disparity.c filel file3
4% rm filel file2 file3

The output irfile3 should begin

1 1001001 'r
1110100 't
0100000 '
1101001 7
1110011 s’
1 0100000 *

0
1
0
1

and should end

0 1110111 'w

0 1101001 ¥
0 1100110 'f
0 1100101 e’
0 0101110
0 0001010 ~ newline—nothing between the single quotes

Since parity.c and disparity.c both use TURNON TURNOFF and TEST, write these
#define ’sin a gparate header file callbit.h in the same directory as your files and

#include "bit.h"

disparity must print one blank between the parity bit and the othendsits. After printing the
eight bits, turn dfthe parity bit. If the character iswadn the range 32 to 126 inclug printf it using
%cwithin single quotes as siva abave. Otherwise print nothing at all within the single quotes, vehe
space. Wu get no credit for this homerk unless eery line of output contains a pair of single quotes.
Use the last of the following ’s:

1if (32<=c&&c<=126){ [* 32 is blank, 126 is tilde */
2if (' <=c¢c && c <=" "
3 if (isprint(c)) { I* K&R pp. 43, 249; #include <ctype.h>;

Fdl 2006 Handout 81656430 -15- hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |

King pp. 527, 614-615 */
There must be exactly twariables. Naméhemc andb. You get no credit if you writgetchar more
than once.

You get no credit for Homagorks 5.3 or 5.4 unless you hand in the output of Hoaonk 5.4.
A

Differences between & and &&

exprl & expr2
exprl && expr2

(1) The value of thexpressiorexprl&&expr2 isaways 1 or 0.1t's 1 if exprl andexpr2 are
both non-zero, and 0 otherwise. But tladue of the pressiorexprl&expr2 can be apinteger at all,
since the& operator computes the bits individually.

(2) & evduatesexprl andexpr2 in an unpredictable orddmt && always evaluatesexprl first.

(3) & always evaluates botrexprl andexpr2 , but &&evduatesexpr2 only if exprl is not 0. If
exprl is 0,&&will always yield a 0 so there is no point ialiatingexpr2 .

Ditto for | and|| ,and™ and!. See K&R pp. 48-49; King pp. 452-453 for the bitwise operators

& ", ,and” ; K&R pp. 41-42; King pp. 64-65 for the non-bitwise operaBass|| , and!.
O

Fdl 2006 Handout 81656430 -16- hesenea ©2006 Mark Meretzky

