
C++ Part II X52.9265 Starting Point

0.1 TheRabbit Game

▼ Homework 0.1a:
Version 1.0 of the Rabbit Game: initial version of the game

................................

................................

................................

..........W..........r..........

................................

................................

................................

A large program will be required to demonstrate the powerful features of C++ and their interactions:
inheritance (single and multiple), virtual functions, templates, and the Standard Template Library (STL).
Instead of burdening the student with a separate program for each feature, we will deploy them all in one
ev olving program, a video game with moving animals.

Carnivores will be uppercase, herbivores lowercase. Ther , for example, is a rabbit. It hops ran-
domly around the terminal, one step at a time. It knows that it can’t move off the screen or occupy the
same place at the same time as another animal.

TheWis the wolf. It is under manual control: you have to press keys to move it. To avoid the com-
plexity of making the arrow keys work on all platforms, we use four letters:

h left
j down
k up
l right (lowercase L)

These four letters are in a row on a QWERTY keyboard. (They are also the motion keys in the Unix editor
vi .) I readily concede that it is counterintuitive for L to mean ‘‘right’’.

You win the game by making the wolf stomp on the rabbit.You can also win merely by launching
the game and going out to lunch. The rabbit, moving randomly around the screen, will eventually blunder
into the wolf and be eaten.

The game has three objects: theterminal , wolf , and rabbit . The calls to their constructors
will be visible: theterminal will fill the screen with its background character, and the two animals will
draw themselves. Eventually, the calls to their destructors will also be visible: the rabbit and wolf will
erase themselves, and theterminal will blank itself out.

Each animal will have x andy data members giving its current location.We will see the data mem-
bers changing: whenever this happens, the animal will move.

The main function

Thesrand function in line 12 ofmain.C ‘‘ seeds’’ the random number generator, ensuring that the
subsequent calls torand in lines 42−43 ofrabbit.C on p. 4 will return a different series of random
numbers each time the game is run.srand must be supplied with an initial random number, the seed on p.
163. For this we use the current time. The zero in line 12 would have beenNULL in C; see p. 62.

Lines 18−19 construct the wolf and rabbit one-third of the screen apart, at middle height.The main
loop in line 21 will then call themove member function of each animal four times per second. These func-
tions returntrue if the rabbit is still alive, false if it has been eaten. When that happens, we break out
of the main loop and the game is over.

printed 3/8/06
10:36:12 AM − 1 − All rights

reserved ©2006 Mark Meretzky

2 Chapter 0

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/game1/main.C

1 #include <cstdlib> //for the srand function and EXIT_SUCCESS
2 #include <ctime> //for the time function
3
4 #include "terminal.h"
5 #include "wolf.h"
6 #include "rabbit.h"
7
8 using namespace std;
9

10 int main()
11 {
12 srand(time(0));
13 const terminal term(’.’);
14
15 const unsigned xmax = term.xmax();
16 const unsigned ymax = term.ymax();
17
18 wolf w(term, xmax / 3, y max / 2);
19 rabbit r(term, 2 * xmax / 3, ymax / 2);
20
21 for (;; term.wait(250)) { //250 milliseconds equals .25 seconds
22 if (!w.move()) {
23 break;
24 }
25 if (!r.move()) {
26 break;
27 }
28 }
29
30 term.put(0, 0, "You killed the rabbit!");
31 term.wait(3000); //Give user three seconds to read the message.
32 return EXIT_SUCCESS; //Destruct rabbit, wolf, & terminal, in that order.
33 }

The above lines 21−28 may be combined to

34 for (; w.move() && r.move(); term.wait(250)) {
35 }

But don’t do it. We would just have to change it back in a later version of the game.

Class rabbit

The game is played on aterminal object shared by the two the animals. The animals call the
member functions of the terminal.

One way to make the terminal accessible to the animals would be to make it a global variable.

1 c onst terminal term(’.’);
2
3 i nt main()
4 {

But if we did this, we would be locking ourselves into having exactly one terminal and exactly one game.
It would be impossible to turn our program into a game server that runs many games simultaneously.

printed 3/8/06
10:36:12 AM − 2 − All rights

reserved ©2006 Mark Meretzky

To keep our options open, we made the terminal accessible to the animals by giving each animal a
pointer to the terminal it inhabits. This pointert in line 6 is read-only to make it impossible for an animal
to change the size or background character of its terminal.To ensure thatrabbit.h can mention the
name of classterminal , it must includeterminal.h .

The data members in lines 6−8 ofrabbit.h are of the built-in data types: integers, characters,
pointers. They are not objects, they hav eno constructors, and nothing happens when they are constructed.
As long as they are constructed before being used in lines 13 and 28 ofrabbit.C , it doesn’t matter what
order they are constructed in.

This being the case, there is no reason at present to declaret before the other three data members.
But perhaps there will be a reason in the future.The four data members might become objects, each initial-
ized by its own constructor. When that happens, the error checking now performed in lines 13 and 28 of
rabbit.C will be done in the constructors forx , y , and c . The data membert is used by this error
checking code, sot will have to be constructed first.To prepare for this eventuality, t is constructed first
by being declared first in lines 6−8 ofrabbit.h , although we do not need this right now. It will be one
less thing to change should the data members ever become objects.

We consistently use an unsigned number to represent a position in a space whose coördinates start at
zero. Earlierexamples were the unsigned data typesize_t for an array subscript (pp. 59−60); the
unsigned arguments and return value of the C functionsterm_put and term_xmax on p. 79; the
unsigned arguments and return value of theput andxmax member functions of classterminal on pp.
148−149. Inkeeping with this practice, the coördinates of an animal are unsigned to keep them from
becoming negative. These include the data membersx andy in line 7 of rabbit.h and the local vari-
ablesnewx andnewy in lines 49−50 ofrabbit.C .

On the other hand, we use a signed number to represent a direction and distance of motion.Earlier
examples were the signed argument of the functiondate::next and the local variablesdx anddy in
life::next . In keeping with this practice, horizontal or vertical motions are signed to let them be posi-
tive or neg ative. These include the offsetsdx anddy in lines 43−44 ofrabbit.C . The unsigned/signed
distinction appeared in the C Standard Library assize_t vs. ptrdiff_t , and will reappear in the con-
tainers in the C++ Standard Library assize_type vs.difference_type .

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/rabbit1/rabbit.h

1 #ifndef RABBITH
2 #define RABBITH
3 #include "terminal.h"
4
5 c lass rabbit {
6 c onst terminal *t;
7 unsigned x, y;
8 c har c;
9 public:

10 rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
11 bool move();
12 };
13 #endif

We saw back on pp. 169−171 what will go wrong when callingexit in line 17: the objects that are
not statically allocated will never be destructed. We will fix this bug when we cover ‘‘exceptions’’. For
now, let’s hope it never happens. Line23 disallows two animals in the same location at the same time.
Line 28 disallows an invisible wabbit: one whose ‘‘color’’ (character) is the same as the terminal’s back-
ground.

The value of the expressionrand() % 3 in line 42 is either 0, 1, or 2.The value of the larger
expressionrand() % 3 - 1 is therefore −1, 0, or 1, to indicate left, no motion, or right.

printed 3/8/06
10:36:12 AM − 3 − All rights

reserved ©2006 Mark Meretzky

Section 0.1 The Rabbit Game 3

4 Chapter 0

Line 34 ‘‘registers’’ the newbornrabbit with its terminal : it informs theterminal that the
rabbit exists. Thisis a clear demonstration that an object’s constructor must sometimes do more than
just put values into the object’s data members. It must also notify other objects about the birth of the new
one.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/rabbit1/rabbit.C

1 #include <iostream>
2 #include <cstdlib> //for rand and exit functions
3 #include "rabbit.h"
4 using namespace std;
5
6 r abbit::rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
7 {
8 t = &initial_t;
9 x = i nitial_x;

10 y = i nitial_y;
11 c = ’ r’;
12
13 if (!t->in_range(x, y)) {
14 cerr << "Initial rabbit position (" << x << ", " << y
15 << ") off " << t->xmax() << " by " << t->ymax()
16 << " t erminal.\n";
17 exit(EXIT_FAILURE);
18 }
19
20 const char other = t->get(x, y);
21 const char background = t->background();
22
23 if (other != background) {
24 cerr << "Initial rabbit position (" << x << ", " << y
25 << ") already occupied by ’" << other << "’.\n";
26 exit(EXIT_FAILURE);
27 }
28
29 if (c == background) {
30 cerr << "Rabbit character ’" << c << "’ can’t be the same as "
31 "the terminal’s background character.\n";
32 exit(EXIT_FAILURE);
33 }
34
35 t->put(x, y, c);
36 }
37
38 //Return false if this rabbit was eaten, true otherwise.
39
40 bool rabbit::move()
41 {
42 //The values of dx and dy are either -1, 0, or 1.
43 const int dx = rand() % 3 - 1;
44 const int dy = rand() % 3 - 1;
45
46 if (dx == 0 && dy == 0) {
47 return true; //This rabbit had no desire to move.
48 }

printed 3/8/06
10:36:12 AM − 4 − All rights

reserved ©2006 Mark Meretzky

49
50 const unsigned newx = x + dx;
51 const unsigned newy = y + dy;
52
53 if (!t->in_range(newx, newy)) {
54 return true; //Can’t move off the screen.
55 }
56
57 const char other = t->get(newx, newy);
58
59 if (other != t->background()) {
60 if (other == c) {
61 //This rabbit collided with another rabbit.
62 return true;
63 } else {
64 //This rabbit blundered into the wolf and was eaten.
65 return false;
66 }
67 }
68
69 t->put(x, y); //Erase this rabbit from its old location.
70 x = newx;
71 y = newy;
72 t->put(x, y, c); //Redraw this rabbit at its new location.
73
74 return true;
75 }

The above lines 59−65 may be combined to the single statement

76 return other == c;

But don’t do it. It’s clearer the way it is now.

The above lines 69−71 may be combined to

77 t->put(x = newx, y = newy, c);

But don’t do it. C++does not share C’s rage to cram as much code as possible into a single expression.

The above lines 68 and 71 seem to form a pair. Should they be rewritten as calls to a constructor and
destructor for some new kind of object? Closer inspection reveals that the constructor would be called at
line 71 and the destructor at 68. Then should 68 be paired with 34, and 71 with a line you will write in the
destructor for classrabbit in Homework 0.1b?

I decided to leave lines 68 and 71 as they stand because the new object would be too trivial to be of
any use. Whatwould we call this kind of object: anapparition ? A quantum ? See pp. 166−167.

Unfortunately, every line of classrabbit betrays the fact that our terminal is Cartesian and two-
dimensional, from the data membersx andy to the double-barreled arithmetic in the above lines 42−43 and
49−50. Whenwe have ‘‘iterators’’, we will be able to rewrite the game without any mention ofx andy , dx
anddy . We will then be in a position to port the game to a terminal with a different topology: polar coördi-
nates, three dimensions, etc.

Class wolf

The data members, and the declarations for the member functions, are the same in classeswolf and
rabbit .

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/wolf1/wolf.h

printed 3/8/06
10:36:12 AM − 5 − All rights

reserved ©2006 Mark Meretzky

Section 0.1 The Rabbit Game 5

6 Chapter 0

1 #ifndef WOLFH
2 #define WOLFH
3 #include "terminal.h"
4
5 c lass wolf {
6 c onst terminal *t;
7 unsigned x, y;
8 c har c;
9 public:

10 wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
11 bool move();
12 };
13 #endif

An array of structures is the easiest way for a C or C++ program to store information in rows and
columns (lines 27−32).In both languages, we use the data typesize_t for the number of elements in an
array (line 33).

The declaration forp is tucked in the left parentheses of thefor loop in line 36; see pp. 30−31.
Similarly, the declaration fork is tucked in the left parentheses of theif in line 35. The if will be true if
the initial value ofk is non-zero, which will happen if the user pressed a key. k will be destructed when we
reach the end of theif , marked by the} in line 59.

—On the Web at
http://i5.nyu.edu/˜mm64/x52.9264/src/wolf1/wolf.C

1 #include <iostream>
2 #include <cstdlib> //for exit function
3 #include "wolf.h"
4 using namespace std;
5
6 wolf::wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
7 {
8 t = &initial_t;
9 x = i nitial_x;

10 y = i nitial_y;
11 c = ’ W’;
12
13 //Copy lines 13-35 of the above rabbit.C here,
14 //changing the word "rabbit" to "wolf".
15 }
16
17 //Return false if this wolf ate another animal, true otherwise.
18
19 bool wolf::move()
20 {
21 struct keystroke {
22 char c;
23 int dx; //horizontal difference
24 int dy; //vertical difference
25 };
26
27 static const keystroke a[] = {
28 {’h’, -1, 0}, //left
29 {’j’, 0, 1}, //down
30 {’k’, 0, -1}, //up
31 {’l’, 1, 0} //right

printed 3/8/06
10:36:12 AM − 6 − All rights

reserved ©2006 Mark Meretzky

32 };
33 static const size_t n = sizeof a / sizeof a[0];
34
35 if (const char k = t->key()) {
36 for (const keystroke *p = a; p < a + n; ++p) {
37 if (k == p->c) {
38 const unsigned newx = x + p->dx;
39 const unsigned newy = y + p->dy;
40
41 if (!t->in_range(newx, newy)) {
42 break; //Go to line 57.
43 }
44
45 const bool I_ate_him =
46 t->get(newx, newy) != t->background();
47
48 t->put(x, y); //Erase this wolf from its old location.
49 x = newx;
50 y = newy;
51 t->put(x, y, c); //Redraw this wolf at its new location.
52
53 return !I_ate_him;
54 }
55 }
56
57 //Punish user who pressed an illegal key or tried to move off screen.
58 t->beep();
59 }
60
61 return true;
62 }

Up to one quarter of a second may elapse between a keystroke and the next call to the wolf ’s move
function, causing the wolf to respond sluggishly. This could be fixed by making the input ‘‘interrupt
driven’’, but we will not pursue it for now.

For the present, there is an asymmetry in the behavior of colliding animals. When a wolf stomps on a
rabbit, the rabbit disappears. But when a rabbit blunders into a wolf, the rabbit merely freezes because its
move is nev er carried out. We’l l fix this on p. 422 when we introduce ‘‘dynamic memory allocation’’,
which will give us greater control over the exact moments of an object’s birth and death.

Classeswolf andrabbit are identical in their data members, almost identical in their constructors,
and similar in their remaining member functions.We will eventually consolidate this duplication by means
of inheritance from a common base class.

List of the nine source files that constitute the game

(1) term.h andterm.c (pp. 78−82). These are the only two written in C; the rest are C++.

(2) terminal.h andterminal.C (pp. 146−152)

(3) main.C (pp. 1−2)

(4) rabbit.h andrabbit.C (pp. 2−5)

(5) wolf.h andwolf.C (pp. 5−7)

printed 3/8/06
10:36:12 AM − 7 − All rights

reserved ©2006 Mark Meretzky

Section 0.1 The Rabbit Game 7

8 Chapter 0

Compile the game on Unix

1$ gcc -I. -DUNIX= -c term.c
2$ ls -l term.o

3$ g++ -I. -o ˜/bin/game main.C wolf.C rabbit.C terminal.C term.o -lcurses
4$ ls -l ˜/bin/game

5$ game Run the game.
6$ echo $? See the game’s exit status.

▲

▼ Homework 0.1b:
Version 1.1 of the Rabbit Game: destructors for classeswolf and rabbit

Write a destructor for classwolf , even though there currently is no animal that could eat one, and a
destructor for classrabbit . Each destructor should do three things in the following order.

(1) Beepthe terminal on which the dying animal is displayed.

(2) Pause for one second, so the stricken animal stands ‘‘frozen in the headlights’’.

(3) Call theget member function of the animal’s terminal to see if the animal’s location on the screen is
occupied by the animal’s character. If so, wipe the animal off the screen by displaying the terminal’s
background character there, as in line 48 of the above wolf.C . Otherwise, display nothing because
the location is already occupied by another animal.Remember, there is one occasion when two ani-
mals are momentarily at the same place at the same time: right after the wolf stomps on the rabbit.
This anomalous situation will be removed when we have ‘‘dynamic memory allocation’’, but for now
we have to handle it.

The destructor should not change the value of any of the dying animal’s data members. What would
be the point? The animal is about to evaporate. Changingits data members would be like rearranging the
deck chairs on theTitanic.
▲

▼ Homework 0.1c:
Version 1.2 of the Rabbit Game: make the animals impossible to copy

Wolves and rabbits will not be allowed to multiply—yet. Let’s ensure that no animal can be copied.

A C++ object can be copied only by its copy constructor. We can therefore make an object impossi-
ble to copy simply by depriving it of a copy constructor. And in fact we didn’t write a copy constructor for
classeswolf andrabbit . But for that very reason the computer wrote them for us. See pp. 125−126.

To prevent the computer from supplying classeswolf andrabbit with a copy constructor, declare
a private copy constructor for each class but do not define them.In other words, do not write a body for
these functions. If a member function of one of these classes tries to call the copy constructor for that class,
the program will not link because the copy constructor is undefined. And if any other function tries to call
the copy constructor, the program will not even compile because the copy constructor is private. In either
case, it will be impossible to copy the animal.

1 c lass rabbit {
2 c onst terminal *t;
3 unsigned x, y;
4 c har c;
5 r abbit(const rabbit& another); //deliberately undefined
6 public:
7 / /etc.

▲

printed 3/8/06
10:36:12 AM − 8 − All rights

reserved ©2006 Mark Meretzky

Impr ovements to the game

(1) Define destructors for classeswolf andrabbit . The test in line 6 lets us erase the dying ani-
mal only if no other animal is occupying the same location. The need for thisif will disappear later, when
we enforce the rule that two animals will never be at the same place at the same time.

1 wolf::˜wolf()
2 {
3 t ->beep();
4 t ->wait(1000);
5
6 i f (t->get(x, y) == c) {
7 t ->put(x, y); //Erase the animal by drawing the background char
8 }
9 }

(2) In classeswolf andrabbit , thec data member can, and therefore should, be aconst char .
Thet data member can, and therefore should, be aconst terminal *const . The constructors for
wolf andrabbit will then have to initialize the data members, rather than assign to them:

1 wolf::wolf(const terminal& term, unsigned initial_x, unsigned initial_y)
2 : t(&term), x(initial_x), y(initial_y), c(’W’)
3 {
4 / /etc.

(3) Themain function should construct an array ofrabbit ’s. Since each element of the array will
be initialized by the copy constructor for classrabbit , that class will need its copy constructor back.
Remove the declaration for the undefined copy constructor.

1 i nt main(int argc, char **argv)
2 {
3 c all srand;
4 c onst terminal term(’.’);
5
6 declare the wolf;
7 r abbit a[] = {
8 r abbit(term, 0, 0),
9 r abbit(term, 10, 10),

10 rabbit(term, 20, 20)
11 };
12 const size_t n = sizeof a / sizeof a[0];
13
14 for (;; term.wait(250)) {
15 if (!w.move()) {
16 goto done;
17 }
18
19 for (rabbit *p = a; p < a + n; ++p) {
20 if (!p->move()) {
21 goto done;
22 }
23 }
24 }
25
26 done:;
27 term.put(0, 0, "You killed a rabbit!");
28 term.wait(3000);

printed 3/8/06
10:36:12 AM − 9 − All rights

reserved ©2006 Mark Meretzky

Section 0.1 The Rabbit Game 9

10 Chapter0

29 return EXIT_SUCCESS;
30 }

(4) In classeswolf and rabbit , let c be a static data member. Declare the static data members
before the non-static ones, since the static data members are created first. If your comp[iler lets you, initial-
ize it in the class declaration.

1 / /Excerpt from wolf.h.
2
3 c lass wolf {
4 s tatic const char c = ’W’;
5 / /etc.

If your compiler won’t let you initialize it there, initialize it in thewolf.C file instead.

6 / /Excerpt from wolf.h.
7
8 c lass wolf {
9 s tatic const char c;

10 //etc.

11 //Excerpt from wolf.C.
12
13 const char wolf::c = ’W’;
14
15 //Definition of constructor for class wolf:
16
17 wolf::wolf(const terminal& term, unsigned initial_x, unsigned initial_y)
18 : t(&initial_t), x(initial_x), y(initial_y)

printed 3/8/06
10:36:12 AM − 10 − All rights

reserved ©2006 Mark Meretzky

