
NYU SCPS X52.9232 Section 6 C Programming, Part I

Fall 2006 Handout 12

A doubly-linked list

A structure cannot contain another copy of the same kind of structure (this would cause an infinite
regress), but it can contain a pointer to another copy of the same kind of structure.

—On the Web at
http://i5.nyu.edu/∼ mm64/x52.9232/src/doubly.c

1 /*
2 Let the user type in positive numbers, not necessarily unique. Store them in
3 ascending order in a dynamically allocated doubly linked list. The smallest
4 number will be at the head of the list, and the biggest number at the tail.
5 Then print the list from head to tail and from tail to head.
6
7 Each number is stored in a structure called a node_t. Each node is malloc’ed
8 separately. head is the first node, tail is always the last.
9
10 The next field of each node holds the address of the next node, or is NULL if
11 there is no next node. The prev field of each node holds the address of the
12 previous node, or is NULL if there is no previous node. The 0 that the user
13 types in to terminate the input is not stored in the list.
14 */
15
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <limits.h> /* for INT_MAX */
19
20 typedef struct node_t {
21 int n; /* the payload */
22 struct node_t *prev; /* the address of the previous node */
23 struct node_t *next; /* the address of the next node */
24 } node_t;
25
26 int main()
27 {
28 node_t head = { 0, NULL, NULL};
29 node_t tail = {INT_MAX, NULL, NULL};
30
31 node_t *p, *q; /* for looping through the list */
32 int n; /* each number that the user types in */
33
34 head.next = &tail;
35 tail.prev = &head;
36
37 printf(
38 "Please type positive numbers less than %d.\n"
39 "Press RETURN after each number.\n"

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 1 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

40 "Type a negative number to delete the corresponding positive number.\n"
41 "Type 0 when done.\n", INT_MAX);
42
43 for (;;) {
44 scanf("%d", &n);
45 if (n == 0) {
46 break;
47 }
48
49 if (n > 0) { /* Insert a new node. */
50 node_t *new = malloc(sizeof(node_t));
51 if (new == NULL) {
52 fprintf(stderr, "Can’t allocate %lu bytes.\n", sizeof(node_t));
53 return EXIT_FAILURE;
54 }
55 new->n = n;
56
57 /*
58 Search the list to find the insertion point.
59 The insertion point will always be between head and tail.
60 */
61 for (p = &head; (q = p->next) != &tail; p = q) {
62 if (q->n >= n) {
63 break;
64 }
65 }
66
67 /* Insert the new node between the ones that p and q point to. */
68 printf("Found the insertion point.\n");
69 new->next = q;
70 new->prev = p;
71 p->next = new;
72 q->prev = new;
73 }
74
75 else { /* Delete an existing node. */
76 n = -n;
77
78 /* Let p point to the node to be deleted. */
79 for (p = head.next; p != &tail; p = p->next) {
80 if (p->n == n) {
81 goto found;
82 }
83 }
84 fprintf(stderr, "The number %d is not on the list.\n", n);
85 continue;
86
87 found:;
88 p->prev->next = p->next;
89 p->next->prev = p->prev;
90 free(p);
91 }
92 }
93

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 2 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

94 printf("Print the list from head to tail:\n");
95 for (p = head.next; p != &tail; p = p->next) {
96 printf("%d\n", p->n);
97 }
98
99 printf("\nPrint the list from tail to head:\n");
100 for (p = tail.prev; p != &head; p = p->prev) {
101 printf("%d\n", p->n);
102 }
103
104 return EXIT_SUCCESS;
105 }

The above list is never empty: it always contains at least the two nodeshead andtail, and possi-
bly other nodes between them. The following list may be empty: it does not have the two permanently resi-
dent nodes. This makes it more complicated to insert and delete.

—On the Web at
http://i5.nyu.edu/∼ mm64/x52.9232/src/doubly2.c

1 /*
2 Let the user type in positive numbers, not necessarily unique. Store them in
3 ascending order in a dynamically allocated doubly linked list. The smallest
4 number will be at the head of the list, and the biggest number at the tail.
5 Then print the list from head to tail and from tail to head.
6
7 Each number is stored in a structure called a node_t. Each node is malloc’ed
8 separately. The variable head holds the address of the first node, or is NULL
9 if there are no node’s yet. The variable tail holds the address of the last
10 node, or is NULL if there are no nodes yet.
11
12 The next field of each node holds the address of the next node, or is NULL if
13 there is no next node. The prev field of each node holds the address of the
14 previous node, or is NULL if there is no previous node. The 0 that the user
15 types in to terminate the input is not stored in the list.
16 */
17
18 #include <stdio.h>
19 #include <stdlib.h>
20
21 typedef struct node_t {
22 int n; /* the number */
23 struct node_t *prev; /* the address of the previous node */
24 struct node_t *next; /* the address of the next node */
25 } node_t;
26
27 int main()
28 {
29 node_t *head = NULL;
30 node_t *tail = NULL;
31 node_t *new; /* the new node that the user typed in */
32 node_t *p, *q; /* for looping through the list */
33 int n; /* each number that the user types in */
34
35 printf(
36 "Please type positive numbers.\n"

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 3 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

37 "Press RETURN after each number.\n"
38 "Type a negative number to delete the corresponding positive number.\n"
39 "Type 0 when done.\n"
40);
41
42 for (;;) {
43 scanf("%d", &n);
44 if (n == 0) {
45 break;
46 }
47
48 if (n > 0) { /* Insert a new node (four cases). */
49 new = malloc(sizeof(node_t));
50 if (new == NULL) {
51 fprintf(stderr, "Can’t allocate %lu bytes.\n", sizeof(node_t));
52 return EXIT_FAILURE;
53 }
54 new->n = n;
55 if (head == NULL) {
56 /* Case 1: the list was empty. */
57 new->next = new->prev = NULL;
58 head = tail = new;
59 }
60
61 else if (n < head->n) {
62 /* Case 2: insert new at the head of the list. */
63 new->next = head;
64 new->prev = NULL;
65 head->prev = new;
66 head = new;
67 }
68
69 else if (new->n >= tail->n) {
70 /* Case 3: insert new at the tail of the list. */
71 new->prev = tail;
72 new->next = NULL;
73 tail->next = new;
74 tail = new;
75 }
76
77 else {
78 /* Case 4: insert new into the interior of the list.
79 Search the list to find the insertion point. */
80 for (p = head; (q = p->next) != NULL; p = p->next) {
81 if (q->n >= n) {
82 break;
83 }
84 }
85
86 /* Insert new between the nodes that p and q point to. */
87 new->next = q;
88 new->prev = p;
89 p->next = new;
90 q->prev = new;

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 4 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

91 }
92 }
93
94 else { /* Delete an existing node. */
95 n = -n;
96
97 /* Let p point to the node to be deleted. */
98 for (p = head; p != NULL; p = p->next) {
99 if (p->n == n) {
100 goto found;
101 }
102 }
103 fprintf(stderr, "The number %d is not on the list.\n", n);
104 continue;
105
106 found:;
107 if (p == head) { /* Delete the first node. */
108 head = p->next;
109 } else {
110 p->prev->next = p->next;
111 }
112
113 if (p == tail) { /* Delete the last node. */
114 tail = p->prev;
115 } else {
116 p->next->prev = p->prev;
117 }
118
119 free(p);
120 }
121 }
122
123 printf("Print the list from head to tail:\n");
124 for (p = head; p != NULL; p = p->next) {
125 printf("%d\n", p->n);
126 }
127
128 printf("\nPrint the list from tail to head:\n");
129 for (p = tail; p != NULL; p = p->prev) {
130 printf("%d\n", p->n);
131 }
132
133 return EXIT_SUCCESS;
134 }

A binary tree: K&R pp. 139−143

—On the Web at
http://i5.nyu.edu/∼ mm64/x52.9232/src/tree.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 typedef struct node_t {

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 5 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

6 char *string;
7 struct node_t *left;
8 struct node_t *right;
9 } node_t;
10
11 node_t *insert(node_t *root, node_t *new);
12 void print(node_t *root);
13 void dismantle(node_t *root);
14
15 int main()
16 {
17 char line[256];
18 node_t *root = NULL; /* The tree is initially empty. */
19
20 printf(
21 "Press RETURN after each line,\n"
22 "control-d after the RETURN after the last line.\n"
23 "The lines will be output in alpahabetical order.\n"
24);
25
26 while (gets(line) != NULL) {
27 node_t *new = malloc(sizeof(node_t));
28 if (new == NULL) {
29 fprintf(stderr, "Can’t malloc memory for node to hold \"%s\".", line);
30 return EXIT_FAILURE;
31 }
32
33 new->string = malloc(strlen(line) + 1);
34 if (new->string == NULL) {
35 fprintf(stderr, "Can’t malloc memory for \"%s\".\n", line);
36 return EXIT_FAILURE;
37 }
38 strcpy(new->string, line);
39
40 root = insert(root, new);
41 }
42
43 print(root);
44 dismantle(root);
45 return EXIT_SUCCESS;
46 }
47
48 node_t *insert(node_t *root, node_t *new)
49 {
50 if (root == NULL) {
51 /* Insert the new node into an empty tree. */
52 root = new;
53 }
54
55 else if (strcmp(new->string, root->string) <= 0) {
56 /* Insert the new node to the lower left of the root. */
57 root->left = insert(root->left, new);
58 }
59

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 6 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

60 else {
61 /* Insert the new node to the lower right of the root. */
62 root->right = insert(root->right, new);
63 }
64
65 return root;
66 }
67
68 void print(node_t *root) /* in order */
69 {
70 if (root != NULL) {
71 print(root->left);
72 printf("%s\n", root->string);
73 print(root->right);
74 }
75 }
76
77 void dismantle(node_t *root) /* post order */
78 {
79 if (root != NULL) {
80 dismantle(root->left);
81 dismantle(root->right);
82
83 free(root->string);
84 free(root);
85 }
86 }

Suppose that the above linked list and the above binary tree each contain

n items. Onthe average, you would therefore have to make
n

2
comparisons to find the correct insertion

point in the list, but only log2 n comparisons to find the correct insertion point in the binary tree.

Make bibliography

See the three digressions onmake in the textbook on pp. 241−242, 254−256, and 265−266.Page
numbers below refer to the 9-page manual pagemake(1). Seealso make(1p) (Posix) andmake(1u)
(Ultrix). Also print (with minus lowercase L sixty)

1$ make -p -f /dev/null | pr -l60 -h ’make internal rules’ | lpr

See alsoManaging Projects with make, 2nd ed.,by Andrew Oram and Steve Talbott; O’Reilly & Associ-
ates, 1991; ISBN 0-937175-90-0;http://www.oreilly.com/catalog/make2/

Sample C program to demonstrate make

/* This file is func.h. */
int f(void);

/* This file is var.h. */
extern int i;

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 7 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

/* This file is main.c. */
#include <stdio.h>
#include <stdlib.h>
#include "var.h"
#include "func.h"

int main(int argc, char **argv)
{

printf("%d\n", i + f());
return EXIT_SUCCESS;

}

/* This file is func.c. */
#include "func.h"

int f(void)
{

return 2;
}

/* This file is var.c. */
#include "var.h"

int i = 1;

#!/bin/sh
#Compile and link the above C program.

gcc -c main.c #create main.o
gcc -c func.c #create func.o
gcc -c var.c #create var.o
gcc -o prog main.o func.o var.o #create prog

Which files need to be recreated?

A .o file needs to be recompiled if it is older than the corresponding.c file or any of the.h files
that it#include’s. An executable file needs to be relinked if it is older than any of the.o files it com-
prises.

1$ cd $m46/make
2$ ls -l | tail +2
-rw-r--r-- 1 mm64 users 73 Dec 8 13:21 func.c
-rw-r--r-- 1 mm64 users 40 Dec 8 13:24 func.h
-rw-r--r-- 1 mm64 users 496 Dec 8 13:25 func.o
-rw-r--r-- 1 mm64 users 136 Dec 8 13:22 main.c
-rw-r--r-- 1 mm64 users 1764 Dec 8 13:25 main.o
-rwxr-xr-x 1 mm64 users 40688 Dec 8 13:26 prog
-rw-r--r-- 1 mm64 users 55 Dec 8 13:27 var.c
-rw-r--r-- 1 mm64 users 40 Dec 8 13:24 var.h
-rw-r--r-- 1 mm64 users 428 Dec 8 13:25 var.o

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 8 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

3$ ls -lt | tail +2
-rw-r--r-- 1 mm64 users 55 Dec 8 13:27 var.c
-rwxr-xr-x 1 mm64 users 40688 Dec 8 13:26 prog
-rw-r--r-- 1 mm64 users 428 Dec 8 13:25 var.o
-rw-r--r-- 1 mm64 users 1764 Dec 8 13:25 main.o
-rw-r--r-- 1 mm64 users 496 Dec 8 13:25 func.o
-rw-r--r-- 1 mm64 users 40 Dec 8 13:24 var.h
-rw-r--r-- 1 mm64 users 40 Dec 8 13:24 func.h
-rw-r--r-- 1 mm64 users 136 Dec 8 13:22 main.c
-rw-r--r-- 1 mm64 users 73 Dec 8 13:21 func.c

The dependency tree

prog

var.h

main.c

main.o

func.h

func.c

func.o

var.h

var.c

var.o

gcc -c main.c

gcc -c func.c

gcc -c var.c

gcc -o prog \
main.o func.o var.o

func.h

A simple makefile

Put all of the.c and.h files of your C program (except for the.h files in the/usr/include
directory) into one directory, together with the file namedmakefile shown below. Sincemakefile is
not a shellscript, do not start it with#! or turn on its threex bits.

The file before the colon is thetarget. The files after the colon are thedependents.A l ine with a
colon and the line(s) indented below it constitute arule. Do not indent the line with the target and depen-
dency files, but indent the line(s) below them that tell how to create the target file. Skip an empty line
between rules.

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 9 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

In makefile, all indentation must be by EXACTLY ONE TAB CHARACTER. Donot indent with
blanks. Thisis the only place in Unix where the difference between blanks and tabs is significant.The
Unix Haters Handbook (by Simon Garfinkel, Daniel Weise, and Steven Strassmann, with a foreward by
Dennis Ritchie; IDG Books, 1994; ISBN 1-56884-203-1), p. 185, says ‘‘A ccording to legend, Stu Feldman
[the creator ofmake] didn’t fix make’s syntax, after he realized that the syntax was broken, because he
already had 10 users.’’

The following makefile contains four rules.A rule is executed if the target doesn’t exist, or if the
target is older than any of its dependents, or if there are no dependents listed to the right of the colon.

prog: main.o var.o func.o
cc -o prog main.o var.o func.o

main.o: main.c var.h func.h
cc -c main.c

var.o: var.c var.h
cc -c var.c

func.o: func.c func.h
cc -c func.c

You can create any of the targets in themakefile. make will do all the compiling and linking that
is necessary, and no more.

1$ cd to the directory that contains the.h and.c files and themakefile
2$ make prog createprog
3$ make main.o createmain.o
4$ make var.o createvar.o
5$ make func.o createfunc.o

If you give make no command line argument, you will create the first target in themakefile by
default. That’s why the target at the root of the tree is listed first in themakefile. The other targets can
be listed in any order.

6$ make createprog
7$ make Nothing happens the second time.
‘prog’ is up to date.

▼ Homework 12.1: play with make

The filesfunc.h, var.h, main.c, func.c, var.c, andmakefile are in the directory
$m46/make. Copy them to a directory named$HOME/prog. Then

1$ cd $HOME/prog
2$ make
3$ ls -l Look at the new files created by themake command.
4$ prog Run the program created by themake command.

Then run themake command again and verify that no additional compilation or linking takes place.

Now edit one of the.c files, and verify thatmake compiles only the edited file and then relinks the
executable. Thenedit one of the.h files and verify thatmake compiles every .c file that#include’s
the.h file (but no other.c file) and then relinks the executable.

Instead of editing a.c file, give thetouch command to let you experiment more rapidly.

5$ ls -l main.c
-rw-r--r-- 1 abc1234 users 136 Dec 8 13:22 main.c

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 10 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

6$ touch main.c faster thanvi main.c
7$ ls -l
-rw-r--r-- 1 abc1234 users 136 Dec 8 13:29 main.c

You can confusemake by saying

8$ vi main.c This would normally causemake to recompilemain.c.
9$ touch main.o
10$ touch prog
11$ make Doesmake recompilemain.c?

{ } around a shell variable: p. 148

1$ lpq -Pth_hp4si_1
2$ lpq -Ped_hp4si_1

#!/bin/sh
#Print the queue for each Hewlett Packard 4Si laser printer.
#Without the {}, the echo would print the wrong variable.

for p in th ed
do

echo ${p}_hp4si_1:
lpq -P${p}_hp4si_1:

done

exit 0

Put parentheses or curly braces around the name of every make macro if the name is more than one
character long.

A makefile with macros

$@ and$* are internal macros, i.e., variables to whichmake gives different values automatically in
each rule where they are used. See p. 5 inmake(1). $@ is the name of the target file, and$* is the name
of the target file with the suffix removed (i.e., the basename of the target file). Contrary to what theman
says,$* can be used outside of suffix rules.You can use$* only in an indented line, not in a colon line.

CC, CFLAGS, andOBJS are non-internal macros; see p. 255 in the textbook and pp. 3−5 inmake(1).
A non-internal macro can have any name you want, but please pick names that agree with those output by
themake -p command above.

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 11 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

#makefile for the above C program, using macros.

CC = gcc
CFLAGS = -O #optimization
OBJS = main.o func.o var.o

prog: $(OBJS)
$(CC) $(CFLAGS) -o $@ $(OBJS)

main.o: main.c func.h var.h
$(CC) $(CFLAGS) -c $*.c

func.o: func.c func.h
$(CC) $(CFLAGS) -c $*.c

var.o: var.c var.h
$(CC) $(CFLAGS) -c $*.c

▼ Homework 12.2: create a makefile for moon

1$ cd
2$ mkdir moon
3$ cd moon
4$ cp $m46/moon/moon*.[ch] . Handout 1, p. 14
5$ chmod 644 moon*.[ch] if you plan to edit these files

Create amakefile for moon in your$HOME/moon directory. Hand in themakefile. Use the
internal macros$@ and$*. Create the macrosCC, CFLAGS, andOBJS. Leave theCFLAGS macro empty
if you don’t want optimization:

CFLAGS =

Also create a macro namedLOADLIBES to hold the-lm option ofgcc thatmoon requires. Write
$(LOADLIBES) at the end of the line that contains-o $@.
▲

Other ways to create a make macro: p. 3.

Instead of defining a macro in yourmakefile, you can pass a command line argument tomake:

1$ make CC=gcc No space around the equal sign.

or set an environment variable:

2$ setenv CC gcc do this in your.login file.
3$ env | more see the names and values of all your environment variables
4$ make

If you a macro without defining it anywhere,make will use the default definition you printed out
with themake -p command. Theserules also include the defaults for any rules you left out of your
makefile. For example, if you don’t say how to create a.o file from a.c file, make will use the.c.o
default rule displayed by themake -p command.

A makefile for an archive

An archive is made out of.o files, just as a.o file is made out of a.c file. The.o files inside of
the archivelibppm.a are namedlibppm.a(ppm_inheader.o),
libppm.a(ppm_outheader.o), etc. Usebackslashes to divide a long colon statement into separate
lines.

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 12 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

The internal macro$? in the following makefile holds the names of all the.o files in the library
that need to be recompiled (i.e., that are older than the corresponding.c files); see p. 3. The macro
$(?:.o=.c) is $? with the.o’s at the end of each word changed to.c’s; see p. 4.

Each indented line counts as a separate shellscript.To write a multi-line command such as
if-then-else-fi, you must therefore use backslashes.

#!/bin/sh
#What goes wrong if you omit the semicolon?

grep word file
who

grep word file; who

#!/bin/sh
#What goes wrong if you omit the semicolons?

if grep -q word file
then

who
fi

if grep -q word file; then who; fi

#This file is $m46/ppm/src/makefile.

CFLAGS = -I/home/m/mm64/46/ppm/include

libppm.a: \
libppm.a(ppm_inheader.o) \
libppm.a(ppm_outheader.o) \
libppm.a(ppm_negative.o)
$(CC) $(CFLAGS) -c $(?:.o=.c)
if [-f $@];\
then\

ar rsv $@ $?;\
else\

ar crsv $@ $?;\
fi
rm $?

#Disable the default rule for creating a .a file out of .c files to
#allow the above rule to be used instead.
.c.a:;

A taller tree

The above tree diagram had only three levels: the root, the leaves, and one level in between. For
tasks with more steps, the tree may be much taller.

A fi le written by human beings is calledsource code. Not all .c and.h files are source code: some
are written by programs.For example, human beings write.y files and.l files and feed them toyacc
andlex:

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 13 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1$ yacc hoc.y createy.tab.c: pp. 233−287
2$ lex lexer.l createlex.yy.c: pp. 256−258

The resulting filesy.tab.c andlex.yy.c must then be compiled into.o files. Hereis amakefile
for a tree with four levels:

OBJS = main.o y.tab.o lex.yy.o

prog: $(OBJS)
$(CC) -o $@ $(OBJS) $(LOADLIBES)

main.o: main.c
$(CC) $(CFLAGS) -c $*.c

y.tab.o: y.tab.c
$(CC) $(CFLAGS) -c $*.c

lex.yy.o: lex.yy.c
$(CC) $(CFLAGS) -c $*.c

y.tab.c: hoc.y
$(YACC) $(YFLAGS) hoc.y

lex.yy.c: lexer.l
$(LEX) $(LFLAGS) lexer.l

If the source fileshoc.y andlexer.l were put under the protection ofRCS, thenmake would
need an additional preliminary step to get these files fromRCS. The tree would then have five lev els:

hoc.y:
co hoc.y

lex.l:
co lex.l

A forest

A forest is two or more trees.A makefile may contain a forest instead of a single tree. The root
of one tree will usually be the executable file we want to create.The roots of the other trees may be also be
files that we want to create, but more often are merely names for groups of commands that we want to
execute.

For example, there is no file namedcleanup, nor will there ever be. Typemake cleanup to lead
make to believe that we want to create a file namedcleanup. make will then execute the indentedrm
command, believing that this will createcleanup.

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 14 − All rights

reserved ©2006 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

OBJS = main.o file1.o
SOURCES = prog.h main.c file1.c

prog: $(OBJS) #The root of the first tree
$(CC) $(CFLAGS) -o $@ $(OBJS)

main.o: main.c
$(CC) $(CFLAGS) -c $*.c

file1.o: file1.c
$(CC) $(CFLAGS) -c $*.c

#Remove all files that are not source code.
cleanup:

rm prog $OBJS

print:
pr -l60 $(SOURCES) | lpr #minus lowercase L sixty

test:
prog < test.data > test.out
if cmp -s correct.out test.out;\
then\

rm test.out;\
strip prog;\
mv prog /usr/local/bin;\

else\
echo ’Failed the test.’;\

fi

1$ make
2$ make main.o
3$ make test
4$ make cleanup
5$ make print

Print only the files of which you have no up-to-date printout: p. 265

Add the following rule to the end of the firstmakefile in this handout.

print: func.h var.h main.c func.c var.c
pr -l60 $? | lpr
touch print

The first time you saymake print, the indented commands will be executed because the file
print does not exist. Themacro$? will hold the names of all the dependents of this rule.Thetouch
command will then createprint.

Every subsequent time you saymake print, the macro$? will hold the names of only those
dependents that are newer than the fileprint. The indented command will print only the files that have
been edited since the last time you saidmake print.

Use the same technique to back up only the files that have been modified since the last time they were
backed up.

Fall 2006 Handout 12printed 12/21/06
10:37:10 AM − 15 − All rights

reserved ©2006 Mark Meretzky

