O©CoOoO~NOOOUTA, WNPE

Banish the Complexity to a Container: a Case Study

9.1 Readand Write the Elements of an STL-Compliant Container

¥ Homework 9.1a:

Almost every line of the rabbit gme is wrong.We will rewrite it the way it should hee been all
along. D show how far we hae cme, and where we will go, here is code to fill a terminal with uppercase
‘A’ s,

(1) In the beginning we called our C functions direciihis exposed the number of dimensions of
the terminal: there are twfor loops and tw loop countersg andy. It also exposed our choice of codrdi-
nate system: Cartesian vs. pol@ompare the loop in lines 23-34w@in.C in p. 87.

extern "C" {
#include "term.h"

}

t erm_construct();

f or (unsigned y = 0, y < term_ymax(); ++y) {
f or (unsigned x = 0; x < term_xmax(); ++x) {
t erm_put(x, y, 'A");
}
}

term_destruct();

(2) Then we called the member functions ¢émminal object. Thenumber of dimensions and the
coordinate system are still exposed, although therevisonty onefor loop. Perhap# was premature: a
loop with two counters is an accident waiting to happen. Compare the loop in lines 23a%2m€ on
p. 158.

Theput andnext member functions in lines 21 and 20 are highly idiosyncratic: no STL container
has aput or next . And although i8 dangerously unobvious, the callnext changes the values of its
argumentx andy.

14 #include "printable.h"
15 #include "terminal.h"

16
17
18
19
20

typedef terminal<printable_t> terminal_t; /lintroduced on p. 744
terminal_t term(’.’);

for (unsigned x =0, y = 0; y < term.ymax(); term.next(x, y)) {

RS0 A hesenea ©2014 Mark Meretzky

21
22

966 Banishthe Complexity to a Container: a Case Study Chapter 9

term.put(x, y, 'A);
}

(3) We dhould hae made an iterator class whose last namteriginal_t . We would then need
only onefor loop and only one loop counteamedit . We would loop through the characters in a
terminal_t in exactly the same way weowld loop through the elements inya®TL container Com-
pare theterator loop in lines 26-28 oiterator.C on p. 434.

Like thenext function in the abee line 20, thet+ in line 29 will wrap around from the end of one
row to the beginning of the next.

23 #include "printable.h"
24 #include "terminal.h"

25
26
27
28
29
30
31

typedef terminal<printable_t> terminal_t;
terminal_t term(’.’);

for (terminal_t:iterator it = term.begin(); it I= term.end(); ++it) {
it ="A; /lit.operator() ="A;
}

Let's imagine that @aerminal_t::iterator contains tw unsigned data members andy.
Thex andy are therefore still present in the abdines 29-31, just as thevere in lines 20-22, but we no
longer see them. There naw private data members d@f . (Or so we imagine for the present.)

Since aterminal_t containsprintable_t 's, the epressiontit in the abwee line 30 should
be of data typerintable_t . This should be the return type of tbhperator* member function of
classterminal_t::iterator . (Or so we imagine for the present.)

(4) Now that we hge iterators, we wn't haveto write ary loop at all. The loop has already been
written for us in thdill ~ algorithm in the STL.

32 #include <algorithm> [ffor fill
33 #include "printable.h"

34 #include "terminal.h"

35 using namespace std;

36
37
38
39
40

typedef terminal<printable_t> terminal_t;
terminal_t term(’.’);

fill(term.begin(), term.end(), 'A");

Here is a simple definition for tH#l algorithm. Thdterators must be forward because there is no
guarantee that mere output iterators can be comparedwith

41 //Excerpt from <algorithm>

42

43 template <class FORWARD, class T>
44 void fill(FORWARD first, FORWARD last, const T& t)

45 {
46
47
48
49}

for (; first = last; ++first) {
*first =t;

}

RS0 A hesenea ©2014 Mark Meretzky

Section 9.3 An lterator that Yields an Lvalue and an Ralue 967

9.2 difference_type

Two codrdinates or one codrdinate?

A difference_type is the number we add to @erator to male it move See the addition
in line 22 ofsize_type.C on p. 451.

Here are tw possible designs for the data members ingdainal_t::iterator and
terminal_t::difference_type

(1) iterator could be an object with twansigned data members; andy.
difference_type could be an object with twint data membergix anddy.

(2) iterator could be an object with onmsigned data membeir, ranging in value from 0 to
xmax x ymax = 80 x 24 = 1920 inclusie. For example, th&éegin member function of class
terminal would construct and return an iterator whose data member had the valueeddthe
member function would construct and return an iterator whose data member had theneaxixe
ymax. difference_type could be an object with onet data membed. In fact,
difference_type could simply be a typedef fant , like thehillary_t in line 17 of
clinton.h on p. 420.

But actually we hee ro choice. Thedefinitions in the STL say thdaifference_type must be
an integral type (p. 61), i.e., am orlong rather than &lass orstruct . We nust therefore adopt
the second designA difference_type will be a typedef for a single numbewot an object with o
data members.

Adding a difference_type to an iterator

If a terminal_t::difference_type is a single numbehow can it mave an iterator horizon-
tally and vertically?

Adding adifference_type of 0 to aniterator does not mee theiterator . Now p-
pose that the width of the terminal is 80. Then addididfarence_type of 80 moves the
iterator down one rav. Adding adifference_type of —80 muwes the iterator up one rav.
Adding adifference_type of 81 mores theiterator one space to the lower right. Et cetera:

-162 1161 -160 -159 -158

-82 | -81 |-80 79 -¥8

-2 -1 0 1 2

78| 79| 80| 81| 82

158 | 159 | 160 | 161 |162

9.3 Anlterator that Yields an Lvalue and an Rvalue

terminal_t::iterator::operator* must do opposite things to the left or right of an equal sign

Line 8 writes into the terminal with an iterator; line 9 reads from the terminal with the itefaior
comments alongside shahat both lines call theperator* member function of class
terminal_t::iterator

1 #include "printable.h"

RS0 A hesenea ©2014 Mark Meretzky

10

11

N -

©CoOo~NOOOUTA, WNPE

968 Banishthe Complexity to a Container: a Case Study Chapter 9

#include "terminal.h"

t ypedef terminal<printable_t> terminal_t;
t erminal_t term(’.");
t erminal_t::iterator it = term.begin();

it="A’; /lwrite to terminal: it.operator() = 'A’;
char c = *it; /lread from terminal: char ¢ = it.operator*();
Whenoperator* is called in the abe line 8, it should ultimately call
term_put(it.x, it.y, 'A");
And whenoperator* is called in the abe line 9, it should ultimately call
term_get(it.x, it.y);

But operator* takes no arguments, sovincan we tell it to do these wopposite things?

Other operators that must do opposite things to the left or right of an =

Before we drulge the answepbsene that there are geral operators that must do opposite things to
the left or right of ar=. In each case, the expression to the right ofthmaust read information from an
object; the expression to the left of thenust write information into an object.

*p = *q; /lp.operator*() = g.operator*();
p->fl = g->f2; //p.operator->()->f1 = g.operator->()->f2;
a[10] = b[20]; /la.operator[](10) = b.operator[](20);

Let us digress furtheMVhich of these three operators should we use?

(1) If the object contains only one item of data, or if the object cam ik one item =ailable at a
time, use thé& operator to access the data. This makes the object lao& [iinter.

(2) If the object contains geral items of data, use the operator to access them. This makes the
object look like a minter to a structure.

(3) If the object contains mgritems of data, use tH¢ operator to access them. This makes the
object look lile an aray.

How to get the two opposite behaviors

Suppose that the value of thepeessiontit in lines 8-9 vas an object, not a charactén other
words, suppose that ttoperator* member function of the iterator returned an (anonymous) object, not
a character The comments shwothat line 8 would then call theoperator= member function of the
anonymous object, and line 9 would call dperatorchar member function of the anonymous object:

#include "printable.h"
#include "terminal.h"

t ypedef terminal<char> terminal_t;
t erminal_t term(’.");
t erminal_t::iterator it = term.begin();

it="A’; [Iwrite: it.operator().operator=CA’);
char c = *it; /lread: char c = i t.operator*().operator char();

Now that we're calling tw different member functions, we can dotdifferent things.The operator=
member function of the anonymous object will ¢atim_put , and theoperatorchar member func-
tion of the anonymous object will caéirm_get

The “anorymous object'will be of classterminal::proxy . For another proxy object see pp.
828-829.

RS0 A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA, WNPE

Section 9.3 An lterator that Yields an Lvalue and an Ralue 969

Class terminal, rewritten as an STL container

We aeate tvo dasses with the last nanerminal terminal::proxy and
terminal::iterator . A proxy contains arnterator (line 247), which is wh classiterator
(line 34) had to be defined before classxy (line 245). We an't create an object until we ta cefined
its class.

Classterminal is a friend of clas#erator (line 35). Classterminal should therefore be

able to access the pate members oferminal::iterator . If it can't in Microsoft, male the mem-
bers public.

Since we gveonly two template arguments to clastsl::iterator (line 34), its
difference_type defaults toptrdiff_t . If your ptrdiff_t is a typedef fofong , you'll have o

changdiv anddiv_t toldiv andldiv_t inline 129.
The left* in line 241 calls theperator* in line 236.
Thestatic_cast<CHAR> in lines 280f calls theoperatorCHAR abore them in line 275.

Without thestatic_cast<CHAR> | line 318 would be torn betweendwqually good alternates
and would not compile. The line could et the return value dbackground from CHARo char and
then perform ahar comparison with the blank; or it could a@t the blank fromchar to CHARand
then perform £HARcomparison with the return value ldickground

Thestd:: ’'sinlines 341-342 cause thand function in line 340 to call theand function in the
standard library Without them, wel go into an infinite loop. Microsoft people mightugato remove the
std ’s (but keep the double colons).

A CHARIs the type of character displayed on the screen. Buttibe in line 350 is the type of
character typed at theyboard, which might be a different data type. Thatly it's ot aCHAR

Constructing a proxy

The constructor for claggoxy in line 250 is called only when arerator is dereferencedTo
enforce this, the constructor isyate and is called only from theperator* member function of class
iterator (line 237). Theoperator* is a friend of clasproxy (line 310), so it should be able to call
the constructorIf it can't in Borland, mak the constructor public. Borland people should also define the
following macro at line 2%-.

#define _MSC_VER

The coly constructor for clasgproxy in line 263 is called in the postfigperator++ and
operator-- member functions of this class. It will also be called in the following delicate situation.

/ [Excerpt from <algorithm>

t emplate <class T>
void swap(T& a, T& b)

{
const T temp = a; /ICall swap’s copy constructor.
a = b;
b = temp;
}
typedef terminal<char> terminal_t;
terminal_t term(’,’);
terminal_t::iterator it = term.begin();
swap(it[0], it[1]); /IPass two proxy’s to swap.

If the temp anda in the abwee line 6 contained the same iteratthrey would be Siamese twinsThe
assignment t@ in line 7 would eerwrite the character to whidemp refers. D prevent this, aproxy
constructed by a cgpconstructor contains a character rather than an iterdtoe data membdy in line

RS0 A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

970 Banishthe Complexity to a Container: a Case Study Chapter 9

246 is false if thggroxy was constructed by a copconstructortrue otherwise.

I'm afraid that | h&e turned aproxy into the moral equilent of a union.l concede that it wuld
be more natural to ke wo dfferent types oproxy : the one constructed hterator::operator*
referring to a character on the screen, and the one constructed hyymsipuctor referring to a character
that has been copied from the screen. But | wargralty 's to be he same data type, to satisfy the tem-
plates such aswap that demand tewarguments of the same type.

Two difference_type 's

Classiterator receves wo typedefs namedifference_type . Fortunately both of them

stand for the same thing (namedydiff_t).
(1) theterminal::difference_type defined in line 22;
(2) theterminal:iterator::difference_type that clasgerminal::iterator inher-

its from its base clasgd::iterator in line 34.

The firstdifference_type eclipses the second one, so the unadodiféetence_type in line 53
is theterminal::difference_type in line 22.

We @an male this explicit by changing théifference_type to typename
terminal::difference_type in lines 53, 58, 65, etc. There areotveasons wiwe might want to
do this:

(1) TheSunCCcompiler thinks that the unadorndifference_type in line 53 is the
terminal::iterator::difference_type

(2) Someversions of the GNWy++ recognize that the unadornéifference_type in line 53 is the
terminal::difference_type , but complain about it.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/container/terminal.h

#ifndef TERMINALH
#define TERMINALH

#include <iostream> /[for ostream and <<
#include <sstream> /ffor ostringstream
#include <cstdlib> [[for div and rand
#include <cmath> /ffor sqrt

#include <map>

#include <iterator> /[for class std::iterator

#include <algorithm> //for fill, iterator_category, random_access_iterator_tag

10 using namespace std;

11

12 extern "C" {
13 #include "term.h"

14}

15 #include "except.h"

16

17 template <class CHAR = char>
18 class terminal {

19 public:

20 typedef CHAR value_type;

21 typedef size_t size_type;

22 typedef ptrdiff_t difference_type;
23

24 private:

25 const CHAR _background;

26 const size_type _xmax;

27 const size_type _ymax;

RS0 A hesenea ©2014 Mark Meretzky

Section 9.3 An lterator that Yields an Lvalue and an Ralue 971

28

29 public:

30 /INeed forward declaration of class proxy here,

31 /Ibecause the name proxy is mentioned several times in class iterator.
32 class proxy;

33

34 class iterator: public std::iterator<random_access_iterator_tag, CHAR> {
35 friend class terminal;

36 friend class proxy;

37

38 const terminal *const t;

39 size_type i; /ldistance from begin to this iterator
40 size_type x() const {return i % t->xmax();}

41 size_type y() const {return i / t->xmax();}

42

43 public:

44 I*

45 An iterator can be off the screen, as long as we do not attempt
46 to dereferenceit. (For example, the iterator returned by
a7 terminal::end is off the screen.) Therefore the constructor
48 for class iterator does not check that x and y are legal.

49 */

50 iterator(const terminal& initial_t, size_type x, size_type y)
51 o t(&initial_t), i(y * t->xmax() + x) {}

52

53 iterator& operator+=(const difference_type& d) {

54 i +=d;

55 return *this;

56 }

57

58 iterator& operator-=(const difference_type& d) {

59 i -=d;

60 return *this;

61 }

62

63 /IMicrosoft won't let operator+ be a friend.

64

65 const iterator operator+(difference_type d) const {

66 iterator it = *this; /IConstruct a copy of *this.

67 return it +=d; [Ireturn it.operator+=(d);

68 }

69

70 const iterator operator-(difference_type d) const {

71 iterator it = *this;

72 return it-=d;

73 }

74

75 iterator& operator++() {return *this +=1;}

76 iterator& operator--() {return *this -= 1;}

77

78 const iterator operator++(int) {

79 const iterator old = *this;

80 ++*this; //(*this).operator++();

81 return old;

RS0 A hesenea ©2014 Mark Meretzky

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

972 Banishthe Complexity to a Container: a Case Study Chapter 9

printed 4/8/14
9:12:30 AM

}

const iterator operator--(int) {
const iterator old = *this;
--*this;
return old;

}
iterator& operator=(const iterator& other) {
if (t!=other.t) {
ostringstream ost;
ost << "=with 2 different terminals";
throw except(ost);
}
i = other.;
return *this;
}
/*

Return the horizontal component of a difference_type.
Assuming an 80-character line,

the horizontal component of -81 would be -1

the horizontal component of -79 would be 1

the horizontal component of 81 would be 1

the horizontal component of 79 would be -1

*/

difference_type dx(difference_type d) const {
const difference_type xm = t->xmax();
difference_type diff = (d + xm / 2) % xm;
if (diff<0){

diff += Xm;

}
return diff - xm / 2;

}

/*

Return the vertical component of a difference_type.
Assuming an 80-character line,

the vertical component of -81 would be -1

the vertical component of -79 would be -1

the vertical component of 81 wouldbe 1

the vertical component of 79 would be 1

*/
difference_type dy(difference_type d) const {
const difference_type xm = t->xmax();
div_t di = div(d + xm / 2, xm);
if (di.rem <0){
--di.quot;
}
return di.quot;
}

hesenea ©2014 Mark Meretzky

Section 9.3 An lterator that Yields an Lvalue and an Ralue 973

136 I*

137 Return true if it + d would stay on the screen.

138 Return false if adding d to it would cause it to wrap around
139 from the left edge of the screen to right edge or vice versa.
140 */

141

142 bool in_range(difference_type d = 0) const {

143 const size type myx =

144 static_cast<difference_type>(x()) + dx(d);
145 const size type myy =

146 static_cast<difference_type>(y()) + dy(d);
147 return myx < t->xmax() && myy < t->ymax();

148 }

149

150

151 friend difference_type difference(const iterator& it1,

152 const iterator& it2) {
153 if (itl.t!=it2.t) {

154 ostringstream ost;

155 ost << "difference with 2 different terminals";

156 throw except(ost);

157 }

158

159 return it2.x() - it1.x()

160 + itl.t->xmax() * (it2.y() - itl.y());

161 }

162

163 friend double dist(const iterator& it1, const iterator& it2) {
164 const difference_type d = difference(itl, it2);

165 const difference_type ddx = it1.dx(d);

166 const difference_type ddy = it1.dy(d);

167 return sgrt(static_cast<double>(ddx * ddx + ddy * ddy));
168 }

169

170 //Return -1if d is negative, 1 if d is positive, 0 if d is O.

171 /[They're like the three return values of the C strcmp function.
172

173 friend difference_type signum(difference_type d) {

174 return d<0?-1:d>0 ;

175 }

176

177 //Return the difference_type that would take one step

178 /ffrom itl to it2.

179

180 friend difference_type step(const iterator& itl,

181 const iterator& it2) {
182 const difference_type d = difference(itl, it2);

183 const terminal *const t = itl.t;

184 return signum(it1.dx(d))

185 + t->xmax() * signum(itl.dy(d));

186 }

187

188 friend difference_type operator-(const iterator& itl,

189 const iterator& it2) {

RS0 A hesenea ©2014 Mark Meretzky

974 Banishthe Complexity to a Container: a Case Study Chapter 9

190 if (itl.t!=it2.t) {

191 ostringstream ost;

192 ost << "-with 2 different terminals";

193 throw except(ost);

194 }

195 return itd.i - it2.i;

196 }

197

198 friend bool operator==(const iterator& it1,const iterator& it2){
199 return itl.t == it2.t && itl.i == it2.i;

200 }

201

202 friend bool operator<(const iterator& it1, const iterator& it2){
203 if (itl.t!=it2.t) {

204 ostringstream ost;

205 ost << "< with 2 different terminals”;

206 throw except(ost);

207 }

208 return itd.i < it2.i;

209 }

210

211 friend bool operator<=(const iterator& it1,const iterator& it2){
212 if (itl.t!=it2.t) {

213 ostringstream ost;

214 ost << '"<=with 2 different terminals”;

215 throw except(ost);

216 }

217 return itl.i <=it2.i;

218 }

219

220 friend bool operator!=(const iterator& it1,const iterator& it2){
221 return I(it1 == it2);

222 }

223

224 friend bool operator>(const iterator& it1, const iterator& it2){
225 return it2 <itl;

226 }

227

228 friend bool operator>=(const iterator& it1,const iterator& it2){
229 return it2 <= itl;

230 }

231

232 friend ostream& operator<<(ostreamé& ost, const iterator& it) {
233 return ost << "(" << it.x() << ", " <<ity() << ")

234 }

235

236 const proxy operator*() const {

237 return proxy(*this);

238 }

239

240 const proxy operator[](const difference_type& d) const {

241 return *(*this + d);

242 }

243 b

RS0 A hesenea ©2014 Mark Meretzky

Section 9.3 An lterator that Yields an Lvalue and an Ralue 975

244

245 class proxy {

246 bool b; /ltrue if this proxy refers to a CHAR in a terminal
247 const iterator it; /lused only if b == true

248 mutable CHAR c; /lused only if b == false
249

250 proxy(const iterator& initial_it)

251 : Db(true), it(initial_it), c(A") {

252 if (litin_range()) {

253 ostringstream ost;

254 ost << "location" << it

255 << " o ff screen whose size is ("
256 << it.t->xmax() << ", " << it.t->ymax()
257 << ")

258 throw except(ost);

259 }

260 }

261

262 public:

263 proxy(const proxy& another)

264 : Db(false), it(another.it), c(another) {}

265

266 const proxy& operator=(CHAR c) const {

267 if (b){

268 term_put(it.x(), it.y(), c);

269 } else{

270 this->c = c;

271 }

272 return *this;

273 }

274

275 operator CHAR() const {

276 return b ? CHAR(term_get(it.x(), it.y())) : c;
277 }

278

279 const proxy& operator+=(int i) const {

280 return *this = static_cast<CHAR>(*this) + i;
281 }

282

283 const proxy& operator-=(int i) const {

284 return *this = static_cast<CHAR>(*this) - i;
285 }

286

287 const proxy& operator++() const {return *this +=1;}
288 const proxy& operator--() const {return *this -=1;}
289

290 const proxy operator++(int) const {

291 const proxy old = *this;

292 ++*this; //(*this).operator++();

293 return old;

294 }

295

296 const proxy operator--(int) const {

297 const proxy old = *this;

RS0 A hesenea ©2014 Mark Meretzky

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

976 Banishthe Complexity to a Container: a Case Study

--*this; /I(*this).operator--();
return old;

bool operator==(const CHAR& c) const {
return static_cast<CHAR>(*this) == c;

bool operator<(const CHAR& c) const {
return static_cast<CHAR>(*this) < c;

}

friend const proxy iterator::operator*() const;

h

terminal(CHAR initial_background ="")
_background(initial_background),
_xmax((term_construct(), term_xmax())),
_ymax(term_ymax())

{
if (background() != static_cast<CHAR>(" ")) {
fill(begin(), end(), background());
}
}
“terminal() {
fill(begin(), end(),’);
term_destruct();
}
CHAR background() const {return _background;}
size_type xmax() const {return _xmax;}
size_type ymax() const {return _ymax;}
size_type size() const {return xmax() * ymax();}
iterator begin() const {return iterator(*this, 0, 0);}
iterator end() const {return iterator(*this, 0, ymax());}

static char key() {return term_key();}
static void wait(int milliseconds) {term_wait(milliseconds);}
static void beep() {term_beep();}

difference_type rand() const {

return (std::rand() % 3 - 1) * xmax() +

std::rand() % 3 - 1;

}
difference_type right() const {return 1;}
difference_type down() const {return xmax();}
difference_type left() const {return -right();}
difference_type up() const {return -down();}

typedef map<char, difference_type> keypad_t;
typedef keypad_t::value_type pair_t;

printed 4/8/14
9:12:30 AM

Chapter 9

hesenea ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 977

352

353 keypad_t keypad() const {

354 static const pair_t af] = {
355 pair_t(h’, left()),
356 pair_t(J, down()),
357 pair_t(k’, up()),
358 pair_t(I’, right())
359 |5

360 static const size_t n = sizeof a / sizeof a[0];
361 return keypad_t(a, a + n);
362 }

363 };

364 #endif

9.4 Template Argument Deduction

As usual, theoperator== that compares twiterator ’s is a fiend function because it deals
evanhandedly with tw dbjects. Se¢he abee line friend. Normally theperator!= that compares two
iterator 's would be neither a member function nor friend of elass. Itwould call operator== to
do its work:

t emplate <class CHAR>
i nline bool operator!=(const typename terminal<CHAR>::iterator& it1,
const typename terminal<CHAR>::iterator& it2)

{
}

But an obscure restriction pents us from doing this.

r eturn I(itl == it2); /lreturn !(operator==(it1, it2));

OO, WN P

Recall the explicit template arguments on pp. 652-660:

~

cout << min<double>(i, d) << "\n"; /[contradictory arguments
cout << pi<float>() << "\n"; /Ino arguments

(0]

Most of the time the explicit template arguments would be redundant, so they're not written at all:

9 cout << min<int>(10, 20) << "\n"; /ICould write this, but nobody does.
10 cout << min(10, 20) << "\n"; /[Please write this.

The explicit template gument<int> in the abwee line 9 is not needed because the data type of
each function argument in line 12 is a simpleWhen called from the ale line 10, the computer can fig-
ure out that th& in 12 stands foint . This is calledemplate argument deduction.

11 template <class T> /NI. 29-30 of min2.C on p. 637
12 T min(T a, T b)

13 {

14 /letc.

Even if the data type of each function argument is a bit more complicated than an undddnae=plicit
template argument is still not required.

15 template <class T>

16 const T& min(const T& a, const T& b) /Ip. 640
17 {
18 /letc.

Even if theT is somewhat buried in the data type of the functigument, the explicit templategarment
is still not required. (From moon we'll use CHARinstead ofT, to agree with the abe terminal.h

RS S0 A hesenea ©2014 Mark Meretzky

978 Banishthe Complexity to a Container: a Case Study Chapter 9

The computer doesincare what name we use.)

19 template <class CHAR>

20 void f(const terminal<CHAR>& t)
214

22}

The functionf in the abwee line 20 can still be called without an explicit templatguanent. Whercalled
from line 24, the computer can still deduce thatGHARN the abee line 20 stands faprintable_t

23 terminal<printable_t> term(’.’);
24 f(term);

But there is a limit to ho deeply we can bury th€HARIn the data type of the gument in the
parentheses, while still expecting the computer to deduce wh@HA®&stands far If we bury it ary fur-

ther, we'll have help the computer along with an explicit template argument when we call the function.

The computer needs the explicit templaguarent<printable t> in line 32 to deduce that tteHAR
in line 26 stands foprintable_t

25 template <class CHAR>
26 void g(const typename terminal<CHAR>::iterator& it)

274
28}
29
30 terminal<printable_t> term(’.’);
31 terminal<printable_t>::iterator it = term.begin();
32 g<printable_t>(it);
This is the situation in which we would find ourselves indperator!= in the abwoe lines 2-3.
We would be forced to call thatperator!= with an explicit template argument:
33 terminal<printable_t>::iterator itl = term.begin();
34 terminal<printable_t>::iterator it2 = term.begin();
35
36 if (itl '=<printable_t>it2) { //won’t compile

Unfortunately the syntax of the language doddet us slap anxplicit template argument on an operator in
the abee line 36. We would therefore hae call operatorl= explicitly:

37 /IWill compile, but no one wants to write this.
38 if (operator!=<printable_it>(it1, it2)) {

To dlow the user to write the familiar

39 if (itl 1=it2) {
we thraw in the towel and lepperator!= be a friend of clasterator in line 198 of the abee
terminal.h . Note thatoperator!l= uses no pviate members of claggerator , so in a rmal sit-

uation it would be neither a member function or a friend. Ditto fooffexator+ in line

The C++ Standard (814.8.2.4 subsection 9) lists the ways in which we can adbror GelARand
still have the computer figure out what it stands féhe list includes

40T unadorned

41 const T& slightly adorned

42 const name_of _template_class<T>& heavily adorned
but not

43 const typename name_of_template_class<T>::name_of member&

The abee lines 2-3 steppedver this limit. For an erlier example, see p. 858.

RS0 A hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUTA,WNPE

Section 9.4 Template Argument Deduction 979

v Homework 9.4a: template argument deduction

Look at the definitions for theperator== andoperator!= functions that compare
list<>::iterator 's. Are they member functions of cladist<>::iterator , friends, or neither?
Do they mention an private member of their class?

Look for them in the header fildist> or in other header files included by this offde functions
may be member functions or friends lst<>::iterator , or they may be member functions of a
base class dist<>::iterator
A

Test the new class terminal

gwertyuiopasdfghjklzxcvbnm..............coccciiiiiee NEBDL.................
abcdefghijkimnopgrstuvwxyz............ccccvvveeeeeeeenn. RYUjtXQ....evvvveeeee.
zyxwvutsrgponmlkjihgfedcba...............ccooiiii FogeinGW...............
fzbagmkuidcrpnsteqyvxhlow............cccccceeeeennn. UzlbackCT...............
.. XKsfdhpJz...............

Please type some characters ending with a g: SvrmgwP................
.................... MeciiiiieririeenreeesieeeneeeOTAHML
... YV
....................................... Y
.. 0.0, SRR
....................................... R.Z.ii,

Line 9 of the followingmain.C defines théasic_printable we wrote on pp. 749-753; the
printable_t in line 15 stands fobasic_printable<char> . Microsoft people will hee
rename th&l in lines 106-109 tit3 , because thél declared in line 100 is still &k for them.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/container/main.C

#include <iostream>
#include <cstdlib>
#include <ctime>

#include <vector>
#include <string>
#include <algorithm> //ffor copy, fill, find, greater, random_shuffle, sort

#include "printable.h

10 #include "terminal.h"

11
12

using namespace std;

RS0 A hesenea ©2014 Mark Meretzky

980 Banishthe Complexity to a Container: a Case Study

Chapter 9

13

14 void f();

15 typedef terminal<printable_t> terminal_t;

16

17 class closer_to {

18 const terminal_t:iterator it;

19 public:

20 closer_to(const terminal_t::iterator& initial_it) throw()

21 » it(initial_it) {}

22

23 bool operator()(terminal_t::difference_type d1,

24 terminal_t::difference_type d2) const throw() {
25

26 return dist(it, it + d1)

27 < dist(it, it + d2);

28 }

29},

30

31 int main(int argc, char **argv)

32

33 int status = EXIT_FAILURE;

34 srand(static_cast<unsigned>(time(0)));

35

36 try |

37 f0);

38 status = EXIT_SUCCESS;

39 }

40

41 catch (const exception& e) {

42 cerr << argv[0] << ™ " << e.what() << "\n";

43 }

44

45 catch () {

46 cerr << argv[0] << ": main caught unexpected exception\n®;
47 }

48

49 return status;

50}

51

52 void ()

53 {

54 const terminal_t term(’.");

55 const terminal_t::difference_type down = term.down();

56

57 const terminal_t:iterator center(term, term.xmax() / 2, term.ymax() / 2);
58 terminal_t::iterator it = center; /[copy constructor
59

60 it[1] = it[0] ="X;

61

62 /IMove one step from the center towards the begin, and write a 'Y’.
63 const terminal_t::difference_type d = step(center, term.begin());
64 it +=d;

65 *it =Y,

66

printed 4/8/14
9:12:30 AM

All rights
reserved

©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 981

67 /IMove one step from the center away from the begin, and write a 'Z’.
68 it = center;
69 it -=d;
70 *it =7z
71
72 /IMove a r andom step away from the center, and write an 'R’.
73 it = center;
74 it +=term.rand();
75 *it = 'R}
76
77 it = term.begin();
78 string s = " gwertyuiopasdfghjklzxcvbnm®;
79 copy(s.begin(), s.end(), it);
80
81 it +=down;
82 copy(s.begin(), s.end(), it);
83 sort(it, it + s.size());
84
85 it +=down;
86 copy(s.begin(), s.end(), it);
87 sort(it, it + s.size(), greater<terminal_t::value_type>());
88
89 it +=down;
90 copy(s.begin(), s.end(), it);
91 random_shuffle(it, it + s.size());
92
93 /IDisplay the characters of the string in order of increasing distance
94 /lfrom it0.
95 const terminal_t:iterator itO = it + 3 * term.xmax() / 4;
96 s = "abcdefghijklmnopqgrstuvwxyz"
97 "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
98
99 vector<terminal_t::difference_type> v,
100 for (terminal_t:iterator itl = term.begin(); itl != term.end(); ++it1) {
101 v.push_back(itl - i t0);
102 }
103
104 sort(v.begin(), v.end(), closer_to(it0));
105
106 vector<terminal_t::difference_type>::const_iterator itl = v.begin();
107 for (string:iterator it2 = s.begin(); it2 !'= s.end(); ++itl, ++it2) {
108 itO[*it1] = *it2;
109 }
110
111 /IMidpoint between begin and center:
112 term.begin()[(center - t erm.begin()) / 2] ='m’;
113
114 it +=2*down; //Move two lines down.
115 s = "Please type printable characters ending with a q: ";
116 it = copy(s.begin(), s.end(), it);
117
118 for (i it !=term.end(); ++it) {
119 char c¢; /luninitialized variable
120 while ((c = term.key()) =="\0’) {

RS0 A hesenea ©2014 Mark Meretzky

982 Banishthe Complexity to a Container: a Case Study Chapter 9

121 }

122

123 if (c=="q){

124 break;

125 }

126

127 *it = c;

128 }

129

130 fill(term.begin(), term.end(), term.background()); /[Clear the screen.
131 s = " Etch-a-sketch: please type hjklqg for left, down, up, right, quit.";
132 copy(s.begin(), s.end(), term.begin());

133

134 it = find(term.begin(), term.end(), 's");

135 if (it!=term.end()) {

136 *it =S}

137 }

138

139 const terminal_t::keypad_t k = term.keypad();
140

141 for (it = center;;) {

142 *it =" X5

143

144 char c¢; /luninitialized variable
145 while ((c = term.key()) =="\0’) {

146 }

147

148 if (c=="q){

149 break;

150 }

151

152 const terminal_t::keypad_t::const_iterator i = k.find(c);
153 [i->first is the char, i->second is its difference_type
154 if (i==k.end() || lit.in_range(i->second)) {
155 term.beep();

156 } else{

157 it +=i->second,

158 }

159 }

160

161 term.beep();

162 term.wait(1000);

163}

A terminal iterator is a random access iteragorines 60, 108, and 112 can apply a subscript to it.
Line 60 could hee been split into

164 *it =X
165 it[1] = *it;
but don't do it. We ae not wimps.

The threeterminal::put functions in lines 22-24 derminal.h on p. 160 hee bkeen abol-
ished. B put a character on the screen, we wilinarite the abwge lines 65 or 60 (or 108 or 112Jo put
a dring on the screen, we will catbpy in line 79. We haveregained the ability to display strings that we
lost on p. 742.

RS0 A hesenea ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 983

The terminal::get function in line 25 oterminal.h on p. 160 has also been abolishé&d.
get a character from the screen, we willvnarite line 60 (or 166).

Line 87 calls the constructor for clagseater<terminal_t::value_type> , passing no
arguments to it. This class is part of the STL; wer $% source code on p. 770. The newly constructed,
anonymous object has aperator() member function that takes two
terminal_t::value_type 's and returndrue if the first is greater than the secorsbrt will call
this member function martimes.

We ould have dspensed with the anonymous object by defining the following function at line 13:

166 inline bool greater_printable(const printable_t& a, const printable_t& b) {
167 return a > b;
168}

We muld then change line 87 to

169 sort(it, it + s.size(), greater_printable);

Thefind in the abee line 135 performs the following comparison.

1 if (*it=="9"){ /litis a terminal_t::iterator
The expessiokit is of typeterminal_t::proxy . 1 wish the computer would ceert the
terminal_t::proxy into aprintable_t , and thence into ahar , to permit the comparison to

's’ . But the language will not apply more than one user-defined impliciecsian to an epression (pp.
320-322). © get the comparison to compile, define the following functioneiminal.h . They are
not member functions or friends ofyatlass. Alsadefine the fie aher pairs of comparison functions.

i nline bool operator==(const printable_t& a, const printable_t& b) {
r eturn static_cast<char>(a) == static_cast<char>(b);

}

i nline bool operator==(const wprintable_t& a, const wprintable_t& b) {
r eturn static_cast<wchar_t>(a) == static_cast<wchar_t>(b);

NOoO o~ WNPRE

}

List of the six source files that constitute the terminal test program

(1) term.h andterm.c (pp.86-87). These are the onlyawritten in C; the rest are in C++.
(2) except.h (pp.628-629), which is included lpyintable.h

(3) printable.h (pp- 749-753)

(4) terminal.h (pp- 969-977). There is no marrminal.C as of the following Homaork.
(5) main.C (pp. 979-983)

v Homework 9.4b:
Version 5.0 of the Rabbit Game: port the game to the new clagsrminal

Uncouple the Cartesian codrdinate system from the game byireyradl mention of the te-dimen-
sional Cartesian codrdinatgsy. They should neer havebeen there to begin with. Once the game has
been purified, we will port theagne effortlessly to a terminal of a totally different topology: three dimen-
sions, one dimension, or dwlimensions with polar codrdinates; @inder, M&bius strip, or torus; a hope
comb of hexagonal cells instead oiveand columns of squares. (This will happen in a future ivonke
not this one.)

Make the following three changes in clagame, classwabbit , and all of the classes deed from
wabbit . Rememberif you mention theéerminal_t member of clasgvabbit at ary point at which
you are not on a first-name basis with the members of that class, youweitblall it by its full name:
wabbit::terminal_t

RS0 A hesenea ©2014 Mark Meretzky

OO, WN P

7
8
9
10
11

984 Banishthe Complexity to a Container: a Case Study Chapter 9

(1) Changesvey pair of variablesinsignedx , unsignedy to a single

terminal_t::iterator object named .
(2) Changeevey pair of variablesntdx ,intdy , and every pair<int, int> and
game:step_t , to a sngleterminal_t::difference_type variable named.

(3) Remae e/ery pair ofint‘dx , int*dy that are function guments. Repladbem by a single
terminal_t::difference_type as the function return value.

But do not mak the abee three changes in the following four places.

(1) Donot male the three changes in thet€km_ functions. Cknows nothing of iterators or
difference_type 's.

(2) Donot male the three changes in thewnelassterminal : that's the one place where tixés and
y’s can remain, as long as the usevenesees them.

(3) Do not male the three changes to tlearray in the constructor for clagame. As long as wee
using a two-dimensional terminal, the array will/&éd remain a rectangular picture and we’ll still
have 1o loop through it with a pair of, y variables.

Fallow these steps to perform the uncoupling.

(1) Remae te old classerminal with theput andget member functionsReplace it with the
new classterminal that has thaterator anddifference_type members. Ma& no dange to
the nev classterminal

(2) Now that we can easilgopy a dring to the terminal (lines 77-79 ofain.C on p. 981), change
the victory and defeat messages back to complete sentences.

(3) Change the, y data members of clasgbbit to a singleerminal_t::iterator named
it .
/ [Excerpt from wabbit.h

class wabbit {
game *const g;

t erminal_t::iterator it; /lused to be unsigned x, y

const terminal_t::value_type c; /[already was a terminal_t::value_type

(4) In the constructors for classbbit and its dexied dasses, change the twatial_x and
initial_y arguments to a single gument of typaerminal_t::iterator . We'll follow the STL

convention of passing an iterator by value.

wabbit::wabbit(
game *initial_g,
t erminal_t::iterator initial_it,
terminal_t::value_type initial_c
): g(initial_g), it(initial_it), c(initial_c)

12

13
14
15
16
17
18
19

In the template clasgrandchild , the terminal_t inherited from claswabbit via class
MOTIONwill have o be wittentypenameMOTION::terminal_t

(5) Heres an acerpt fromgame::game . Line 15 is entirely ng. Other nev code is on the left;
the old code is in the comments on the right (lines 16, 23, etc).

for (size_ty=...
for (size_tx=...
const terminal_t:iterator it(term, X, y);
if (it.in_range() && ... [fif (term.in_range(X, y) && ...
const map_t::const_iterator i = m.find(a[y][X]);
if (we didn't find the character afy][x]) {

RS0 A hesenea ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 985

20 }
21
22 /ICall the make_grandchild function for this species.
23 i->second(this, it); /li->second(this, X, Y);
(6) Change the, y aguments ofjame::get to a singleterminal_t::iteratorit , passed

by value. game::get already has a local variable namied (which is a different type of iterator), so
rename the local variable ito

(7) Thedecide functions will nav return one glue instead of assigning a pair of values through a

pair of pointers. Reme the two arguments of thelecide functions. Changtheir return value from

void to terminal_t::difference_type . For example, the entire body imfimobile::decide
will now be
24 return 0; /lused to be *dx = *dy = 0;

(8) The n&v version ofwabbit::move is on the left; the old code is in the comments on the right.

The nev line 27 has only oneaviabled, and it's aconst . There are no more uninitializeénablesdx
anddy. In the nev line 31, we hee write only one comparison; in lines 35-36, wedd write only
one addition. There are fewer functiog@ments in lines 38 and 43, and those in line 2/ llsappeared
entirely Nowhere does the mecode betray the number of dimensions beraninal_t

Our only regret is that line 46 can no longer use tigaetelefault value of the third argument of
terminal_t::put . Butterminal_t::put no longer exists.

The price we pay for this bra rew wde is that the names of the data type® Hiecome more com-
plicated. or example, the plain olidt s in lines 27-28 hae kecome a

const terminal_t::difference_type

where thaerminal_t is itself a typedef foterminal<printable_t> and theprintable_t isa
typedef forprintable<char>

25 bool wabbit::move()

26 {

27 const terminal_t::difference_type d=decide();//int dx; //uninitialized variables

28 /lint dy;

29 /ldecide(&dx, &dy);

30

31 if (d==0)({ /if (dx == 0 && dy == 0) {
32 return true; 1 return true;

33 } I}

34

35 const terminal_t:iterator newit = it + d;//const unsigned newx = x + dx;

36 /[const unsigned newy =y + dy;
37

38 if ('newit.in_range()) { Ifif ('\g->term.in_range(newx, newy)) {
39 punish(); I punish();

40 return true; 1 return true;

41 } I}

42

43 if (wabbit *const other = g->get(newit)) {//if(wabbit*const other=g->get(newx,newy)){
44 /letc. /letc.

45

46 *it = g->term.background(); I g->term.put(x, y);
47 it = newit; 1 X = newx;

48 I y = newy;

49 *it = c; /1 g ->term.put(x, vy, c);

RS0 A hesenea ©2014 Mark Meretzky

50

51
52

53
54
55

56
57
58
59

1

986 Banishthe Complexity to a Container: a Case Study Chapter 9

See if you can figure out twowabbit::move can use the optional argumentimfrange in line
142 of the abee terminal.h to prevent thewabbit from wrapping around the left and right edges of
the screen.

(9) Give dasswabbit a public inline member function namednd , declared as
terminal_t::difference_type rand() const { body of functioh

Like the beep, key, and wait member functions of clasgabbit , wabbit::rand should do all its
work simply by calling the corresponding member function of the terminal in the gamg poénts to.
This member function is in line 340-342 of the rtewninal.h

The entire body dfrownian::decide will now be

return rand(); I[*dx rand() % 3 - 1;
[[*dy rand() % 3 - 1;

Sincebrownian.h no longer mentions thand in the standard libraryt will no longer need to include
cstdlib or use namespastd .

(10) The leystrokeshjkl , for the directions left, down, up, right, work only for aotdimensional,
Cartesian terminal.A terminal with polar cootrdinates or three dimensions would requiferetit
keystrokes and directions. Theystrokes and directions atherefore been nved to the nav class
terminal , in line 345 ofterminal.h

An expression such asep_t(1, 0) in game::claim can be changed te>right()

(11) Ourdist function contains a Pythagorean distance formula tloaksvfor only a tw-dimen-
sional, Cartesian terminal. It has therefore beewethto the nev classterminal , in line 163 of
terminal.Lh . Remove thedist function invisionary.C that you wrote for the firstisionary
homevork, and replace it with the following inline friend of clagabbit .

friend double dist(const wabbit *w1, const wabbit *w2) {
return dist(w1->it, w2->it);

}

(12) Similarly our step function applies only to a two-dimensional, Cartesian termiftahas
therefore been nwed to the nev classterminal , in line 180terminal.h . step now returns a
terminal_t::difference_type . Remove te step function invisionary.C that you wrote
for the firstvisionary =~ Homework, and replace it with the following inline friend of clasabbit .

friend terminal_t::difference_type step(const wabbit *w1,
const wabbit *w2) {
return step(wl->it, w2->it);
}
(13) Ourdifference function works only for a two-dimensional, Cartesian terminal. It has there-
fore been meed to the nev classterminal , in line ofterminal.h . Remove thedifference friend

of classwabbit that you wrote for the firstisionary =~ homevork.

Our originalsignum function invisionary.C took a generiént , and was not a member func-
tion or friend of ag class. Thenewsignum function in line 173 oferminal.h takes a
terminal<CHAR>::difference_type . Since the data type of its argument was specific to class
termianl<CHAR> |, | made it a friend of that class. Rewaohe originalsignum in visionary.C

(14) Theradius of vision is unsigned, so it should beconteraninal_t::size_type
A

How we oould have managed the transition to iterators and difference_type’s

(1) The previous Honveork could hae begun by changing the name of classminal to
oldterminal

t emplate <class CHAR = char>

RS0 A hesenea ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 987

2 class oldterminal {

3 declarations for private members;
4 public:
5 declarations for the public members:
6 oldterminal, “oldterminal
7 background
8 Xmax, ymax
9 get, put, put, put
10 key, wait, beep,
11 in_range, next
12 distance, step,
13 keypad_t, keypad
14 };

(2) Then we could hee publicly derived aterminal class containing the mepublic members, and
call-throughs for the old member functions that we want to keep.

15 template <class CHAR = char>
16 class terminal: public oldterminal<CHAR> {

17 public:

18 terminal(CHAR initial_background): oldterminal<CHAR>(initial_background) {}
19

20 /ISeven new members:

21

22 typedef size_t size_type;

23 typedef ptrdiff_t difference_type;
24 typedef CHAR value_type;

25 typedef map<char, difference_type> keypad_t;

26

27 class iterator {declarations for members and friends};

28 class proxy {declarations for members and friends};
29 keypad_t keypad() const;

30

31 11Six old members that we want to keep permanently:

32

33 CHAR background() const {return oldterminal<CHAR>::background();}
34 unsigned xmax() const {return oldterminal<CHAR>::xmax();}
35 unsigned ymax() const {return oldterminal<CHAR>::ymax();}
36

37 char key() const {return oldterminal<CHAR>::key();}

38 void wait() const {oldterminal<CHAR>::wait();}

39 void beep() const {oldterminal<CHAR>::beep();}

40

41 //Old members that we want to keep only during the transition period:
42

43 bool in_range(int x, inty, int dx = 0, int dy = 0) const {

44 return oldterminal<CHAR>::in_range(x, vy, dx, dy);

45 }

46

a7 double distance(int x1, int y1, int X2, int y2) const {

48 return oldterminal<CHAR>::distance(x1, y1, x2, y2);

49 }

50

51 void step(int x1, inty1, int x2, int y2, int *dx, int *dy) const {

52 oldterminal<CHAR>::step(x1, yl, X2, y2, dx, dy);

RS0 A hesenea ©2014 Mark Meretzky

53

988 Banishthe Complexity to a Container: a Case Study Chapter 9

541,

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Because the inheritance in the ebdne 16 was public, we can emplather style:

terminal<printable_t> term(’.’);

//Old style.

11X, y, X1, y1, X2, y2 are unsigned’s, s is a string.
term.put(x, y,'AY);

term.put(x, Yy, s);

double dist = term.difference(x1, y1, x2, y2);

int dx, dy; /luninitialized variables
term.step(x1, y1, X2, y2, &dx, &dy);

/INew style.

/it, itl, it2 are terminal<printable_t>::iterator’s, s is a string.

*it =" A}

copy(s.begin(), s.end(), it);

double d = difference(itl, it2);

terminal<printable_t>::difference_type d = t erm.step(itl, it2);

(3) After the transition period, we couldJeadsallowed the abee lines 57-65 by changing the
public toprivate inthe abwoe line 16 and removing lines 41-53he nev classterminal will be a
container adaptorproviding access to part of the functionality of the underhoidferminal . See p.
935 for other examples.

9.5 Alternative Traversals

Tr avase the same container in tw different orders

In a containerthe order of the elements is not a property of the elements or of the contamer
order is imposed on the elements by the iterator thedrss them.A different iterator can impose a dif-
ferent order We dready s that every container with bidirectional iterators carvhaa evese iterator (pp.
856-858). Herds another example.

In Western music the interval betweeroteonsecutie rotes is called aalf step.An octaveis com-
posed of twele half steps. In the following program the first iteratovéraes the notes of an octain
order of increasing pitch. In this ord€ and C* are right next to each other: thare consecutie keys on a
piano leyboard.

But in the chord progressions of most pieces of music, C &raeCrery remote from each otheX
C chord is more likely to be followed by a G than % & song that starts in theely & C would be more
likely to switch to G than to®C We say that C and G are consewetikeys in a dfferent ordering, called
thecircle of fifths.The ley dgnatures also follw the circle of fifths: the &y d G has one sharp, D has
two sharps, A has three sharps, etc. The iterator in line 28aifi.C traverses the notes along the circle
of fifths.

Theoperator* in line 63 constructs and returngiete object. Itmust therefore return byaiue,
not by reference. Ditto for theperator|] in line 64. operator(] callsoperator+ (line 132), so
operator(] must be defined after thigperator+ is declared (lines 125-126). didn’t bother to
define postfix operations for the iteratédtnd comparisons witk or > are meaningless: since the container
is circular any such comparison would return true.

RS0 AN hesenea ©2014 Mark Meretzky

Section 9.5 Alternati ve Traversals 989

Five d the notes hae dternatve rames (lines 22-27), so we provide the i/o manipulabesp
andflat analogous to theartesian ~ andpolar in pp. 362-366. Columns 2 and 3 of the outpure
cise them.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/reverse/note.h

1 #ifndef NOTEH
2 #define NOTEH
3 #include <iostream>
4 #include <iterator>
5 #include <cassert>
6 using namespace std,;
7
8 ostream& sharp(ostream& 0s);
9 ostream& flat(ostream& 0s);
10
11 class note {
12 static const int subscript; //subscript of new element in ios_base::iword
13
14 unsigned i /Inumber of half steps above C
15 /fin range 0 to n - 1 inclusive
16 public:
17 static const unsigned n = 12; //number of half steps in an octave
18 I*
19 The value of each enum is its number of half steps above C.
20 The five sharps are the black keys on the piano: a pair and a trio.
21 */
22 enum {
23 C, C_SHARP, D, D_SHARP, E, F, F_SHARP, G, G_SHARP, A, A_SHARP, B,
24
25 /[alternative names for the five black keys
26 D_FLAT = C_SHARP,
27 E_FLAT = D_SHARP,
28 G_FLAT = F_SHARP,
29 A_FLAT = G _SHARP,
30 B_FLAT = A SHARP
31 3
32
33 note(unsigned initial_i): i(initial_i) {assert(i < n);}
34
35 friend ostream& operator<<(ostreamé& os, const note& no);
36
37 friend ostream& sharp(ostreamé& o0s) {
38 os.iword(note::subscript) = 0; /[Ithe default
39 return 0s;
40 }
41
42 friend ostream& flat(ostream& os) {
43 os.iword(note::subscript) = 1;
44 return 0s;
45 }
46
47 class const_iterator:
48 public std::iterator<random_access_iterator_tag, note, unsigned,
49 const note *, const note&> {

RS0 A hesenea ©2014 Mark Meretzky

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

990 Banishthe Complexity to a Container: a Case Study

unsigned i;
const

static

public:

printed 4/8/14
9:12:30 AM

const_iterator(unsigned

/Inumber
unsigned stride;

Chapter 9

of half steps above C

difference_type distance(const const_iterator& it1,

const const_iterator& i2);

initial_i, unsigned initial_stride = 1)

i(initial_i), stride(initial_stride) {

assert(initial_i
assert(0

}

const
const

const_iterator&
assert(0
i =]
return *this;

}

const_iterator&
i +=]*stride;
i %=n;
return *this;

}

const_iterator&
i -=]*stride;
i %=n;

return *this;

}

const_iterator&
const_iterator&

friend

friend

return

}

friend

return

}

friend

return

< n);

< stride && stride < n);

note operator*() const {return i;}
note operator[](int i) const;

operator=(int j) {

<=j&&j<n);

operator+=(int j) {

operator-=(int j) {

operator++() {return *this +=1;}
operator--() {return *this -= 1;}

difference_type operator-(const const_iterator& it1,

const const_iterator& it2);

bool operator==(const const_iterator& it1,

const const_iterator& it2) {

itdl.i == it2.i;

bool operator>(const const_iterator& itl,

const const_iterator& it2) {

distance(itl, it2) < n;

bool operator>=(const const_iterator& itl,

const const_iterator& it2) {

itl ==it2 || itl > it2;

hesenea ©2014 Mark Meretzky

Section 9.5 Alternati ve Traversals 991

104 h

105}

106

107 inline bool

108 operator!=(const note::const_iterator& it1, const note::const_iterator& it2) {
109 return I(itl == it2); [Ireturn loperator==(it1, it2);

110}

111

112 inline bool

113 operator<=(const note::const_iterator& it1, const note::const_iterator& it2) {
114 return it2 >=it1;

115}

116

117 inline bool

118 operator<(const note::const_iterator& it1l, const note::const_iterator& it2) {
119 return it2 > itl;

120}

121

122 inline const note::const_iterator

123 operator-(note::const_iterator it, int i) {return it -=i;}

124

125 inline const note::const_iterator

126 operator+(note::const_iterator it, int i) {return it +=1i;}

127

128 inline const note::const_iterator

129 operator+(int i, note::const_iterator it) {return it +=i;}

130

131 inline const note

132 note::const_iterator::operator[](int i) const {return *(*this + i);}
133 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/reverse/note.C

#include <cstdlib>
#include <cassert>
#include "note.h"
using namespace std;

const int note::subscript = ios_base::xalloc();

/ IReturn the distance from it2 to itl (the integer you'd have to add to it2 to
/ /get to it1, or note::n if there is no such integer.

©CoOo~NOOOUTA, WNPE

10
11 note::const_iterator::difference_type
12 note::const_iterator::distance(const const_iterator& it1,

13 const const_iterator& it2)
14 {

15 assert(itl.stride == t2.stride);

16 difference_type d = 0;

17

18 for (const_iterator it = it2; it 1= itl && d < note::n; ++it, ++d) {
19 }

20

21 return d;

Ps30 A hesenea ©2014 Mark Meretzky

992 Banishthe Complexity to a Container: a Case Study Chapter 9

22}
23
24 note::const_iterator::difference_type operator-(const note::const_iterator& it1,
25 const note::const_iterator& it2)
26 {
27 const note::const_iterator::difference_type d =
28 note::const_iterator::distance(it1, it2);
29
30 if (d>=note::n){
31 cerr << *jtl <<"is inaccessible from " << *it2
32 << " viaa stride of " << itl.stride << ".\n";
33 exit(EXIT_FAILURE);
34 }
35
36 return d;
37}
38
39 ostreamé& operator<<(ostream& 0s, const note& no)
40 {
41 static const char *const a[][12] ={
42 {"cr, "C#","D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"},
43 {"cr, "Db", "D", "Eb", "E", "F", "Gb", "G", "Ab", "A", "Bb", "B"}
44 g
45
46 assert(no.i < note::n);
a7 const int s = os.iword(note::subscript);
48 assert(0 <=5 &&S<2);
49 return 0s << a[s][no.i];
50}
To bedgn and end each scale on the same nuitg::C , | would like to loop 13 times.| wish |
could use the following call toopy , but it would loop only one time and then halt.
1 copy(note::const_iterator(note::C),
2 note::const_iterator(note::C) + 1, 0s);

The algorithms were not designed for circular containers. See pp. 999-1000 for another example.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/reverse/main.C

#include <iostream>
#include <cstdlib>
#include "note.h"
using namespace std;

t emplate <class INPUT, class SIZE_TYPE, class OUTPUT>
void my_copy_n(INPUT in, SIZE_TYPE s, OUTPUT out)

OCO~NOOOUTLAWN P
—~~

for(;s>0;--s){
10 *out = *in;
11 ++in;

12 ++oult;

13 }

14}

15

16 int main()

RS0 A hesenea ©2014 Mark Meretzky

Section 9.5 Alternati ve Traversals 993

174
18 ostream_iterator<note> os(cout, "\n");
19
20 my_copy_n(note::const_iterator(note::C), note::n + 1, 0s);
21 cout <<"\n%
22
23 cout <<flat;
24 my_copy_n(note::const_iterator(note::C), note::n + 1, 0s);
25 cout <<"\n%
26
27 /[Traverse the Circle of Fifths.
28 my_copy_n(note::const_iterator(note::C, 7), note::n + 1, 0s);
29 cout << sharp;
30
31 return EXIT_SUCCESS;
32}
Output printed in three columns toveagpace.
C C C
C# Db G
D D D
D# Eb A
E E E
F F B
F# Gb Gb
G G b
G# Ab Ab
A A B
A# Bb Bb
B B F
C C C

v Homework 9.5a: spiral iterator
Write aspiral_iterator for classterminal
t ypedef terminal<printable> terminal_t;
t erminal_t term(’.");

string s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
" abcdefghijkimnopgrstuvwxyz";

const terminal_t::iterator center(term, term.xmax() / 2,
t erm.ymax() / 2);

CQOwoo~NOOUODWNPE

=Y

copy(s.begin(), s.end(), terminal_t::spiral_iterator(center));

RS0 A hesenea ©2014 Mark Meretzky

11

12

13
14
15
16

17
18
19
20
21

994 Banishthe Complexity to a Container: a Case Study Chapter 9

K|j|i|hlg|f|g
| |'Q|P|O|N|M|d
m R|E|D|C|L]|cC
n|S|F|A|[B|K|Db
o|T|G|H|Y |J]|a]|z
plU|VIW XY |Z]y
glr|s|tju|v|w

/ AN

Give it a wo-argument constructor too.
terminal_t::spiral_iterator it(term.xmax() / 2, term.ymax() / 2);

The arguments of the twaigument constructor do not necessarilyeh®@ be on he screenFor example,
the following iterator would sweep the screen the way we read a printed page, left to right and top to bot-
tom.

terminal_t::spiral_iterator it(term.xmax() / 2, -term.xmax());

In the constructor fowabbit , we airrently look only in one direction for an empty location.

while (*it I= g->term.background()) {
++it;
}

Change this to

game::terminal_t::spiral_iterator S =it
while (*s = g->term.background()) {
++s;
}
it =s;

Of course, we should alsovea st for end-of-screen.
A spiral iterator would radically simplifyisionary::decide . The “closest animal’code in

visionary::decide really belongs in spiral_iterator::operator++.
A
9.6 Port the Game to Terminal with a Different Topology

¥ Homework 9.6a:

Run the sewer for the ring terminal
The ring terminal is a ¥a gplet. TheJava mmpilerjavac created the twaclass — files.

printed 4/8/14 All rights

9:12:30 AM reserved ©2014 Mark MeretZky

Section 9.6 Port the Game to Terminal with a Different Topology 995

1$ cd $dir/termO
2% /bin/javac Term0.java
3% chmod 444 Term0O.class ReadFromClient.class

When two programs hee a orversation carried by TGRhe one that initiates the ogesation is
called theclient and the other program is called gerver. We sy that the clientconnects’to the serer,
and the servetdccepts’the client. On the other hand, the sgrisegins running before the client. bcf,
most servers run 24 hours per day.

The Jaa gplet is a TCP server; our C++ program will be its client. Since the applet is a TER serv
we’ll have o give it permission to do things that it would not normally be allowed to do irsaadbox”.
In Internet Explorer on Windows,

(1) Pulldown the Tools menu and seldaternetOptions... . An InternetOptions win-
dow will appear.

(2) Clickon theSecurity tab.
(3) Selecthelnternet content zone. It has a picture of a globe.
(4) PresgheCustomLevel... button. A SecuritySettings window will appeatr.

(5) Scrolldown toMicrosoftYM and click on it if necessary to pop up treva
Permissions under it. Press th€ustom radio button.

(6) PresgheJavaCustomSettings... button. Aninternet window will appear.
(7) Clickon theEditPermissions tab.

(8) Double-clickon theUnsignedContent padlock if necessary to makhe RunUnsigned
Content padlock appear.

(9) Double-clickon theRunUnsignedContent padlock if necessary to makhe threeRun
inSandbox , Disable , Enable radio buttons appear.

(10) PressheEnable radio button.
(11) PressheOKbutton to dismiss thénternet window.

(12) PressheOKbutton to dismiss th&ecuritySettings window.
(13) Ifit says ‘Are you sure you want to change the security settings for this zone?"Yelck
(14) Clickthe OKbutton to dismiss thénternetOptions window.

On my iMac,

Apple menu ->

System Preferences... ->
Network ->

Proxies

Then | checked the first threl€TP, Weh and SecureWeb), and unchecked the last thr&tréaming
Gopher , and SOCKSFirewall).

To launch the servepoint your web browser at
http://i5.nyu.edu/" mm64/INFO1-CE9266/term0/

There is a tilde in front of them64 term0 has a zero, not an uppercase leiier

RS0 A hesenea ©2014 Mark Meretzky

996 Banishthe Complexity to a Container: a Case Study Chapter 9

For dehugging, the terminal lists the ordinate of each character and the IP address and port number of
the host.

Listening on port 9266 of 192.168.2.10...

To verify that the server was in théSTEN state, | launched thBerminal application on the Mac
where | was running the bkger This gaveme a Unix shell winde in which | checked the network sta-
tus.

netstat -a -f inet -p TCP | awk 'NR <= 2 || \.9266/

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 *.9266 * ¥ LISTEN

You can selectViewSource from the brevsers menu bar to xamine thePARAMags named
port andxmax:

7$ cat -n /nomel/m/mm64/public_html/INFO1-CE9266/termO/index.html |
awk '8 <= NR && NR <= 13’
8 <APPLET CODE = "Term0.class"
9 WDTH =500 HEIGHT = 500>
10 <PARAM NAME = "port" VALUE = 9266>
11 <PARAM NAME = "xmax" VALUE = 40>
12 This browser does not understand the APPLET tags or does not have Java enabled.
13 </APPLET>

The value ofport must be in the range 0-65535, because a port numbeo ibytes in the TCP
protocol. Thevalue ofxmax must be in the range 1-255, because it must fit into a single byte of X52.9266
protocol.

The web page also has a link to theaJ@urce code of the sey consisting of tvo dasses named
TermO andReadFromClient

RS0 A hesenea ©2014 Mark Meretzky

Section 9.6 Port the Game to Terminal with a Different Topology 997

We nrust launch the server before the cliekinlike most servers, this one will accept only one
client. We must therefore launch the servagain eery time we run our client.To re-launch the seer,
press the bresers “Refresh’ button while holding down theCtrl'’" key. (Without the control &y, we
would be refreshing the HTML page but not the applet in it.)

To re-launch the server immediatelye would have o bind it to a diferent TCP port number each
time. (Therds a two-minute waiting period before a TCP port number ceases to be in use; look up the
TIME_WAIT state in a TCP/IP book.)f you dont want to wait tvo minutes, change the port number by
changing the?ARAMag forport , and line 11 of the followingnain.C .

Find your IP address
(1) To find the IP address of a Macintosh host running OSX,
Apple Menu - System Preferences... - Network — TCP/IP
(2) To find the IP address of a Windows host,

Start —» Programs - Accessories » Command Prompt
ipconfig for Windows 2000 or NT
winipcfg for Windows 95 or 98

(3) To find the IP address(es) of a Unix host,

1% ifconfig -a | more

The client
—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/term0/term0.h
1 #ifndef TERMOH /* This file can be #include’d in either C or C++. */
2 #define TERMOH
3
4 /* T hese two functions must be called in pairs. */
5 void termQ_construct(const char *ip, unsigned short port);
6 void termQ_destruct(void);
7
8 /* L egal x values go from 0 to term0_xmax() - 1 inclusive. */
9 unsigned term0_xmax(void);
10

11 /* Display a character or string on the screen. */

12 void term0_put (unsigned X, char c);

13 void term0_puts(unsigned X, const char *s);

14

15 /* Return the character at the given position on the screen. */

16 char term0O_get(unsigned x);

17

18 /* Return the key the user pressed. If no key was pressed, return '\Q’
19 immediately. */

20 char termQ_key(void);

21

22 void termQ_wait(int milliseconds); /* 1000 milliseconds == 1 second */
23 void term0_beep(void);

24 #endif

Line 10 must hee the IP address and TCP port number of theesehine 20 can apply th&=oper-
ator to the expressiontx because the prefik+ returns an lvalue (pp. 12-13).

RS0 A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

998 Banishthe Complexity to a Container: a Case Study

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/term0/main.C

#include <iostream>
#include <cstdlib>
extern "C" {
#include "term0.h"

}

using namespace std;

i nt main()

{
termQ_construct("192.168.66.96", 9266);
const unsigned xmax = termQ_xmax();
unsigned x = 0;

term0_put(x, 'X);
char ¢ =t erm0_get(x);
termQ_put(x + 1, c);

termQ_puts(2, "Type printable chars ending w/ g.");

for (x=0; x<xmax; ++x %=xmax) { /IXx=x+ 1, x =X % xmax

while ((c =term0_key()) =="0") {
}

if (c=='q){ /lquit
goto done;

}

term0_put(x, C);

}

done:;

termQ_wait(3000); /Ithree seconds
termQ_beep();

termQ_destruct();

return EXIT_SUCCESS;

List of the three source files that constitute the client

(1) termO.h andtermO.c . These are the only twritten in C; the other is in C++.

(2) main.C

Compile the client under Unix

The minus lowercased stand for “library”. nsl is the “Network Services Library”.

1% gcc -c term0.c

2$ g++ -0 “/bin/tester main.C term0.0 -lcurses -Isocket -Insl

3% Is -l “/bin/tester

printed 4/8/14
9:12:30 AM

Chapter 9

©2014 Mark Meretzky

Section 9.6 Port the Game to Terminal with a Different Topology 999

Run the client

After the serer has started listening, you can run the client. The client begins by outputting the
server'sxmax to confirm that it has established a connection to the server.

1$ tester

Trying 192.168.20.196...
Connected to 192.168.20.196.
term0 xmax == 40

Meanwhile, the server will displafkcceptedclient and the cliens IP address. Thesener should
now be in heESTABLISHEDstate.

netstat -a -f inet -p TCP | awk 'NR <= 2 || \.9266/

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 ftcg5faculty2.ed.9266 i5.nyu.edu.46053 ESTABLISHED

The client should also be in t&STABLISHEDstate. On5.nyu.edu (Solaris), theP option ofnetstat
is uppercase, thep argument is lowercase, and the header is the first four lines of output.

netstat -a -f inet -P tcp | awk 'NR <= 4 || \.9266/

TCP: IPv4
Local Address Remote Address Swind Send-Q Rwind Recv-Q State
i5.46053 FTCG5FACULTY2.EDLAB.ITS.NYU.EDU.9266 65535 0 49640 0 ESTABLISHED

You may nav haveto “wake yp” the server by clicking on its windoor by hding the other win-
dows. You may &en haveto hide the serves'window and pop it up again.

The characters you type will be displayed counterclockwise around thexingn the client discon-

nects from the server by callitgrmO_destruct , this function will output

Connection closed.

2% echo $? See the cliersd’ exit status.

0 The client$ &it status should be 0.
Meanwhile, the server will displagonnectionclosedbyclient . Wait two minutes before launch-

ing the server again.

The X52.9266 protocol

The server and client opea st of rules called the X52.9266 protocol. This protocol is carried by
TCP; the server is bound to port 9266. After accepting the client, ther sawds one byte to the client
giving the value okmax. (This means thatmax must be less than 256lh the abee fdcture,xmax is
40.

After receiving the abee byte, the client sends pairs of bytes to the exerVhe first byte in each pair
is anx codrdinate. Theecond byte is the character to be displayed at that codrdih#tie.second byte is
00000111 , the serer will emit a beep instead of displaying a charachetthis case, the first byte will be
ignored.

Meanwhile, the server will send eaakyktroke to he client as a separate byte.

The cowersation can be terminated by either the client or theese@alling thedestroy method
of the server will close the connection, but weeheo way of predicting when the browser will do this.

¥ Homework 9.6b:

Classterminal saved us he trouble of calling thteerm_ C functions directly Create a class
terminal0 to save ws the trouble of calling theermO_ functions directly | invite you to cop as rmuch
as possible from the clatgminal on pp. 969-977.

RS0 A hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUTA, WNPE

O©CoOoO~NOOOUOTPA,WNPE

1000 Banishthe Complexity to a Container: a Case Study Chapter 9

The member functionkey andbeep of classterminal0 will no longer be static. Perhaps we
should thrav in the towel and makevait non-static too.

Classterminal0 will be a template class. Also create the four data types that the user will be
awae of,

terminalQ::size_type

terminalO::difference_type

terminalO::value_type

terminalO::iterator , derived fromstd::iterator<random_access_iterator_tag, T>

and the data type that the user will bewsara of.

terminalO::proxy

Write a test program for clagsrminal0 . | invite you to coy as nuch as possible from the test
program for clasgerminal on pp. 979-983.
A

v Homework 9.6c:
Version 5.1 of the Rabbit Game: port the game to the ring terminal

The holy grail

A game and itswabbit ’s are currently hardwired to occym terminal<CHAR> . We can tem-
platized classegame andwabbit to inhabit ag container whose iterators are bidirectional:

game<terminal<printable_t> > gamel(’.’);
game<terminal<char> > game2(’.’);

game<terminal<> > game3(’."); //[same as line 2
game<> game4(’.’); /lsame as line 2

/ Iw isi "wide", L is "long".
game<terminal<wchar_t> > game5(L".");

game<terminalO<printable_t> > game6("192.168.20.196", 9266, '.’);

Derive the two terminal classes from an abstract base class.

The following diagram shws only the inheritance relationships. No attempt was made o tsieo
data types that are plugged in as template arguments (e.g.piifdable_t). Thetwo-dimensional
classterminal has been renaméerminal2d

terminal

terminal2d terminalO

t emplate <class CHAR = char, class DIFF = ptrdiff_t>
class terminal {
public:

virtual void beep() const = 0;

virtual CHAR background() const = 0;

virtual DIFF rand() const = 0O;

t ypedef map<char, DIFF> keypad_t;
virtual keypad_t keypad() const = 0;

RS0 A hesenea ©2014 Mark Meretzky

Section 9.7 Avoid a Fat Interface with Virtual Base Classes 1001

10}

11

12 template <class CHAR>
13 class terminal2d: public terminal<CHAR> {

14

/l/declarations for members

15}

16

17 template <class CHAR>
18 class terminalO: public terminal<CHAR> {

19

/l/declarations for members

20}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

9.7 Avoid a Fat Interface with Virtual Base Classes

Classwabbit contains all the members and friends needed for clasareal andvisionary
These members are presevereif there are no animals of these classes.

class wabbit {
/ IFor original (pre-map) class manual, whose needs were modest.

c har key() const {return g->term.key();}
void beep() const {g->term.beep();}

/ IFor original (pre-difference_type) class visionary
t ypedef game::master_t::const_iterator const_iterator;
const_iterator begin() const {return g->master.begin();}

const_iterator end() const {return g->master.end();}

friend void difference(const wabbit *w1, const wabbit *w2,
int *dx, int *dy);

15}

How can we &oid loading the base clasgabbit with special-purpose features for individual dedi
classes?

Why are all of these functions up in clasabbit anyway? \Well, they haveto be there because the
g pointer is a priate data member of clagsabbit . This males it impossible for the deed dasses to get
services from thgame without going through classabbit .

Perhapsg should be somewhere else. Is there a way thevaledasses can get these services
directly from thegame? If so, can we ®oid loading clasggame with special-purpose featured?et’s
moveg. What design pattern is this?

game_base object

AN

game<manual> object game<visionary> object

manual object visionary object

RS0 A hesenea ©2014 Mark Meretzky

1002 Banishthe Complexity to a Container: a Case Study Chapter 9

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/fat/game.h

class game_base {

protected:
t ypedef terminal<printable_t> terminal_t;
const terminal_t term;

t ypedef list<wabbit *> master_t;
master_t master;

O©CoOoO~NOOOUTA, WNPE

public:

10 game(const terminal_t::value_type& c =".");
11}

12

13 template <class T>

14 class game: public virtual game_base {

15 public:
16 game(const terminal_t::value_type& c): game_base(c) {}
17}
—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/fat/wabbit.h
1 class wabbit {
2 private:
3 t ypedef game::terminal_t terminal_t;
4 t erminal_t::iterator it;
5 t erminal_t::value_type c;
6 / Ino longer has a game *
7
8 virtual game *get_game() const = 0;
9 public:
10 wabbit(arguments for constructor) {game_get()->push_back(this);}
11 /letc.
12}
—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/fat/manual.h
1 class manual; [[forward declaration
2
3 t emplate <> /Ispecialization of a template class
4 class game<manual>: public virtual game_base {
5 game(const terminal_t::value_type& c ='."): game_base(c) {}
6
7 f riend class manual,
8 char key() const {return term.key();}
9 void beep() const {term.beep();}
10}
11
12 class manual: public virtual wabbit {
13 game<manual> *const g;
14 game *get_game() const {return g;}
15

16 void punish() const {g->beep();}

RS0 A hesenea ©2014 Mark Meretzky

Section 9.8 The Evolution of a Member: a Diachronic Flipbook

17 terminal_t::difference_type decide() const {g->key();}
18}
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/fat/visionary.h
1 class visionary; /fforward declaration
2
3 t emplate <> //specialization of a template class
4 class game<visionary>: public virtual game_base {
5 game(const terminal_t::value_type& c ='."): game_base(c) {}
6
7 f riend class visionary;
8 t ypedef master_t::const_iterator const_iterator;
9 const_iterator begin() const {return master.begin();}
10 const_iterator end() const {return master.end();}
11
12 /la friend of class wabbit
13 void difference(const wabbit *w1, const wabbit *w2, int *dx, int *dy);
14 };
15
16 class visionary: public virtual wabbit {
17 game<visionary> *const g;
18 game *get_game() const {return g;}
19
20 terminal_t::difference_type decide() const {g->begin();}
21}
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/fat/main.C
1 class great_game: public game<manual>, public game<visionary> {
2 great_game(const terminal_t::value_type& c =".")
3 game_base(c), game<manual>(c), game<visionary>(c) {}
4},
5
6 i nt main()
7
8 great_game g;
9 r eturn EXIT_SUCCESS;
10}

9.8 TheEvolution of a Member: a Diachronic Flipbook

The evolution of a member function
(1) The original version daerminal::put lines 36—-47 otermial.C on p. 161 was

1 void terminal::put(unsigned x, unsigned y, char c)

2 {

3 i f (isprint(static_cast<unsigned char>(c)) == 0) {
4 cerr << "unprintable character "

5 << static_cast<unsigned>(c) <<".\n";
6 exit(EXIT_FAILURE);

7

1003

RS0 A hesenea ©2014 Mark Meretzky

1004 Banishthe Complexity to a Container: a Case Study Chapter 9

8

9 check(x, y); /lerror checking for x, y
10 term_put(x, Y, C);
11}

(2) After introducing exceptions, theerr andexit in the abeoe lines 4-6 went somewhere else,
to theprint member function of claasmprintable

12 void terminal::put(unsigned x, unsigned y, char c) throw (unprintable)

13{

14 if (isprint(static_cast<unsigned char>(c)) == 0) {

15 ostringstream ost;

16 ost << 'unprintable character "

17 << static_cast<unsigned>(static_cast<unsigned char<(c))
18 << " at | ocation ("<<x<<", "<<y<<")"
19 throw except(ost);

20 }

21

22 check(x, y);

23 term_put(x, Yy, C);

24}

(3) After introducing templates, tlie statement in the ale line 14 went somewhere else, to a con-
structor for clas€HAR The agumentc was passed by &lue, and anerror checking was performed by a
constructor for clas€HARnot by terminal::get

25 template <class CHAR>
26 void terminal<CHAR>::put(unsigned x, unsigned y, CHAR c)

274

28 check(x, y);

29 term_put(x, Yy, C);
30}

(4) Finally, the member functioterminal::put was &olished. Insteadf calling this function,
we nav write an expression such as

31 *it = " A’; [/lit.operator*().operator=_A’);
which calls these three functions:

32 template <class CHAR>

33 const element iterator::operator*() const

344

35 return proxy(*this); //call constructor for class proxy, shown below
36}

37 template <class CHAR>

38 proxy::proxy(const iterator& initial_it): it(initial_it)
39{

40 throw exception if it is off the screen;
41}

42 [IConstructor for ¢ does error checking for c, if any.
43 template <class CHAR>
44 proxy& proxy::operator=(CHAR c) const

45
46 term_put(it.x(), it.y(), c);
a7 return *this;

RS0 A hesenea ©2014 Mark Meretzky

Section 9.8 The Evolution of a Member: a Diachronic Flipbook 1005

48}

The evolution of the data members of class rabbit

() In the original claseabbit , every rabbit contained a pointer totarminal object that vas
not a member of arclass.

1 const terminal term(’.");

2

3 class rabbit {

4 const terminal *t; /Iread-only pointer to the terminal in line 1
5 unsigned X, y;

6 char c;

7},

(2) For a while, the data membebecame static. The data membem@ndc becameconst .

8 const terminal term(’.’);

9
10 class rabbit {
11 const terminal *const t;
12 unsigned X, V;
13 static const char c;
14}

(3) When therabbit ’'s shared dist as well as derminal , we gouped the tw shared wari-
ables into ggame object. The data member in the ab®line 11 became a read/write poingeto a
gamein line 21. (Read/write, sorabbit could put itself on, and takitself off, the master list.

15 class game {

16 const terminal term;

17 list<rabbit *> master;
18}

19

20 class rabbit {

21 game *constg;

22 unsigned X, V;

23 static const char c;
24},

(4) When we introduced single inheritance, the data menthexs y, and ¢ moved from class
rabbit to classwvabbit . (“ Data members follw code’) The master list changed from a
list<rabbit *> to alist<wabbit *> . € became non-static again,vméhat it the same served
different species.

RS0 A hesenea ©2014 Mark Meretzky

1006 Banishthe Complexity to a Container: a Case Study

25 class game {

26 const terminal term;

27 list<wabbit *> master,

28}

29

30 class wabbit {

31 game *constg;

32 unsigned X, Y;

33 const charc; /Inon-static again
34}

35

36 class rabbit: public wabbit {

37 /Ino longer has data members of its own
38}

Chapter 9

(5) With multiple inheritance, clasabbit changed from a child afrabbit to a grandchild.Then

the inheritance changed from public tovate or protected.

39 class game {

40 const terminal term;

41 list<wabbit *> master;

42 };

43

44 class wabbit {

45 game *constg;

46 unsigned X, Y;

a7 const charc;

48 };

49

50 class brownian: protected virtual wabbit {
51 /Ino data members of its own
52}

53

54 class victim: private virtual wabbit {
55 /Ino data members of its own
56 };

57

58 class rabbit: private brownian, private victim {
59 /Ino data members of its own
60 };

(6) Classewictim andrabbit became instantiations of template classes.

61 class game {

62 const terminal term;

63 list<wabbit *> master;
64}

65

66 class wabbit {

67 game *constg;

68 unsigned X, Y;

69 const chargc;

70}

71

72 class brownian: protected virtual wabbit {

RS0 A hesenea ©2014 Mark Meretzky

Section 9.8 The Evolution of a Member: a Diachronic Flipbook 1007

73 /Ino data members of its own
74}

75

76 template <int HUNGRY, int BITTER>
77 class rank: private virtual wabbit {

78 /Ino data members of its own

79}

80

81 typedef rank<INT_MIN, INT_MIN> victim_t;
82

83 template <class MOTION, class RANK, char C>
84 class grandchild: private MOTION, private RANK {
85 /Ino data members of its own

86 };

87

88 typedef grandchild<brownian, victim_t, 'r'> rabbit_t;

(7) Classterminal became a template class, with a public member naalkeg _type . The
constcharc in the abee line 69 changed terminal_t::value_type in line 105.

89 template <class CHAR>
90 class terminal {

91 public:
92 typedef CHAR value_type;
93}
94
95 typedef terminal<printable_t> terminal_t;
96
97 class game {
98 const terminal_t term;
99 list<wabbit *> master,;
100 };
101
102 class wabbit {
103 game *const g;
104 unsigned X, V;
105 const terminal_t::value_type c;
106 };
107
108 class brownian: protected virtual wabbit {
109 /Ino data members of its own
110 };
111

112 template <int HUNGRY, int BITTER>
113 class rank: private virtual wabbit {

114 /Ino data members of its own
115}

116

117 typedef rank<INT_MIN, INT_MIN> victim_t;
118

119 template <class MOTION, class RANK, char C>
120 class grandchild: private MOTION, private RANK {
121 /Ino data members of its own

122}

123

RS0 A hesenea ©2014 Mark Meretzky

1008 Banishthe Complexity to a Container: a Case Study Chapter 9

124 typedef grandchild<brownian, victim_t, 'r'> rabbit_t;

(8) Clasgerminal became an STL-compliant containetith public members nameatérator
size_type , anddifference_type . Theunsignedx andy in the abee line 104 became the
terminal_t::iterator in line 147.

125 template <class CHAR>
126 class terminal {

127 public:

128 typedef CHAR value_type;

129 typedef size_t size_type;

130 typedef ptrdiff_t difference_type;
131

132 class iterator {

133 size_type i; /ltakes the place of x and y
134 b

135}

136

137 typedef terminal<printable_t> terminal_t;
138

139 class game {

140 const terminal_t term;

141 list<wabbit *> master;

142 map<terminal_t::value_type, master_t::size_type> count;
143 };

144

145 class wabbit {

146 game *const g;

147 terminal_t::iterator it;

148 const terminal_t::value_type c;
149 };

150

151 class brownian: protected virtual wabbit {
152 /Ino data members of its own
153 };

154

155 template <int HUNGRY, int BITTER>
156 class rank: private virtual wabbit {

157 /Ino data members of its own

158 };

159

160 typedef rank<INT_MIN, INT_MIN> victim_t;
161

162 template <class MOTION, class RANK, char C>
163 class grandchild: private MOTION, private RANK {
164 /Ino data members of its own

165}

166

167 typedef grandchild<brownian, victim_t, 'r'> rabbit_t;

9.9 Move the Complexity into the Data Types

Here are declarations for typical variables in C and C++ resplgctiThey are exaggerated, but only
slightly:

RS0 A hesenea ©2014 Mark Meretzky

Section 9.9 Move the Complexity into the Data lypes 1009

1 i nti; [* C*/
2
3 map<pair<unsigned, unsigned>, wabbit *>::const_iterator it = m.begin(); //C++
The data types in C are generiéor example, the abeei could be used as a counter foy doop or as a
subscript for aparray. The data types in C++ are specializéadr example, that can be used only for a
list<wabbit *>
Here are declarations for typical containers,
4 i nta[10]; [*C*
5
6 map<terminal_t::value_type, master_t::size_type> count; [IC++
The name of the data type of the C++ container in theeab 6 is actuallyeen more complicated: the
terminal_t andmaster_t are typedefs for the template classminal<printable_t> and
list<wabbit *>
The data types of theariables hae become more complicated in C++. What do we get in return?
There are fewer variables and fewer linesxatatable code.
7 void wabbit::move() /IC style
8 {
9 i ntdx; [luninitialized variables
10 int dy;
11 decide(&dx, &dy);
12
13 X +=dx;

14 y +=dy;

15 void wabbit::move() /[C++ style
16 {

17 const terminal_t::difference_type d = decide();
18

19 it +=d;

In other words, some of the complexity of the program has begadnfrom the &ecutable code to
the declarations. This is good because the compiler is meifg tik catch an error in a declaration than an
error in ecutable code For example, if we accidentally write= instead oft+= in the abee line 13, or if
we forget the line entirelyhe compiler will not catch it. But ifl is declared to be the wrong data type in
line 17, the program will not compile.

The C++ data types also neatie code more fléble. For example,

(1) We an turn features on andfaft compile time by plugging in the names of different data types.
This eliminates one need for conditional compilation.

20 terminal<printable_t> term1(’.’); /[This object does error checking.
21 terminal<char> term2(’.’); /[This object doesn't.

(2) We caan mix and match features just by plugging in the names of different data types. This eliminates
one need for copying and pasting. Furthermore, the template hidesvdte prultiple inheritance.

22 new grandchild<immobile, predator_t, 'B’>(this, it);
23 new grandchild<brownian, victim_t, 'r'>(this, it);

(3) We can migrate to a different environment just by plugging in the names of different data types.

24 /Itypedef terminal<char> terminal_t;
25 /Itypedef terminal<printable_t> terminal_t;
26 typedef terminalO<printable_t> terminal_t;

RS0 A hesenea ©2014 Mark Meretzky

27
28
29
30
31
32

1010 Banishthe Complexity to a Container: a Case Study

class

printed 4/8/14
9:12:30 AM

game {
terminal_t it;
list<wabbit *> master;
map<terminal_t::value_type,

Chapter 9

master_t::size_type> count;

All rights
reserved

©2014 Mark Meretzky

