C++ Part Il X52.9265 Starting Point

0.1 TheRabbit Game

v Homework 0.1a:
Version 1.0 of the Rabbit Game: initial version of the game

A large program will be required to demonstrate the powerful features of C++ and their interactions:
inheritance (single and multiple), virtual functions, templates, and the Standard Template Library (STL).
Instead of burdening the student with a separate program for each feature, we wylltileyplall in one
evdving program, a video game with moving animals.

Carniores will be uppercase, hevbies lavercase. The , for example, is a rabbit. It hops ran-
domly around the terminal, one step at a time. Iltwsthat it cart move df the screen or occyphe
same place at the same time as another animal.

The Wis the wolf. It is under manual control: you V& press leys to nove t. To avoid the com-
plexity of making the arme keys work on all platforms, we use four letters:

h left
j down
k up

I right (lowercase L)

These four letters are in av@n a QVERTY keyboard. (Thg are also the motiondys in the Unix editor
vi .) I readily concede that it is counterintuéifor L to mean “right”.

You win the game by making the wolf stomp on the rabltu can also win merely by launching
the game and going out to lunch. The rabbit, moving randomly around the screexemilaly blunder
into the wolf and be eaten.

The game has three objects: teeminal , wolf , and rabbit . The calls to their constructors
will be visible: theterminal will fill the screen with its background charactand the tvo animals will
drav themseles. Ewentually the calls to their destructors will also be visible: the rabbit and wolf will
erase themselves, and teeminal will blank itself out.

Each animal will hee x andy data members giving its current locatioie will see the data mem-
bers changing: whewer this happens, the animal will e

The main function

Thesrand function in line 12 ofmain.C “ seeds’the random number generatemsuring that the
subsequent calls tand in lines 42-43 ofrabbit.C on p. 4 will return a different series of random
numbers each time the game is regnand must be supplied with an initial random numtliee seed on p.
163. For this we use the current time. The zero in line 12 wowe beenNULLin C; see p. 62.

Lines 18-19 construct the wolf and rabbit one-third of the screen apart, at middle A&ighhain
loop in line 21 will then call thenove member function of each animal four times per second. These func-
tions returntrue if the rabbit is still ale, false if it has been eaten. When that happens, we break out
of the main loop and the game igen

05612 AM -1- hesenea ©2006 Mark Meretzky

2 Chapter 0

—On the Web at
http://i5.nyu.edu/"mm64/x52.9264/src/gamel/main.C

1 #include <cstdlib> [[for the srand function and EXIT_SUCCESS
2 #include <ctime> [[for the time function
3
4 #include "terminal.h"
5 #include "wolf.h"
6 #include "rabbit.h"
7
8 using namespace std;
9
10 int main()
11 {
12 srand(time(0));
13 const terminal term(’.");
14
15 const unsigned xmax = term.xmax();
16 const unsigned ymax = term.ymax();
17
18 wolf w(term, xmax /[3, y max/?2);
19 rabbit r(term, 2 * xmax / 3, ymax / 2);
20
21 for (;; term.wait(250)) { //250 milliseconds equals .25 seconds
22 if (‘'w.move()) {
23 break;
24 }
25 if (r.move()) {
26 break;
27 }
28 }
29
30 term.put(0, 0, "You killed the rabbit!");
31 term.wait(3000); /IGive user three seconds to read the message.
32 return EXIT_SUCCESS; //Destruct rabbit, wolf, & terminal, in that order.
33}
The abee lines 21-28 may be combined to
34 for (; w.move() && r.move(); term.wait(250)) {
35 }
But dont do it. We would just hae o change it back in a later version of the game.
Class rabbit
The game is played ontarminal object shared by the twthe animals. The animals call the
member functions of the terminal.
One way to mad the terminal accessible to the animals would be toentakdobal variable.
1 const terminal term(’.");
2
3 i nt main()
4 {

But if we did this, we would be locking oursebsinto having exactly one terminal and exactly camey
It would be impossible to turn our program into a game server that rurysgaraes simultaneously.

0se2 AN -2- hesenea ©2006 Mark Meretzky

1
2
3
4
5
6
7
8

©

10
11

Section 0.1 The Rabbit Game 3

To keep our options open, we made the terminal accessible to the animals by giving each animal a
pointer to the terminal it inhabits. This pointein line 6 is read-only to makit impossible for an animal
to change the size or background character of its termifmlnsure thatrabbit.h can mention the
name of clasgerminal , it must includeterminal.h

The data members in lines 6-8 rabbit.h are of the built-in data types: integers, characters,
pointers. Thg are not objects, thehaveno constructors, and nothing happens when éhe constructed.
As long as thg are constructed before being used in lines 13 and 28btiit.C , it doesnt matter what
order thg are constructed in.

This being the case, there is no reason at present to dediafere the other three data members.
But perhaps there will be a reason in the futdriee four data members might become objects, each initial-
ized by its own constructoiWhen that happens, the error checking performed in lines 13 and 28 of
rabbit.C will be done in the constructors far, y, and c. The data member is used by this error
checking code, sb will have © be onstructed first.To prepare for thiseentuality,t is constructed first
by being declared first in lines 6-8 @bbit.h , dthough we do not need this rightwo It will be one
less thing to change should the data membersbecome objects.

We mnsistently use an unsigned number to represent a position in a space whose coérdinates start at
zero. Earlierexamples were the unsigned data tygiee t for an array subscript (pp. 59-60); the
unsigned arguments and return value of the C functiema_put andterm_xmax on p. 79; the
unsigned arguments and return value ofghe andxmax member functions of clagsrminal on pp.

148-149. Inkeeping with this practice, the codrdinates of an animal are unsigneeeto tkem from
becoming ngaive. These include the data membgrandy in line 7 ofrabbit.h and the local ari-
ablesnewx andnewy in lines 49-50 ofabbit.C

On the other hand, we use a signed number to represent a direction and distance ofHadién.
examples were the signed argument of the funalimte::next and the local variabledx anddy in
life::next . In keeping with this practice, horizontal or vertical motions are signed to let them be posi-
tive a negdive. These include the fsfetsdx anddy in lines 43-44 ofabbit.C . The unsigned/signed
distinction appeared in the C Standard Librargias_t vs. ptrdiff_t , and will reappear in the con-
tainers in the C++ Standard Librarysige type vs.difference_type

—On the Web at
http://i5.nyu.edu/"mm64/x52.9264/src/rabbit1/rabbit.h

#ifndef RABBITH
#define RABBITH
#include "terminal.h"

class rabbit {
const terminal *t;
unsigned x, y;
char c;
public:
rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
bool move();

12}
13 #endif

We saw back on pp. 169-171 what will go wrong when calleagt in line 17: the objects that are
not statically allocated will ner be destructed. W will fix this bug when we ceer “‘exceptions’. For
now, let's hope it n@er happens. Line3 disallows tw animals in the same location at the same time.
Line 28 disallows an invisible abbit: one whosécolor” (character) is the same as the termgbdick-
ground.

The value of the>g@ressionrand() % 3 in line 42 is either 0, 1, or 2The value of the lger
expressiorrand() % 3 - 1 is therefore -1, 0, or 1, to indicate left, no motion, or right.

05612 AM -3- hesenea ©2006 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

35

Chapter 0

Line 34 “registers'the newbormabbit with itsterminal it informs theterminal that the

rabbit exsts. Thisis a clear demonstration that an obgadnstructor must sometimes do more than
just put \alues into the objed’data members. It must also notify other objects about the birth of #he ne

one.

—On the Web at
http://i5.nyu.edu/"mm64/x52.9264/src/rabbit1/rabbit.C

#include <iostream>

#include <cstdlib> [[for rand and exit functions
#include "rabbit.h"

using namespace std;

r
{

36}

37

abbit::rabbit(const terminal& initial_t, unsigned initial_x, unsigned initial_y)

t = &initial_t;
X = i nitial_x;
y = initial_y;
c ='r;

if (t->in_range(x, y)) {
cerr << "Initial rabbit position (" << x << ", " <<y
<< ") off " << t->xmax() << " by " << t->ymax()
<< "t erminal.\n";
exit(EXIT_FAILURE);

}

const char other = t->get(x, y);
const char background = t->background();

if (other !'= background) {
cerr << "Initial rabbit position (" << x << ", " <<y
<< ") already occupied by ™ << other << ™.\n";
exit(EXIT_FAILURE);

}

if (c == background) {
cerr << "Rabbit character ™ << ¢ << "™ can’t be the same as "
"the terminal's background character.\n";
exit(EXIT_FAILURE);

}

t->put(x, Yy, C);

38 //Return false if this rabbit was eaten, true otherwise.

39

40 bool rabbit::move()
414

42
43
44
45
46
47
48

/[The values of dx and dy are either -1, O, or 1.
const intdx=rand() % 3 - 1;
const intdy=rand() % 3 - 1;

if (dx == 0 && dy == 0) {
return true; //This rabbit had no desire to move.

}

0562 AM -4- hesenea ©2006 Mark Meretzky

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75}

76

77

Section 0.1 The Rabbit Game 5

const unsigned newx = X + dx;
const unsigned newy =y + dy;

if (t->in_range(newx, newy)) {
return true; //Can't move off the screen.
}

const char other = t->get(newx, newy);

if (other != t->background()) {
if (other==c){
/[This rabbit collided with another rabbit.
return true;

} else{
/[This rabbit blundered into the wolf and was eaten.
return false;
}
}
t->put(x, y); /[Erase this rabbit from its old location.
X = newx;
y = newy;
t->put(x, Yy, C); //Redraw this rabbit at its new location.

return true;

The abee lines 59-65 may be combined to the single statement
return other == c;

But dontdo it. It's dearer the way it is na
The abee lines 69-71 may be combined to

t->put(x = newkx, Y = newy, c);
But dontdo it. C++does not share €tage to cram as much code as possible into a single expression.

The abee lines 68 and 71 seem to form a p&hould the be rewritten as calls to a constructor and
destructor for some mekind of object? Closer inspectionvieals that the constructor would be called at
line 71 and the destructor at 68. Then should 68 be paired with 34, and 71 with a line you will write in the
destructor for classabbit in Homevork 0.1b?

| decided to leee lines 68 and 71 as thatand because the wenbject would be too tvial to be of
ary use. Whatvould we call this kind of object: ampparition ~ ? Aquantum ? See pp. 166-167.

Unfortunately every line of classrabbit betrays thedct that our terminal is Cartesian andiw
dimensional, from the data membg&randy to the double-barreled arithmetic in the edbénes 42-43 and
49-50. Wherwe hare “iterators’, we will be able to rewrite the game withoutyanention ofx andy, dx
anddy. We will then be in a position to port theuge to a terminal with a different topology: polar coordi-
nates, three dimensions, etc.

Class wolf

The data members, and the declarations for the member functions, are the same walfasard
rabbit

—On the Web at
http://i5.nyu.edu/"mm64/x52.9264/src/wolfl/wolf.h

0562 AN -5- hesenea ©2006 Mark Meretzky

6 Chapter 0

#ifndef WOLFH
#define WOLFH
#include "terminal.h"

class wolf {
const terminal *t;
unsigned x, y;
char c;
public:
10 wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y);
11 bool move();
12}
13 #endif

©CoOo~NOOOUTA,WNPE

An array of structures is the easiest way for a C or C++ program to store information in rows and
columns (lines 27-32)In both languages, we use the data tsige_t for the number of elements in an
array (line 33).

The declaration fop is tucked in the left parentheses of foe loop in line 36; see pp. 30-31.
Similarly, the declaration fok is tucked in the left parentheses of thein line 35. Theif will be true if
the initial value ok is non-zero, which will happen if the user pressedya k will be destructed when we
reach the end of thé , marked by thg in line 59.

—On the Web at
http://i5.nyu.edu/"mm64/x52.9264/src/wolfl/wolf.C

1 #include <iostream>
2 #include <cstdlib> /for exit function
3 #include "wolf.h"
4 using namespace std,;
5
6 wolf::wolf(const terminal& initial_t, unsigned initial_x, unsigned initial_y)
7
8 t
9 X
10 y
11 o
12
13 /[Copy lines 13-35 of the above rabbit.C here,
14 /Ichanging the word "rabbit" to "wolf".
15}
16
17 /IReturn false if this wolf ate another animal, true otherwise.
18
19 bool wolf::move()
20 {
21 struct keystroke {
22 char ¢;
23 int dx; //horizontal difference
24 int dy; /lvertical difference
25 3
26
27 static const keystroke a[] = {
28 {n, -1, 0}, INeft
29 {7, 0, 1}, /[down
30 {K, 0, -1}, /lup
31 {r, 1, 0} /lright

&initial_t;
i nitial_x;
i nitial_y;
CW

05612 AN -6- hesenea ©2006 Mark Meretzky

Section 0.1 The Rabbit Game 7

32 3

33 static const size_t n = sizeof a / sizeof a[0];

34

35 if (const char k = t->key()) {

36 for (const keystroke *p = a; p <a+ n; ++p) {

37 if (k==p->c){

38 const unsigned newx = x + p->dx;

39 const unsigned newy =y + p->dy;

40

41 if ('t->in_range(newx, newy)) {

42 break; /IGo to line 57.

43 }

44

45 const bool |_ate _him =

46 t->get(newx, newy) != t->background();
47

48 t->put(x, y); /[Erase this wolf from its old location.
49 X = newx;

50 y = newy,

51 t->put(x, Yy, C); /[Redraw this wolf at its new location.
52

53 return l_ate_him;

54 }

55 }

56

57 /[Punish user who pressed an illegal key or tried to move off screen.
58 t->beep();

59 }

60

61 return true;

62}

Up to one quarter of a second may elapse betweegstréde and the next call to the olf’s move
function, causing the wolf to respond sluggishithis could be fixed by making the inpuinterrupt
driven”, but we will not pursue it for nw.

For the present, there is an asymmetry in the behavior of colliding animals. When a wolf stomps on a
rabbit, the rabbit disappears. But when a rabbit blunders into a wolf, the rabbit merely freezes because its
move is reve carried out. We'll fix this on p. 422 when we introduce “dynamic memory allocation’
which will give us greater control wer the exact moments of an objedtirth and death.

Classesvolf andrabbit are identical in their data members, almost identical in their constructors,
and similar in their remaining member functiot®e will eventually consolidate this duplication by means
of inheritance from a common base class.

List of the nine source files that constitute the game

(1) term.h andterm.c (pp. 78-82). These are the onlyawritten in C; the rest are C++.
(2) terminal.h andterminal.C (pp. 146-152)

(3) main.C (pp.1-2)

(4) rabbith andrabbit.C (pp. 2-5)

(5) wolf.h andwolf.C (pp.5-7)

05612 AN -7- hesenea ©2006 Mark Meretzky

NOoO o~ WNPRE

8 Chapter 0

Compile the game on Unix
1% gcc -l. -DUNIX= -c term.c
2% s -l term.o

3% g++ -I. -0 “/bin/game main.C wolf.C rabbit.C terminal.C term.o -Icurses
4$ Is -l “/bin/game

5% game Run the game.
6% echo $? See the game’s exit status.

A

v Homework 0.1b:
Version 1.1 of the Rabbit Game: destructors for classesolf and rabbit

Write a destructor for clasgolf , even though there currently is no animal that could eat one, and a

destructor for classabbit . Each destructor should do three things in the following order.
(1) Beepthe terminal on which the dying animal is displayed.
(2) Pause for one second, so the stricken animal stands “frozen in the headlights”.

(3) Calltheget member function of the animalterminal to see if the animallocation on the screen is
occupied by the animal’character If so, wipe the animal éthe screen by displaying the termisal’
background character there, as in line 48 of theebolf.C . Otherwise, display nothing because
the location is already occupied by another anilRk@memberthere is one occasion whendani-
mals are momentarily at the same place at the same time: right aftesltlfetomps on the rabbit.
This anomalous situation will be rerel when we hae “dynamic memory allocation”, it for nav
we have © handle it.

The destructor should not change tldéue of ay of the dying anima$ data members. Whatauld
be the point? The animal is about t@@orate. Changings data members would be dikearranging the
deck chairs on th&tanic.

A

v Homework 0.1c:
Version 1.2 of the Rabbit Game: mak the animals impossible to copy

Wolves and rabbits will not be allowed to multiply—yet. Isathsure that no animal can be copied.

A C++ object can be copied only by its gonstructor We can therefore makan dject impossi-
ble to copy simply by depriving it of a copconstructor And in fact we didrt’write a copy constructor for
classewvolf andrabbit . But for that very reason the computer wrote them for us. See pp. 125-126.

To prevent the computer from supplying classeslf andrabbit with a copy constructor declare
a private copy constructor for each class but do not define thémother words, do not write a body for
these functions. If a member function of one of these classes tries to call ylemesipuctor for that class,
the program will not link because the gamnstructor is undefined. And if arother function tries to call
the copy constructoythe program will notwen compile because the cpponstructor is priate. Ineither
case, it will be impossible to cgphe animal.

class rabbit {

const terminal *t;

unsigned x, y;

char c;

r abbit(const rabbit& another); /[deliberately undefined
public:

/ letc.
A

0562 AM -8- hesenea ©2006 Mark Meretzky

©CoOo~NOOOUTA, WNPE

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Section 0.1 The Rabbit Game 9

Impr ovements to the game

(1) Define destructors for classeslf andrabbit . The test in line 6 lets us erase the dying ani-
mal only if no other animal is occupying the same location. The need fdf thidll disappear laterwhen
we enforce the rule that oaanimals will never be at he same place at the same time.

wolf::"wolf()
{
t ->beep();
t ->wait(1000);

i f (t->get(x,y)==c){
t ->put(x, y); //Erase the animal by drawing the background char
}

(2) In classesvolf andrabbit |, thec data member can, and therefore should, benatchar
Thet data member can, and therefore should, denatterminal*const . The constructors for
wolf andrabbit will then hase initialize the data members, rather than assign to them:

wolf::wolf(const terminal& term, unsigned initial_x, unsigned initial_y)
t(&term), x(initial_x), y(initial_y), c(W")

{
/ letc.

(3) Themain function should construct an arrayrabbit ’s. Since each element of the array will
be initialized by the cgpconstructor for classabbit , that class will need its cgpconstructor back.
Remawe the declaration for the undefined gagnstructor.

i nt main(int argc, char **argv)
{

call srand;

const terminal term(’.");

declare the wolf;
r abbit a[] = {
r abbit(term, 0, 0),
r abbit(term, 10, 10),
rabbit(term, 20, 20)
¥

const size_t n = sizeof a/ sizeof a[0];

for (;; term.wait(250)) {
if (‘w.move()) {
goto done;

}

for (rabbit*p =a; p <a+n; ++p) {
if (‘p->move()) {
goto done;

}
}

done:;
term.put(0, 0, "You killed a rabbit!");
term.wait(3000);

05612 AM -9- hesenea ©2006 Mark Meretzky

10 Chapter0

29 return EXIT_SUCCESS;
30}

(4) In classesvolf andrabbit , letc be a static data membebDeclare the static data members
before the non-static ones, since the static data members are created first. If your compJiler lets you, initial-
ize it in the class declaration.

/ [Excerpt from wolf.h.
class wolf {

static const char ¢ = 'W’;
/ letc.

abhwNRE

If your compiler wont let you initialize it there, initialize it in theolf.C file instead.

/ [Excerpt from wolf.h.

6

7

8 class wolf {
9 static const char c;
0

1 /letc.

11 //Excerpt from wolf.C.

12

13 const char wolf::c = 'W’;

14

15 //Definition of constructor for class wolf:

16

17 wolf::wolf(const terminal& term, unsigned initial_x, unsigned initial_y)
18 © t(&initial_t), x(initial_x), y(initial_y)

05612 AN -10- hesenea ©2006 Mark Meretzky

