
NYU SCPS X52.9232 Section 6 C Programming, Part I

Fall 2006 Handout 3

Common errors

The chief obstacle to correct diagnosis in painful conditions is the fact that the
symptom is often felt at a distance from its source.

—Textbook of Orthopaedic Medicine,
quoted by Philip Roth inThe Anatomy Lesson

(1) The error message may have the wrong line number: look at the previous line(s).

(2) Make sure that the following pairs of characters are balanced:

{ } " "
() ’ ’
[] < > only in#include directives
/* */

(3) Does every comment end with a*/? Has a comment without a terminating*/ swallowed a sec-
tion of your program? Comments do not nest.

/* good comment */
/ * bad comment */
/* bad comment * /

(4) Did you accidentally type parentheses instead of[square brackets] around an array subscript?

(5) if, for, #define, etc., must all be lowercase.

(6) Did you confuse the letters and digitsl, 1, I, o, 0? Did you use the wrong case (upper vs.
lower)? Didyou confuse/ with \? Did you accidentally type$ instead of# in a#define or
#include? Did you accidentally type invisible control characters into your.c file?

(7) Put no white space in tokens such as++ += == && etc.

(8) There must be parenthesis around the logical expression in anif, while, and do-while, and
the expression in aswitch.

(9) Did you forget the comma between function arguments? Isthere a semicolon at the end of every
statement? Didyou accidentally write a semicolon immediately after the} at the end of a function?Did
you accidentally write a semicolon after the) at the end of afor or while line:

for (i = 0; i < 10; ++i); { /* wrong */
blah blah blah;

}

(10) Did you accidentally sayif (a = b) instead ofif (a == b)?

(11) Did you try toprintf a long with %d instead of%ld? Did you try toscanf a double
with %f instead of%lf? Make sure that the% formats agree with the data types of the expressions you’re
outputting or inputting. Did you forget the&’s in ascanf?

(12) Read your program from a printout instead of the screen.Did you accidentally chop off the top
or bottom of the program?Can you get it to compile by removing or commenting out certain sections?
Show it to someone else.Take a break.

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 1 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

(13) Examine the.i file created by running only the C preprocessor, not the full compiler, with the
uppercase-E option:

1$ gcc -E prog.c > prog.i
2$ more prog.i

(14) Does the C++ compiler give better error messages?

Subscripting is actually a binary operator: K&R p. 201, §A7.3.1; King pp. 140−141

a[i] is an expression, just likei+j andi-j:

i + j

a [i]

The value of the expressiona[i] is the value of thei’th element of the arraya. Of all the expressions we
have seen so far, only an array can be the left operand of[]:

1 int a[10];
2 int i = 0;
3
4 a[i] /* good */
5 i[a] /* bad */

When evaluating the expressionc+a[b], the computer first delves into the array to get the value of
the expressiona[b], and then performs the addition. In other words it executes the[] operator before the
+ operator, because the[] has higher precedence than the unary* operator in the table on K&R p. 53;
King p. 595.

a [b]+c

Function calling is actually an operator: K&R p. 201, §A7.3.2; King pp. 161−162

f() is an expression, just likei++ andi--:

i ++

f ()

f(x) is an expression, just likei+j anda[i]:

i + j

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 2 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

a [i]

f (x)

The value of the expressionf(x) is the value computed by (orreturned by) the functionf when
you give it x as an argument. Notev ery function returns a value; those that do not are said to returnvoid.
If f were avoid function, you could not use the value of the expressionf(x) as part of a larger expres-
sion. Ofall the expressions we have seen so far, only a function can be the left operand of().

#include <stdio.h>
#include <math.h> /* needed for sqrt */

double x = 2.0;

sqrt(x) /* good */
x(sqrt) /* bad */

When evaluating the expressiony+f(x), the computer first calls the functionf with the argumentx
to get the value of the expressionf(x), and then performs the addition. In other words it executes the()
operator before the+ operator, because the() has higher precedence than the binary+ operator in the table
on K&R p. 53; King p. 595.

f (x)+y

Each argument of a function is a subexpression, and it is impossible to predict the order in which
these subexpressions will be evaluated. Thefollowing printf may print different values on different
machines (K&R p. 53; King p. 595):

int i = 10;
printf("%d %d\n", ++i, i);

11 11 Some machines evaluate the function arguments from left to right.

11 10 Other machines evaluate the function arguments from right to left.

How to recognize the three kinds of parentheses in an expression

(1) A pair of parentheses that encloses the name of a data type is a cast (K&R p. 45); King pp.
127−128, listed on line 2 of the table on K&R p. 53; King p. 595:

(int)i
(unsigned long)i

(2) Otherwise, a pair of parentheses that has an expression in front of it is the function call operator
(), listed on line 1 of the table on K&R p. 53; King p. 595:

(3) Otherwise, the pair of parentheses is the kind that overrides the precedence and associativity of
operators. Thiskind is not listed in the table on K&R p. 53; King p. 595.

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 3 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

f(x) f is an expression.
a * (b + c) a+ is not an expression.
(*p)(x) (*p) is an expression.
*p(x) p is an expression.

In the expression(*p)(x), the first pair of parentheses is the overriding kind, and the second pair is the
function call operator. Handout 2, p. 30, lines 14 and 21 each have all three kinds of parentheses.

Create a pointer variable: K&R pp. 93−95; King pp. 205−207

Every variable has two numbers: itsvalue and itsaddress.The value of a variable may change as the
program runs, but the address never will. If a variable occupies two or more bytes of memory, these bytes
will always be consecutive. The address of a variable is the address of the byte within it that has the lowest
address.

In the following example the value ofi is 10. Assume that the address ofi is 1000 and that
sizeof i is 2.

A pointer is a variable whose value is the address of another variable. For example, the value ofp is
the address ofi. We say thatp is a pointer toi, or thatp points toi, when the value ofp is the address
of i.

Why does the*p in line 12 fetch anint from memory, as opposed to adouble or an individual
char? It’s because of the declaration in line 6.

The following example assumes thatsizeof p is equal tosizeof i, but this may not be true on
all machines.

998 999 1000 1001 1002 1003

i

10

1998 1999 2000 2001 2002 2003

p

1000...

1 #include <stdio.h>
2
3 main()
4 {
5 int i = 10; /* Create a variable of type "int". */
6 int *p = &i; /* The value of p is now the address of i, namely 1000. */
7
8 printf("%d\n", i); /* Print i in decimal. */
9 printf("%p\n", &i); /* Print &i in your platform’s conventional base. */
10
11 printf("%p\n", p);
12 printf("%d\n", *p);
13 }

You can split line 5 into

14 int i;
15 i = 10;

—but why would you want to?

You can split line 6 into

16 int *p;
17 p = &i;

—but why would you want to?

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 4 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

10 line 8
1000 line 9
1000 line 11
10 line 12

You can’t printf("%d\n", *p) until you have first assigned a value top and also assigned a
value to the variable whose address you put inp. These two assignments can be made in either order as
long as both are performed before theprintf.

18 #include <stdio.h>
19
20 main()
21 {
22 int i;
23 int *p;
24
25 printf("%d\n", *i); /* won’t compile: i is an int, not a pointer */
26 printf("%d\n", *p); /* might blow up: p has not yet received a value */
27
28 p = &i; /* okay, even though i has not yet received a value */
29 printf("%p\n", p); /* okay, even though i has not yet received a value */
30
31 i = 10;
32 printf("%d\n", *p); /* okay */

Change the value of a variable without mentioning its name

Here are two ways to add the values of the variablesi andj and put the sum ink.

1 #include <stdio.h>
2
3 main()
4 {
5 int i = 10;
6 int j = 20;
7 int k = i + j;
8
9 printf("%d\n", k);
10 }

11 #include <stdio.h>
12
13 main()
14 {
15 int i;
16 int j;
17 int k;
18
19 int *p = &i;
20 int *q = &j;
21 int *r = &k;
22
23 *p = 10; /* Put 10 into i. */
24 *q = 20; /* Put 20 into j. */
25 *r = *p + *q; /* Put i + j into k. */
26 printf("%d\n", *r); /* Print k. */

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 5 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

27 }

Use a pointer to loop through an array: K&R pp. 97−100; King pp. 224−226

Here is another way to sum up the numbers in the array in Handout 2, p. 10.The address of the first
array element is&a[0].

0[a]&

The address of the second element is&a[1]. The address of the twelfth element is&a[11]. If there was
a thirteenth array element, its address would be&a[12]; but there isn’t. Therefore&a[12] is the address
of the first byte after the end of the array (top of K&R p. 103; King p. 225).

We could also have written p <= &a[11] instead ofp < &a[12] in line 24 below, just as we
could have written i <= 11 instead ofi < 12 in Handout 2, p. 10, line 24. But in a program to loop
through the twelve months of the year, it’s clearer to write the magic number12 explicitly.

On a machine wheresizeof(int) is 2, the expressionp=p+1 actually adds 2 to the value ofp.
On a machine wheresizeof(int) is 4, the expressionp=p+1 will add 4 to the value ofp. In both
cases, this leavesp pointing to the nextint in memory.

In Handout 2, p. 10, line 24, you can changei = i + 1 to ++i. In line 24 below, you can change
p = p + 1 to ++p.

In Handout 2, p. 10, line 25, you can changesum = sum + a[i] to sum += a[i]. In line 25
below, you can changesum = sum + *p to sum += *p.

The following diagram assumes that&a[0] is 1000 and thatsizeof(int) is 2.

999 1000 1001 1002 1003 1004

a[0] a[1]

31 28

1019 1020 1021 1022 1023 1024

a[10] a[11]

30 31...

—On the Web at
http://i5.nyu.edu/∼ mm64/x52.9232/src/array2.c

1 /* Print the number of days in a non-leap year. */
2 #include <stdio.h>
3
4 main()
5 {
6 int a[12] = {
7 31, /* January */
8 28, /* February */
9 31, /* March */
10 30, /* April */
11 31, /* May */
12 30, /* June */
13 31, /* July */
14 31, /* August */
15 30, /* September */
16 31, /* October */
17 30, /* November */
18 31, /* December */
19 };

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 6 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

20
21 int *p; /* point to each array element */
22 int sum = 0;
23
24 for (p = &a[0]; p < &a[12]; p = p + 1) {
25 sum = sum + *p;
26 }
27
28 printf("%d\n", sum);
29 }

What not to use a pointer for

There is no need to create an array and a pointer just to iterate 10 times.Simply create a conven-
tionalint variable and have it count from 1 to 10.

1 /* Print the word "hello" 10 times. */
2 #include <stdio.h>
3
4 main()
5 {
6 int a[10];
7 int *p;
8
9 for (p = &a[0]; p < &a[10]; ++p) {
10 printf("hello\n");
11 }
12 }

Leading * vs. trailing [0]

If p points to anint, the two expressions*p andp[0] have the same value—the value of theint
thatp points to. They are equally efficient in space and speed.

1 int i = 10;
2 int *p = &i;
3
4 printf("%d\n", i);
5 printf("%d\n", *p);
6 printf("%d\n", p[0]);

10
10
10

This is as far as we can go in the above example—there is only oneint to point to (the variablei).
But in the next example with a pointer, p will point to anint that has otherint’s as its left and right
neighbors.

Access adjacent int’s in memory: K&R p. 99; King pp. 230−231

1 /* Given an array of 10 int’s, this program prints a list of 8 int’s. Each of
2 the 8 int’s is the average of 3 consecutive int’s in the array. For example,
3 the first int printed is the average of the first 3 int’s in the array. */
4 #include <stdio.h>
5

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 7 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

6 main()
7 {
8 int a[10] = {
9 261, 256, 251, 276, 271, 266, 291, 286, 281, 306
10 };
11 int i;
12
13 for (i = 1; i <= 8; ++i) {
14 printf("%d\n", (a[i-1] + a[i] + a[i+1]) / 3);
15 }
16 }

256 a nice linear progression, once the static has been removed
261
266
271
276
281
286
291

In the following example, the values of the expressionsp[1], p[2], p[3], etc., are the values of
the adjacentint’s to the right ofp[0] (i.e., towards higher memory addresses), andp[-1], p[-2],
p[-3], etc., are the values to the left.Thus any region of memory can be accessed by a notation that
makes the region look like an array of int’s extending in both directions. Simply put the address of the
start of the region intop and then usep[0], p[1], p[2], p[-1], etc.

We write

p[-1] + p[0] + p[1]

in line 14 below, rather than

p[-1] + *p + p[1]

for stylistic consistency: we wantp[-1], p[0], andp[1] to look like three elements of an array called
p. Although there is no an array with this name, we create the illusion that one exists and that it is located
exactly where we want it: with its zero elementp[0] being the second of the threeint’s we want to sum
up. Thisillusory array is portable: we center it on a differentint during each iteration.

1 /* The same program, with a pointer p instead of an integer index i. */
2
3
4 #include <stdio.h>
5
6 main()
7 {
8 int a[10] = {
9 261, 256, 251, 276, 271, 266, 291, 286, 281, 306
10 };
11 int *p;
12
13 for (p = &a[1]; p <= &a[8]; ++p) {
14 printf("%d\n", (p[-1] + p[0] + p[1]) / 3);
15 }
16 }

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 8 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Here is the arraya:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008

a[0]

261

a[1]

256

a[2]

251

a[3]

276

102010191018101710161015

a[8]

281

a[9]

306...

The first time we execute line 14, we can access this region of memory as if it were an array ofint’s
namedp starting at address 1002:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008

p[-1]

261

p[0]

256

p[1]

251

p[2]

276

102010191018101710161015

p[7]

281

p[8]

306...

The second time we execute line 14, we can access this region of memory as if it were an array of
int’s namedp starting at address 1004:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008

p[-2]

261

p[-1]

256

p[0]

251

p[1]

276

102010191018101710161015

p[6]

281

p[7]

306...

The third time we execute line 14, we can access this region of memory as if it were an array of
int’s namedp starting at address 1006:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008

p[-3]

261

p[-2]

256

p[-1]

251

p[0]

276

102010191018101710161015

p[5]

281

p[6]

306...

Access any region of memory as if it were an array of whatever data type you want

In binary, the number 261 is00000001 00000101, i.e., a byte containing 1 followed by a byte
containing 5. If we said

char *q = (char *)&a[0]; /* Put the number 1000 into q. */

we could then access this region of memory as if it were an array ofchar’s namedq starting at address
1000:

999

q[-1]

1

1000

q[0]

5

1001

q[1]

1

1002

q[2]

0

1003

q[3]

0

1004

q[4]

251

1005

q[5]

1

1006

q[6]

20

1007

q[7]

1

1008

q[8]

1020

50

1019

q[19]

1

1018

q[18]

15

1017

q[17]

1

1016

q[16]

20

1015

q[15]

...

In binary, the number 261 is 00000001 00000101 and the number 256 is
00000001 00000000. Together, they make up the four-byte number
00000001 00000101 00000001 00000000, i.e., 67,072. If we said

long *r = (long *)&a[0]; /* Put the number 1000 into r. */

we could then access this region of memory as if it were an array oflong’s namedr starting at address
1000:

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 9 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

999 1000 1001 1002 1003 1004 1005 1006 1007 1008

r[0]

67072

r[1]

64532

102010191018101710161015

r[4]

72242...

★ A notation that you should never use

There’s another way to writep[1], although it’s less concise.If p is the address of anint, then the
expressionp+1 is the address of the adjacentint. (We used this when we wrotep=p+1 or ++p.) There-
fore *(p+1) is the value of the adjacentint. Therefore the expressionsp[1] and*(p+1) have the
same value, but you should writep[1] because it’s simpler.

▼ Homework 3.1: Simplify the following expressions

Change the unary* operator and the binary+ operator to the[] operator. Remove the parentheses.

int *p;
int i;

*(p+1) *(p+i)
*(p-1) *(p-i)
*(p+10) *(p+i-1)
*(p-10) *(p+0) Keep the*.

▲

An array name is a pointer

In most languages you get an error message if you omit the subscript from an array:

int a[10];
int i = 0;

a[i] /* legal */
a /* illegal in most languages, but legal in C */

In C, however, the name of an array by itself is a legal expression whose value is the address of the first ele-
ment of the array. For example, the expressionsa and&a[0] below hav ethe same value.

You can apply the unary& operator to a non-array variable such asi or to an array element such as
a[0]or a[i]. But &a is illegal: to get the address of the first element of the array, simply writea.

1 #include <stdio.h>
2
3 main()
4 {
5 int a[10];
6 int i = 10;
7
8 printf("%p\n", &i); /* Print the address of i. */
9 printf("%p\n", &a[0]); /* Print the address of a[0]. */
10 printf("%p\n", a); /* Print the address of a[0]. */
11 }

A simpler notation: K&R p. 99; King pp. 230−231

The expressiona is really a ‘‘pointer toint’’ : its value is the address of anint (namely, the first
int in the array). Moreover, as with any other ‘‘pointer toint’’ , a+1 is the address of the nextint, and
a+2 is the address of theint after that.For example,

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 10 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

for (p = &a[0]; p < &a[10]; ++p) { /* before */
for (p = a; p < a + 10; ++p) { /* after */

for (p = &a[10 - 1]; p >= &a[0]; --p) { /* before */
for (p = a + 10 - 1; p >= a; --p) { /* after */

▼ Homework 3.2: Rewrite a bubble sort using pointers

—On the Web at
http://i5.nyu.edu/∼ mm64/x52.9232/src/bubble.c

1 /* Bubble sort an array of 10 ints into ascending order. The for loop in lines
2 29-38 will move the array elements part of the way into the correct order.
3
4 If some moves were made, it means that we should execute this for loop again to
5 see if additional moves will be made. In this case, flag is set to 1 to make
6 the do-while loop execute the for loop again.
7
8 If no moves were made, it means that the elements are already in order. In this
9 case, flag remains 0 and the do-while loop terminates. */
10
11 #include <stdio.h>
12
13 main()
14 {
15 int a[10];
16 int i; /* index into the array */
17 int flag; /* set to 1 to ensure one more trip */
18 int temp; /* temporary storage for exchanging values */
19
20 /* Initialize the array with the numbers to be sorted. */
21 printf("Type %d numbers. Press RETURN after each one.\n", 10);
22 for (i = 0; i < 10; ++i) {
23 scanf("%d", &a[i]);
24 }
25
26 /* Bubble sort the array into ascending order. */
27 do {
28 flag = 0;
29 for (i = 0; i < 9; ++i) {
30 if (a[i] > a[i+1]) {
31 temp = a[i]; /* swap a[i] and a[i+1] */
32 a[i] = a[i+1];
33 a[i+1] = temp;
34
35 flag = 1;
36 }
37 printf("debug: i == %d\n", i);
38 }
39 } while (flag == 1);
40
41 /* Output the array. */
42 for (i = 0; i < 10; ++i) {
43 printf("%11d\n", a[i]);
44 }

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 11 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

45 }

Change the program to refer to the array elements by a pointer rather than by subscripting.Follow
these nine steps.

(1) Download the above program and make sure it works.

(2) Remove the variablei and its declaration, and replace it with a ‘‘pointer toint’’ called p. The
induction variable of the threefor loops will now bep instead ofi. You get no credit if the variable
i appears anywhere, even in the comments.

(3) Thestarting and ending points of the threefor loops will now be memory addresses instead of num-
bers. Change0 to &a[0]; change10 to &a[10]; and change9 to &a[9];

(4) Change&a[i] to p in the scanf: the variablep now holds the address at whichscanf is to
deposit each input number.

(5) Changea[i] to *p or to p[0] ev erywhere. *p andp[0] have the same value. Butit’s stylisti-
cally better to usep[0] in statements in which you also mention its neighborsp[1] or p[-1], etc;
use*p elsewhere.

(6) Changea[i+1] to p[1] ev erywhere.

(7) In the debugging statement, changei to p - &a[0]. p is the address of one of theint’s in the
array, and&a[0] is the address of the firstint in the array. When you subtract the addresses of two
int’s, the result is automatically divided by the number of bytes in anint, yielding the number of
int’s from the start of the array to theint pointed to byp. See K&R p. 103; King pp. 221−223.

This division is the counterpart of the automatic multiplication that takes place when you add a num-
ber to a pointer:p=p+1. The number1 is multiplied by the number of bytes in anint before it is
added top. See K&R pp. 98−99; King pp. 222−223.

(8) Usethe simpler notation shown above wherever possible. For any integern, change&a[n] to
a+n. Whenn is zero, change&a[0] to a instead of toa+0. You get no credit if you apply the[]
operator and the& operator to the same expression (e.g.,&a[0]). You get no credit if you use the★
‘‘ notation you should never use’’ (e.g.,*(a+n)) on p. 11.

(9) Also changebubble.c to use a#define so that the number10 appears exactly once in the file.
Change10 to N (in the comments too) and change9 to N - 1. You get no credit if the number9
appears anywhere, even in the comments.You get no credit if the number10 appears anywhere,
ev en in the comments, except in exactly one#define.

(10) Make sure the comments are up-to-date.You get no credit if they mention the variablei or the num-
bers9 or 10.

Verify that the program still works after this surgery. The debugging statement will tell you how
many times the middlefor loop iterates. Make sure it still iterates nine times during each iteration of the
do-while loop. Thenremove the debugging statement before you make the printout to hand in.
▲

Fall 2006 Handout 3printed 12/21/06
10:28:27 AM − 12 − All rights

reserved ©2006 Mark Meretzky

