
NYU SCPS X52.9232 Section 6 C Programming, Part I

Fall 2006 Handout 5

The comma operator: K&R pp. 62−63, 209; King pp. 94−94

You’re allowed to write only at most one expression in each of the three sections of afor (;;)
(line 2):

1 d = dest;
2 f or (s = source; s < source + N; ++s) {
3 do s omething;
4 ++d;
5 }

If you’d like to write two expressions in a place that allows only one, use the binary operator, to join two
expressions into one big expression. Theleft subexpression is evaluated before the right subexpression.

6 f or (s = source, d = dest; s < source + N; ++s, ++d) {
7 do s omething;
8 }

Use the comma operator only in the first and third sections of afor (;;)

Copying char’s: K&R pp. 105−6

Here are five ways to copy the firstN bytes from an arraysource to an arraydest . We always
copyNbytes, even if we encounter a’\0’ byte.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h> /* for memcpy */
4
5 #define SIZE 256 /* number of elements in each array */
6 #define N 10 /* number of bytes to copy */
7
8 main()
9 {

10 char source[SIZE];
11 char dest[SIZE];
12
13 int i; /* index */
14
15 char *s; /* pointer into source[] */
16 char *d; /* pointer into dest[] */
17
18 /* Method 1 */
19 for (i = 0; i < N; ++i) {
20 dest[i] = source[i]; /* Copy one byte from source to dest. */
21 }
22
23 /* Method 2 */
24 for (s = source, d = dest; s < source + N; s++, d++) {

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 1 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

25 *d = * s; /* Copy one byte from source to dest. */
26 }
27
28 /* Method 3 */
29 s = source;
30 d = dest;
31 while (s < source + N) {
32 *d = * s;
33 s++;
34 d++;
35 }
36
37 /* Method 4 */
38 s = source;
39 d = dest;
40 while (s < source + N) {
41 *d++ = * s++;
42 }
43
44 /* Method 5: K&R p. 250; King pp. 151−152. */
45 memcpy(dest, source, N);
46
47 exit(EXIT_SUCCESS);
48 }

Numerical values of relational expressions:
K&R pp. 41−42, 206; King pp. 64−66

Relational expressions such asa == b are actually numerical expressions. Theirvalue is always of
data typeint : 1 for true,0 for false.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 main()
5 {
6 i nt a, b;
7
8 printf("Please type two numbers, pressing RETURN after each.\n");
9 s canf("%d%d", &a, &b);

10
11 printf("%d\n", a == b); /* Prints 1 or 0. */
12 exit(EXIT_SUCCESS);
13 }

The relational expression in control structures such as

if (a == b) {
while (a == b) {
for (i = 0; i <= 10; ++i) {

is actually a numerical expression. Itcounts as ‘‘true’’ if i ts value isany non-zero number, and ‘‘false’’ i f
its vale is zero (p. 56).For example, ifa equalsb, then the value of the expressiona==b is 1 and the fol-
lowing if is therefore true:

if (a == b) {

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 2 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Use the numerical value of a relational expression.

The parentheses on lines 26 and 36 are unnecessary:== has higher precedence than+= in the table
on K&R p. 53; King p. 595.

1 /* P rint the number of questions the student answered correctly. */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 main()
6 {
7 i nt correct[] = {242, 238, 231, 225, 215, 207}; /* correct answers */
8 i nt student[] = {242, 238, 230, 225, 215, 208}; /* student’s answers */
9

10 #define N 6
11
12 int i;
13 int *p, *q;
14 int count = 0;
15
16 /* Five ways to write the same loop. */
17
18 for (i = 0; i < N; ++i) {
19 if (correct[i] == student[i]) {
20 ++count;
21 }
22 }
23
24 for (i = 0; i < N; ++i) {
25 /* count = count + (correct[i] == student[i]); */
26 count += (correct[i] == student[i]);
27 }
28
29 for (p = correct, q = student; p < correct + N; ++p, ++q) {
30 if (*p == *q) {
31 ++count;
32 }
33 }
34
35 for (p = correct, q = student; p < correct + N; ++p, ++q) {
36 count += (*p == *q);
37 }
38
39 printf("There are %d correct answers.\n", count);
40 exit(EXIT_SUCCESS);
41 }

This program has two weaknesses. (1)You need two pointers,p andq, even though you needed only one
index i . (2) You get a bug if you accidentally made the arrays two different lengths. Both problems will
disappear when we rewrite the two arrays as a single ‘‘array of structures’’.

Numerical values of logical expressions:
K&R pp. 41−42, 207−208; King pp. 64−66

The left and right operands of&&are usually thought of as logical expressions:

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 3 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

a == b && c == d

But we now know thata == b andc == d are actually arithmetic expressions. Thevalue of the expression

a == b && c == d

is always of data typeint . The value is 1 if the values of both operands areany non-zero numbers; the
value is 0 otherwise.Similarly, the value of|| is 1 if the value of either operand* isany non-zero number;
the value is 0 otherwise.Finally, the value of the unary operator! is 0 if the value of its operand isany
non-zero number; the value is 1 otherwise.

For example, ifa equalsb andc equalsd, then the value of the expressiona==b is 1, the value of
the expressionc==d is 1, the value of the expressiona==b && c==d is 1, and the following if is there-
fore true:

if (a == b && c == d) {

Short circuiting: K&R pp. 41−42, 52; King p. 66

In the expression

a * b + c * d

both multiplications are always performed, but it is impossible to predict which one is evaluated first. (No
one knows or cares.) But in the expression

a == b && c == d

both comparisons are not always performed, and it is possible to predict which one is evaluated first when
both are performed.

The left operand of&& is always evaluated first. The right operand is evaluated only if the left one
was non-zero. Ifthe left operand is zero, there is no point in proceeding—we already know the answer.

Similarly, the left operand of|| is always evaluated first. The right operand is evaluated only if the
left one was zero. If the left operand is non-zero, there is no point in proceeding—we already know the
answer.

Use && to avoid nested if’s

1 / * o ther languages: */
2 i f (b != 0) {
3 i f (a / b == c) {
4 printf("The quotient is c.\n");
5 }
6 }
7
8 / * C: * /
9 i f (b != 0 && a / b == c) {

10 printf("The quotient is c.\n");
11 }
12
13 /* Other languages: */
14 if (i >= 0 && i < N) {
15 if (a[i] == b) {
16 printf("a[i] equals b.\n");
17 }
18 }

* or both operands

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 4 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

19
20 /* C: */
21 if (i >= 0 && i < N && a[i] == b) {
22 printf("a[i] equals b.\n");
23 }
24
25 /* Other languages: */
26 if (p != NULL) {
27 if (*p != ’\0’) {
28 printf("The string has at least one character in it.\n");
29 }
30 }
31
32 /* C: */
33 if (p != NULL && *p != ’\0’) {
34 printf("The string has at least one character in it.\n");
35 }

Use || to avoid repeating the same body

1 / * i nelegant */
2 i f (a == b) {
3 printf("At least one pair is equal.\n");
4 } else if (c == d) {
5 printf("At least one pair is equal.\n");
6 }
7
8 / * e legant */
9 i f (a == b || c == d) {

10 printf("At least one pair is equal.\n");
11 }

Compare Handout 1, pp. 30−31:

—On the Web at
http://i5.nyu.edu/ ∼mm64/x52.9232/src/leap2.c

1 #include <stdio.h>
2
3 main()
4 {
5 i nt year;
6
7 printf("Please type a year and press RETURN: ");
8 s canf("%d", &year);
9

10 if (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)) {
11 printf("%d is a leap year.\n", year);
12 } else {
13 printf("%d is not a leap year.\n", year);
14 }
15 }

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 5 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

The replacement text of a macro does not have to be a number.

1 i nt c1; /* catalog numbers */
2 i nt c2;
3 i nt c3;
4 i nt i; /* loop counter to draw row of dashes */
5
6 printf("%d", c1);

7 #define CATNO int
8 #define FORMAT "%d"
9

10 CATNO c1;
11 CATNO c2;
12 CATNO c3;
13 int i; /* loop counter to draw row of dashes */
14
15 printf(FORMAT, c1);

If you migrate to a platform whoseint ’s are not big enough to hold a catalog number, you can
change lines 7−8 to

16 #define CATNO long
17 #define FORMAT "%ld" /* percent lowercase LD */

Three rules for writing #define’s: K&R pp. 89−90; King pp. 277−288

(1) If the#define expands into two or more tokens, put parentheses around them.

1 #define N 280 /* number of days in the pregnancy */
2 #define N (10 * 28) /* ten lunar months */
3 #define EOF (-1) /* end of file (p. 16): see /usr/include/stdio.h */
4
5 #define TAX 1020
6 #define TAX (610+395+15) /* federal, state, city */

What goes wrong in line 12 if line 7 omits the parentheses of line 6?

7 #define TAX (610+395+15) /* federal, state, city */
8 i nt oldtax; /* last year’s */
9 i nt newtax; /* this year’s */

10
11 oldtax = TAX;
12 newtax = 2 * T AX; /* My taxes doubled this year. */

What two morals does the following example teach?

13 #define b - 10
14
15 printf("%d\n" a-b);

(2) If the#define expands into two or more statements, put curly brackets around them.

1 #define DEBUGX printf("%d\n", x)
2 #define DEBUGXY {printf("%d\n", x); printf("%d\n", y);}

What goes wrong in line 17 if line 4 omits the parentheses of line 2?

3 #define DEBUGX printf("%d\n", x)

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 6 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

4 #define DEBUGXY {printf("%d\n", x); printf("%d\n", y);}
5
6 i nt x, y;
7
8 i f (x < 0) {
9 DEBUGX;

10 }
11
12 if (x != y) {
13 DEBUGXY;
14 }
15
16 if (x < 0) DEBUGX;
17 if (x != y) DEBUGXY;

(3) Parenthesize every argument in a#define line.

1 #define SQUARE(x) ((x) * (x))

What goes wrong in line 8 if line 2 omits the inner parentheses of line 1?x?

1 #define SQUARE(x) (x * x)
2
3 i nt i = 2;
4 i nt j = 3;
5
6 printf("%d\n", SQUARE(i)); /* It prints 4. */
7 printf("%d\n", SQUARE(i + j)); /* It prints 11; should be 25. */

A useful macro that requires parentheses

You can omit the dimension from the square brackets in an array initialization (p. 86). This saves
you the trouble of counting the list of values.

char s[] = /* Handout 4, pp. 3-4, lines 1-3 */
int correct[] = { /* Handout 5, p. 3, line 7 */

Unfortunately, the omitted number often has to appear elsewhere in the program.For example, even
if we remove the number6 from the square brackets in the array in Handout 5, p. 3, line 7, we would still
have to write 6 in the macro definition in line 10.

The expressionsizeof correct is the number of bytes in the entirecorrect array. The
expressionsizeof correct[0] is the number of bytes in the first element of the array. Their quotient
is the number of elements in the array.

This works for all data types on all machines. It will make N change its value automatically if you
add new array elements: you no longer have to count them yourself and type their number. See K&R pp.
132−136; King pp. 338−339 for a more complicated example with an array of structures.

6 i nt correct[] = {242, 238, 231, 225, 215, 207};
7
8 /* n umber of elements in the correct array */
9 #define N (sizeof correct / sizeof correct[0])

An example of a macro with an argument

1 double ffreeze = 32; /* freezing point in Fahrenheit*/
2 double fboil = 212; /* boiling point in Fahrenheit */
3

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 7 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

4 double cfreeze = (ffreeze - 32.0) * 5.0 / 9.0; /* freezing point in celsius */
5 double cboil = (fboil - 32.0) * 5.0 / 9.0; /* freezing point in celsius */

6 /* R eturn the celsius temperature corresponding to the given fahrenheit. */
7 #define CELSIUS(f) (((f) - 32.0) * 5.0 / 9.0)
8
9 double ffreeze = 32; /* freezing point in Fahrenheit */

10 double fboil = 212; /* boiling point in Fahrenheit */
11
12 double cfreeze = CELSIUS(ffreeze);
13 double cboil = CELSIUS(fboil);

An example of a macro with an argument

1 / * an a rray whose subscripts range from -10 to 10 inclusive */
2 i nt a[21];
3 #define A(i) (a[(i) + 10])
4
5 f or (i = -10; i <= 10; ++i) {
6 printf("%d\n", A(i));
7 }

Better yet,

8 / * an a rray whose subscripts range from -N to N inclusive */
9 #define N 10

10 int a[2 * N + 1];
11 #define A(i) (a[(i) + N])
12
13 for (i = -N; i <= N; ++i) {
14 printf("%d\n", A(i));
15 }

32-bit signed and unsigned integer values

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 8 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

(signed)
int bit pattern unsigned bit pattern

4294967295 11111111111111111111111111111111
4294967294 11111111111111111111111111111110
4294967293 11111111111111111111111111111101
4294967292 11111111111111111111111111111100
4294967291 11111111111111111111111111111011
4294967290 11111111111111111111111111111010

2147483653 10000000000000000000000000000101
2147483652 10000000000000000000000000000100
2147483651 10000000000000000000000000000011
2147483650 10000000000000000000000000000010
2147483649 10000000000000000000000000000001
2147483648 10000000000000000000000000000000

2147483647 011111111111111111111111111111111 2147483647 01111111111111111111111111111111
2147483646 011111111111111111111111111111110 2147483646 01111111111111111111111111111110
2147483645 011111111111111111111111111111101 2147483645 01111111111111111111111111111101
2147483644 011111111111111111111111111111100 2147483644 01111111111111111111111111111100
2147483643 011111111111111111111111111111011 2147483643 01111111111111111111111111111011
2147483642 011111111111111111111111111111010 2147483642 01111111111111111111111111111010

5 000000000000000000000000000000101 5 00000000000000000000000000000101
4 000000000000000000000000000000100 4 00000000000000000000000000000100
3 000000000000000000000000000000011 3 00000000000000000000000000000011
2 000000000000000000000000000000010 2 00000000000000000000000000000010
1 000000000000000000000000000000001 1 00000000000000000000000000000001
0 000000000000000000000000000000000 0 00000000000000000000000000000000

−1 111111111111111111111111111111111
−2 111111111111111111111111111111110
−3 111111111111111111111111111111101
−4 111111111111111111111111111111100
−5 111111111111111111111111111111011
−6 111111111111111111111111111111010

−2147483643 100000000000000000000000000000101
−2147483644 100000000000000000000000000000100
−2147483645 100000000000000000000000000000011
−2147483646 100000000000000000000000000000010
−2147483647 100000000000000000000000000000001
−2147483648 100000000000000000000000000000000

The bits of an integer are numbered from right to left, starting at 0.In a 32-bit integer, the leftmost
bit is therefore bit 31. Bit 0 is called thelowest bit or thelow order bit. Bit 31 is called thetop bit or the
high order bit.

Bit 0 is theone’s place, bit 1 is thetwo’s place, bit 2 is thefour’s place, etc. Insigned values, the
top bit is called thesign bit. It is 1 for negative numbers, 0 otherwise.

Why is the integer −1 represented as11111111111111111111111111111111 (thirty-tw o 1’s)?

Think of a car odometer running backward:

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 9 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

0003
0002
0001
0000 zero
9999 negative one
9998 negative two

1111 is the binary equivalent of 9999.

If you want zero to be00000000000000000000000000000000 , positive one to be
00000000000000000000000000000001 , and positive one plus negative one to be 0, then the defini-
tion of negative one is forced on you:

00000000000000000000000000000001 positive one
+ 11111111111111111111111111111111 negative one

00000000000000000000000000000000 zero

00000000000000000000000000000010 positive two
+ 11111111111111111111111111111110 negative two

00000000000000000000000000000000 zero

00000000000000000000000000000011 positive three
+ 11111111111111111111111111111101 negative three

00000000000000000000000000000000 zero

00000000000000000000000000000100 positive four
+ 11111111111111111111111111111100 negative four

00000000000000000000000000000000 zero

1 i nt i = ˜0; /* all ones: KR p. 49 */
2 printf("%d\n", i); /* prints -1 */
3 printf("%u\n", i); /* prints 4294967295 */

4 c har c = ˜0; /* all ones */
5 i nt i = c;
6 printf("%d\n", i); /* -1 if char is signed, 255 if char is unsigned */

Sign extension: K&R p. 198

Thanks to sign extension,i1 equalss1 , i2 equalss2 , and i3 equalsus . If there were no sign
extension, the value ofi2 in line 5 would be 65,535 instead of −1.

1 s hort s1 = 1; /* binary 0000000000000001 */
2 i nt i1 = s1; /* binary 00000000000000000000000000000001 */
3
4 s hort s2 = -1; /* binary 1111111111111111 */
5 i nt i2 = s2; /* binary 11111111111111111111111111111111 */
6
7 unsigned short us = 65535; /* binary 1111111111111111 */
8 i nt i3 = us; /* binary 00000000000000001111111111111111 */

Left shift and right shift: K&R pp. 49, 206; King p. 452

Here are four ways to double the value ofi :

1 i nt i = 10; /* 00000000000000000000000000001010 */

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 10 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

2
3 i = i * 2 ; / * 0 0000000000000000000000000010100 */
4 i *= 2;
5
6 i = i << 1 ; / * << e xecutes faster than * */
7 i <<= 1;

Here are four ways to halve the value ofi :

8 i nt i = 10; /* binary 00000000000000000000000000001010 */
9

10 i = i / 2 ; / * b inary 00000000000000000000000000000101 */
11 i /= 2;
12
13 i = i >> 1 ; / * >> e xecutes faster than / */
14 i >>= 1;

(1) When left shifting any data type, zeroes enter from the right as shown above.

(2) When right shiftingint , long , short , or signed char , the sign bit propagates (i.e., extra
copies of the sign bit enter from the left):

15 unsigned u = - 4; /* binary 11111111111111111111111111111100 */
16 u >>= 1; /* binary 11111111111111111111111111111110 */
17 /* Now u == -2. */

(3) When right shiftingunsigned , unsigned long , unsigned short or unsigned char ,
zeroes enter from the left.

Bitwise ‘‘and’’, ‘‘or’’, ‘‘exclusi ve or’’, and ‘‘not’’: K&R pp. 48−49, 204, 207; King pp. 453−457

Addition and subtraction are complicated because there is carrying or borrowing. For example,

0 0 1 1
+ 0 1 0 1

1 0 0 0

Bitwise ‘‘and’’ and ‘‘or’ ’ etc. are simpler than addition and subtraction because there is no carrying or
borrowing. Eachplace is independent of the adjacent places: It’s just like 16- or 32-track stereo.For exam-
ple, bitwise ‘‘and’’ y ields a 1 if the two bits above it are 1, and yields 0 otherwise:

0 0 1 1
& 0 1 0 1

0 0 0 1

Bitwise ‘‘or’’ y ields a 1 if either (or both) of the two bits above it are 1, and yields 0 otherwise:

0 0 1 1
| 0 1 0 1

0 1 1 1

Bitwise ‘‘exclusive or’’ y ields a 0 if the two bits above it are the same, and yields 1 otherwise:

0 0 1 1
ˆ 0 1 0 1

0 1 1 0

Bitwise ‘‘one’s complement’’ y ields a 1 if the bit above it is 0, and yields 1 otherwise:

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 11 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

˜ 0 1

1 0

1 / * A ssume int’s are 4 bytes. */
2 i nt i = 1; /* binary 00000000000000000000000000000001 */
3 i nt j = 2; /* binary 00000000000000000000000000000010 */
4 i nt k = i & j; /* binary 00000000000000000000000000000000 */
5
6 k = i | j ; / * b inary 00000000000000000000000000000011 */
7 k = i ˆ j ; / * b inary 00000000000000000000000000000011 */
8 k = ˜ i; /* binary 11111111111111111111111111111110 */

Turn one bit on with ‘‘or’’

1 c har c = ’A’; /* Put the byte 01000001 into c (ASCII code of ’A’). */
2
3 c = c | 3 2; /* Put the byte 01100001 into c (ASCII code of ’a’). */
4 c |= 32; /* A better way to write line 3. */
5 c |= (1 << 5); /* An even better way to write line 3. */

0100 0001 ’A’
| 0 010 0000 32

0110 0001 ’a’

You can write0x20 , 040 , or (1<<5) instead of32 , but (1<<5) is the best because it shows you
which bit is on. The parentheses are unnecessary in line 5 in the above example; see K&R p. 53; King p.
595.

Turn one bit off with ‘‘and’’

1 c har c = ’a’; /* Put the byte 01100001 into c (ASCII code of ’a’). */
2
3 c = c & 223; /* Put the byte 01000001 into c (ASCII code of ’A’). */
4 c &= 223; /* A better way to write line 3. */
5 c &= ˜(1 << 5); /* An even better way to write line 3. */

0110 0001 ’a’
& 1101 1111 223

0100 0001 ’A’

You can write0xDF, 0xdf , 0337 , or ˜(1<<5) instead of223 , but ˜(1<<5) is the best because it
shows which bit is off. Theparentheses are necessary in line 5 of the above example.

Thus any bit in any char , int , short , long , unsigned short , unsigned , or unsigned
long can be turned on or off individually. You can also turn groups of bits on and off together: the exam-
ple in paragraph 3 of K&R p. 49 turns off the six low bits of x . See the remarks there about independence
of word length.

Hide the ugliness with macros with arguments.

1 c har c, d, e;
2 i nt i, j, k
3
4 c |= (1 << 5); /* Turn on bit 5 of c. */
5 d |= (1 << 6); /* Turn on bit 6 of d. */
6 e |= (1 << 7); /* Turn on bit 7 of e. */

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 12 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

7
8 i &= ˜(1 << 8); /* Turn off bit 8 of i. */
9 j &= ˜(1 << 9); /* Turn off bit 9 of j. */

10 k &= ˜(1 << 10); /* Turn off bit 10 of k. */
11
12 if (((c >> 2) & 1) == 1) { /* True if bit 2 of c is 1. */
13 if (((d >> 3) & 1) == 0) { /* True if bit 3 of d is 0. */
14 if (((e >> 4) & 1) != 0) { /* True if bit 4 of e is not 0. */

Don’t write the |= ’s and &= ̃ ’s directly: hide them in#define ’s. I wish we could make a
#define with two holes in it, for the insertion of a different variable and a different bit position each time
it is used:

1 /* T urn on a bit in a variable. */
2 #define TURNON (| = (1 < <))

If the first argument of the following #define ’s is achar , the second argument must be a number
in the range 0 to 7 inclusive. If the first argument of the following #define ’s is an int , the second argu-
ment must be a number in the range 0 to8*sizeof(int)-1 inclusive. If the first argument of the fol-
lowing #define ’s is along , the second argument must be a number in the range 0 to
8*sizeof(long)-1 inclusive.

1 /* T urn on a bit in a variable. */
2 #define TURNON(variable, bit) ((variable) |= (1 << (bit)))
3
4 /* T urn off a bit in a variable. Type a tilde: K&R pp. 48-49;
5 King p. 455 */
6 #define TURNOFF(variable, bit) ((variable) &= ˜(1 << (bit)))
7
8 /* V alue of this expression is 1 if the bit is on, 0 otherwise. */
9 #define TEST(variable, bit) (((variable) >> (bit)) & 1)

10
11 char c, d, e;
12 int i, j, k;
13
14 TURNON(c, 5);
15 TURNON(d, 6);
16 TURNON(e, 7);
17
18 TURNOFF(i, 8);
19 TURNOFF(j, 9);
20 TURNOFF(k, 10);
21
22 if (TEST(c, 2) == 1) {
23 if (TEST(d, 3) == 0) {
24 if (TEST(e, 4) != 0) {

▼ Homework 5.1: redo the binary part of Homework 1.8

Redo the extra credit part of Homework 1.8 (Handout 1, pp. 19−21) using>> and& instead of/ and
%. Or simply use the macroTEST. Which is easier to write, and which executes faster? Startfrom the
answer in Handout 3, pp. 16−17.
▲

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 13 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

▼ Homework 5.2: Invent a TOGGLE #define

Invent a#define calledTOGGLEwith the same two arguments asTURNONandTURNOFF. It will
complement the specified bit of the specified variable, leaving all the other bits in the variable unchanged.
Use ‘‘bitwise exclusive or’’, K&R p. 48; King p. 453.

TOGGLEwould be used as shown below. Hand in only the#define line and its one-sentence com-
ment; do not hand in an example of how TOGGLEwould be used.You get no credit ifTOGGLEdoes not
have two arguments.

1 i nt i = 1;
2
3 TOGGLE(i, 3); /* Now i == 9. */
4 TOGGLE(i, 3); /* Now i == 1 again. */

▲

Prev ent sign extension

1 #include <stddef.h>
2
3 wchar_t beta = 0x03B2; /* Unicode lowercase Greek beta */
4
5 printf("%c%c",
6 beta >> 8 & 0xFF, /* high-order byte */
7 beta & 0xFF /* low-order byte */
8) ;

β

▼ Homework 5.3: add even parity

Write a C program calledparity that reads input one character at a time. Read K&R pp. 15−17;
King pp. 121−122 and use the classicwhile-getchar loop on K&R p. 17 You get no credit unless you
makec an int .

As it reads each character, parity should count how many of its lowest seven bits are1’s. Do this
with a for loop that iterates exactly 7 times for each input character.

You get no credit if yourfor loop TEST’s or counts the top bit.Do not assume that the top bit of
each input character is 0; you get no credit if you rely on this assumption.

Then turn on or turn off the top bit so that the total number of1’s will be even. For example, change
01000011 to 11000011 , but leave01000001 unchanged. Finally, output each character with
putchar .

Use TURNON, TURNOFF, and TEST. Since this homework and the next both useTURNON,
TURNOFF, and TEST, write these#define ’s in a separate header file calledbit.h in the same directory
as your.c files and

#include "bit.h"

immediately after the#include ’s that have <angle brackets>. You get no credit for Homeworks 5.4 or
5.3 unless you hand inbit.h . You get no credit for Homeworks 5.4 or 5.3 if any macro inbit.h has an
odd number of parentheses in its replacement text.

Do not use an array or pointers. Each character should be input, processed, and output before the
next character is input.Your program must have exactly onewhile , one for , two if ’s (one of which has
anelse), onegetchar , oneputchar , no printf ’s, no scanf ’s, and three variables; no credit other-
wise. Namethemc (theASCII code of each character),b (the induction variable of thefor loop), and
count (to count how many1’s there are in .c) You get no credit if you writecount = 0 in more than one
place.

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 14 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Create a short text file calledfile1 containing lines such as

It is a truth universally acknowledged, that a single man
in possession of a good fortune must be in want of a wife.

Feedfile1 to parity and collect the output in an output file calledfile2 :

1$ parity < file1 > file2
2$ od -bvw1 file2 | more See an octal dump offile2 .

Do not attempt to displayfile2 directly on the screen or printer: many of the characters it contains will
be non-printing.To verify thatparity worked correctly, feed its output to the next homework. You get
no credit for Homeworks 5.3 or 5.4 unless you hand in the output of Homework 5.4.
▲

▼ Homework 5.4: display bytes in binary

Write a C program calleddisparity that will read its input one character at a time like parity ,
and output each character on a line by itself as eight1’s and 0’s. Unlike parity , disparity must not
count the1’s and0’s.

Run the programsparity anddisparity as follows. Printfile1 andfile3 , but not file2 .

1$ parity < file1 > file2
2$ disparity < file2 > file3

3$ lpr -Pth_hp4si_1 parity.c disparity.c file1 file3
4$ rm file1 file2 file3

The output infile3 should begin

1 1001001 ’I’
0 1110100 ’t’
1 0100000 ’ ’
0 1101001 ’i’
1 1110011 ’s’
1 0100000 ’ ’

and should end

0 1110111 ’w’
0 1101001 ’i’
0 1100110 ’f’
0 1100101 ’e’
0 0101110 ’.’
0 0001010 ’’ newline—nothing between the single quotes

Since parity.c and disparity.c both useTURNON, TURNOFF, and TEST, write these
#define ’s in a separate header file calledbit.h in the same directory as your.c files and

#include "bit.h"

disparity must print one blank between the parity bit and the other seven bits. After printing the
eight bits, turn off the parity bit. If the character is now in the range 32 to 126 inclusive, printf it using
%cwithin single quotes as shown above. Otherwise print nothing at all within the single quotes, not even a
space. You get no credit for this homework unless every line of output contains a pair of single quotes.
Use the last of the followingif ’s:

1 if (32 <= c && c <= 126) { /* 32 is blank, 126 is tilde */
2 if (’ ’ <= c && c <= ’ ˜’) {
3 if (isprint(c)) { /* K&R pp. 43, 249; #include <ctype.h>;

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 15 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

4 King pp. 527, 614−615 */

There must be exactly two variables. Namethemc andb. You get no credit if you writegetchar more
than once.

You get no credit for Homeworks 5.3 or 5.4 unless you hand in the output of Homework 5.4.
▲

Differences between & and &&

expr1 & expr2
expr1 && expr2

(1) The value of the expressionexpr1 && expr2 is always 1 or 0. It’s 1 if expr1 andexpr2 are
both non-zero, and 0 otherwise. But the value of the expressionexpr1 & expr2 can be any integer at all,
since the& operator computes the bits individually.

(2) & evaluatesexpr1 andexpr2 in an unpredictable order, but &&always evaluatesexpr1 first.

(3) & always evaluates bothexpr1 andexpr2 , but &&evaluatesexpr2 only if expr1 is not 0. If
expr1 is 0,&&will always yield a 0 so there is no point in evaluatingexpr2 .

Ditto for | and|| , and ˜ and! . See K&R pp. 48−49; King pp. 452−453 for the bitwise operators
&, ˆ , | , and ˜ ; K&R pp. 41−42; King pp. 64−65 for the non-bitwise operators&&, || , and ! .

Fall 2006 Handout 5printed 12/21/06
10:28:41 AM − 16 − All rights

reserved ©2006 Mark Meretzky

