NYU SCPS X52.9232 Section 6 C Programming, Part |

Fall 2006 Handout 3

Common errors

The chief obstacle to correct diagnosis in painful conditions isatiettiat the
symptom is often felt at a distance from its source.

—Texbook of Orthopaedic Medicine,
quoted by Philip Roth iThe Anatomy Lesson

(1) The error message mawhkahe wrong line number: look at the previous line(s).
(2) Make aire that the following pairs of characters are balanced:

{ } o

() C

[] < > onlyin#i ncl ude directives
1* *

(3) Does gery comment end with &/ ? Has a comment without a terminatihg swalloved a sec-
tion of your program? Comments do not nest.

/* good coment */
/ * bad comrent */
/* bad comment * /

(4) Did you accidentally type parentheses insteddsqfiare bracketsaround an array subscript?
(5)i f,for,#defi ne, etc., must all be lowercase.

(6) Did you confuse the letters and didits1, |, o, 0? Did you use the wrong case (upper vs.
lower)? Didyou confusd with\ ? Did you accidentally typ#& instead of¢ in a#def i ne or
#i ncl ude? Did you accidentally type invisible control characters into yaufile?

(7) Put no white space in tokens suckas += == &&etc.

(8) There must be parenthesis around the logiqalession in am f , whi | e, and do- whi | e, and
the expression inswi t ch.

(9) Did you foget the comma between functiomgaments? Ishere a semicolon at the end oty
statement? Digou accidentally write a semicolon immediately after}that the end of a function®id
you accidentally write a semicolon after phat the end of &or orwhi | e line:

for (i =0; i < 10; ++i); { /* wong */
bl ah bl ah bl ah;
}

(10) Did you accidentally sayf (a = b) insteadoif (a == b)?

(11) Did you try topri ntf al ong with % instead of%4 d? Did you try toscanf adoubl e
with % instead o f ? Make are that théoformats agree with the data types of the expressionseyou’
outputting or inputting. Did you forget ti&s in ascanf ?

(12) Read your program from a printout instead of the scrB@hyou accidentally chop bthe top
or bottom of the program®an you get it to compile bymaing or commenting out certain sections?
Shaow it to someone elseTake a beak.

Fdl 2006 Handout 3165637 A -1- hesenea ©2006 Mark Meretzky

abrwnNPE

NYU SCPS X52.9232 Section 6 C Programming, Part |

(13) Examine thei file created by running only the C preprocessot the full compilerwith the
uppercase E option:

1$ gcc -E prog.c > prog.i
2$ nore prog.i

(14) Does the C++ compileng ketter error messages?

Subscripting is actually a binary operator: K&R p. 201, §A7.3.1; King pp. 140-141
a[i] is an expression, just liketj andi -j :

The value of thexpressiora[i] is the value of theé 'th dement of the arrag. Of all the expressions we
have ®en so faronly an array can be the left operand bt

int a[10];
int i =0;
ali] /* good */
i[a] /* bad */

When eduating the &pressionc+al b] , the computer first delves into the array to get thlees of
the expressiom[b] , and then performs the addition. In other wordscitorites thg] operator before the
+ operatoyr because th¢] has higher precedence than the urtamyperator in the table on K&R p. 53;
King p. 595.

Function calling is actually an operator: K&R p. 201, 8A7.3.2; King pp. 161-162
f () is an expression, just liket+ andi - - :

f (x) is an expression, just liketj anda[i]:

Fdl 2006 Handout 3165657 A -2- hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |

The \alue of the gpressionf (x) is the value computed by (cgturned by) the functionf when
you give it X as an agument. Noevay function returns a value; those that do not are said to retird.
If f were avoi d function, you could not use the value of tixpressiorf (x) as part of a largerxpres-
sion. Ofall the expressions we V@ gen so faronly a function can be the left operand9f.

#i ncl ude <stdio. h>
#i ncl ude <math. h> /* needed for sqrt */

double x = 2.0;

sqrt (x) /* good */
x(sqrt) /* bad */

When &aduating the gpressiony+f (x) , the computer first calls the functibrwith the agumentx
to get the value of thexpressiorf (x) , and then performs the addition. In other wordsxicaites the)
operator before the operatoybecause th€) has higher precedence than the birapperator in the table
on K&R p. 53; King p. 595.

Each agument of a function is a subexpression, and it is impossible to predict the order in which
these subexpressions will bealiated. Thefollowing pri ntf may print diferent values on diérent
machines (K&R p. 53; King p. 595):

int i = 10;

printf("%l %\n", ++i, i);

11 11 Some machines evaluate the function arguments from left to right.

11 10 Other machines evaluate the function arguments from right to left.

How to recognize the three kinds of parentheses in an expression
(1) A pair of parentheses that encloses the name of a data type is a cast (K&R p. 45); King pp.
127-128, listed on line 2 of the table on K&R p. 53; King p. 595:

(int)i
(unsigned long)i

(2) Otherwise, a pair of parentheses that hascpression in front of it is the function call operator
(), listed on line 1 of the table on K&R p. 53; King p. 595:

(3) Otherwise, the pair of parentheses is the kind thatides the precedence and associativity of
operators. Thikind is not listed in the table on K&R p. 53; King p. 595.

Fdl 2006 Handout 3165657 A -3- hesenea ©2006 Mark Meretzky

O©CoO~NOUILPWNPE

14
15

16
17

NYU SCPS X52.9232 Section 6 C Programming, Part |

f(x) f is an expression.

a* (b +c a+ is not an expression.
(*p) (x) (*p) is an expression.
*p(x) p is an expression.

In the expression(* p) (x) , the first pair of parentheses is thesmiding kind, and the second pair is the
function call operatorHandout 2, p. 30, lines 14 and 21 eactehd three kinds of parentheses.

Create a pointer variable: K&R pp. 93-95; King pp. 205-207

Every variable has tavnumbers: itssalue and itsaddress.The value of a variable may change as the
program runs, but the addreswvarewill. If a variable occupies tavor more bytes of memoryhese bytes
will always be consecuwie. The address of aaviable is the address of the byte within it that has thvedb
address.

In the following example the value of is 10. Assume that the address iofis 1000 and that
si zeof i is2.

A pointer is a variable whose value is the address of anotirable. Br example, the value gfis
the address df. We sy thatp is a pointer toi , or thatp points toi , when the value gb is the address
ofi.

Why does the* p in line 12 fetch an nt from memory as goposed to @oubl e or an indvidual
char ? It's because of the declaration in line 6.

The following example assumes tlsatzeof p is equal tosi zeof i, but this may not be true on
all machines.

998 999 1000 1001 1002 1003 1998 1999 2000 2001 2002 2003
10 C 1000

[P
#i ncl ude <stdi o. h>

mai n()

{
int i = 10; /* Create a variable of type "int". */
int *p = &; /* The value of p is now the address of i, nanely 1000.
printf("%\n", i); /* Print i in decimal. */

printf("%\n", &); /* Print & in your platform s conventional base. */

printf("%\n", p);
printf("%l\n", *p);

You can split line 5 into
int i;
i = 10;

—but why would you want to?
You can split line 6 into
int *p;
p = &;

—but why would you want to?

Fdl 2006 Handout 31656374 -4- hesenea ©2006 Mark Meretzky

*/

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

QUOWO~NOULEA,WN P

14

NYU SCPS X52.9232 Section 6 C Programming, Part |
10 line 8
1000 line 9
1000 line 11
10 line 12

You can't pri ntf (" %\ n", *p) until you hae first assigned a value and also assigned a
value to the wariable whose address you putpin These tw assignments can be made in either order as
long as both are performed before thie nt f .

#i ncl ude <stdi 0. h>

mai n()

{
int i;
int *p;
printf("%l\n", *i);
printf("%l\n", *p);
p = &;
printf("%\n", p);
i = 10;
printf("%l\n", *p);

/* won't
/* m ght

/* okay,
/* okay,

conpile: i is an int, not a pointer */
bl ow up: p has not yet received a val ue */

even though i has not yet received a value */
even though i has not yet received a value */

/* okay */

Change the value of a variable without mentioning its name

Here are tw ways to add the values of the variablesndj and put the sum ik.

#i ncl ude <stdi 0. h>

mai n()

{
int i = 10;
int j = 20;
int k=1 +j;

printf("%l\n", Kk);
}

#i ncl ude <stdi 0. h>

mai n()
{ . .

int i;

int j;

int k;
& ;
& ;
&k;

int *p
int *q
int *r

10;

20;

=*p t+ *q;
printf("%l\n", *r);

*
o)
[|

Fdl 2006 Handout 355855

/* Put
/* Put
/* Put
[* Pri

10 into i. */
20 into j. */

i +j into k. */
nt k. */

-5- hesenea ©2006 Mark Meretzky

27

1
2
3
4
5

NYU SCPS X52.9232 Section 6 C Programming, Part |

Use a pointer to loop through an array: K&R pp. 97-100; King pp. 224-226

Here is another way to sum up the numbers in the array in Handout 2, phd@ddress of the first
array element iga[0] .

The address of the second eleme®af1] . The address of the twelfth elemen&s| 11] . If there vas
a thirteenth array element, its address woul@&hf12] ; but there isrt. Therefore®a[12] is the address
of the first byte after the end of the array (top of K&R p. 103; King p. 225).

We muld also hae wittenp <= &a[11] instead ofp < &a[12] in line 24 belay, just as we
could hae writteni <= 11 instead ofi < 12 in Handout 2, p. 10, line 24. But in a program to loop
through the twele nonths of the yeait’s dearer to write the magic numb&P explicitly.

On a machine whergi zeof (i nt) is 2, the gpressionp=p+1 actually adds 2 to the value pf
On a machine wherei zeof (i nt) is 4, the gpressionp=p+1 will add 4 to the value op. In both
cases, this le@s p pointing to the next nt in memory.

In Handout 2, p. 10, line 24, you can change i + 1to++i. Inline 24 belay, you can change
p =p + 1lto++p.

In Handout 2, p. 10, line 25, you can chasgen = sum + a[i] tosum += a[i]. Inline 25
belov, you can changgeum = sum + *ptosum += *p.

The following diagram assumes tt&#[0] is 1000 and thasi zeof (i nt) is2.

999 1000 1001 1002 1003 1004 1019 1020 1021 1022 1023 1024
31 28 L 30 31
a[0] a[1] ' ‘ a[10] a[11] ‘

—On the Web at
http://i5. nyu. edu/ Omb4/ x52. 9232/ src/array?2.c

/* Print the nunber of days in a non-leap year. */
#i ncl ude <stdio. h>

mai n()
{
int a[12] = {
31, [* January */
28, [* February */
31, /[* March */
30, [* April */
31, /* May */
30, [* June */
31, [* July */
31, /* August */
30, [* Septenber */
31, /* Cctober */
30, /* November */
31, [* Decemnber */
1

Fdl 2006 Handout 3165657 A -6- hesenea ©2006 Mark Meretzky

20
21
22
23
24
25
26
27
28
29

OO, WN P O©CoOo~NOOOUTA,WNPE

abrwNRE

NYU SCPS X52.9232 Section 6 C Programming, Part |

int *p; /* point to each array el ement */
int sum= 0;
for (p = &[0]; p < &[12]; p=p + 1) {
sum = sum + *p;
}
printf("%l\n", sum;
}

What not to use a pointer for
There is no need to create an array and a pointer just to iterate 10 8imgdy create a caen-
tionali nt variable and hee it count from 1 to 10.

/* Print the word "hello" 10 tinmes. */
#i ncl ude <stdi o. h>

mai n()

{
int a[10];
int *p;

for (p = &[0]; p < &[10]; ++p) {
printf("hello\n");
}

Leading * vs. trailing [0]

If p points to an nt , the two expressiong p andp[0] have the same value—the value of thet
thatp points to. Thg are equally efficient in space and speed.

int i = 10;

int *p = & ;

printf("%l\n", i);

printf("%\n", *p);
printf("%\n", p[0]);

10
10
10

This is as &r as we can go in the almexample—there is only onient to point to (the ariablei).
But in the next example with a pointer will point to ani nt that has other nt’'s as its left and right
neighbors.

Access adjacent ins in memory: K&R p. 99; King pp. 230-231

/* Gven an array of 10 int's, this programprints a list of 8 int’s. Each of
the 8 int’s is the average of 3 consecutive int’s in the array. For exanple,
the first int printed is the average of the first 3 int’s in the array. */

#i ncl ude <stdio. h>

Fdl 2006 Handout 3165657 A -7- hesenea ©2006 Mark Meretzky

6
7
8
9
10
11
12
13
14
15
16

©CoOo~NOOOTA,WNPE

NYU SCPS X52.9232 Section 6 C Programming, Part |

mai n()
{
int a[10] = {
261, 256, 251, 276, 271, 266, 291, 286, 281, 306
i
int i;

for (i =1; i <= 8; ++) {
printf("%l\n", (a[i-1] + a[i] + a[i+1]) / 3);

}

256 a nice linear pogression, once the static has been removed
261
266
271
276
281
286
291

In the following example, thealues of the xpression[1], p[2], p[3], €c., are the values of
the adjaceni nt ’s to the right ofp[0] (i.e., tavards higher memory addresses), afid 1], p[- 2] ,
p[- 3], ec., are the values to the leffhus ay regon of memory can be accessed by a notation that
malkes the region look li an aray ofi nt's extending in both directions. Simply put the address of the
start of the region intp and then usp[0] , p[1] ,p[2], p[- 1] , etc.

We write

p[-1] + p[0] + p[1]
in line 14 belw, rather than

p[-1] + *p + p[1]

for stylistic consistency: we wapf{ - 1] , p[0] , andp[1] to look like three elements of an array called

p. Although there is no an array with this name, we create the illusion that one exists and that it is located
exactly where we want it: with its zero elemgitO] being the second of the threat 's we want to sum

up. Thisillusory array is portable: we center it on a differient during each iteration.

/* The same program with a pointer p instead of an integer index i. */

#i ncl ude <stdi o. h>

mai n()
{
int a[10] = {
261, 256, 251, 276, 271, 266, 291, 286, 281, 306
s
int *p;

for (p = &[1]; p <= &a[8]; ++p) {
printf("%\n", (p[-1] + p[O] + p[1]) / 3);

Fdl 2006 Handout 31656574 -8- hesenea ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part |

Here is the arrag:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1015 1016 1017 1018 1019 1020
261 256 251 276 . 281 306
a[0] a[1] a[2] a[3] ‘ ‘ a[8] a[9]

The first time we xecute line 14, we can access thigiom of memory as if it were an arrayiafit 's
namedp starting at address 1002:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1015 1016 1017 1018 1019 1020
261 256 251 276 o 281 306
p[-1] p[0] p[1] p[2] p[7] p[8]

The second time wexecute line 14, we can access thigiom of memory as if it were an array of
i nt’s namedp starting at address 1004:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1015 1016 1017 1018 1019 1020
261 256 251 276 . 281 306
p[-2] p[-1] p[0] p[1] p[6] p[7]

The third time we xecute line 14, we can access thigiom of memory as if it were an array of
i nt’s namedp starting at address 1006:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1015 1016 1017 1018 1019 1020
261 256 251 276 .. 281 306
‘ p[- 3] p[- 2] p[- 1] p[0] ‘ ‘ p[5] p[6]

Access any region of memory as if it weran aray of whatever data type you want

In binary the number 261 90000001 00000101, i.e., a byte containing 1 folied by a byte
containing 5. If we said

char *q = (char *)&a[O0]; /* Put the nunber 1000 into q. */

we could then access this region of memory as if it were an armlyasf's namedq starting at address
1000:

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1015 1016 1017 1018 1019 1020
1 /51|01 o01251] 11|20 1] ... |20l 1 |15| 1 |50
ql-1 q[0] a[1] q[2] q[3] a[4] a[5] a[6] a[7] d[8] q[15 q[16]q[17]q[18]q[19

In binary the number 261 is 00000001 00000101 and the number 256 is
00000001 00000000. Togetherthey make up he four-byte number
00000001 00000101 00000001 00000000, i.e., 67,072. If we said

long *r = (long *)&[0]; /* Put the nunber 1000 into r. */

we could then access this region of memory as if it were an arfagnaf's namedr starting at address
1000:

Fdl 2006 Handout 3165657 A -9- hesenea ©2006 Mark Meretzky

PO OWoO~NOOULRA, WNPE

e

NYU SCPS X52.9232 Section 6 C Programming, Part |

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1015 1016 1017 1018 1019 1020
67072 64532 .. 72242
‘ rro] T[] ‘ ‘ r[4] ‘

O A notation that you should never use

Theres another way to writg[1] , dthough it's less conciself p is the address of amt , then the
expressiomp+1 is the address of the adjacemit . (We wsed this when we wrojg=p+1 or ++p.) There-
fore *(p+1) is the value of the adjacennht . Therefore the xpressiong[1] and*(p+1) have the
same value, but you should wrfig 1] because is smpler.

v Homework 3.1: Simplify the following expressions
Change the unary operator and the binaryoperator to th¢]| operator Remove the parentheses.

int *p;

int i;

*(p+l) *(p+i)

*(p-1) “(p-i)

*(p+10) *(pti-1)

*(p-10) *(p+0) Keep the* .

A

An array name is a pointer
In most languages you get an error message if you omit the subscript from an array:

int a[10];

int i =0;

ali] [* legal */

a /* illegal in nost |anguages, but legal in C */

In C, havever, the name of an array by itself is gdkexpression whose value is the address of the first ele-
ment of the arrayFor example, the expressioagand&a[0] below havethe same value.

You can apply the unar§ operator to a non-arrayakiable such as or to an array element such as
a[0]ora[i]. But&aisillegd: to get the address of the first element of the asianply write a.

#i ncl ude <stdi o. h>

mai n()
{
int a[10];
int i = 10;
printf("%\n", &); /* Print the address of i. */
printf("%\n", &J[O0]); /* Print the address of a[0]. */
printf("%\n", a); /* Print the address of a[0]. */
}

A simpler notation: K&R p. 99; King pp. 230-231

The «pressiona is really a “pointer to nt " : its value is the address of ant (namely the first
i nt in the array). Moreeer, as with ary other “pointer toi nt ”, a+1 is the address of the nexut , and
a+2 is the address of thent after that. For example,

Fdl 2006 Handout 31656574 -10- hesenea ©2006 Mark Meretzky

©CoOo~NOOOUOTA,WNPE

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

NYU SCPS X52.9232 Section 6 C Programming, Part |

for (p = &[0]; p < &[10]; ++p) { /* before */
for (p =a;, p<a+ 10; ++p) { /* after */
for (p = &f[10 - 1], p >= &a[0]; --p) { /* before */
for (p=a+10 - 1, p >= a;, --p) { [* after */

v Homework 3.2: Rewrite a bubble sort using pointers
—On the Web at
http://i5. nyu. edu/ Omb4/ x52. 9232/ src/ bubbl e. c

/* Bubble sort an array of 10 ints into ascending order. The for loop in lines
29-38 will nmove the array elenments part of the way into the correct order.

If sone noves were made, it means that we should execute this for | oop again to
see if additional noves will be nade. |In this case, flag is set to 1 to make
the do-while | oop execute the for |oop again.

If no noves were made, it neans that the elements are already in order. In this
case, flag remains 0 and the do-while |oop term nates. */

#i ncl ude <stdi o. h>

mai n()
{
int a[10];
int i; /[* index into the array */
int flag; /* set to 1 to ensure one nore trip */
int tenp; /* tenporary storage for exchanging val ues */

/* Initialize the array with the nunbers to be sorted. */
printf("Type % nunbers. Press RETURN after each one.\n", 10);
for (i =0; i < 10; ++i) {

scanf ("%", &a[i]);

}
/* Bubble sort the array into ascending order. */
do {
flag = 0;
for (i =0; i <9; ++i) {
if (a[i] > ali+l]) {
temp = a[i]; /* swap a[i] and a[i+1] */
a[i] = a[i+1];
a[i +1] = tenp;
flag = 1;
}
printf("debug: i == %\n", i);
}

} while (flag == 1);

/* Qutput the array. */

for (i =0; i < 10; ++i) {
printf("%d1d\n", a[i]);

}

Fdl 2006 Handout 3165657 A -11- hesenea ©2006 Mark Meretzky

45

NYU SCPS X52.9232 Section 6 C Programming, Part |

Change the program to refer to the array elements by a pointer rather than by subsériong.
these nine steps.

(1) Download the abee program and maksaure it works.

(2) Remae the \ariablei and its declaration, and replace it with a “pointer @ " called p. The
induction variable of the thrdeor loops will nav be p instead of . You get no credit if theariable
i appears anywhereyen in the comments.

(3) Thestarting and ending points of the thfe@r loops will nav be nemory addresses instead of num-
bers. Chang8 to &a[0] ; changelO to &a[10] ; and chang® to &a[9] ;

(4) Changegali] to p in thescanf: the \ariablep now holds the address at whidtanf is to
deposit each input number.

(5) Changea[i] to*p ortop[0] evaywhere.*p andp[0] have the same alue. Butit's gylisti-
cally better to use[0] in statements in which you also mention its neighpdrs] orp[- 1], €c;
use* p elsewhere.

(6) Changa[i +1] top[1] eveywhere.
(7) Inthe debugging statement, chariggop - &a[0] . p is the address of one of that s in the
array and &a[0] is the address of the firsht in the array When you subtract the addresses af tw

i nt'’s, the result is automatically divided by the number of bytes inrdan yielding the number of
i nt’s from the start of the array to thet pointed to byp. See K&R p. 103; King pp. 221-223.

This division is the counterpart of the automatic multiplication thastigkace when you add a num-
ber to a pointerp=p+1. The numbe is multiplied by the number of bytes in ant before it is
added tg. See K&R pp. 98-99; King pp. 222-223.

(8) Usethe simpler notation shown almwherever possible. Br ary integem, change&a[n] to
a+n. Whenn is zero, chang&a[0] to a instead of taa+0. You get no credit if you apply tHd
operator and th& operator to the samepgression (e.g&a[0]). You get no credit if you use thé
“ notation you should wer use’ (e.g.,* (a+n)) on p. 11.

(9) Alsochangebubbl e. ¢ to use a#def i ne so that the numberQ appears exactly once in the file.
Changel0 to N (in the comments too) and chang¢o N - 1. You get no credit if the numbér
appears anywhereyen in the comments.You get no credit if the numbetO appears ayrwhere,
evan in the comments, except in exactly ofeef i ne.

(10) Male wre the comments are up-to-da¥au get no credit if thg mention the ariablei or the num-
bers9 or 10.

Verify that the program still works after this gery The deligging statement will tell you ko
mary times the middlé or loop iterates. Mad are it still iterates nine times during each iteration of the
do- whi | e loop. Therremore the debugging statement before you mtie printout to hand in.

A
O

Fdl 2006 Handout 3165657 A -12- hesenea ©2006 Mark Meretzky

