
NYU SCPS X52.9232 Section 6 C Programming, Part I

Spring 2007 Handout 2

If-then-else vs. switch: K&R pp. 58−60, 223; King pp. 74−79

—On the Web at
http://i5.nyu.edu/ ∼mm64/x52.9232/src/switch1.c

1 /* P rint the years 1992 to 2012, one per line, listing which ones are
2 presidential, congressional, and local election years. */
3 #include <stdio.h>
4
5 main()
6 {
7 i nt year;
8
9 f or (year = 1992; year <= 2012; year = year + 1) {

10 printf("%d: ", year);
11
12 if (year % 4 == 0) {
13 printf("presidential election year\n");
14 } else if (year % 4 == 2) {
15 printf("congressional election year\n");
16 } else {
17 printf("local election year\n");
18 }
19 }
20 }

1992: presidential election year
1993: local election year
1994: congressional election year
1995: local election year
1996: presidential election year
1997: local election year
1998: congressional election year
1999: local election year
2000: presidential election year
2001: local election year
2002: congressional election year
2003: local election year
2004: presidential election year
2005: local election year
2006: congressional election year
2007: local election year
2008: presidential election year

—On the Web at
http://i5.nyu.edu/ ∼mm64/x52.9232/src/switch2.c

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 1 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1 /* S ame output as the above program, but use switch instead. */
2 #include <stdio.h>
3
4 main()
5 {
6 i nt year;
7
8 f or (year = 1992; year <= 2012; year = year + 1) {
9 printf("%d: ", year);

10
11 switch (year % 4) { /* Always write the curly braces. */
12
13 case 0:
14 printf("presidential election year\n");
15 break;
16
17 case 2:
18 printf("congressional election year\n");
19 break;
20
21 default:
22 printf("local election year\n");
23 break;
24 }
25 }
26 }

The language does not the define the order in which thecase ’s are examined.

No breaks

—On the Web at
http://i5.nyu.edu/ ∼mm64/x52.9232/src/switch3.c

1 /* S ame output as the above program, but use switch instead. */
2 #include <stdio.h>
3
4 main()
5 {
6 i nt year;
7
8 f or (year = 1992; year <= 2012; year = year + 1) {
9 printf("%d: ", year);

10
11 switch (year % 4) {
12
13 case 0:
14 printf("presidential/");
15
16 case 2:
17 printf("congressional/");
18
19 default:
20 printf("local\n");
21 break;
22 }

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 2 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

23 }
24 }

1992: presidential/congressional/local
1993: local
1994: congressional/local
1995: local
1996: presidential/congressional/local
1997: local
1998: congressional/local
1999: local
2000: presidential/congressional/local
2001: local
2001: congressional/local
2003: local
2004: presidential/congressional/local
2005: local
2006: congressional/local
2007: local
2008: presidential/congressional/local
2009: local
2010: congressional/local
2011: local
2012: presidential/congressional/local

▼ Homework 2.1: write a switch statement without break’s

Write a program namedpartridge.c that will print the words to the first five days ofA Partridge
in a Pear Tree. It will have exactly one variable, namedday , one for loop, and oneswitch statement,
with acase for each day of Christmas. Print an empty line after each day.

In what order must thecase ’s be written? Omitthebreak from each case except day 1; see K&R
p. 59; King pp. 76−77. In case of malfunction, add adefault after the lastcase with an error message
printing the value ofday . The words ‘‘partridge’’, ‘ ‘turtledoves’’, ‘ ‘hens’’, etc., must each appear exactly
once in your program. Put the entireswitch statement inside thefor loop, which will count from 1 to 5.
For simplicity, forget about the word ‘‘and’’ that comes after ‘‘turtledoves’’.

In a program that prints the first five days of Christmas, is it more natural to sayday<=5 or day<6 ?
They are equally efficient.

On the 1 day of Christmas my true love gave to me
A partridge in a pear tree.

On the 2 day of Christmas my true love gave to me
Two turtledoves
A partridge in a pear tree.

On the 3 day of Christmas my true love gave to me
Three French hens
Two turtledoves
A partridge in a pear tree. etc.

Then fix the word ‘‘and’’ w ith an if-then-else inside of one of thecase ’s. Also append the
ordinal suffixesst , nd , rd , and th to the day numbers with anotherswitch containing threecase ’s and
onedefault . This switch must have four break ’s. Your program must still have exactly one vari-
able. Itneeds to print only the first five days of Christmas correctly. You get no credit if the wordsOnor

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 3 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Christmas appear more than once in your program.

On the 1st day of Christmas my true love gave to me
A partridge in a pear tree.

On the 2nd day of Christmas my true love gave to me
Two turtledoves
And a partridge in a pear tree.

On the 3rd day of Christmas my true love gave to me
Three French hens
Two turtledoves
And a partridge in a pear tree. etc.

Hand in only the last version of the program.
▲

How many bytes in an int: K&R pp. 135, 204; King pp. 109−110

The parentheses are not needed around the name of a data type when it is the first word of a declara-
tion:

int i = 10; /* Don’t need parentheses around the word "int". */

In all other cases, you must parenthesize the name of a data type.For example, the operand ofsizeof
must be parenthesized when it is the name of a data type such asint , but not when it is a variable such as
i .

Use%dto print a number in decimal; use%pto print an address in whatever base is most appropriate
for your machine.

1 #include <stdio.h>
2
3 main()
4 {
5 i nt i = 10;
6
7 printf("The value of i is %d.\n", i);
8 printf("The value of negative i is %d.\n", -i);
9 printf("The address of i is %p.\n\n", &i);

10
11 printf("The size in bytes of i is %d.\n", sizeof i);
12 printf("The size in bytes of an int is %d.\n", sizeof(int));
13 }

The value of i is 10.
The value of negative i is -10.
The address of i is 7FFFB894. May be different on your machine.

The size in bytes of i is 4. May be different on your machine.
The size in bytes of an int is 4. May be different on your machine.

Overflow: K&R p. 200 §A7, pp. 257−8; King pp. 109−111

A bit is a 0 or a 1; it’s short for binary digit. Four bits constitute onenibble, for example1010 .
Eight bits constitute onebyte, for example01000001 . There are 256 different bytes because there are
256 different eight-bit combinations of1’s and0’s, ranging from00000000 to 11111111 .

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 4 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

There are 65,536 different two-byte combinations of1’s and 0’s, ranging from
0000000000000000 to 1111111111111111 . Therefore a two-byte int (or short or long) can
hold any one of 65,536 different values, ranging from −32,768 to 32,767.

There are 4,294,967,296 different four-byte combinations of1’s and0’s, ranging from
00000000000000000000000000000000 to 11111111111111111111111111111111 . There-
fore a four-byte int (or short or long) can hold any one of 4,294,967,296 different values, ranging
from −2,147,483,648 to 2,147,483,647.

There are 18,446,744,073,709,551,616 different eight-byte combinations of1’s and 0’s, ranging
from 00 to
11 . Therefore
an eight-byteint (or short or long) can hold any one of 18,446,744,073,709,551,616 different values,
ranging from −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

The following example assumes thatsizeof(int) is 4. If yoursizeof(int) is 2, change
2147483647 to 32767 and the expected output will be-32768 instead of-2147483648 .

1 #include <stdio.h>
2
3 main()
4 {
5 i nt i = 2147483647; /* largest possible value for a 4-byte int */
6
7 i = i + 1 ; / * Overflow causes no error message. */
8 printf("%d\n", i);
9 }

-2147483648

Don’t write this loop ifi is anint andsizeof(int) is 2:

1 / * d elay loop */
2 f or (i = 0; i <= 40000; i = i + 1) {
3 }

short, int, long: K&R p. 36, 196 King pp. 110−111

Don’t bother to createshort ’s if you need only a few variables of this type; simply useint ’s. Cre-
ateshort ’s only when you need very many of them, i.e., anarray of them.

The keyword int is optional in lines 1 and 3. Remove it.

On machines wheresizeof(int) == sizeof(long) , line 7 might still work if accidentally
wrote"d" instead of"ld" . But that’s no reason to do it wrong.

1 s hort int s = 32767;
2 i nt i = 2147483647;
3 l ong int tallsally = 2147483647;
4
5 printf("%d\n", s);
6 printf("%d\n", i);
7 printf("%ld\n", tallsally); /* percent lowercase LD */
8
9 s canf("%hd", &s);

10 scanf("%d", &i);
11 scanf("%ld", &tallsally); /* percent lowercase LD */

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 5 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

char: K&R pp. 15−16, 36, 37, 195 King pp. 111−112, 116−118

The namechar is a misnomer. A char is actually a one-byte integer:

1 c har c = 65;
2 printf("%d\n", c); /* It prints 65 */

One example of a number that you can store in achar is the ASCII code of a character. A char
has room for the ASCII code of only one character. We’ll talk about strings of characters after we do arrays
(K&R pp. 22−24, 28−31; King pp. 139−140).

3 c har c = 65; /* Puts 01000001 into c. */
4
5 printf("%d\n", c); /* It prints 65 */
6 printf("%c\n", c); /* It prints A */
7 putchar(c); /* Simpler way to do the same thing: it prints A */
8
9 / * L et the user type one character, and store its ASCII code into c: */

10 scanf("%c", c);
11 c = getchar(); /* A simpler way to do the same thing. */

Single quotes: K&R pp. 19−20, 37−38, 193−194; King p. 117

Enclose exactly one character in single quotes, even though K&R p. 193, §A2.5.2; permits more than
one. Thevalue of this expression is the ASCII code of the quoted character.

1 c har c = 65; /* Puts 01000001 into c. */
2 c har d = ’A’; /* Puts 01000001 into d. */
3
4 printf("%d", c); /* It prints 65 */
5 printf("%c", c); /* It prints A */
6
7 printf("%d", d); /* It prints 65 */
8 printf("%c", d); /* It prints A */

Here is a trickier example:

9 c har c = ’ ’; /* Put the byte 00100000 into c (32). */
10
11 printf("%c", c); /* It prints a blank. */
12 printf("%d", c); /* It prints 48 */

An even trickier example:

13 char c = ’ 0’; /* Put the byte 00110000 into c (48). */
14 char d = 0; / * P ut the byte 00000000 into d. */
15
16 printf("%c", c); /* It prints 0 */
17 printf("%d", c); /* It prints 48 */
18
19 printf("%c", d); /* It prints nothing at all. */
20 printf("%d", d); /* It prints 0 */

To put theASCII code of a non-printing character such as BEL into a variable,

21 /* All four of these statements create beep and put 00000111 into it. */
22 char beep = ’\007’; /* octal */
23 char beep = ’\x07’; /* hex */
24 char beep = 7; /* decimal */

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 6 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

25 char beep = ’\a’; /* "alarm" */

26 char newline = ’\n’;
27 char tab = ’\t’;
28 char eos = ’\0’; /* End of string: the byte 00000000 */

1 /* P rint a table of the ASCII codes of the printable characters. */
2 #include <stdio.h>
3
4 main()
5 {
6 c har c;
7
8 printf("decimal octal hex ASCII\n");
9

10 for (c = 32; c <= 126; c = c + 1) { /* Iterates 95 times. */
11 printf("%7d %7o %7X %7c\n", c, c, c, c);
12 }
13 }

decimal octal hex ASCII
32 40 20
33 41 21 !
34 42 22 "
35 43 23 #
36 44 24 $
37 45 25 %
38 46 26 &
39 47 27 ’
40 50 28 (etc.

In the above program, replace the starting and ending numbers with single-quoted characters (K&R
p. 249, §B2; King pp. 116−117):

for (c = ’ ’; c <= ’˜’; c = c + 1) {

Unicode characters

All the alphabets—English (i.e., Latin), Greek, Hebrew, Arabic, Japanese, Chinese, etc.—have been
concatenated into one big alphabet containing 65,536 characters. Each character therefore occupies 16 bits.
See the charts athttp://www.unicode.org

Don’t use single quotes for a Unicode character. Write them in as four-digit hexadecimal numbers:

1 #include <stddef.h> /* because wchar_t is not a keyword like char, K&R p. 193 */
2
3 wchar_t greek_alpha = 0x03B1; /* lowercase alpha: decimal 945 */
4 wchar_t hebrew_alef = 0x05D0; /* decimal 1488 */
5 wchar_t arabic_alef = 0x0627; /* decimal 1575 */

unsigned short, unsigned, unsigned long: K&R pp. 36, 196; King pp. 110−113

unsigned short , unsigned int , and unsigned long variables cannot hold negative num-
bers. Anunsigned short is the same size as ashort , an unsigned int is the same size as anint ,
and anunsigned long is the same size as along .

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 7 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

A two-byte int (or short or long) can hold any one of 65,536 different values, ranging from
−32,768 to 32,767.A two-byte unsigned int (or unsigned short or unsigned long) can also
hold any one of 65,536 different values, but they range from 0 to 65,535. In both cases there are 65,536
different values because there are 65,536 different two-byte combinations of1’s and0’s, ranging from
0000000000000000 to 1111111111111111 .

A four-byteint (or short or long) can hold any one of 4,294,967,296 different values, ranging
from −2,147,483,648 to 2,147,483,647.A four-byteunsigned int (or unsigned short or
unsigned long) can also hold any one of 4,294,967,296 different values, but they range from 0 to
4,294,967,295. Inboth cases there are 4,294,967,296 different values because there are 4,294,967,296 dif-
ferent four-byte combinations of1’s and 0’s, ranging from00000000000000000000000000000000
to 11111111111111111111111111111111 .

An eight-byteint (or short or long) can hold any one of 18,446,744,073,709,551,616 different
values, ranging from −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. An eight-byte
unsigned int (or unsigned short or unsigned long) can also hold any one of
18,446,744,073,709,551,616 different values, but they range from 0 to 18,446,744,073,709,551,615.In
both cases there are 18,446,744,073,709,551,616 different values because there are
18,446,744,073,709,551,616 different eight-byte combinations of1’s and0’s, ranging from
00 to
11 .

The keyword int is optional in lines 1,2, and 3. Remove it.

1 unsigned short int us = 65535;
2 unsigned int u = 4294967295;
3 unsigned long int ul = 4294967295;
4
5 printf("%u\n", us);
6 printf("%u\n", u);
7 printf("%lu\n", ul); /* percent lowercase LU */
8
9 s canf("%hu", &us);

10 scanf("%u", &u);
11 scanf("%lu", &ul); /* percent lowercase LU */

float, double, and long double: K&R pp. 9, 36, 37, 196, 257−258; King pp. 114−116

1 f loat f = 3.14159;
2 double d = 3.141592654;
3 l ong double daysjourney = 3.141592654;
4
5 f = 6.0225e23; /* Avogadro’s number: 6. 0225×1023 */
6 d = 6.0225e23;
7 daysjourney = 6.0225e23;
8
9 printf("%f\n", f); /* or %e or %g */

10 printf("%f\n", d);
11 printf("%Lf\n", daysjourney); /* L must be uppercase */
12
13 scanf("%f", &f);
14 scanf("%lf", &d); /* percent lowercase LF */
15 scanf("%Lf", &daysjourney); /* L must be uppercase */

1 #include <stdio.h>
2
3 main()

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 8 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

4 {
5 double d;
6
7 s canf("%lf", &d); /* percent lowercase LF */
8 printf("%10.5f\n", d); /* percent ten point five lowercase F */
9 }

1.234567 I typed this.
1.23457 It printed three blanks before the number, and rounded to 5 decimal places.

Is the number rounded or truncated to 5 decimal places?K&R p. 13, p. 153 bullet 4, and p. 244 bullet 2
don’t say. Use%.2f to print afloat or double containing an amount of money.

Conversion characters for scanf (K&R pp. 157−159, 245−246; King pp. 494−496) and printf (K&R
pp. 153−155, 243−244; King pp. 488−490)

scanf printf

char %c

short %hd %ho %hx %c %d %o %x %X

int %d %o %x

long %ld %lo %lx %ld %lo %lx %lX

unsigned short %hu %ho %hx
%c %u %o %x %X

unsigned %u %o %x

unsigned long %lu %lo %lx %lu %lo %lx %lX

float %e %f %g
%e %f %g

double %le %lf %lg

long double %Le %Lf %Lg %Le %Lf %Lg

pointer %p %p

▼ Homework 2.2: print the sizeof each data type

Write a program to print the size in bytes of the eight data typeschar , wchar_t , short , int ,
long , float , double , and long double . Some versions of C have no long double . Verify that an
unsigned is the same size as anint .
▲

An array of integers: K&R pp. 22, 86, 219; King pp. 139−143

1 /* P rint the number of days in a non-leap year. */
2 #include <stdio.h>
3
4 main()
5 {
6 i nt sum = 0;
7
8 s um = sum + 31; /* January */
9 s um = sum + 28; /* Feruary */

10 sum = sum + 31; /* March */
11 sum = sum + 30; /* April */
12 sum = sum + 31; /* May */
13 sum = sum + 30; /* June */

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 9 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

14 sum = sum + 31; /* July */
15 sum = sum + 31; /* August */
16 sum = sum + 30; /* September */
17 sum = sum + 31; /* October */
18 sum = sum + 30; /* November */
19 sum = sum + 31; /* December */
20
21 printf("%d\n", sum);
22 }

The subscript of an array is always enclosed by[square brackets] , not parentheses.If you create an
array containing 12 numbers as in lines 6−19 below, the subscripts go from 0 to 11.There is no subscript
12!

If you provide an initial value for each array element, as we did in lines 7−18, then you don’t hav eto
write the12 in line 6 (but you still have to write the square brackets in line 6).

—On the Web at
http://i5.nyu.edu/ ∼mm64/x52.9232/src/array1.c

1 /* P rint the number of days in a non-leap year. */
2 #include <stdio.h>
3
4 main()
5 {
6 i nt a[12] = {
7 31, /* January */
8 28, /* February */
9 31, /* March */

10 30, /* April */
11 31, /* May */
12 30, /* June */
13 31, /* July */
14 31, /* August */
15 30, /* September */
16 31, /* October */
17 30, /* November */
18 31, /* December */ /* Trailing comma optional: KR p. 218-219. */
19 };
20
21 int i;
22 int sum = 0;
23
24 for (i = 0; i < 12; i = i + 1) {
25 sum = sum + a[i];
26 }
27
28 printf("%d\n", sum);
29 }

365

In the above program, the subscripts of the months ranged from 0 to 11 inclusive. In the following
program, they range from 1 to 12 inclusive. In line 6, change13 to 12 + 1 : always write in terms of the
magic number.

1 /* P rint the number of days in a non-leap year. */

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 10 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

2 #include <stdio.h>
3
4 main()
5 {
6 i nt a[13] = {
7 0, / * d ummy element to make January have subscript 1 */
8 31, /* January */
9 28, /* February */

10 31, /* March */
11 30, /* April */
12 31, /* May */
13 30, /* June */
14 31, /* July */
15 31, /* August */
16 30, /* September */
17 31, /* October */
18 30, /* November */
19 31 /* December */
20 };
21
22 int i;
23 int sum = 0;
24
25 for (i = 1; i <= 12; i = i + 1) {
26 sum = sum + a[i];
27 }
28
29 printf("%d\n", sum);
30 }

Use the above array (dummy element, subscripts ranging from 1 to 12 inclusive) in the following three
homeworks.

Use an array to telescope a program

1 #include <stdio.h>
2
3 main()
4 {
5 i nt dependents;
6
7 printf("How many dependents do you have? ");
8 s canf("%d", &dependents);
9

10 if (dependents < 0) {
11 printf("Must be a non-negative number.\n");
12 } else if (dependents == 0) {
13 printf("You can deduct 30 dollars.\n");
14 } else if (dependents == 1) {
15 printf("You can deduct 50 dollars.\n");
16 } else if (dependents == 2) {
17 printf("You can deduct 65 dollars.\n");
18 } else if (dependents == 3) {
19 printf("You can deduct 95 dollars.\n");
20 } else if (dependents == 4) {

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 11 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

21 printf("You can deduct 105 dollars.\n");
22 } else if (dependents == 5) {
23 printf("You can deduct 120 dollars.\n");
24 } else {
25 printf("You can deduct 124 dollars.\n");
26 }
27 }

28 #include <stdio.h>
29
30 main()
31 {
32 int deduction[] = {
33 30, /* 0 dependents */
34 50, /* 1 dependent */
35 65, /* 2 dependents */
36 95, /* 3 dependents */
37 105, /* 4 dependents */
38 120 /* 5 dependents */
39 };
40
41 int dependents;
42
43 printf("How many dependents do you have? ");
44 scanf("%d", &dependents);
45
46 if (dependents < 0) {
47 printf("Must be a non-negative number.\n");
48 } else if (dependents > 5) {
49 printf("You can deduct 124 dollars.\n");
50 } else {
51 printf("You can deduct %d dollars.\n", deduction[dependents]);
52 }
53 }

Swap the values of two variables

/* bad */ /* good */
i = j ; t emp = i;
j = i ; i = j ;

j = t emp;

Bubble sort the numbers in an array

Would it be merely an inefficiency or a full-scale disaster to change the> to >= in line 30?

—On the Web at
http://i5.nyu.edu/ ∼mm64/x52.9232/src/bubble.c

1 /* B ubble sort an array of 10 ints into ascending order. The for loop in lines
2 29-38 will move the array elements part of the way into the correct order.
3
4 If s ome moves were made, it means that we should execute this for loop again to
5 s ee if additional moves will be made. In this case, flag is set to 1 to make
6 t he do-while loop execute the for loop again.
7

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 12 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

8 If no m oves were made, it means that the elements are already in order. In this
9 c ase, flag remains 0 and the do-while loop terminates. */

10
11 #include <stdio.h>
12
13 main()
14 {
15 int a[10];
16 int i; /* index into the array */
17 int flag; /* set to 1 to ensure one more trip */
18 int temp; /* temporary storage for exchanging values */
19
20 /* Initialize the array with the numbers to be sorted. */
21 printf("Type %d numbers. Press RETURN after each one.\n", 10);
22 for (i = 0; i < 10; ++i) {
23 scanf("%d", &a[i]);
24 }
25
26 /* Bubble sort the array into ascending order. */
27 do {
28 flag = 0;
29 for (i = 0; i < 9; ++i) {
30 if (a[i] > a[i+1]) {
31 temp = a[i]; /* swap a[i] and a[i+1] */
32 a[i] = a[i+1];
33 a[i+1] = t emp;
34
35 flag = 1;
36 }
37 printf("debug: i == %d\n", i);
38 }
39 } while (flag == 1);
40
41 /* Output the array. */
42 for (i = 0; i < 10; ++i) {
43 printf("%11d\n", a[i]);
44 }
45 }

Last hired, first fired

A stack is a classic information storage and retrieval system. Accountantscall it a ‘‘lifo’ ’ l ist: last in,
first out. See K&R p. 77; King p. 187.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 main()
5 {
6 i nt val[100]; /* the stack itself. Your machine may need "long". */
7 i nt sp = 0; /* stack pointer */
8
9 i nt ss; /* Your machine may need "long". */

10

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 13 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

11 printf("To hire a person, type their social security number.\n");
12 printf("To fire the most recently hired person, type a zero.\n");
13 printf("To quit, type a negative number.\n");
14
15 for (;;) {
16 scanf("%d", &ss);
17 if (ss < 0) {
18 break; /* K&R pp. 64-65; King pp. 97−98 */
19 }
20
21 if (ss > 0) { /* hire */
22 if (sp < 100) {
23 val[sp] = ss;
24 sp++;
25 } else {
26 printf("Sorry, there are already %d employees.\n", 100);
27 }
28 } else { /* fire */
29 if (sp > 0) {
30 --sp;
31 printf("Firing number %d\n", val[sp]);
32 } else {
33 printf("Sorry, there’s no one left to fire.\n");
34 }
35 }
36 }
37 }

To hire a person, type their social security number.
To fire the most recently hired person, type a zero.
To quit, type a negative number.
10 You type the numbers in italics.
20
30
0
Firing number 30.
0
Firing number 20.
40
0
Firing number 40.
0
Firing number 10.
−1

▼ Homework 2.3: is today the last day of the month?

Write a program namedmonthend.c that will input two numbers representing a month and day. It
will then print one line telling whether or not the date is the last of the month.

Begin byprintf ’ing one line of instructions for the user. Then callscanf to input the two int ’s.
Do this with two individualscanf ’s or one bigscanf :

scanf("%d%d", &month, &day);

Then write anif statement that will execute one of two possibleprintf ’s.

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 14 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

You get credit only if the program contains exactly threeprintf ’s and oneif-then-else . Use
exactly two variables, which must beint ’s. Name themmonth andday .

Ignore leap years.You get no credit if you handle leap years, even if you do it correctly. Do not
write twelve if ’s. Do not use&& or || . Keep the array of month sizes shown above: do not change the
numbers to 31, 59, 90, 120, etc.

In the following example, the user types the numbers initalics.

Input the month number (1 - 12) and day. Press RETURN after each number.
2
22
It’s not the last day of the month.

The numbers 31, 28, 31, 30, etc. must appear only in the array, not in any if . Don’t program like
this:

1 i f (month == 1) { /* January */
2 i f (day == 31) {
3 printf("It’s the last day of the month.\n");
4 } else {
5 printf("It’s not the last day of the month.\n");
6 }
7 } else if (month == 2) { /* February */
8 i f (day == 28) {
9 printf("It’s the last day of the month.\n");

10 } else {
11 printf("It’s not the last day of the month.\n");
12 }
13 } else if (month == 3) { /* March */
14 if (day == 31) {
15 printf("It’s the last day of the month.\n");
16 } else {
17 printf("It’s not the last day of the month.\n");
18 }
19 } else if (month == 4) { /* April */
20 etc.

or like this:

21 if (month == 1 && day == 31 ||
22 month == 2 && day == 28 ||
23 month == 3 && day == 31 ||
24 month == 4 && day == 30 || etc.) {
25 printf("It’s the last day of the month.\n");
26 } else {
27 printf("It’s not the last day of the month.\n");
28 }

▲

▼ Homework 2.4: what is tomorrow’s date?

Write a program namedtomorrow.c that will input three numbers representing a month, day, and
year. It will then print three numbers representing the date that is immediately after the input date.

Begin by printf ’ing one line of instructions for the user. Then callscanf to input the three
int ’s.

You get credit only if the program contains exactly two printf ’s and two if-then-else ’s. (In
other words, the words printf , if , and else must each appear exactly twice). Use exactly three

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 15 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

variables, which must beint ’s. Name themmonth , day , andyear . You get no credit if you write
day=1 more than once.

Ignore leap years.You get no credit if you handle leap years, even if you do it correctly. Do not
write twelve if ’s. Do not use&& or || . Keep the array of month sizes shown above: do not change the
numbers to 31, 59, 90, 120, etc. Do not convert to Julian (K&R p. 111) and convert back to
month/day/year. Do not use pointers. Hand in your program after it works correctly for the eight dates in
column 1 of the next Homework.

In the following example, the user types the numbers initalics.

Input the month, day, and year. Press RETURN after each number.
2
22
2007
Tomorrow is 2-23-2007.

Do the two examples below produce the same output? If so, is one of them better than the other?
Follow this principle in this homework and the next.

1 i f (profit <= loss) {
2 printf("We’re not making any money.\n");
3 }
4
5 i f (profit < loss) {
6 printf("In fact, we’re losing money.\n");
7 }

8 i f (profit <= loss) {
9 printf("We’re not making any money.\n");

10 if (profit < loss) {
11 printf("In fact, we’re losing money.\n");
12 }
13 }

▲

▼ Homework 2.5: when is the baby due?

Write a program nameddue.c that will input three numbers representing a month, day, and year. It
will then print three numbers representing the date that is 280 days after the input date.In the following
example, the user types the numbers initalics.

Input the month, day, and year. Press RETURN after each number.
1
1
2007
The baby is due on 10-8-2007.

Hand in your program after it works correctly for the following twelve dates:

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 16 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Start End
12 30 2007 10 6 2008 boundary tests around Dec. 31
12 31 2007 10 7 2008

1 1 2008 10 8 2008

3 25 2 008 12 30 2008
3 26 2 008 12 31 2008
3 27 2 008 1 1 2009

2 27 2 008 12 4 2008 boundary tests around Feb. 28
2 28 2 008 12 5 2008
3 1 2008 12 6 2008

5 23 2 008 2 27 2009
5 24 2 008 2 28 2009
5 25 2 008 3 1 2009

Simply wrap afor loop around theif statements of the previous homework. The for loop must
iterate 280 times. During each iteration, advance one day. After the loop is over, print the answer.

You get credit only if the program contains exactly two printf ’s, one for , and two
if-then-else ’s. Use exactly four variables, which must beint ’s. Name themmonth , day , year ,
andi . You get no credit if you writeday=1 more than once.

Ignore leap years.You get no credit if you handle leap years, even if you do it correctly. Do not
write twelve if ’s. Do not use&& or || Keep the array of month sizes shown above: do not change the
numbers to 31, 59, 90, 120, etc. Do not convert to Julian (K&R p. 111), add 280, subtract 365 if necessary,
and convert back from Julian to month/day/year. Do not use pointers.

✎ Extra credit. Write a faster version that loops one month at a time instead of one day at a time.
You get extra credit only if your program contains exactly twoprintf ’s, onewhile , and one
if-then-else . Use exactly three variables, which must beint ’s. Name themmonth , day , year .
Do not attempt this problem without first doing the non-extra credit part.
▲

Evaluate an expression: K&R pp. 52−54; King pp. 54−59

We’v e seen expressions such asa+b in several places: to the right of the= in an assignment state-
ment, as an argument toprintf , etc.

i = a + b ;
printf("%d\n", a + b);

When the computer computes the value of an expression, we say that the computerevaluates the expres-
sion.

The simplest expressions consist of a variable or a literal; see K&R p. 200, §A7.2; King p. 45.It
takes little work to evaluate such an expression. For example,

i = a ; / * T he expression "a" is a variable. */
printf("%d\n", a); /* The expression "a" is a variable. */

i = 1 0; /* The expression "10" is a literal. */
printf("%d\n", 10); /* The expression "10" is a literal. */

Binary operators

Tw o expressions can be joined with abinary operator such as+ - * / to make a bigger expression.
All the binary operators are listed in the table on K&R p. 53; King p. 595.Except for lines 2 and 13 (the

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 17 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

unary and ternary lines), everything listed there is a binary operator. We call thembinary because they join
two expressions, not because they hav esomething to do with binary vs. decimal.

For example,a and b are expressions; thereforea+b is an expression. We say thata and b are
subexpressionsof a+b . a is theleft operand of the+ andb is theright operand of the+.

When evaluating a+b , the computer first evaluates the subexpressionsa andb, and then it executes
the addition to evaluate the whole expressiona+b . We draw three boxes to show the order in which the
computer evaluates these three expressions: innermost boxes first, outermost box last.

+a b

Order of evaluation

Of the three expressions in the diagram above, the big expressiona+b must certainly be evaluated
last. Butwhich expression is evaluated first,a or b? The answer will be different in each vendor’s version
of C.

If one box is enclosed in another (asa is enclosed ina+b), then the inner box is always evaluated
before the outer box. But if two boxes do not enclose one another (like a andb), then it is impossible to
predict which of the two will be evaluated first.Don’t worry: in the case ofa+b , it doesn’t matter. But see
the last paragraph on K&R p. 52, and the second paragraph of K&R p. 200, §A7.

Operator precedence: King pp. 47−48

An expression can have more than one binary operator, for examplea+b*c . Which of the following
is the correct diagram for that expression? Doesthe computer execute the multiplication first or the addi-
tion first?

b c+a / multiplication before addition */

+

a *

b c

The table on K&R p. 53 (ignoring lines 2 and 13), King p. 595 says that* has higher precedence
than+. Therefore the computer executes the multiplication before the addition. Stated more technically,
b*c is a subexpression ofa+b*c , but a+b is not. b*c is the right operand of the+.

To evaluate an expression, the computer always evaluates the smallest subexpressions first—the indi-
vidual variables and constants. Then it evaluates the next-to-smallest subexpressions. Itkeeps stepping
back to take in a wider and wider view until it sees the Big Picture—the value of the entire expression.

Warning: most binary operators are a single character, but some are two or three characters:

a + b a - > b
a - b a > > b
a > b a > >= b

You can’t hav etwo binary operators with no tokens in between, so-> cannot be the operator- followed by
the operator>.

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 18 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

▼ Homework 2.6: draw the boxes

Draw the boxes to show the order of evaluation in each of the following nine expressions. Usethe
table on K&R p. 53; King p. 595, ignoring lines 2 and 13.

a * b + c a > >= b >= c

a * = b + c a - > b > c -> d

a - b > c a | | b | c

a - > b > c a = = b && c == d && e == f

a *= b && c ˆ d == e << f * g -> h + i > j & k | l || m , n

▲

▼ Homework 2.7: xerox K&R p. 53; King p. 595 (not to be handed in)

Hang up a xerox of Table 2−1 on K&R p. 53; King p. 595.Label the second lineunary; that’s the
line that contains++. Label the thirteenth lineternary; that’s the line that contains?: . Circle the three
exceptional ‘‘right to left’’ associativities.
▲

Associativity

a - b + c
1 - 2 + 3

What happens if an expression contains two or more binary operators at the same level in the table on
K&R p. 53; King p. 595, all competing to sink their teeth into the same subexpression? For example, both
of the binary operators in the expression1-2+3 are on line 4, and they both want to attack the2. Is the
value of the whole expression 2 or −4?

-1 2 + 3 /* value is 2, not -4 */

The Associativity column of the table on K&R p. 53; King p. 595 says that whenever there are two or
more consecutive binary operators on line 4, they are evaluated from left to right. Therefore the subtraction
in the above example is executed before the addition, and the value of the whole expression is 2.Stated
more technically,1-2 is a subexpression of1-2+3 , but 2+3 is not.

Another example is

-a b - c

▼ Homework 2.8: draw the boxes

Draw the boxes to show the order of evaluation in each of the following eight expressions. Usethe
table on K&R p. 53 including the associativity column if necessary, ignoring lines 2 and 13; King p. 595.

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 19 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

a + b - c a - > b . c

a * b / c a - > b -> c

a / b * c a = b % c

a == b ! = c d = c = b = a

▲

An expression whose subexpressions are evaluated in an unpredictable order

The associativity of the operators comes into play only when there are two or more consecutive oper-
ators with the same precedence.Consecutivemeans that the operators are all competing for the same
operand. For example, both operators are competing to sink their teeth into theb:

a * b * c

or

a * b / c

The associativity is ignored when the operators with the same precedence are not consecutive, for example
the* and* in the expression

*a b + *c d

In this expression we know that the+ is executed last, but it is impossible to predict whether the first* or
the second* will be executed first. Stated more technically, it is impossible to predict which of the two
subexpressions,a*b or c*d , will be evaluated first.

Unary operators

An expression can be augmented with aunary operator such as- & s izeof to make a bigger
expression. Allthe unary operators are listed on line 2 of the table on K&R p. 53; King p. 595.Everything
on that line is a unary operator. We call themunary because they each take only one expression, unlike the
binary operators.

For example,a is an expression; therefore-a is also an expression. We say thata is a subexpression
of -a , and thata is the operand of the- .

When evaluating -a , the computer first evaluates the subexpressiona, and then it executes the
negation to evaluate the whole expression-a . We draw two boxes to show the order in which the computer
evaluates these two expressions.

a-

How to tell the binary and unary operators apart

The four tokens+ - * and & can represent either a binary or a unary operator. They represent a
binary operator when there is an expression on both sides of them.Otherwise they represent a unary opera-
tor.

a - b / * b inary */
-a /* unary */

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 20 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

-a - b /* first dash is unary, second dash is binary */
a - - b / * f irst dash is binary, second dash is unary. */

Unary- has higher precedence than binary-

- a - b

b--a

There must be white space between the two dashes in the last example, because a pair of dashes with
no white space between is always the-- unary operator. Ditto for ++ and&&. See K&R p. 192, §A2.1;
King p. 25.

Warning: most unary operators are a single character, but some are two or more characters:

-a --a
+a ++a
&a sizeof a
*a (int)a
!a (unsigned long)a

The wordsizeof is not an expression—it’s just an operator.

sizeof * a /* wrong */

Put no white space between a unary operator and its operand unless required by Handout 1, p. 35, rule (2).
You can’t hav etwo binary operators with no operands in between, but you can have two (or more) unary
operators with no operands in between:

* a-

* a!-

▼ Homework 2.9: draw the boxes

Draw the boxes to show the order of evaluation in each of the following twelve expressions. Usethe
table on K&R p. 53, ignoring line 13 (the ternary line); King p. 595.

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 21 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

a & &b * ++a

a - & b - *++a

a & - b * a = * b

a * + +b *++a = * ++b

sizeof *a *a *= *b

a < -1 || a > 1 0 a = ! !b

Parentheses: K&R pp. 17, 200−201 §A7.2; King pp. 54−56

Parentheses serve three totally different purposes in C expressions. Apair of parentheses is an opera-
tor on line 1 of the table on K&R p. 53; King p. 595.A pair of parentheses is also part of an operator on
line 2. What follows is the third purpose of parentheses.

An expression can be surrounded by parentheses to make an even bigger expression. For example,
a+b is an expression; therefore(a+b) is also an expression. Thevalue of (a+b) is the same as that of
a+b .

+a b()

As in algebra and all computer languages, parentheses override the default precedence and associa-
tivity of the operators, i.e., the default nesting of the boxes.

b c+a / mult before add */

+a b() * c /* add before mult */

▼ Homework 2.10: remove redundant parentheses

Remove the redundant parentheses from the following ten expressions, but keep the parentheses that
might change the value of the expression.

(a * b) + (c * d) (a % 8) == 7
(a == b) && (c == d) (a) / (2)
(a & b) == (c & d) (a->b).c
a = (b == c) + +(*p)
(a = b) == c *(++p)

Memorize at least this much of the table on K&R p. 53; King p. 595:

1 the unary operators:- (for negation, not subtraction), etc.
2 * / %
3 + -
4 the comparison operators:==, etc.
5 &&

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 22 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

6 | |
7 =

▲

An operator with a side effect: K&R p. 53; King pp. 50−52

In the statement

a = b + c ;

what causes the+ to be executed before the=? The table on K&R p. 53; King p. 595 shows that the famil-
iar = is actually a binary operator. Therefore the

a = b + c

in the statement

a = b + c ;

is actually an expression. The+ is executed before the= because it is higher than= in the table on K&R p.
53; King p. 595.

+b c=a

A statementin C is usually just an expression with a semicolon after it (K&R p. 55; King p. 57).To exe-
cute a statement is merely to evaluate the expression of which it consists.

The binary operator= changes the value of its left operand.This operand can therefore be only a
variable, not a constant or a more complicated expression.

a = 10; /* legal: left operand of = is a variable */
10 = a; /* illegal: left operand of = is a constant */
(a + b) = 10; /* illegal: left operand of = is a more complicated expression */

An expression that could legally be the left operand of= is called anlvalue; see K&Rp. 197, §A5; King
pp. 51−52. The ‘‘l’ ’ stands for ‘‘left’ ’. The only example of an lvalue that we have discussed so far is an
expression that consists of one variable. Theleft operand of the other binary operators+ - * / % does not
have to be an lvalue.

We say that the= operator has aside effect because it changes the value of a variable. Whena nor-
mal expression such asa+b is evaluated, only one thing happens: the computer computes the value of the
expressiona+b , which may be used as part of a bigger expression. Butwhen an expression such asa=b is
evaluated, two things happen:a gets a new value, and the computer computes the value of the expression
a=b , which may be used as part of a bigger expression. Thevalue of the expressiona=b is the new value
of a.

1 #include <stdio.h>
2
3 main()
4 {
5 i nt a = 1;
6 i nt b = 2;
7
8 printf("%d\n", a + b); /* value of a does not change */
9 printf("%d\n", a = b); /* value of a changes */

10 printf("%d\n", a);
11 }

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 23 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

3
2
2

if (a == b) { /* good */
if (a = b) { /* bad, but no error message */

You can change each example on the left to the one on the right.

1 a = n ewval;
2 printf("%d\n", a); printf("%d\n", a = newval);

3 a = n ewval;
4 b = a ; b = a = newval;

5 a = n ewval;
6 b = a ;
7 c = b ; c = b = a = n ewval;

8 a = n ewval;
9 c [a] = b; c[a = newval] = b;

10 a = newval; /* Need parens to execute = before == */
11 if (a == b) { if ((a = newval) == b) {

12 a = newval; /* Code sinking: */
13 while (a == b) { while ((a = newval) == b) {
14 blah blah blah; blah blah blah;
15 a = newval; }
16 }

17 c = getchar(); /* K&R pp. 15−17; King pp. 121−122 */
18 while (c != EOF)) { while ((c = getchar()) != EOF) {
19 blah blah blah; blah blah blah;
20 c = getchar(); }
21 }

▼ Homework 2.11: required reading: K&R pp. 15−24

Read all the programs whose main loop is thewhile-getchar shown above.
▲

Assignment operators: K&R pp. 50−51, 208−209; King pp. 50−52

The same expression often appears on either side of an= operator:

1 a = a + b ; a += b;
2 a = a - b ; a -= b;
3 a = a * 1 0; a *= 10;
4 a[b] = a[b] / c; a[b] /= c;
5 a[b+c+d] = a[b+c+d] / e; a[b+c+d] /= e;

The += operator has a side effect: it gives a new value to its left operand, which must be an lvalue. The
new value is the sum of the value of the right operand and the old value of the left operand.The value of
the expressiona+=b is the new value of the left operand of the+=, just as the value of the expressiona=b
is the new value of the left operand of the=.

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 24 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Don’t bother to changea=a+1 to a+=1 because there is a better abbreviation below: ++a. Nev er
write either of these expressions.

▼ Homework 2.12: rewrite using assignment operators

Where possible, rewrite the following expressions using assignment operators other than=. The
expression*a is an lvalue. Additionis commutative, subtraction isn’t.

a = a / 1 0 a = b + a
a = a % 10 a = b - a
a = a & b a = a + a
a = a >> 1 0 a = a * 2
*a = *a + b a = a -> b
a = b - (c - a)

▲

A unary operator with a side effect: K&R pp. 18, 46−48, 203; King pp. 53−54

The unary operator++ has a side effect: it adds 1 to the value of its operand, which must be an
lvalue. For example, when the expression++a is evaluated, two things happen:a gets a new value, and the
computer computes the value of the expression++a, which may be used as part of a bigger expression.
The value of the expression++a is the new value ofa, just as the value of the expressiona=b is the new
value ofa.

Like any other expression,++a may constitute a statement all by itself: just add a semicolon.For
example, here are pairs of statements that do the same thing:

1 a = a + 1 ;
2 ++a;

3 f or (i = 1; i <= 10; i = i + 1) {
4 f or (i = 1; i <= 10; ++i) {

5 f or (i = 10; i >= 1; i = i - 1) {
6 f or (i = 10; i >= 1; --i) {

++a may also be part of a larger expression. For example, you can change each example on the left to the
one on the right.

1 ++a;
2 printf("%d\n", a); printf("%d\n", ++a);

3 ++a;
4 b = a ; b = ++a;

5 ++a;
6 c [a] = d; c[++a] = d;

7 ++a;
8 if (a == c) { i f (++a == c) {

Prefix vs. postfix: K&R pp. 46−47; King p. 54

Most unary operators are written before their operand:-a , &a, sizeof a , etc. Theunary operator
++, howev er, can be written either before or after its operand:

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 25 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

++ a

a ++

Both of the above expressions have the same side effect: they both add 1 toa. Thus each statement
in the following trios does the same thing:

1 a = a + 1 ;
2 ++a;
3 a++;

4 f or (i = 1; i <= 10; i = i + 1) {
5 f or (i = 1; i <= 10; ++i) {
6 f or (i = 1; i <= 10; i++) {

7 f or (i = 10; i >= 1; i = i - 1) {
8 f or (i = 10; i >= 1; --i) {
9 f or (i = 10; i >= 1; i--) {

But the expressions++a anda++ have different values. Thisdoesn’t matter in the above examples,
because++a anda++ did not have their values used as part of a larger expression. Thevalue of++a is the
new value ofa (after the increment); the value ofa++ is the old value ofa (before the increment).

When the computer evaluates the expressiona++, you can imagine that three things happen in the
following order:

(1) Thevalue ofa is stored in an invisible variable.

(2) 1 is added to the variablea.

(3) If thea++ is a subexpression of a larger expression, the invisible variable is used as the value of the
subexpressiona++.

For example,

1 a = 10;
2 b = ++a; /* preincrement example */
3 printf("%d %d\n", a, b);

11 11

4 a = 10;
5 b = a++; /* postincrement example */
6 printf("%d %d\n", a, b);

11 10

7 a = 10;
8 printf("%d\n", ++a); /* preincrement example */
9 printf("%d\n", a);

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 26 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

11
11

10 a = 10;
11 printf("%d\n", a++); /* postincrement example */
12 printf("%d\n", a);

10
11

You can change each example on the left to the one on the right:

1 printf("%d\n", a); printf("%d\n", a++);
2 a++;

3 b = a ; b = a++;
4 a++;

5 c [a] = d; c[a++] = d;
6 a++;

7 if (a == c) { i f (a++ == c) {
8 a++; blah blah blah;
9 blah blah blah; } e lse {

10 } else { bleh bleh bleh;
11 a++; }
12 bleh bleh bleh;
13 }

Associativity of unary operators

In the expression*++a , the ++ is obviously executed before the* because it has elbowed its way
closer to thea. You don’t need the table on K&R p. 53; King p. 595:

++ a*

But in the expression*a++ , the two unary operators are equidistant from thea. Which one executes first?
Line 2 of the table on K&R p. 53; King p. 595 shows that all the unary operators associate from right to
left:

a ++*

If you want the computer to execute the* before the++ in the expression*a++ , use parentheses:
(*a)++ .

▼ Homework 2.13: draw the boxes

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 27 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

*a++ ++*a

(a++) -++a

(*a)++ **a

-!*a++ *a++ = * b++

▲

Unpredictable values

Never apply the++ or -- operators to an expression that appears more than once in a larger expres-
sion. For example, the expressioni appears more than once in the expressiona[i] = ++i .

1 i nt a[10];
2 i nt i = 5;
3
4 a[i] = ++i; /* Put 6 into a[5] on some platforms, into a[6] on others. */

Some machines will evaluate the left operanda[i] of = before the right operand++i of the=, storing 6
into a[5] . Other machines will evaluate the right operand++i of = before the left operanda[i] of the
=, storing6 into a[6] .

i++=a [i]

5 i nt i = 10;
6
7 printf("%d\n", i/++i);

Some machines will evaluate the numeratori before the denominator++i , printf ’ing 10/11 , or 0.
Other machines will evaluate the denominator++i beforethe numeratori , printf ’ing 11/11 , or 1.

i++/i

▼ Homework 2.14: lvalues

The left operand of = += - = etc., and the operand of++ -- must be an lvalue. Whichof
the following are not?

a = 10 ++a
10 = a ++10
a += 10 a + b = 10
10 += a ++(a + b)

▲

The data type of an expression: K&R pp. 42−46, 198; King pp. 124−127

Each variable and constant has a data type.See K&R pp. 37, 192−4; King pp. 112, 115−116 for the
data type of a constant.

1 i nt i;
2 double d;
3

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 28 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

4 / * i a nd 10 are int’s; d and 3.14159 are double’s. */
5 printf("%d %d %f %f\n", i, 10, d, 3.14159);

A more complicated expression has a data type, too.You need to know the data type of an expres-
sion if you want toprintf it. Thedata type of an expression is determined by the data types of its subex-
pressions:

6 i nt i, j;
7 double d, e;
8
9 / * T he expressions i+j and -i are of type int. */

10 printf("%d %d\n", i + j, -i);
11
12 /* The expressions d+e and -d are of type double. */
13 printf("%f %f\n", d + e, -d);

But what is the data type of the expressioni+d in

14 int i;
15 double d;
16
17 printf("%f\n", i + d);

All computers have a machine language instruction to add two int ’s yielding anint result, and
another instruction to add two double ’s yielding adouble result. Nocomputer, howev er, has an instruc-
tion to add anint and adouble .

When you ask the computer to addi+d , it creates a copy of the value ofi converted to data type
double , and then adds this copy to d. The result is of data typedouble (because both addends were of
data typedouble), which is why weprintf the expressioni+d with %f.

In general, when you add two expressions (e.g.,a+b) the values that are added may not be the values
of the two expressions that you wrote. The computer may make copies of one or both of your values, con-
verted as above to larger data types, and it will be the copies that are actually added together.

Ditto for all the operations: subtraction, multiplication, etc.For simplicity, I will write ‘ ‘addition’’ to
mean any operation in the following simplification of the rules in the book.

(1) If the operands are all smaller than data typeint , then the result will be of data typeint . For
example, achar plus achar will yield an int sum, and achar plus ashort will yield an int sum.

(2) Otherwise if all the operands are the same data type, the result will also be that same data type.
For example, anint plus anint will yield an int sum, and adouble plus adouble will yield a
double sum.

(3) Otherwise the operands are of different data types, and the result will be of whichever data type is
larger. For example, anint plus adouble will yield andouble sum.

The innermost boxes are evaluated first, so in the expression

1 c har c;
2 s hort s;
3 double d;
4
5 printf("%f\n", c * s + d);

the computer evaluates the expressionc*s , yielding anint value, before it begins to tackle the addition.
Then it makes adouble copy of that int value, and adds this copy to d. The value resulting from the
addition of these twodouble values is, of course, adouble .

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 29 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

▼ Homework 2.15: what is the data type of these expressions?

The expression100 is of data typeint ; the expression100.0 is of data typedouble (K&R pp.
37, 194; Ki pp. 115−116).

char c;
short s;
int i, j;
long tallsally;
float f, g;
double d, e;

i / j i / 1 00
i / d i / 1 00.0
c + s f + g
c * d 1 00 * i / j
i + t allsally 100.0 * i / j

▲

Print a double in scientific notation: K&R pp. 154, 244; King p. 115

1 double d = 123.4567;
2
3 printf("%f\n", d);
4 printf("%e\n", d);

123.4567
1.234567e+02 /* 1. 234567× 102 */

Casts: K&R pp. 45−6, 198, 205; King pp. 128−129

Line 7 below shows that the two operands of an= can be two different data types. It deposits a copy
of the value of the right operand, converted to a new data type, into the left operand.

The (double) in line 9 is a unary operator called acast. There is one unary operator for each data
type:(char) , (short) , (int) , etc. Thevalue of the expression(double)i in line 9 is the value of
i converted to typedouble . The cast operator has no side effect: it does not change the value of any vari-
able.

The parentheses around the expressioni+j in line 14 below force the binary operator+ to be evalu-
ated before the unary operator(double) . See the table on K&R p. 53; King p. 595.

1 i nt i = 100
2 i nt j = 200;
3 double d;
4
5 printf("%d\n", i); /* It prints 100 */
6
7 d = i ;
8 printf("%e\n", d); /* It prints 1.000000e+02 */
9 printf("%e\n", (double)i); /* It prints 1.000000e+02 */

10
11 printf("%d\n", i + j); /* It prints 300 */
12 d = i + j;
13 printf("%e\n", d); /* It prints 3.000000e+02 */
14 printf("%e\n", (double)(i + j)); /* It prints 3.000000e+02 */
15

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 30 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

16 printf("%d\n", i / j); /* It prints 0 */
17 printf("%f\n", (double)i / j); /* It prints 0.500000 */
18 printf("%f\n", i / (double)j); /* It prints 0.500000 */
19
20 printf("%f\n", (double)i / (double)j); /* It prints 0.500000 (overkill!) */
21 printf("%f\n", (double)(i / j)); /* It prints 0.000000 (too late!) */

▼ Homework 2.16: Compute the value ofπ

(1, 0)

(1, 1)

(-1, 0)
x a xis

(0, 1)

(0, -1)

y a xis

radius == 1

(x, y)

(x, y)

The area of a circle is

A = π r 2

The radius of this circle is 1, so its area isπ. The area of the big square is 4. As you can see, the circle
occupies approximately 80% of the square, so the area of the circle (and hence the value ofπ) is approxi-
mately 80% of 4, or 3.2. Find this percentage more exactly by the Monte Carlo method to be described in
class.

Call srand so you get different random numbers each time you run the program. Print one line of
column headings.

Then write afor loop that iterates 1000 times. Use anint variable namedi to count from 1 to
1000. Duringeach iteration, call therand function and divide its return value by the largest possible ran-
dom numberRAND_MAX, yielding a random number between 0 and 1.

Remember to#include <stdlib.h> as in Handout 1, p. 23. This gives you the right to use the
macroRAND_MAX(K&R p. 252; King p. 570); use it as if it were a variable.

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 31 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Store the random number between 0 and 1 in adouble variable namedx . Store another random
number between 0 and 1 and store it in adouble variable namedy . printf the values ofx andy to
make sure that they are random numbers between 0 and 1; that they change during each iteration; and that
they are almost never equal to each other. Do not write the rest of the program until this part works. When
it does, remove (or comment out) theprintf before handing it in.

Then compute√ x2 + y2. Since C has no exponentiation, you’ll have to write x*x and y*y .
#include <math.h> to declare thesqrt function for you. Count how many points lie within the circle
with an int variable namedcount . You get no credit ifint and count are notint ’s. You get no
credit if you forget to initializecount to 0 before the first iteration. Can you eliminate the square root by
squaring both sides of the inequality? If so, you no longer need to#include <math.h> .

During the 100th, 200th, 300th, etc., iteration,printf the total number of points, the number of
points within the circle, the approximate value ofπ, and the error. In other words, output only ten lines
ev en though the loop iterates 1000 times. Do not execute thisprintf during every loop. use The approxi-
mate value ofπ is

4 ×
number within

total number

If you divide two expressions of data typeint , the result will be another expression of data type
int : the fractional part of the quotient will be chopped off. Avoid this by making either the numerator or
the denominator an expression of data typedouble . Instead of using an explicit (double) cast, it
would be simpler to use the fact that the constant4 is of data typeint , and the constant4.0 is of data
typedouble .

The error is

4 ×
number within

total number
− 3. 14159265358979323846

But don’t write the 3.14159265358979323846 in the middle of the program—make aconst variable for
it:

const double pi = 3.14159265358979323846; /* true value of pi */

Don’t write the numbers1000 or 100 anywhere except inconst variables. You’ll have to inv ent names
for them.

Print the error with%9.6f instead of%f to make the decimal points line up; see K&R pp. 12−13.
To avoid theundefined sqrt error message from the linker, you may have to compile with the ‘‘math
library’’ option -lm :

1$ gcc -o pi pi.c -lm minus lowercase LM
2$ pi
total within pi error

100 83 3.320000 0.178407
200 163 3.260000 0.118407
300 234 3.120000 -0.021593
400 303 3.030000 -0.111593
500 381 3.048000 -0.093593
600 462 3.080000 -0.061593
700 545 3.114286 -0.027307
800 624 3.120000 -0.021593
900 703 3.124444 -0.017148

1000 781 3.124000 -0.017593

Make adouble variable namedapproximate to hold your approximate value ofπ. Do not com-
pute the approximate value ofπ during every iteration—compute it only when you’re going toprintf it
(i.e., during only one out of every 100 iterations of thefor loop). You get no credit if you compute it more
often than you print it.Your program must have one for loop, two printf ’s, two if ’s, and noelse ’s;

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 32 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

you get no credit otherwise.Your program must have no non-const variables other thancount , i , x , y ,
andapproximate ; you get no credit otherwise.

✎ Extra credit. Instead of iterating 1000 times and printing results at intervals of 100 (the ten lines
of output shown above), iterate 100,000 times and print the results after 1 iteration, 10 iterations, 100 itera-
tions, 1,000 iterations, 10,000 iterations, and 100,000 iterations (six lines of output). Change the two int
variables tolong . Use an additionallong variable namedpower whose values will run through the
series of numbers1, 10 , 100 , 1000 , 10000 , 100000 , and aconst long variable namedfactor
whose value will be 10. No credit if the series1, 10 , 100 , 1000 , 10000 , 100000 is written in your pro-
gram.

Don’t tell them what they can read for themselves

1 / *
2 Program Function: Compute the value of pi.
3 Program Description: This program will loop 1000 times. During
4 each loop the function rand() will be called twice. The two random
5 number will be put into the variables X and Y. X and Y will be divided
6 by t he largest possible random number, yielding two random numbers between
7 0 and 1. These two numbers will then be put back into X and Y, replacing
8 t he old values. A r andom number will be seeded using srand() with
9 t he time. Please note, this program was run on with Borland/C,

10 using the it’s variation of the time function */
11
12 #define N 1000

1 /* M ETHODOLOGY */
2 /* a dd 1 to the day value, if value > last day of that month,*/
3 /* t hen increase month by 1 and change day to 1, if that */
4 /* m onth > 12, then increase year value by one, and change */
5 /* d ay to 1, and month to 1 and you’re done...*/

Tell them the non-obvious

1 /* C ompute the value of pi by using the Monte Carlo method to measure the area
2 of a u nit circle (i.e., a circle of radius 1 whose area is therefore pi).
3
4 Pick N random pairs of numbers (x, y), where each number is between 0 and 1.
5 They represent as N random points in a one-by-one square whose lower left corner
6 is at t he origin (i.e., the place where the x and y axis cross).
7
8 Count how many of these points lie within a distance of 1 from the origin. Use
9 t he Pythagorean theorem (c squared == a squared + b squared) to compute this

10 distance. The percentage of points within this distance is the same as the
11 percentage of the one-by-one square covered by the upper right quarter of the
12 circle. Now that we have estimated the area of one quarter of the circle,
13 multiply by 4 to compute the area of the entire circle.
14
15 Output a table showing intermediate results after every N/10 random points.
16 Runs under Borland C; other versions of C may use a different time function. */
17
18 #define N 1000 /* the number of random points */

Do not copy the above comment into your own program.
▲

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 33 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

How to write an equation:

Suppose you have to write

a =
b × c

d

The following statements both perform the assignment. What is the best way to make it clear which vari-
ables are in the numerator and which are in the denominator?

a = b * c / d ; / * s traightforward */
a = b / d * c ; / * c orrect, but misleading */

a =
b × c

d × e

a = b / d * c / e ; / * i gnores the above advice */
a = b * c / d / e ; / * a l ittle clearer */
a = b * c / (d * e); /* much clearer and faster */

Spring 2007 Handout 2printed 2/22/07
11:18:57 PM − 34 − All rights

reserved ©2007 Mark Meretzky

