
NYU SCPS X52.9232 Section 6 C Programming, Part I

Spring 2007 Handout 1

Methodological preliminary

Type every character of every example exactly the way I type it. Use uppercase and lowercase
exactly as I do.Type each blank and tab exactly as I do.Don’t confuse the lowercasel with the digit1,
Don’t confuse the uppercaseO with the digit0, etc.

If you get syntax errors, you must compare every character that you typed with every character in the
example. Scanfrom left to right and be methodical.

A simple C program: K&R pp. 5−7; King pp. 9−16

A computer is a machine that follows a list of instructions.A program is a file (i.e., a document)
that contains the list of instructions that you put into the computer.

Create a file namedhello.c. Don’t type the line numbers or the blank immediately after each line
number. For example, leave no space before the#. Use only lowercase, except in comments.

A C program is divided into sections calledfunctions.Each function has a name:printf, sqrt,
rand, etc. To giv e the function a piece of data to work with, write it in parentheses after the name of the
function. Thisdata is called theargumentof the function:

printf("hello")
sqrt(2.0)
rand()

Always write the parentheses, even if the function takes no arguments. Theparentheses indicate that the
word in front of them is the name of a function, and that you want the computer tocall (i.e., execute) the
function.

1 /* Print the word "hello". */
2 #include <stdio.h>
3
4 main()
5 {
6 printf("hello\n");
7 }

hello

To avoid a warning on some systems, insert the wordvoid at the start of line 4 before the wordmain. Or
insert the wordint there and insert the statement

return 0;

between lines 6 and 7.

Compile and run the program: K&R p. 6; King pp. 10−11

To compile this program with theANSI C compiler on i5,

1$ gcc hello.c Create an executable program nameda.out.
2$ ls -l a.out Verify that you createda.out.

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 1 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

3$ gcc -o hello hello.c Better to create an executable program namedhello.
4$ ls -l hello Verify that you createdhello.

5$ gcc -o hello hello.c 2> hello.err If there are error messages, save them in a file.
6$ ls -l hello.err

7$ hello Run the program; send the output on screen.
8$ hello > hello.out Run it again; send the output to the filehello.out instead.

9$ lpr -Pedlab hello.c hello.out Print program and output.
10$ rm hello.out Remove the output file.

What happens if you omit the \n: K&R pp. 7−8; King p. 14

1 #include <stdio.h>
2
3 main()
4 {
5 printf("Once I built a railroad,\n");
6 printf("Made it run:\n");
7 printf("Made it race against time.\n");
8 }

Once I built a railroad,
Made it run:
Made it race against time.

1 #include <stdio.h>
2
3 main()
4 {
5 printf("Once I built a railroad,");
6 printf("Now it’s done:");
7 printf("Brother, can you spare a dime?");
8 }

Once I built a railroad,Now it’s done:Brother, can you spare a dime?

How not to print

printf("hello/n");

/* Departure from accepted programming practice: */
printf("\nOnce I built a railroad,");
printf("\nNow it’s done:");
printf("\nBrother, can you spare a dime?");

Never output a blank (or a tab) immediately before a newline—it accomplishes nothing.

printf("hello \n"); /* bad */
printf("hello\n"); /* good */

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 2 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

▼ Homework 1.1: print a flag

Write a program namedflag.c to print a flag with tenprintf’s, each ending with a\n:

* * * * * * =====================
* * * * * =====================
* * * * * * =====================
* * * * * =====================
* * * * * * =====================
=================================
=================================
=========E pluribus unum=========
=================================
=================================

▲

Declare integer variables

A variable is a container that can hold a number. Each variable has a name, called itsidentifier. You
can create a variable by writing adeclaration as in lines 5−6 below. Put the declarations immediately after
the{ and before the other statements (e.g., assignment statements,printf’s, etc.) SeeK&R p. 9; King
pp. 16−17 for variables and declarations; K&R pp. 35−36, 192; King pp. 23−24, 29 for the rules for identi-
fiers.

An expression is built out of one or more numbers and/or variables, joined together with+ - * / %,
etc., and parentheses. (Numbers are calledconstants.) An expression may be written to the right of the=
in anassignment statement(lines 17, 20, 23 below) or as the second, third, fourth, etc., argument of
printf.

—On the Web at
http://i5.nyu.edu/∼ mm64/x52.9232/src/variable.c

1 #include <stdio.h>
2
3 main()
4 {
5 int i = 10; /* Write comments alongside declarations. */
6 int j = 20, k = 30; /* Can declare two variables in same statement. */
7 const int m = 40; /* Can’t change the value of this variable. */
8
9 printf("The value of i is %d.\n", i);
10 printf("%d\n", i);
11
12 printf("The value of i is %d, j is %d, and k is %d.\n", i, j, k);
13 printf("%d %d %d\n", i, j, k);
14
15 printf("The value of i + j * k is %d.\n", i + j * k);
16
17 i = 20; /* Can change the value of a variable. */
18 printf("The new value of i is %d.\n", i);
19
20 i = 10 * j + k;
21 printf("The new value of i is %d.\n", i);
22
23 i = i + 1; /* Add 1 to the value of i. */
24 printf("The new value of i is %d.\n", i);
25

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 3 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

26 printf("I agree 100%%.\n");
27 }

Line 5 could be split into

int i; /* Create a variable i containing garbage. */
i = 10; /* Replace the garbage by 10. */

—but why would you want to? See K&R pp. 40, 85−6; King pp. 19−20.

The value of i is 10. line 9
10 line 10
The value of i is 10, j is 20, and k is 30. line 12
10 20 30 line 13
The value of i + j * k is 610. line 15
The new value of i is 20. line 18
The new value of i is 430. line 21
The new value of i is 431. line 24
I agree 100%. line 26

A variable with an unpredictable value

For now, assume that every variable is born containing an unpredictable number. The following pro-
gram may print a different value each time you run it.Or it may always print the same value. Andit may
behave differently on a different machine. There will be no error message.

1 #include <stdio.h>
2
3 main()
4 {
5 int i;
6
7 printf("%d\n", i);
8 }

Operator precedence: K&R pp. 52−54; King pp. 46−48, 595

For now, ignore lines 2 and 13 of the table on K&R p. 53; King p. 595. (Line 2 lists all the unary
operators such as++; line 13 lists the ternary operator?:.) Thetable shows that* has higher precedence
than+. To override this, parenthesize the operator of lower precedence:

k = 1 + 2 * 3; /* multiply before add: put 7 into k */
k = (1 + 2) * 3; /* add before multiply: put 9 into k */

Examples of / and %: K&R pp. 41, 205; King p. 46

The quotient of two integers will always be an integer, i.e., it will have no fractional part. Each
machine reacts differently when you divide by zero (K&R p. 200, §A7).The result of%’ing by 5 will
always be in the range 0−4 inclusive.

1 #include <stdio.h>
2
3 main()
4 {
5 printf("%d\n", 38 / 5); /* quotient, truncated to integer */
6
7 printf("%d\n", 38 % 5); /* remainder */
8 printf("%d\n", 39 % 5);

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 4 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

9 printf("%d\n", 40 % 5);
10 }

7
3 because 38 is 3 more than a multiple of 5
4 because 39 is 4 more than a multiple of 5
0 because 40 is a multiple of 5

Other conversion characters for integer expressions

Surprisingly,printf has no%b for binary. See K&R pp. 11, 13.For the complete list, see K&R
pp. 154, 244; King p. 489.

1 #include <stdio.h>
2
3 main()
4 {
5 int i = 74;
6
7 printf("%d\n", i); /* decimal */
8 printf("%o\n", i); /* octal */
9 printf("%x\n", i); /* lowercase hexadecimal */
10 printf("%X\n", i); /* uppercase hexadecimal */
11 printf("%c\n", i); /* ASCII character */
12 }

74
112
4a
4A
J

▼ Homework 1.2: discover some ASCII codes

I just showed you how to discover that uppercaseJ is the character whose ASCII code is decimal 74.
Discover the characters whose ASCII codes are 65, 97, 48, 32. The last two will be tricky.
▲

Minimum field width

%5d will print blanks in front of the number, if necessary, so that the total width of the blanks and the
number will be at least 5 characters.This will line up, orright justify, the numbers.%5d will never chop
digits off the number, even if the number has more than five digits. SeeK&R p. 11, and the second bullet
on K&R pp. 153, 243 or King pp. 488, 491.

1 #include <stdio.h>
2
3 main()
4 {
5 int i = 6; /* the first four perfect numbers */
6 int j = 28;
7 int k = 496;
8 int l = 8128;
9
10 printf("%d\n", i);
11 printf("%d\n", j);

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 5 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

12 printf("%d\n", k);
13 printf("%d\n", l);
14
15 printf("\n"); /* Print an empty line. */
16
17 printf("%5d\n", i);
18 printf("%5d\n", j);
19 printf("%5d\n", k);
20 printf("%5d\n", l);
21
22 printf("\n"); /* Print an empty line. */
23
24 printf("%3d\n", l);
25 }

6
28
496
8128

6 four blanks before the6
28 three blanks before the28

496 two blanks before the496
8128 one blank before the8128

8128 no blanks before the8128, but no digits are chopped off.

Combine lines 13−15 to

printf("%d\n\n", l);

How not to print integer variables

%d always prints one or more digits. The following 1 is therefore redundant, since it asks for at least
one character of output.

printf("%1d\n", i); /* The digit 1 does nothing. */

printf(" %d %d %d\n", i, j, k); /* bad */
printf("%12d %12d %12d\n", i, j, k); /* good */

Pad with zeroes instead of blanks: K&R p. 243 last sentence; King p. 488, 490.

The only padding characters thatprintf provides are blank and zero.

1 #include <stdio.h>
2
3 main()
4 {
5 int agent = 7;
6
7 printf("%d\n", agent);
8 printf("%3d\n", agent);
9 printf("%03d\n", agent);
10 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 6 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

7 nothing before the7
7 two blanks before the7

007 two zeroes before the7

Input an integer: K&R pp. 93−94, 157; King pp. 20, 36−38

1 #include <stdio.h>
2
3 main()
4 {
5 int years;
6
7 printf("How old are you? "); /* no newline */
8 scanf("%d", &years);
9 printf("You’ll be ready to retire in %d years.\n", 65 - years);
10 }

How old are you? 52
You’ll be ready to retire in 13years.

To print the value of a variable, you must give its current value toprintf:

printf("%d", years);

To giv e a new value to a variable, however, there is no need to give its current value toscanf. scanf
doesn’t care about the current value:scanf’s job is to destroy the current value and replace it by a new
one. That’s why we do not giveyears to scanf as its second argument.

To do its job of installing a new value into the variable,scanf needs a different kind of information:
it needs to know the memory address of the variable. Thevalue of the expression&years is theaddress
of the variable, as opposed to itsvalue:

scanf("%d", &years);

How not to input an integer

It would be wasted effort to assign a value toyears before thescanf in the above program. For
example, don’t say

int years = 0;

printf("How old are you? ");
scanf("%d", &years);

▼ Homework 1.3: write a program that accepts input

Write a program namedinput.c that asks the user to type in one or more numbers, and then prints
an answer. Any one of the following will do: you get no credit if you hand in more than one.

Use as few variables as possible.Don’t worry about the difference between singular and plural: i.e.,
don’t useif. Don’t usewhile or for either. Do not write a minimum field width number between the%
and the conversion characterd.

How old are you? 52
That’s 14049dog years.

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 7 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

What year is this? 2007
Then this Congress is the 110the Congress

Use/ and%. Do not use multiplication:

How many minutes have you been waiting? 200
That’s 3 hours and 20 minutes!

How many cents do you have? 239
That’s 2 dollars and 39 cents!

How many pounds does the turkey weigh? 11
How many minutes does each pound take? 20
Then you have to cook it for 3 hours and 40 minutes.

You can do this two ways: 365 / 100 * 100, or 365 − 365 % 100. The latter is faster:

Please type a number: 365
Rounded down to the nearest 100, that’s 300.

Later in the course, we will rewrite this program with an array of structures:

How many quarters do you have? 3
How many dimes do you have? 3
How many nickels do you have? 0
How many pennies do you have? 4
Then you have 1 dollars and 9 cents.

▲

How not to program

1 /* Print the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 printf("%2d\n", 1);
7 printf("%2d\n", 2);
8 printf("%2d\n", 3);
9 printf("%2d\n", 4);
10 printf("%2d\n", 5);
11 printf("%2d\n", 6);
12 printf("%2d\n", 7);
13 printf("%2d\n", 8);
14 printf("%2d\n", 9);
15 printf("%2d\n", 10);
16
17 printf("That’s all, folks!\n");
18 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 8 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1
2
3
4
5
6
7
8
9
10
That’s all, folks!

Tw o ways to count from 1 to 10: K&R pp. 8−14, 60−62, 224; King pp. 86−87, 91−93

Thebody of a loop is the statement(s) that are executed repeatedly (lines 10−11 below). Enclosethe
body within{curly braces} shown on lines 9 and 12.Indent the body one tab stop farther than the sur-
rounding lines.For example, lines 10−11 are indented one tab stop farther than lines 9 and 12.

The{curly braces} around the body of thewhile or for are optional when the body consists of
only one statement, but are required when the body consists of two or more statements.In this course,
however, you will always write the curly braces or you will get no credit for your homework. The body
below consists of the two statements on lines 10−11.If the body consists of no statements, follow the
example on pp. 35−36 in this Handout rather than K&R pp. 18−19 or King p. 102.

Each trip through the loop is called aniteration. The following loop iterates 10 times.The variable
that gets a new value during each iteration is called theinduction variableof the loop.

1 /* Print the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 i = 1;
9 while (i <= 10) { /* no semicolon after the) */
10 printf("%2d\n", i);
11 i = i + 1;
12 }
13 printf("That’s all, folks!\n");
14 }

1 /* A more localized notation for printing the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 for (i = 1; i <= 10; i = i + 1) { /* no semicolon after the) */
9 printf("%2d\n", i);
10 }
11 printf("That’s all, folks!\n");
12 }

Here are the names of the parts of afor loop, and the order in which they’re executed. Let’s assume
the loop iterates ten times.

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 9 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1 for (initialization; test; re-initialization) {
2 body
3 }

1. initialization (executed only once. George Bush: ‘‘I was outside the loop.’’)
2. test
3. body
4. re-initialization
5. test
6. body
7. re-initialization
8. test
9. body
10. re-initialization
. . .
30. body
31. re-initialization
32. test (is always last)

1 /* Print graph paper with 10 rows and 10 columns. */
2 #include <stdio.h>
3
4 main()
5 {
6 int row;
7
8 for (row = 1; row <= 10; row = row + 1) {
9 printf("+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+\n");
10 printf("| | | | | | | | | | |\n");
11 }
12 }

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| | | | | | | | | | |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| | | | | | | | | | |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| | | | | | | | | | |
etc.

Nested loops

The\n\n prints an empty line after theAaaaaaaaaaaaaaaaaaaaaaaaahhh.

1 #include <stdio.h>
2
3 main()
4 {
5 int i;
6 int j;
7
8 for (i = 1; i <= 2; i = i + 1) {
9 for (j = 1; j <= 3; j = j + 1) {
10 printf("Lucy in the sky with diamonds\n");
11 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 10 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

12 printf("Aaaaaaaaaaaaaaaaaaaaaaaaahhh\n\n");
13 }
14 }

Lucy in the sky with diamonds
Lucy in the sky with diamonds
Lucy in the sky with diamonds
Aaaaaaaaaaaaaaaaaaaaaaaaahhhh

Lucy in the sky with diamonds
Lucy in the sky with diamonds
Lucy in the sky with diamonds
Aaaaaaaaaaaaaaaaaaaaaaaaahhhh

Mor e nested loops

1 #include <stdio.h>
2
3 main()
4 {
5 int j;
6
7 for (j = 1; j <= 5; j = j + 1) { /* print a row of 5 X’s */
8 printf("X");
9 }
10
11 printf("\n");
12 }

XXXXX

1 #include <stdio.h>
2
3 main()
4 {
5 int row;
6 int col;
7
8 for (row = 1; row <= 4; row = row + 1) { /* print a 4 by 5 */
9 for (col = 1; col <= 5; col = col + 1) { /* rectangle of X’s */
10 printf("X");
11 }
12 printf("\n");
13 }
14 }

XXXXX
XXXXX
XXXXX
XXXXX

Change5 to row in the above line 9 to produce the following output:

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 11 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

X
XX
XXX
XXXX

1 #include <stdio.h>
2
3 main()
4 {
5 int row;
6 int i;
7
8 for (row = 1; row <= 4; row = row + 1) {
9 for (i = 1; i <= 4 - row; i = i + 1) {
10 printf(" ");
11 }
12
13 for (i = 1; i <= row; i = i + 1) {
14 printf("X");
15 }
16
17 printf("\n");
18 }
19 }

X
XX
XXX
XXXX

1 #include <stdio.h>
2
3 main()
4 {
5 int row;
6 int i;
7
8 for (row = 1; row <= 5; row = row + 1) {
9 for (i = 1; i <= 5 - row; i = i + 1) {
10 printf(" ");
11 }
12
13 for (i = 1; i <= 2 * row - 1; i = i + 1) {
14 printf("X");
15 }
16
17 printf("\n");
18 }
19 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 12 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

X
XXX
XXXXX
XXXXXXX
XXXXXXXXX

Don’t write the same number in more than one place.

To change the number of columns, we’d hav eto edit lines 10 and 15.Worse, it’s hard to tell which
10’s stand for the number of rows, and which10’s stand for the number of columns.

1 /* Print graph paper with 10 rows and 10 columns. */
2 #include <stdio.h>
3
4 main()
5 {
6 int row;
7 int col;
8
9 for (row = 1; row <= 10; ++row) {
10 for (col = 1; col <= 10; ++col) {
11 printf("+-----");
12 }
13 printf("\n");
14
15 for (col = 1; col <= 10; ++col) {
16 printf("| ");
17 }
18 printf("\n");
19 }
20 }

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
| | | | | | | | | |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
| | | | | | | | | |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
| | | | | | | | | |
etc.

1 /* Print graph paper with nrows rows and ncols columns. */
2 #include <stdio.h>
3
4 main()
5 {
6 const int nrows = 10; /* number of rows */
7 const int ncols = 10; /* number of columns */
8
9 int row;
10 int col;
11
12 for (row = 1; row <= nrows; ++row) {
13 for (col = 1; col <= ncols; ++col) {
14 printf("+-----");
15 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 13 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

16 printf("\n");
17
18 for (col = 1; col <= ncols; ++col) {
19 printf("| ");
20 }
21 printf("\n");
22 }
23 }

#define a macro:
K&R pp. 14−15, 89−91, 229−231; King pp. 277−288

NROWS looks like a variable, but it’s not. A #define line is merely an instruction to a word proces-
sor called theC preprocessor,asking it to changeNROWS to 10 throughout the rest of the.c file. NROWS
is called amacro, 10 is thereplacement text, and the act of performing the change is calledmacro expan-
sion.

The name of a macro should be all uppercase to remind you that it’s not a variable. Thereplacement
text can be more than a single number.

We can now change the number of columns by editing only line 5.A macro has been used correctly
only if you can change the value without editing any line other than the#define line.

1 /* Print graph paper with NROWS rows and NCOLS columns. */
2 #include <stdio.h>
3
4 #define NROWS 10 /* number of rows */
5 #define NCOLS 10 /* number of columns */
6
7 main()
8 {
9 int row;
10 int col;
11
12 for (row = 1; row <= NROWS; ++row) {
13 for (col = 1; col <= NCOLS; ++col) {
14 printf("+-----");
15 }
16 printf("\n");
17
18 for (col = 1; col <= NCOLS; ++col) {
19 printf("| ");
20 }
21 printf("\n");
22 }
23 }

Macro definitions in the file /usr/include/stdlib.h:
K&R pp. 163−164, 252; King pp. 496−498

1 /* Largest return value of rand, K&R p. 252. */
2 #define RAND_MAX 32767
3
4 /* Return value of getchar (Handout 2, p. 21).
5 There is no char with this value. */
6 #define EOF (-1)
7

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 14 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

8 /* There is no variable at address NULL,
9 so put NULL into a pointer to make sure it doesn’t point at any variable. */
10 #define NULL 0
11
12 /* Arguments of exit. */
13 #define EXIT_FAILURE 1
14 #define EXIT_SUCCESS 0

▼ Homework 1.4: output a flag

Write a program with nested loops that produces the following output. The union jack is the rectan-
gle in the upper left corner that contains the stars and blue background.

* * * ========
* * * ========
* * * ========
==============
==============
==============

Start the program with the followingconst int’s, which give the dimensions in characters:

1 const int height = 6; /* height of whole flag */
2 const int uheight = 3; /* height of union jack */
3
4 const int length = 14; /* length of whole flag */
5 const int ulength = 6; /* length of union jack */

Theconst int’s will determine how many times the loops iteratate.For example, the loop that prints the
top stripe will iteratelength - ulength times, and each time it will print the character"=". And the
loop that prints the top row of stars will iterateulength / 2 times, and each time it will print the two
characters"* ".
▲

Geometric progression in a for loop

1 /* Print the powers of 2 from 1 to 64 inclusive, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 for (i = 1; i <= 64; i = i * 2) {
9 printf("%2d\n", i);
10 }
11 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 15 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1
2
4
8
16
32
64

Relational and logical operators: K&R pp. 21, 41−42; King pp. 64−66

Put no space between the two equal signs of a== etc. Besure to type a double equal sign—a single
equal sign means something else.

== equals
!= not equals
< less than
<= less than or equals
> greater than
>= greater than or equals

&& and
|| or

For example,

i <= 10
i >= 1
i > 0

day >= 1 && day <= last
day < 1 || day > last

You get no error message for the following mistake; see K&R p. 19; King p. 79.

if (a = b) { wrong
if (a == b) { right

▼ Homework 1.5: A Hundred Bottles of Beer on the Wall

Write a program namedbottle.c that will print the words toA Hundred Bottles of Beer on the
Wall . It must have exactly one variable, onefor loop, and fourprintf’s. Name the variableb. All four
printf’s must be within thefor loop. Donot write a minimum field width number between the% and
the conversion characterd. Print an empty line between verses by ending the lastprintf with \n\n
instead of\n. Please hand in no more than one page of output.

For programs that print the words to songs, see Donald E. Knuth’s article ‘‘The Complexity of
Songs’’ i n SIGACT News, Volume 9 Number 2 (Summer 1977), pp. 17−24.

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 16 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

100 bottles of beer on the wall,
100 bottles of beer--
If one of those bottles should happen to fall,
99 bottles of beer on the wall.

99 bottles of beer on the wall,
99 bottles of beer--
If one of those bottles should happen to fall,
98 bottles of beer on the wall.

98 bottles of beer on the wall,
98 bottles of beer-- ad nauseam

▲

Never write a loop that always iterates exactly once

Never make a program more complicated than necessary. See William Strunk and E. B. White,The
Elements of Style, Third Edition, p. 23, §17 (also pp. xiii−xiv).

Never write a loop that always iterates exactly once.Remove lines 8 and 10 (and 6 too) from each of
the following two examples.

1 /* Print the word "hello". */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 for (i = 1; i <= 1; i = i + 1) {
9 printf("hello\n");
10 }
11 }

1 /* Print the word "hello". */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 for (i = 1; i < 2; i = i + 1) {
9 printf("hello\n");
10 }
11 }

Don’t store a dead value in a variable

There is no need to put the value1 into i twice.

1 /* Print the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i = 1;

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 17 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

7
8 for (i = 1; i <= 10; i = i + 1) {
9 printf("%d\n", i);
10 }
11 }

Pick the right starting and ending numbers

1 /* Print the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 for (i = 2; i <= 11; i = i + 1) {
9 printf("%d\n", i - 1);
10 }
11 }

Count in the right direction

1 /* Print the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 for (i = 10; i >= 1; i = i - 1) {
9 printf("%d\n", 11 - i);
10 }
11 }

Don’t make a shadow variable

1 /* Print the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7 int j;
8
9 j = 0;
10 for (i = 1; i <= 10; i = i + 1) {
11 j = j + 1;
12 printf("%d\n", j);
13 }
14 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 18 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

Write all the repetitions inside the body of the loop

1 /* Print the numbers from 1 to 10, one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 int i = 1;
7
8 printf("%d\n", i);
9
10 for (i = 2; i <= 10; i = i + 1) {
11 printf("%d\n", i);
12 }
13 }

Rewrite the following program with noprintf’s outside thefor loop.

1 /* Print A B A B A B A B etc., one per line. */
2 #include <stdio.h>
3
4 main()
5 {
6 printf("A\n");
7
8 for (;;) {
9 printf("B\n");
10 printf("A\n");
11 }
12 }

▼ Homework 1.6: eliminate repetitious code

Rewritepierogi.c with afor loop that iterates seven times. Theprogram must produce exactly
the same output as the program below.

The program must have exactly one variable, onefor loop, and two printf’s. Name the variable
h: it must be the number of Hungarians, not the number of pierogies. Oneprintf must be before the
for loop and the otherprintf must be inside thefor loop. You get no credit if you perform division.

1 #include <stdio.h>
2
3 main()
4 {
5 printf("This program helps you decide how many pierogies to make.\n\n");
6
7 printf("%2d pierogies feed %2d people or %2d Hungarians.\n", 8, 4, 2);
8 printf("%2d pierogies feed %2d people or %2d Hungarians.\n", 12, 6, 3);
9 printf("%2d pierogies feed %2d people or %2d Hungarians.\n", 16, 8, 4);
10 printf("%2d pierogies feed %2d people or %2d Hungarians.\n", 20, 10, 5);
11 printf("%2d pierogies feed %2d people or %2d Hungarians.\n", 24, 12, 6);
12 printf("%2d pierogies feed %2d people or %2d Hungarians.\n", 28, 14, 7);
13 printf("%2d pierogies feed %2d people or %2d Hungarians.\n", 32, 16, 8);
14 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 19 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

This program helps you decide how many pierogies to make.

8 pierogies feed 4 people or 2 Hungarians.
12 pierogies feed 6 people or 3 Hungarians.
16 pierogies feed 8 people or 4 Hungarians.
20 pierogies feed 10 people or 5 Hungarians.
24 pierogies feed 12 people or 6 Hungarians.
28 pierogies feed 14 people or 7 Hungarians.
32 pierogies feed 16 people or 8 Hungarians.

▲

▼ Homework 1.7: the New York State Thruway

Write a program to output eight signs at 10 mile intervals in the following order (northbound).Out-
put one empty line after each sign:

+--------------+
| Albany 108 |
| Montreal 328 |
| Buffalo 388 |
+--------------+

+--------------+
| Albany 98 |
| Montreal 318 |
| Buffalo 378 |
+--------------+

+--------------+
| Albany 88 |
| Montreal 308 |
| Buffalo 368 |
+--------------+ etc.

The program must contain exactly fiveprintf’s (because the sign has five lines), onefor, and one vari-
able. Namethe variableb: it must be the number of miles to Buffalo. Right-justify the numbers.You get
no credit if you perform multiplication or division.
▲

▼ Homework 1.8: print a table

Write a program namedtable.c that will print a table with three columns listing the numbers from
0 to 31 inclusive in decimal, octal, and uppercase hexadecimal. You get no credit if you print in lowercase
hexadecimal, or if you start or end at the wrong number. Print a heading on top of each column.

Unless you do the extra credit part, your program must have exactly one variable, onefor loop, and
two printf’s. Oneprintf must be before thefor loop and the otherprintf must be inside thefor
loop. Theprintf in thefor loop will print three numbers each time it is executed. Rightjustify each
column of numbers with%7 before the conversion character.

The output should begin

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 20 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

decimal octal hex
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 10 8
9 11 9
10 12 A etc.

✎ Extra credit for space cadets only. Print a binary column in front of the decimal, octal, and hex
columns. Eachbinary number will have five bits, ranging from00000 to 11111. For simplicity, always
print all five bits:

binar decimal octal hex
00000 0 0 0
00001 1 1 1
00010 2 2 2
00011 3 3 3
00100 4 4 4 etc.

You get extra credit only if you solve this problem in the following way. Add a new for loop inside
the existingfor loop. Thenewfor loop should iterate five times and its induction variable should count
through the five numbers 16, 8, 4, 2, 1.The new for loop will contain exactly oneprintf, which will
print exactly one digit (0 or 1) each time it is executed. Theprogram must now hav eexactly three
printf’s, two variables (which must both beint’s), and noif’s.

There must be exactly one pair of parentheses after eachprintf. You get no extra credit if there is
a second pair of parentheses in any printf statement. Theexpression in the new printf should first
use/ to remove trailing digits from the number to be printed, and then use% to remove leading digits from
the number. Don’t write / and% more than once in theprintf. You get no credit if you use\b, thepow
function, or an array.

The folowing examples are in base 10.You will use base 2.

1 #include <stdio.h>
2
3 main()
4 {
5 int n = 1234;
6
7 printf("%d\n", n / 1); /* Remove trailing digit(s). */
8 printf("%d\n", n / 10);
9 printf("%d\n", n / 100);
10 printf("%d\n\n", n / 1000);
11
12 printf("%d\n", n % 1000); /* Remove leading digit(s). */
13 printf("%d\n", n % 100);
14 printf("%d\n\n", n % 10);
15
16 printf("%d\n", n / 10 % 10); /* Remove 1 trailing & all but 1 leading. */
17 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 21 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

1234
123
12
1

234
34
4

3

▲

Infinite for loop: K&R p. 60; King p. 94

On some machines (e.g., our Unix machine i5 at NYU), you may have to

#include <unistd.h>

after line 1 to usesleep. In Unix, typecontrol-c to kill this program.

1 #include <stdio.h>
2
3 main()
4 {
5 for (;;) {
6 printf("It was a dark and stormy night.\n"); /* Bulwer-Lytton */
7 printf("Some Indians were sitting around a campfire.\n");
8 printf("Then their chief rose and said:\n\n");
9
10 sleep(5); /* Do nothing for 5 seconds. */
11 }
12 }

It was a dark and stormy night.
Some Indians were sitting around a campfire.
Then their chief rose and said:

It was a dark and stormy night.
Some Indians were sitting around a campfire.
Then their chief rose and said:

It was a dark and stormy night. etc.

Print random numbers: K&R pp. 251−252; King p. 570

rand() is an expression, just like i or i+j or 2+2. Unlike 2+2, howev er, the value ofrand()
will be different each time you use it.Like any other expression, it can appear in aprintf or to the right
of the= in an assignment statement.

It’s easy to recognize a function in C: it always has parentheses after its name, even if it has no argu-
ments:

printf("hello");
sqrt(2.0)
rand()

1 /* Print 10 random integers, one per line. */

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 22 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

2 #include <stdio.h>
3 #include <stdlib.h> /* needed for rand */
4
5 main()
6 {
7 int i;
8
9 for (i = 1; i <= 10; i = i + 1) {
10 printf("%10d\n", rand()); /* percent ten d */
11 }
12 }

1103527590 The numbers may be different on your machine.
377401575 one blank before the377401575
662824084
1147902781
2035015474
368800899
1508029952
486256185
1062517886
267834847

Print different random numbers each time you run the program: K&R pp. 252, 255−256; King pp.
89−91

If the above program prints the same ten random numbers each time you run it, call thesrand func-
tion at the start of the program before doing anything else.Call srand only once—do not put it inside of a
loop. srand does not return a random number, so don’t attempt toprintf srand. srand merely
ensures that any subsequent call torand will return a different random number each time you run the pro-
gram.

1 /* Print 10 random integers, one per line. */
2
3 #include <stdio.h>
4 #include <stdlib.h> /* needed for srand and rand */
5 #include <time.h> /* needed for time */
6
7 main()
8 {
9 int i;
10
11 srand(time(NULL));
12
13 for (i = 1; i <= 10; i = i + 1) {
14 printf("%10d\n", rand());
15 }
16 }

do-while loop: K&R pp. 63−64; King pp. 89−91

Unlike awhile loop, ado-while loop will always iterate at least once.

1 #include <stdio.h>
2 #include <stdlib.h>

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 23 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

3 #include <time.h>
4
5 main()
6 {
7 int dummy;
8
9 srand(time(NULL));
10
11 printf("Welcome to Russian Roulette.\n");
12 printf("Any number of players can take turns.\n");
13 printf("To pull the trigger when you see the ->,\n");
14 printf("type 0 and press RETURN.\n\n");
15
16 do {
17 printf("-> ");
18 scanf("%d", &dummy);
19 } while (rand() % 6 != 0); /* one out of six chance of death */
20
21 printf("BANG!\n");
22 }

Welcome to Russian Roulette.
Any number of players can take turns.
To pull the trigger when you see the ->,
type 0 and press RETURN.

-> 0
-> 0
-> 0
BANG!

if statement: K&R p. 19; King pp. 66−68

The(parentheses), {curly braces}, and indentation of anif are exactly like that of awhile.

Thebody of anif is the statement(s) that may or may not be executed (lines 14−16 below). Enclose
the body within{curly braces} (they’re on lines 13 and 17). Indent the body one tab stop farther than the
surrounding lines.For example, lines 14−16 are indented one tab stop farther than lines 13 and 17.

The {curly braces} around the body are optional when it consists of only one statement, but are
required when it consists of two or more statements.In this course, however, you will always write the
curly braces or you will get no credit for your homework. The body below consists of the three statements
on lines 14−16.

1 #include <stdio.h>
2
3 main()
4 {
5 int gore;
6 int bush;
7
8 printf("How many electoral votes did Gore get? ");
9 scanf("%d", &gore);
10
11 printf("How many electoral votes did Bush get? ");
12 scanf("%d", &bush);

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 24 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

13
14 if (gore == bush) {
15 printf("They’re equal.\n");
16 printf("Please inform the House of Representatives\n");
17 printf("that the electoral college is hung.\n");
18 }
19 }

Never write an if that is always true or always false

Rearrange this program fragment, without changing its net effect.

1 if (a == a) {
2 b = c;
3 }
4
5 if (a != a) {
6 b = c;
7 }

What is the range of your rand function?

1 /* Output the largest of the first 1000 random integers returned by rand. */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 main()
8 {
9 int i; /* loop counter */
10 int m; /* largest random number seen so far */
11 int r; /* each random number */
12
13 srand(time(NULL));
14 m = rand();
15
16 for (i = 1; i < 1000; i = i + 1) {
17 r = rand();
18 if (r > m) {
19 m = r;
20 }
21 }
22
23 printf("%d\n", m);
24 }

Can you write a program that will print the smallest of the first 1000 random numbers?Don’t forget
to change the comments.

if-then-else statement: K&R pp. 20−21, 55−58; King pp. 68−69

You will often need a pair of consecutive if’s of which exactly one will always be true: never both,
and never neither.

1 if (a == b) {
2 printf("equal");

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 25 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

3 }
4
5 if (a != b) {
6 printf("not equal");
7 }

Use the wordelse (which means ‘‘otherwise’’) to make the program faster and smaller:

1 if (a == b) {
2 printf("equal");
3 } else {
4 printf("not equal");
5 }

The ‘‘then’’ section and the ‘‘else’’ section can each contain more than one statement.The same punctua-
tion and indentation rules apply to both sections:

1 if (gore == bush) {
2 printf("They’re equal.\n");
3 printf("Please inform the House of Representatives\n");
4 printf("that the electoral college is hung.\n");
5 } else {
6 printf("There’s a clear winner.\n");
7 printf("Thank you, electors.\n");
8 }

▼ Homework 1.9: which of these can you combine usingelse?

You can useelse only when you have a pair of consecutive if’s of which exactly one will always
be true: never both, and never neither.

1 if (a < b) {
2 printf("less than");
3 }
4
5 if (a >= b) {
6 printf("greater than or equal");
7 }

8 if (a < b) {
9 printf("less than");
10 }
11
12 if (a > b) {
13 printf("greater than");
14 }

15 if (a <= b) {
16 printf("less than or equal");
17 }
18
19 if (a >= b) {
20 printf("greater than or equal");
21 }

▲

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 26 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

How they programmed before they invented else

The following example shows how they programmed before they inv entedelse. Every time this
program runs, the assignment topay on line 12 is executed. Fiftypercent of the time the assignment to
pay on line 14 is also executed. Fixit so that only one assignment topay is executed during each run.

1 /* Flip a coin to decide somebody’s salary: either $34 or $39 per hour. */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <time.h>
5
6 main()
7 {
8 int pay;
9
10 srand(time(NULL));
11
12 pay = 34;
13 if (rand() % 2 == 0) { /* fifty-fifty chance */
14 pay = 39;
15 }
16
17 printf("$%d per hour\n", pay);
18 }

1 /* Flip a coin to decide somebody’s salary: either $34 or $39 per hour. */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <time.h>
5
6 main()
7 {
8 int pay;
9
10 srand(time(NULL));
11
12 if (rand() % 2 == 0) { /* fifty-fifty chance */
13 pay = 39;
14 } else {
15 pay = 34;
16 }
17
18 printf("$%d per hour\n", pay);
19 }

Code sinking

ac+ bc = (a + b)c

I want french fries with my hamburger or coleslaw with my hamburger. I want french fries or
coleslaw with my hamburger.

1 if (a == b) {
2 printf("equal");
3 c = d;
4 } else {

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 27 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

5 printf("not equal");
6 c = d;
7 }

8 if (a == b) {
9 printf("equal");
10 } else {
11 printf("not equal");
12 }
13
14 c = d;

Code hoisting

ca+ cb = c(a + b)

1 if (a == b) {
2 c = d;
3 printf("equal");
4 } else {
5 c = d;
6 printf("not equal");
7 }

8 c = d;
9
10 if (a == b) {
11 printf("equal");
12 } else {
13 printf("not equal");
14 }

Could we still have hoisted the assignment statement if it had beena = b; instead ofc = d;?

Never write an empty ‘‘else’’ section

Use anif-then-else statement only when there are two possible alternatives.

1 if (a == b) {
2 printf("equal");
3 } else {
4 }

5 if (a == b) {
6 printf("equal");
7 }

Never write an empty ‘‘then’ ’ section

1 if (a == b) {
2 } else {
3 printf("not equal");
4 }

5 if (a != b) {
6 printf("not equal");

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 28 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

7 }

▼ Homework 1.10: make the program simpler

Hoist and sink if possible; do not write an empty ‘‘then’’ section or an empty ‘‘then’’ section.

1 if (a == b) {
2 printf("%d", c);
3 c = d;
4 } else {
5 c = d;
6 }

7 if (a == b) {
8 c = d;
9 } else {
10 printf("%d", c);
11 c = d;
12 }

13 if (d == 0) {
14 a = b + c;
15 } else {
16 a = b + c + d;
17 }

18 int a, b;
19
20 if (a == 2) {
21 b = b / 2;
22 } else if (a == 3) {
23 b = b / 3;
24 } else if (a == 4) {
25 b = b / 4;
26 } else if (a == 5) {
27 b = b / 5;
28 }

▲

Swap the ‘‘then’’ section and the ‘‘else’’ section

1 if (gore == bush) {
2 printf("They’re equal.\n");
3 printf("Please inform the House of Representatives\n");
4 printf("that the electoral college is hung.\n");
5 } else {
6 printf("There’s a clear winner.\n");
7 printf("Thank you, electors.\n");
8 }

9 if (gore != bush) {
10 printf("There’s a clear winner.\n");
11 printf("Thank you, electors.\n");
12 } else {
13 printf("They’re equal.\n");

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 29 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

14 printf("Please inform the House of Representatives\n");
15 printf("that the electoral college is hung.\n");
16 }

1 /* before */ 1 /* after */
2 2
3 if (a == b) { 3 if (a != b) {
4 4
5 5 } else {
6 6
7 7
8 8
9 } else { 9
10 10
11 } 11 }

▼ Homework 1.11: swap the ‘‘then’’ section and the ‘‘else’’ section

1 if (i <= 10) {
2 printf("too few\n");
3 } else {
4 printf("too many\n");
5 }

6 if (temp < 72) {
7 printf("too cold\n");
8 } else {
9 printf("too hot\n");
10 }

▲

Nested if ’s

The ‘‘then’’ section can contain anotherif:

1 if (profit <= loss) {
2 printf("We’re not making any money.\n");
3 }
4
5 if (profit < loss) {
6 printf("In fact, we’re losing money.\n");
7 }

8 if (profit <= loss) {
9 printf("We’re not making any money.\n");
10 if (profit < loss) {
11 printf("In fact, we’re losing money.\n");
12 }
13 }

The ‘‘else’’ section can contain anotherif:

14 if (profit > loss) {
15 printf("We’re making money.\n");
16 } else {

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 30 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

17 printf("We’re not making any money.\n");
18 }
19
20 if (profit < loss) {
21 printf("In fact, we’re losing money.\n");
22 }

23 if (profit > loss) {
24 printf("We’re making money.\n");
25 } else {
26 printf("We’re not making any money.\n");
27 if (profit < loss) {
28 printf("In fact, we’re losing money.\n");
29 }
30 }

A sequence of if-then-else’s: K&R pp. 20−24, 57−58; King pp. 68−72

It’s better to have the innerif in the ‘‘else’’ section rather than in the ‘‘then’’ section of the outerif.
If necessary, swap the outerif as shown above. For example,

1 /* before */ 1 /* during */
2 2
3 if (a != b) { 3 if (a == b) {
4 if (a < b) { 4 printf("equal");
5 printf("less than"); 5 } else {

6 } else { 6 if (a < b) {
7 printf("greater than"); 7 printf("less than");
8 } 8 } else {
9 } else { 9 printf("greater than");
10 printf("equal"); 10 }
11 } 11 }

The following is the only exception to my rule to write every pair of curly braces.An if statement
(with or without an ‘‘else’’ section) counts as a single statement (pp. 222−223).For example, lines 6−10
inclusive in during count as a single statement. Thus the ‘‘else’’ section beginning at line 5 induring
contains only a single statement. Therefore the curly braces induring at the end of line 5 and in line 11
are optional. Remove them and line up the surviving pieces like this:

1 /* after */
2
3 if (a == b) {
4 printf("equal");
5 } else if (a < b) {
6 printf("less than");
7 } else {
8 printf("greater than");
9 }

Remove the curly braces around an ‘‘else’’ section only when they enclose a singleif and nothing else, as
shown above.

The above example is called a ‘‘three-way’’ if: it executes exactly one of three possible alternatives.
There are even longerif’s:

10 if (b == c) {
11 printf("equal");

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 31 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

12 } else if (b < c) {
13 printf("less than");
14 } else if (b > c + 100) {
15 printf("much greater than");
16 } else {
17 printf("not all that much greater than");
18 }

—On the Web at
http://i5.nyu.edu/∼ mm64/x52.9232/src/leap1.c

1 #include <stdio.h>
2
3 main()
4 {
5 int year;
6
7 printf("Please type a year and press RETURN: ");
8 scanf("%d", &year);
9
10 if (year % 400 == 0) {
11 printf("%d is a leap year.\n", year); /* e.g., 1600, 2000 */
12 } else if (year % 100 == 0) {
13 printf("%d is not a leap year.\n", year); /* e.g., 1800, 1900 */
14 } else if (year % 4 == 0) {
15 printf("%d is a leap year.\n", year);
16 } else {
17 printf("%d is not a leap year.\n", year);
18 }
19 }

C, C++, Java, JavaScript, awk, C shell else if

C and C++ preprocessors #elif

Bourne, Korn, and Bourne-Again shells elif

Perl elsif

Tcl elseif

troff, nroff .el .if

m4 .ifelse

▼ Homework 1.12: unsnarl four badly written if ’s (not to be handed in)

Change each of the following four examples to a straight line ofif’s as shown above. The answers
are in this handout or the next.

1 if (guess >= n) {
2 if (guess > n) {
3 printf("You guessed too high. Try again.\n");
4 }
5 } else {
6 printf("You guessed too low. Try again.\n");
7 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 32 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

8 if (year % 4 != 0) {
9 if (year % 4 == 2) {
10 printf("%d: congressional election year\n", year);
11 } else {
12 printf("%d: local election year\n", year);
13 }
14 } else {
15 printf("%d: presidential election year\n", year);
16 }

17 if (a != b) {
18 if (a >= b) {
19 if (a > b + 100) {
20 printf("much greater than");
21 } else {
22 printf("not all that much greater than");
23 }
24 } else {
25 printf("less than");
26 }
27 } else {
28 printf("equal");
29 }

Here is the unsnarled version of the aboveif:

30 if (a == b) {
31 printf("equal");
32 } else if (a < b) {
33 printf("less than");
34 } else if (a > b + 100) {
35 printf("much greater than");
36 } else {
37 printf("not all that much greater than");
38 }

▲

The Metro North evactuation instructions

Listen for instructions from authorized personnel.

(1) Remaininside the train if possible. If not ...

(2) Goto next car through end doors. If unable ...

(3) Openside door and get out. If you can’t ...

(4) Goout emergency windows.

1 if (possible) {
2 remain inside the train;
3 } else if (able) {
4 go to next car through end doors;
5 } else if (you can) {
6 open side door and get out;
7 } else {
8 go out emergency windows;
9 }

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 33 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

10 if (not possible) {
11 if (not able) {
12 if (you can’t) {
13 go out emergency windows;
14 } else {
15 open side door and get out;
16 }
17 } else {
18 go to next car through end doors;
19 }
20 } else {
21 remain inside the train;
22 }

A guessing game

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 main()
6 {
7 int n;
8 int guess;
9
10 srand(time(NULL));
11 n = rand();
12 printf("Guess what number I’m thinking of.\n");
13
14 do {
15 scanf("%d", &guess);
16 if (guess < n) {
17 printf("You guessed too low. Try again.\n");
18 } else if (guess > n) {
19 printf("You guessed too high. Try again.\n");
20 }
21 } while (guess != n);
22
23 printf("That’s right!\n");
24 }

Remove unnecessary machinery by process of elimination

1 if (a == b) {
2 printf("equal");
3 } else if (a < b) {
4 printf("less than");
5 } else if (a > b) {
6 printf("greater than");
7 }

8 if (a == b) {
9 printf("equal");
10 } else if (a != b) {

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 34 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

11 printf("not equal");
12 }

13 if (a == b) {
14 printf("equal");
15 }
16
17 if (a < b) {
18 printf("less than");
19 } else if (a > b) {
20 printf("greater than");
21 }

How not to use if

Rearrange the following program to eliminate theif, but keep the two printf’s. Do this whenever
the body of a loop begins with anif that is true only during the first iteration, or the body ends with anif
that is true only during the last iteration.

1 /* Print the numbers from 1 to 10, one per line */
2 #include <stdio.h>
3
4 main()
5 {
6 int i;
7
8 for (i = 1; i <= 10; i = i + 1) {
9 if (i == 1) {
10 printf("Here are the numbers from 1 to 10.\n");
11 }
12 printf("%2d\n", i);
13 }
14 }

15 /* Print the numbers from 1 to 10, one per line. */
16 #include <stdio.h>
17
18 main()
19 {
20 int i;
21
22 for (i = 1; i <= 10; i = i + 1) {
23 printf("%2d\n", i);
24 if (i == 10) {
25 printf("That’s all, folks!\n");
26 }
27 }
28 }

Spacing rules

See K&R p. 191, §A2.1 and King pp. 25−27 A group of one or more consecutive blanks, tabs, and/or
newlines is calledwhitespace.There is one rule about where whitespace is prohibited, and one rule about
where it is required. These rules are stated in terms oftokens,which are the words, numbers, quoted char-
acters or strings, operators, or other punctuation marks that make up the source code of the program.The

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 35 − All rights

reserved ©2007 Mark Meretzky

NYU SCPS X52.9232 Section 6 C Programming, Part I

tokens fall into two groups, alphanumeric and non-alphanumeric. Here are examples of both kinds.

alphanumeric tokens non-alphanumerictokens

main 10 + [
int 010 -]
void 0x10 . ?
const 10U -> :
sizeof 10L ++ ;
if 10UL == ,
for 10.0 *= {
typedef 10.0F &= }
extern 10.0L && (
printf 10.0e5 <<)
i 10.0e5F <<= ’A’
my_func 10.0e5L "a quoted string"

Here are the spacing rules.

(1) Whitespace is prohibited inside a token. Don’t try to write

1 ma in
2 c out
3 < <
4 10 e 5

A comment delimiter is not a token. Even so, do not write

5 / /bad comment delimiter
6 / * bad opening comment delimiter */
7 /* bad closing comment delimiter * /

(2) Whitespace is required between two consecutive tokens that would otherwise be mistaken for a
single token or a comment delimiter. There are three cases.

(2a) If the two tokens are alphanumeric, whitespace is always required between them.For example,
whiespace is required between theint and thei in line 9. If we forget the whitespace, line 9 might still
compile (thanks to line 8) but it would have a different meaning.

8 int inti = 10;
9 int i = 20;

(2b) If the two tokens are non-alphanumeric, whitespace is required between them only in the follow-
ing exceptional

Spring 2007 Handout 1printed 2/22/07
11:17:32 PM − 36 − All rights

reserved ©2007 Mark Meretzky

