
9
Banish the Complexity to a Container: a Case Study

9.1 Readand Write the Elements of an STL-Compliant Container

▼ Homework 9.1a:

Almost every line of the rabbit game is wrong.We will rewrite it the way it should have been all
along. To show how far we have come, and where we will go, here is code to fill a terminal with uppercase
’A’ s.

(1) In the beginning we called our C functions directly. This exposed the number of dimensions of
the terminal: there are two for loops and two loop counters,x andy . It also exposed our choice of coördi-
nate system: Cartesian vs. polar. Compare the loop in lines 23−34 ofmain.C in p. 87.

1 extern "C" {
2 #include "term.h"
3 }
4
5 t erm_construct();
6
7 f or (unsigned y = 0, y < term_ymax(); ++y) {
8 f or (unsigned x = 0; x < term_xmax(); ++x) {
9 t erm_put(x, y, ’A’);

10 }
11 }
12
13 term_destruct();

(2) Then we called the member functions of aterminal object. Thenumber of dimensions and the
coördinate system are still exposed, although there is now only onefor loop. Perhapsit was premature: a
loop with two counters is an accident waiting to happen. Compare the loop in lines 23−32 ofmain.C on
p. 158.

Theput andnext member functions in lines 21 and 20 are highly idiosyncratic: no STL container
has aput or next . And although it’s dangerously unobvious, the call tonext changes the values of its
argumentsx andy .

14 #include "printable.h"
15 #include "terminal.h"
16
17 typedef terminal<printable_t> terminal_t; //introduced on p. 744
18 terminal_t term(’.’);
19
20 for (unsigned x = 0, y = 0; y < term.ymax(); term.next(x, y)) {

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

966 Banishthe Complexity to a Container: a Case Study Chapter 9

21 term.put(x, y, ’A’);
22 }

(3) We should have made an iterator class whose last name isterminal_t . We would then need
only onefor loop and only one loop counter, namedit . We would loop through the characters in a
terminal_t in exactly the same way we would loop through the elements in any STL container. Com-
pare theiterator loop in lines 26−28 ofiterator.C on p. 434.

Like thenext function in the above line 20, the++ in line 29 will wrap around from the end of one
row to the beginning of the next.

23 #include "printable.h"
24 #include "terminal.h"
25
26 typedef terminal<printable_t> terminal_t;
27 terminal_t term(’.’);
28
29 for (terminal_t::iterator it = term.begin(); it != term.end(); ++it) {
30 *it = ’ A’; //it.operator*() = ’ A’;
31 }

Let’s imagine that aterminal_t::iterator contains two unsigned data members,x andy .
Thex andy are therefore still present in the above lines 29−31, just as they were in lines 20−22, but we no
longer see them. They are now private data members ofit . (Or so we imagine for the present.)

Since aterminal_t containsprintable_t ’s, the expression*it in the above line 30 should
be of data typeprintable_t . This should be the return type of theoperator* member function of
classterminal_t::iterator . (Or so we imagine for the present.)

(4) Now that we have iterators, we won’t hav eto write any loop at all. The loop has already been
written for us in thefill algorithm in the STL.

32 #include <algorithm> //for fill
33 #include "printable.h"
34 #include "terminal.h"
35 using namespace std;
36
37 typedef terminal<printable_t> terminal_t;
38 terminal_t term(’.’);
39
40 fill(term.begin(), term.end(), ’A’);

Here is a simple definition for thefill algorithm. Theiterators must be forward because there is no
guarantee that mere output iterators can be compared with!= .

41 //Excerpt from <algorithm>
42
43 template <class FORWARD, class T>
44 void fill(FORWARD first, FORWARD last, const T& t)
45 {
46 for (; first != last; ++first) {
47 *first = t ;
48 }
49 }

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

9.2 difference_type

Tw o coördinates or one coördinate?

A difference_type is the number we add to aniterator to make it move. See the addition
in line 22 ofsize_type.C on p. 451.

Here are two possible designs for the data members insideterminal_t::iterator and
terminal_t::difference_type .

(1) iterator could be an object with twounsigned data members,x andy .
difference_type could be an object with twoint data members,dx anddy .

(2) iterator could be an object with oneunsigned data memberi , ranging in value from 0 to
xmax × ymax = 80 × 24 = 1920 inclusive. For example, thebegin member function of class
terminal would construct and return an iterator whose data member had the value 0; theend
member function would construct and return an iterator whose data member had the valuexmax ×
ymax. difference_type could be an object with oneint data memberd. In fact,
difference_type could simply be a typedef forint , like thehillary_t in line 17 of
clinton.h on p. 420.

But actually we have no choice. Thedefinitions in the STL say thatdifference_type must be
an integral type (p. 61), i.e., anint or long rather than aclass or struct . We must therefore adopt
the second design.A difference_type will be a typedef for a single number, not an object with two
data members.

Adding a difference_type to an iterator

If a terminal_t::difference_type is a single number, how can it move an iterator horizon-
tally and vertically?

Adding adifference_type of 0 to aniterator does not move the iterator . Now sup-
pose that the width of the terminal is 80. Then adding adifference_type of 80 moves the
iterator down one row. Adding adifference_type of −80 moves the iterator up one row.
Adding adifference_type of 81 moves the iterator one space to the lower right. Et cetera:

-162 -161 -160 -159 -158

-82 -81 -80 -79 -78

-2 -1 0 1 2

78 79 80 81 82

158 159 160 161 162

9.3 An Iterator that Yields an Lvalue and an Rvalue

terminal_t::iterator::operator* must do opposite things to the left or right of an equal sign

Line 8 writes into the terminal with an iterator; line 9 reads from the terminal with the iterator. The
comments alongside show that both lines call theoperator* member function of class
terminal_t::iterator .

1 #include "printable.h"

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.3 An Iterator that Yields an Lvalue and an Rvalue 967

968 Banishthe Complexity to a Container: a Case Study Chapter 9

2 #include "terminal.h"
3
4 t ypedef terminal<printable_t> terminal_t;
5 t erminal_t term(’.’);
6 t erminal_t::iterator it = term.begin();
7
8 * it = ’A’; //write to terminal: it.operator*() = ’A’;
9 c har c = *it; //read from terminal: char c = it.operator*();

Whenoperator* is called in the above line 8, it should ultimately call

10 term_put(it.x, it.y, ’A’);

And whenoperator* is called in the above line 9, it should ultimately call

11 term_get(it.x, it.y);

But operator* takes no arguments, so how can we tell it to do these two opposite things?

Other operators that must do opposite things to the left or right of an =

Before we divulge the answer, observe that there are several operators that must do opposite things to
the left or right of an=. In each case, the expression to the right of the= must read information from an
object; the expression to the left of the= must write information into an object.

1 * p = * q; //p.operator*() = q.operator*();
2 p->f1 = q->f2; //p.operator->()->f1 = q.operator->()->f2;
3 a[10] = b[20]; //a.operator[](10) = b.operator[](20);

Let us digress further. Which of these three operators should we use?

(1) If the object contains only one item of data, or if the object can make only one item available at a
time, use the* operator to access the data. This makes the object look like a pointer.

(2) If the object contains several items of data, use the-> operator to access them. This makes the
object look like a pointer to a structure.

(3) If the object contains many items of data, use the[] operator to access them. This makes the
object look like an array.

How to get the two opposite behaviors

Suppose that the value of the expression*it in lines 8−9 was an object, not a character. In other
words, suppose that theoperator* member function of the iterator returned an (anonymous) object, not
a character. The comments show that line 8 would then call theoperator= member function of the
anonymous object, and line 9 would call theoperator char member function of the anonymous object:

1 #include "printable.h"
2 #include "terminal.h"
3
4 t ypedef terminal<char> terminal_t;
5 t erminal_t term(’.’);
6 t erminal_t::iterator it = term.begin();
7
8 * it = ’A’; //write: it.operator*().operator=(’A’);
9 c har c = *it; //read: char c = i t.operator*().operator char();

Now that we’re calling two different member functions, we can do two different things.Theoperator=
member function of the anonymous object will callterm_put , and theoperator char member func-
tion of the anonymous object will callterm_get .

The ‘‘anonymous object’’ w ill be of classterminal::proxy . For another proxy object see pp.
828−829.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Class terminal, rewritten as an STL container

We create two classes with the last nameterminal, terminal::proxy and
terminal::iterator . A proxy contains aniterator (line 247), which is why classiterator
(line 34) had to be defined before classproxy (line 245). We can’t create an object until we have defined
its class.

Classterminal is a friend of classiterator (line 35). Classterminal should therefore be
able to access the private members ofterminal::iterator . If it can’t in Microsoft, make the mem-
bers public.

Since we gav eonly two template arguments to classstd::iterator (line 34), its
difference_type defaults toptrdiff_t . If your ptrdiff_t is a typedef forlong , you’ll have to
changediv anddiv_t to ldiv andldiv_t in line 129.

The left* in line 241 calls theoperator* in line 236.

Thestatic_cast<CHAR> in lines 280ff calls theoperator CHAR above them in line 275.

Without thestatic_cast<CHAR> , line 318 would be torn between two equally good alternatives
and would not compile. The line could convert the return value ofbackground from CHARto char and
then perform achar comparison with the blank; or it could convert the blank fromchar to CHARand
then perform aCHARcomparison with the return value ofbackground .

Thestd:: ’s in lines 341−342 cause therand function in line 340 to call therand function in the
standard library. Without them, we’d go into an infinite loop. Microsoft people might have to remove the
std ’s (but keep the double colons).

A CHARis the type of character displayed on the screen. But thechar in line 350 is the type of
character typed at the keyboard, which might be a different data type. That’s why it’s not aCHAR.

Constructing a proxy

The constructor for classproxy in line 250 is called only when aniterator is dereferenced.To
enforce this, the constructor is private and is called only from theoperator* member function of class
iterator (line 237). Theoperator* is a friend of classproxy (line 310), so it should be able to call
the constructor. If it can’t in Borland, make the constructor public. Borland people should also define the
following macro at line 2½.

1 #define _MSC_VER

The copy constructor for classproxy in line 263 is called in the postfixoperator++ and
operator-- member functions of this class. It will also be called in the following delicate situation.

1 / /Excerpt from <algorithm>
2
3 t emplate <class T>
4 v oid swap(T& a, T& b)
5 {
6 c onst T temp = a; //Call swap’s copy constructor.
7 a = b;
8 b = t emp;
9 }

10 typedef terminal<char> terminal_t;
11 terminal_t term(’,’);
12 terminal_t::iterator it = term.begin();
13 swap(it[0], it[1]); //Pass two proxy’s to swap.

If the temp and a in the above line 6 contained the same iterator, they would be Siamese twins.The
assignment toa in line 7 would overwrite the character to whichtemp refers. To prevent this, aproxy
constructed by a copy constructor contains a character rather than an iterator. The data memberb in line

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.3 An Iterator that Yields an Lvalue and an Rvalue 969

970 Banishthe Complexity to a Container: a Case Study Chapter 9

246 is false if theproxy was constructed by a copy constructor, true otherwise.

I’m afraid that I have turned aproxy into the moral equivalent of a union.I concede that it would
be more natural to have two different types ofproxy : the one constructed byiterator::operator*
referring to a character on the screen, and the one constructed by a copy constructor referring to a character
that has been copied from the screen. But I want allproxy ’s to be the same data type, to satisfy the tem-
plates such asswap that demand two arguments of the same type.

Tw o difference_type ’s

Class iterator receives two typedefs nameddifference_type . Fortunately, both of them
stand for the same thing (namely,ptrdiff_t).

(1) theterminal::difference_type defined in line 22;

(2) the terminal::iterator::difference_type that classterminal::iterator inher-
its from its base classstd::iterator in line 34.

The firstdifference_type eclipses the second one, so the unadorneddifference_type in line 53
is theterminal::difference_type in line 22.

We can make this explicit by changing thedifference_type to typename
terminal::difference_type in lines 53, 58, 65, etc. There are two reasons why we might want to
do this:

(1) TheSunCCcompiler thinks that the unadorneddifference_type in line 53 is the
terminal::iterator::difference_type .

(2) Someversions of the GNUg++ recognize that the unadorneddifference_type in line 53 is the
terminal::difference_type , but complain about it.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/container/terminal.h

1 #ifndef TERMINALH
2 #define TERMINALH
3 #include <iostream> //for ostream and <<
4 #include <sstream> //for ostringstream
5 #include <cstdlib> //for div and rand
6 #include <cmath> //for sqrt
7 #include <map>
8 #include <iterator> //for class std::iterator
9 #include <algorithm> //for fill, iterator_category, random_access_iterator_tag

10 using namespace std;
11
12 extern "C" {
13 #include "term.h"
14 }
15 #include "except.h"
16
17 template <class CHAR = char>
18 class terminal {
19 public:
20 typedef CHAR value_type;
21 typedef size_t size_type;
22 typedef ptrdiff_t difference_type;
23
24 private:
25 const CHAR _background;
26 const size_type _xmax;
27 const size_type _ymax;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

28
29 public:
30 //Need forward declaration of class proxy here,
31 //because the name proxy is mentioned several times in class iterator.
32 class proxy;
33
34 class iterator: public std::iterator<random_access_iterator_tag, CHAR> {
35 friend class terminal;
36 friend class proxy;
37
38 const terminal *const t;
39 size_type i; //distance from begin to this iterator
40 size_type x() const {return i % t->xmax();}
41 size_type y() const {return i / t->xmax();}
42
43 public:
44 /*
45 An iterator can be off the screen, as long as we do not attempt
46 to dereference it. (For example, the iterator returned by
47 terminal::end is off the screen.) Therefore the constructor
48 for class iterator does not check that x and y are legal.
49 */
50 iterator(const terminal& initial_t, size_type x, size_type y)
51 : t(&initial_t), i(y * t->xmax() + x) {}
52
53 iterator& operator+=(const difference_type& d) {
54 i += d;
55 return *this;
56 }
57
58 iterator& operator-=(const difference_type& d) {
59 i -= d;
60 return *this;
61 }
62
63 //Microsoft won’t let operator+ be a friend.
64
65 const iterator operator+(difference_type d) const {
66 iterator it = *this; //Construct a copy of *this.
67 return it += d; //return it.operator+=(d);
68 }
69
70 const iterator operator-(difference_type d) const {
71 iterator it = *this;
72 return it -= d;
73 }
74
75 iterator& operator++() {return *this += 1;}
76 iterator& operator--() {return *this -= 1;}
77
78 const iterator operator++(int) {
79 const iterator old = *this;
80 ++*this; //(*this).operator++();
81 return old;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.3 An Iterator that Yields an Lvalue and an Rvalue 971

972 Banishthe Complexity to a Container: a Case Study Chapter 9

82 }
83
84 const iterator operator--(int) {
85 const iterator old = *this;
86 --*this;
87 return old;
88 }
89
90 iterator& operator=(const iterator& other) {
91 if (t != other.t) {
92 ostringstream ost;
93 ost << "= with 2 different terminals";
94 throw except(ost);
95 }
96 i = other.i;
97 return *this;
98 }
99

100 /*
101 Return the horizontal component of a difference_type.
102 Assuming an 80-character line,
103 the horizontal component of -81 would be -1
104 the horizontal component of -79 would be 1
105 the horizontal component of 81 would be 1
106 the horizontal component of 79 would be -1
107 */
108
109 difference_type dx(difference_type d) const {
110 const difference_type xm = t->xmax();
111 difference_type diff = (d + xm / 2) % xm;
112 if (diff < 0) {
113 diff += xm;
114 }
115 return diff - xm / 2;
116 }
117
118 /*
119 Return the vertical component of a difference_type.
120 Assuming an 80-character line,
121 the vertical component of -81 would be -1
122 the vertical component of -79 would be -1
123 the vertical component of 81 would be 1
124 the vertical component of 79 would be 1
125 */
126
127 difference_type dy(difference_type d) const {
128 const difference_type xm = t->xmax();
129 div_t di = div(d + xm / 2, xm);
130 if (di.rem < 0) {
131 --di.quot;
132 }
133 return di.quot;
134 }
135

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

136 /*
137 Return true if it + d would stay on the screen.
138 Return false if adding d to it would cause it to wrap around
139 from the left edge of the screen to right edge or vice versa.
140 */
141
142 bool in_range(difference_type d = 0) const {
143 const size_type myx =
144 static_cast<difference_type>(x()) + dx(d);
145 const size_type myy =
146 static_cast<difference_type>(y()) + dy(d);
147 return myx < t->xmax() && myy < t->ymax();
148 }
149
150
151 friend difference_type difference(const iterator& it1,
152 const iterator& it2) {
153 if (it1.t != it2.t) {
154 ostringstream ost;
155 ost << "difference with 2 different terminals";
156 throw except(ost);
157 }
158
159 return it2.x() - it1.x()
160 + it1.t->xmax() * (it2.y() - it1.y());
161 }
162
163 friend double dist(const iterator& it1, const iterator& it2) {
164 const difference_type d = difference(it1, it2);
165 const difference_type ddx = it1.dx(d);
166 const difference_type ddy = it1.dy(d);
167 return sqrt(static_cast<double>(ddx * ddx + ddy * ddy));
168 }
169
170 //Return -1 if d is negative, 1 if d is positive, 0 if d is 0.
171 //They’re like the three return values of the C strcmp function.
172
173 friend difference_type signum(difference_type d) {
174 return d < 0 ? -1 : d > 0 ;
175 }
176
177 //Return the difference_type that would take one step
178 //from it1 to it2.
179
180 friend difference_type step(const iterator& it1,
181 const iterator& it2) {
182 const difference_type d = difference(it1, it2);
183 const terminal *const t = it1.t;
184 return signum(it1.dx(d))
185 + t->xmax() * signum(it1.dy(d));
186 }
187
188 friend difference_type operator-(const iterator& it1,
189 const iterator& it2) {

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.3 An Iterator that Yields an Lvalue and an Rvalue 973

974 Banishthe Complexity to a Container: a Case Study Chapter 9

190 if (it1.t != it2.t) {
191 ostringstream ost;
192 ost << "- with 2 different terminals";
193 throw except(ost);
194 }
195 return it1.i - it2.i;
196 }
197
198 friend bool operator==(const iterator& it1,const iterator& it2){
199 return it1.t == it2.t && it1.i == it2.i;
200 }
201
202 friend bool operator<(const iterator& it1, const iterator& it2){
203 if (it1.t != it2.t) {
204 ostringstream ost;
205 ost << "< with 2 different terminals";
206 throw except(ost);
207 }
208 return it1.i < it2.i;
209 }
210
211 friend bool operator<=(const iterator& it1,const iterator& it2){
212 if (it1.t != it2.t) {
213 ostringstream ost;
214 ost << "<= with 2 different terminals";
215 throw except(ost);
216 }
217 return it1.i <= it2.i;
218 }
219
220 friend bool operator!=(const iterator& it1,const iterator& it2){
221 return !(it1 == it2);
222 }
223
224 friend bool operator>(const iterator& it1, const iterator& it2){
225 return it2 < it1;
226 }
227
228 friend bool operator>=(const iterator& it1,const iterator& it2){
229 return it2 <= it1;
230 }
231
232 friend ostream& operator<<(ostream& ost, const iterator& it) {
233 return ost << "(" << it.x() << ", " << it.y() << ")";
234 }
235
236 const proxy operator*() const {
237 return proxy(*this);
238 }
239
240 const proxy operator[](const difference_type& d) const {
241 return *(*this + d);
242 }
243 };

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

244
245 class proxy {
246 bool b; //true if this proxy refers to a CHAR in a terminal
247 const iterator it; //used only if b == true
248 mutable CHAR c; //used only if b == false
249
250 proxy(const iterator& initial_it)
251 : b(true), it(initial_it), c(’A’) {
252 if (!it.in_range()) {
253 ostringstream ost;
254 ost << "location " << it
255 << " o ff screen whose size is ("
256 << it.t->xmax() << ", " << it.t->ymax()
257 << ")";
258 throw except(ost);
259 }
260 }
261
262 public:
263 proxy(const proxy& another)
264 : b(false), it(another.it), c(another) {}
265
266 const proxy& operator=(CHAR c) const {
267 if (b) {
268 term_put(it.x(), it.y(), c);
269 } else {
270 this->c = c;
271 }
272 return *this;
273 }
274
275 operator CHAR() const {
276 return b ? CHAR(term_get(it.x(), it.y())) : c;
277 }
278
279 const proxy& operator+=(int i) const {
280 return *this = static_cast<CHAR>(*this) + i;
281 }
282
283 const proxy& operator-=(int i) const {
284 return *this = static_cast<CHAR>(*this) - i;
285 }
286
287 const proxy& operator++() const {return *this += 1;}
288 const proxy& operator--() const {return *this -= 1;}
289
290 const proxy operator++(int) const {
291 const proxy old = *this;
292 ++*this; //(*this).operator++();
293 return old;
294 }
295
296 const proxy operator--(int) const {
297 const proxy old = *this;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.3 An Iterator that Yields an Lvalue and an Rvalue 975

976 Banishthe Complexity to a Container: a Case Study Chapter 9

298 --*this; //(*this).operator--();
299 return old;
300 }
301
302 bool operator==(const CHAR& c) const {
303 return static_cast<CHAR>(*this) == c;
304 }
305
306 bool operator<(const CHAR& c) const {
307 return static_cast<CHAR>(*this) < c;
308 }
309
310 friend const proxy iterator::operator*() const;
311 };
312
313 terminal(CHAR initial_background = ’ ’)
314 : _background(initial_background),
315 _xmax((term_construct(), term_xmax())),
316 _ymax(term_ymax())
317 {
318 if (background() != static_cast<CHAR>(’ ’)) {
319 fill(begin(), end(), background());
320 }
321 }
322
323 ˜terminal() {
324 fill(begin(), end(), ’ ’);
325 term_destruct();
326 }
327
328 CHAR background() const {return _background;}
329 size_type xmax() const {return _xmax;}
330 size_type ymax() const {return _ymax;}
331 size_type size() const {return xmax() * ymax();}
332
333 iterator begin() const {return iterator(*this, 0, 0);}
334 iterator end() const {return iterator(*this, 0, ymax());}
335
336 static char key() {return term_key();}
337 static void wait(int milliseconds) {term_wait(milliseconds);}
338 static void beep() {term_beep();}
339
340 difference_type rand() const {
341 return (std::rand() % 3 - 1) * xmax() +
342 std::rand() % 3 - 1;
343 }
344
345 difference_type right() const {return 1;}
346 difference_type down() const {return xmax();}
347 difference_type left() const {return -right();}
348 difference_type up() const {return -down();}
349
350 typedef map<char, difference_type> keypad_t;
351 typedef keypad_t::value_type pair_t;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

352
353 keypad_t keypad() const {
354 static const pair_t a[] = {
355 pair_t(’h’, left()),
356 pair_t(’j’, down()),
357 pair_t(’k’, up()),
358 pair_t(’l’, right())
359 };
360 static const size_t n = sizeof a / sizeof a[0];
361 return keypad_t(a, a + n);
362 }
363 };
364 #endif

9.4 Template Argument Deduction
As usual, theoperator== that compares two iterator ’s is a friend function because it deals

ev enhandedly with two objects. Seethe above line friend. Normally theoperator!= that compares two
iterator ’s would be neither a member function nor friend of any class. Itwould call operator== to
do its work:

1 t emplate <class CHAR>
2 i nline bool operator!=(const typename terminal<CHAR>::iterator& it1,
3 c onst typename terminal<CHAR>::iterator& it2)
4 {
5 r eturn !(it1 == it2); //return !(operator==(it1, it2));
6 }

But an obscure restriction prevents us from doing this.

Recall the explicit template arguments on pp. 652−660:

7 c out << min<double>(i, d) << "\n"; //contradictory arguments
8 c out << pi<float>() << "\n"; //no arguments

Most of the time the explicit template arguments would be redundant, so they’re not written at all:

9 c out << min<int>(10, 20) << "\n"; //Could write this, but nobody does.
10 cout << min(10, 20) << "\n"; //Please write this.

The explicit template argument<int> in the above line 9 is not needed because the data type of
each function argument in line 12 is a simpleT. When called from the above line 10, the computer can fig-
ure out that theT in 12 stands forint . This is calledtemplate argument deduction.

11 template <class T> //ll. 29-30 of min2.C on p. 637
12 T min(T a, T b)
13 {
14 //etc.

Even if the data type of each function argument is a bit more complicated than an unadornedT, the explicit
template argument is still not required.

15 template <class T>
16 const T& min(const T& a, const T& b) //p. 640
17 {
18 //etc.

Even if theT is somewhat buried in the data type of the function argument, the explicit template argument
is still not required. (From now on we’ll useCHARinstead ofT, to agree with the above terminal.h .

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 977

978 Banishthe Complexity to a Container: a Case Study Chapter 9

The computer doesn’t care what name we use.)

19 template <class CHAR>
20 void f(const terminal<CHAR>& t)
21 {
22 }

The functionf in the above line 20 can still be called without an explicit template argument. Whencalled
from line 24, the computer can still deduce that theCHARin the above line 20 stands forprintable_t .

23 terminal<printable_t> term(’.’);
24 f(term);

But there is a limit to how deeply we can bury theCHARin the data type of the argument in the
parentheses, while still expecting the computer to deduce what theCHARstands for. If we bury it any fur-
ther, we’ll have to help the computer along with an explicit template argument when we call the function.
The computer needs the explicit template argument<printable_t> in line 32 to deduce that theCHAR
in line 26 stands forprintable_t .

25 template <class CHAR>
26 void g(const typename terminal<CHAR>::iterator& it)
27 {
28 }
29
30 terminal<printable_t> term(’.’);
31 terminal<printable_t>::iterator it = term.begin();
32 g<printable_t>(it);

This is the situation in which we would find ourselves in theoperator!= in the above lines 2−3.
We would be forced to call thatoperator!= with an explicit template argument:

33 terminal<printable_t>::iterator it1 = term.begin();
34 terminal<printable_t>::iterator it2 = term.begin();
35
36 if (it1 !=<printable_t> it2) { //won’t compile

Unfortunately, the syntax of the language doesn’t let us slap an explicit template argument on an operator in
the above line 36. We would therefore have to call operator!= explicitly:

37 //Will compile, but no one wants to write this.
38 if (operator!=<printable_it>(it1, it2)) {

To allow the user to write the familiar

39 if (it1 != it2) {

we throw in the towel and letoperator!= be a friend of classiterator in line 198 of the above
terminal.h . Note thatoperator!= uses no private members of classiterator , so in a normal sit-
uation it would be neither a member function or a friend. Ditto for theoperator+ in line

The C++ Standard (§14.8.2.4 subsection 9) lists the ways in which we can adorn theT or CHARand
still have the computer figure out what it stands for. The list includes

40 T unadorned
41 const T& slightly adorned
42 const name_of_template_class<T>& heavily adorned

but not

43 const typename name_of_template_class<T>::name_of_member&

The above lines 2−3 stepped over this limit. For an earlier example, see p. 858.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 9.4a: template argument deduction

Look at the definitions for theoperator== andoperator!= functions that compare
list<>::iterator ’s. Are they member functions of classlist<>::iterator , friends, or neither?
Do they mention any private member of their class?

Look for them in the header file<list> or in other header files included by this one.The functions
may be member functions or friends oflist<>::iterator , or they may be member functions of a
base class oflist<>::iterator .
▲

Test the new class terminal

qwertyuiopasdfghjklzxcvbnm................................NEBDL.................
abcdefghijklmnopqrstuvwxyz...............................RyujtxQ................
zyxwvutsrqponmlkjihgfedcba...............................FogeinGW...............
fzbagmkuidcrpnsteqyvxhlowj..............................UzlbackCT...............
..XKsfdhpJZ...............
Please type some characters ending with a q:SvrmqwP................
....................m.....................................OIAHM.................
...YV...................
..
..
..
.......................................Y..
..XX......................................
.......................................R.Z......................................
..
..
..
..
..
..
..
..
..
..

Line 9 of the followingmain.C defines thebasic_printable we wrote on pp. 749−753; the
printable_t in line 15 stands forbasic_printable<char> . Microsoft people will have to
rename theit1 in lines 106−109 toit3 , because theit1 declared in line 100 is still alive for them.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/container/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4
5 #include <vector>
6 #include <string>
7 #include <algorithm> //for copy, fill, find, greater, random_shuffle, sort
8
9 #include "printable.h"

10 #include "terminal.h"
11
12 using namespace std;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 979

980 Banishthe Complexity to a Container: a Case Study Chapter 9

13
14 void f();
15 typedef terminal<printable_t> terminal_t;
16
17 class closer_to {
18 const terminal_t::iterator it;
19 public:
20 closer_to(const terminal_t::iterator& initial_it) throw()
21 : it(initial_it) {}
22
23 bool operator()(terminal_t::difference_type d1,
24 terminal_t::difference_type d2) const throw() {
25
26 return dist(it, it + d1)
27 < dist(it, it + d2);
28 }
29 };
30
31 int main(int argc, char **argv)
32 {
33 int status = EXIT_FAILURE;
34 srand(static_cast<unsigned>(time(0)));
35
36 try {
37 f();
38 status = EXIT_SUCCESS;
39 }
40
41 catch (const exception& e) {
42 cerr << argv[0] << ": " << e.what() << "\n";
43 }
44
45 catch (...) {
46 cerr << argv[0] << ": main caught unexpected exception\n";
47 }
48
49 return status;
50 }
51
52 void f()
53 {
54 const terminal_t term(’.’);
55 const terminal_t::difference_type down = term.down();
56
57 const terminal_t::iterator center(term, term.xmax() / 2, term.ymax() / 2);
58 terminal_t::iterator it = center; //copy constructor
59
60 it[1] = i t[0] = ’X’;
61
62 //Move one step from the center towards the begin, and write a ’Y’.
63 const terminal_t::difference_type d = step(center, term.begin());
64 it += d;
65 *it = ’ Y’;
66

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

67 //Move one step from the center away from the begin, and write a ’Z’.
68 it = center;
69 it -= d;
70 *it = ’ Z’;
71
72 //Move a r andom step away from the center, and write an ’R’.
73 it = center;
74 it += term.rand();
75 *it = ’ R’;
76
77 it = t erm.begin();
78 string s = " qwertyuiopasdfghjklzxcvbnm";
79 copy(s.begin(), s.end(), it);
80
81 it += down;
82 copy(s.begin(), s.end(), it);
83 sort(it, it + s.size());
84
85 it += down;
86 copy(s.begin(), s.end(), it);
87 sort(it, it + s.size(), greater<terminal_t::value_type>());
88
89 it += down;
90 copy(s.begin(), s.end(), it);
91 random_shuffle(it, it + s.size());
92
93 //Display the characters of the string in order of increasing distance
94 //from it0.
95 const terminal_t::iterator it0 = it + 3 * term.xmax() / 4;
96 s = " abcdefghijklmnopqrstuvwxyz"
97 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
98
99 vector<terminal_t::difference_type> v;

100 for (terminal_t::iterator it1 = term.begin(); it1 != term.end(); ++it1) {
101 v.push_back(it1 - i t0);
102 }
103
104 sort(v.begin(), v.end(), closer_to(it0));
105
106 vector<terminal_t::difference_type>::const_iterator it1 = v.begin();
107 for (string::iterator it2 = s.begin(); it2 != s.end(); ++it1, ++it2) {
108 it0[*it1] = * it2;
109 }
110
111 //Midpoint between begin and center:
112 term.begin()[(center - t erm.begin()) / 2] = ’m’;
113
114 it += 2 * down; //Move two lines down.
115 s = " Please type printable characters ending with a q: ";
116 it = copy(s.begin(), s.end(), it);
117
118 for (; it != term.end(); ++it) {
119 char c; //uninitialized variable
120 while ((c = term.key()) == ’\0’) {

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 981

982 Banishthe Complexity to a Container: a Case Study Chapter 9

121 }
122
123 if (c == ’q’) {
124 break;
125 }
126
127 *it = c ;
128 }
129
130 fill(term.begin(), term.end(), term.background()); //Clear the screen.
131 s = " Etch-a-sketch: please type hjklq for left, down, up, right, quit.";
132 copy(s.begin(), s.end(), term.begin());
133
134 it = f ind(term.begin(), term.end(), ’s’);
135 if (it != term.end()) {
136 *it = ’ S’;
137 }
138
139 const terminal_t::keypad_t k = term.keypad();
140
141 for (it = center;;) {
142 *it = ’ X’;
143
144 char c; //uninitialized variable
145 while ((c = term.key()) == ’\0’) {
146 }
147
148 if (c == ’q’) {
149 break;
150 }
151
152 const terminal_t::keypad_t::const_iterator i = k.find(c);
153 //i->first is the char, i->second is its difference_type
154 if (i == k.end() || !it.in_range(i->second)) {
155 term.beep();
156 } else {
157 it += i->second;
158 }
159 }
160
161 term.beep();
162 term.wait(1000);
163 }

A terminal iterator is a random access iterator, so lines 60, 108, and 112 can apply a subscript to it.
Line 60 could have been split into

164 *it = ’ X’;
165 it[1] = * it;

but don’t do it. We are not wimps.

The threeterminal::put functions in lines 22−24 ofterminal.h on p. 160 have been abol-
ished. To put a character on the screen, we will now write the above lines 65 or 60 (or 108 or 112).To put
a string on the screen, we will callcopy in line 79. We hav eregained the ability to display strings that we
lost on p. 742.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

The terminal::get function in line 25 ofterminal.h on p. 160 has also been abolished.To
get a character from the screen, we will now write line 60 (or 166).

Line 87 calls the constructor for classgreater<terminal_t::value_type> , passing no
arguments to it. This class is part of the STL; we saw its source code on p. 770. The newly constructed,
anonymous object has anoperator() member function that takes two
terminal_t::value_type ’s and returnstrue if the first is greater than the second.sort will call
this member function many times.

We could have dispensed with the anonymous object by defining the following function at line 13:

166 inline bool greater_printable(const printable_t& a, const printable_t& b) {
167 return a > b;
168 }

We could then change line 87 to

169 sort(it, it + s.size(), greater_printable);

Thefind in the above line 135 performs the following comparison.

1 i f (*it == ’s’) { //it is a terminal_t::iterator

The expession*it is of typeterminal_t::proxy . I wish the computer would convert the
terminal_t::proxy into aprintable_t , and thence into achar , to permit the comparison to
’s’ . But the language will not apply more than one user-defined implicit conversion to an expression (pp.
320−322). To get the comparison to compile, define the following functions interminal.h . They are
not member functions or friends of any class. Alsodefine the five other pairs of comparison functions.

1 i nline bool operator==(const printable_t& a, const printable_t& b) {
2 r eturn static_cast<char>(a) == static_cast<char>(b);
3 }
4
5 i nline bool operator==(const wprintable_t& a, const wprintable_t& b) {
6 r eturn static_cast<wchar_t>(a) == static_cast<wchar_t>(b);
7 }

List of the six source files that constitute the terminal test program

(1) term.h andterm.c (pp. 86−87). These are the only two written in C; the rest are in C++.

(2) except.h (pp. 628−629), which is included byprintable.h .

(3) printable.h (pp. 749−753)

(4) terminal.h (pp. 969−977). There is no moreterminal.C as of the following Homework.

(5) main.C (pp. 979−983)

▼ Homework 9.4b:
Version 5.0 of the Rabbit Game: port the game to the new classterminal

Uncouple the Cartesian coördinate system from the game by removing all mention of the two-dimen-
sional Cartesian coördinatesx , y . They should never hav ebeen there to begin with. Once the game has
been purified, we will port the game effortlessly to a terminal of a totally different topology: three dimen-
sions, one dimension, or two dimensions with polar coördinates; a cylinder, Möbius strip, or torus; a honey-
comb of hexagonal cells instead of rows and columns of squares. (This will happen in a future homework,
not this one.)

Make the following three changes in classgame, classwabbit , and all of the classes derived from
wabbit . Remember, if you mention theterminal_t member of classwabbit at any point at which
you are not on a first-name basis with the members of that class, you will have to call it by its full name:
wabbit::terminal_t .

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 983

984 Banishthe Complexity to a Container: a Case Study Chapter 9

(1) Changeev ery pair of variablesunsigned x , unsigned y to a single
terminal_t::iterator object namedit .

(2) Changeev ery pair of variablesint dx , int dy , and every pair<int, int> and
game::step_t , to a single terminal_t::difference_type variable namedd.

(3) Remove every pair of int *dx , int *dy that are function arguments. Replacethem by a single
terminal_t::difference_type as the function return value.

But do not make the above three changes in the following four places.

(1) Donot make the three changes in the Cterm_ functions. Cknows nothing of iterators or
difference_type ’s.

(2) Donot make the three changes in the new classterminal : that’s the one place where thex ’s and
y ’s can remain, as long as the user never sees them.

(3) Do not make the three changes to thea array in the constructor for classgame. As long as we’re
using a two-dimensional terminal, the array will have to remain a rectangular picture and we’ll still
have to loop through it with a pair ofx , y variables.

Follow these steps to perform the uncoupling.

(1) Remove the old classterminal with theput andget member functions.Replace it with the
new classterminal that has theiterator anddifference_type members. Make no change to
the new classterminal .

(2) Now that we can easilycopy a string to the terminal (lines 77−79 ofmain.C on p. 981), change
the victory and defeat messages back to complete sentences.

(3) Change thex , y data members of classwabbit to a singleterminal_t::iterator named
it .

1 / /Excerpt from wabbit.h
2
3 c lass wabbit {
4 game *const g;
5 t erminal_t::iterator it; //used to be unsigned x, y
6 c onst terminal_t::value_type c; //already was a terminal_t::value_type

(4) In the constructors for classwabbit and its derived classes, change the twoinitial_x and
initial_y arguments to a single argument of typeterminal_t::iterator . We’ll follow the STL
convention of passing an iterator by value.

7 wabbit::wabbit(
8 game *initial_g,
9 t erminal_t::iterator initial_it,

10 terminal_t::value_type initial_c
11): g(initial_g), it(initial_it), c(initial_c)
12 {

In the template classgrandchild , the terminal_t inherited from classwabbit via class
MOTIONwill have to be written typename MOTION::terminal_t .

(5) Here’s an excerpt fromgame::game . Line 15 is entirely new. Other new code is on the left;
the old code is in the comments on the right (lines 16, 23, etc).

13 for (size_t y = ...
14 for (size_t x = ...
15 const terminal_t::iterator it(term, x, y);
16 if (it.in_range() && ... //if (term.in_range(x, y) && ...
17 const map_t::const_iterator i = m.find(a[y][x]);
18 if (we didn’t find the character a[y][x]) {
19 ...

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

20 }
21
22 //Call the make_grandchild function for this species.
23 i->second(this, it); //i->second(this, x, y);

(6) Change thex , y arguments ofgame::get to a singleterminal_t::iterator it , passed
by value. game::get already has a local variable namedit (which is a different type of iterator), so
rename the local variable toi .

(7) Thedecide functions will now return one value instead of assigning a pair of values through a
pair of pointers. Remove the two arguments of thedecide functions. Changetheir return value from
void to terminal_t::difference_type . For example, the entire body ofimmobile::decide
will now be

24 return 0; //used to be *dx = *dy = 0;

(8) The new version ofwabbit::move is on the left; the old code is in the comments on the right.
The new line 27 has only one variabled, and it’s aconst . There are no more uninitialized variablesdx
anddy . In the new line 31, we have to write only one comparison; in lines 35−36, we have to write only
one addition. There are fewer function arguments in lines 38 and 43, and those in line 27 have disappeared
entirely. Nowhere does the new code betray the number of dimensions in aterminal_t .

Our only regret is that line 46 can no longer use the elegant default value of the third argument of
terminal_t::put . But terminal_t::put no longer exists.

The price we pay for this brave new code is that the names of the data types have become more com-
plicated. For example, the plain oldint ’s in lines 27−28 have become a

const terminal_t::difference_type

where theterminal_t is itself a typedef forterminal<printable_t> and theprintable_t is a
typedef forprintable<char> .

25 bool wabbit::move()
26 {
27 const terminal_t::difference_type d=decide();//int dx; //uninitialized variables
28 //int dy;
29 //decide(&dx, &dy);
30
31 if (d == 0) { //if (dx == 0 && dy == 0) {
32 return true; // return true;
33 } //}
34
35 const terminal_t::iterator newit = it + d;//const unsigned newx = x + dx;
36 //const unsigned newy = y + dy;
37
38 if (!newit.in_range()) { //if (!g->term.in_range(newx, newy)) {
39 punish(); // punish();
40 return true; // return true;
41 } //}
42
43 if (wabbit *const other = g->get(newit)) {//if(wabbit*const other=g->get(newx,newy)){
44 //etc. //etc.
45
46 *it = g->term.background(); // g->term.put(x, y);
47 it = newit; // x = n ewx;
48 // y = n ewy;
49 *it = c ; / / g ->term.put(x, y, c);

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 985

986 Banishthe Complexity to a Container: a Case Study Chapter 9

See if you can figure out how wabbit::move can use the optional argument ofin_range in line
142 of the above terminal.h to prevent thewabbit from wrapping around the left and right edges of
the screen.

(9) Give classwabbit a public inline member function namedrand , declared as

50 terminal_t::difference_type rand() const { body of function}

Like the beep , key , and wait member functions of classwabbit , wabbit::rand should do all its
work simply by calling the corresponding member function of the terminal in the game thatg points to.
This member function is in line 340−342 of the newterminal.h .

The entire body ofbrownian::decide will now be

51 return rand(); //*dx = r and() % 3 - 1;
52 //*dy = r and() % 3 - 1;

Sincebrownian.h no longer mentions therand in the standard library, it will no longer need to include
cstdlib or use namespacestd .

(10) The keystrokeshjkl , for the directions left, down, up, right, work only for a two-dimensional,
Cartesian terminal.A terminal with polar coördinates or three dimensions would require different
keystrokes and directions. The keystrokes and directions have therefore been moved to the new class
terminal , in line 345 ofterminal.h .

An expression such asstep_t(1, 0) in game::claim can be changed tot->right() .

(11) Ourdist function contains a Pythagorean distance formula that works for only a two-dimen-
sional, Cartesian terminal. It has therefore been moved to the new classterminal , in line 163 of
terminal.h . Remove the dist function in visionary.C that you wrote for the firstvisionary
homework, and replace it with the following inline friend of classwabbit .

53 friend double dist(const wabbit *w1, const wabbit *w2) {
54 return dist(w1->it, w2->it);
55 }

(12) Similarly, our step function applies only to a two-dimensional, Cartesian terminal.It has
therefore been moved to the new classterminal , in line 180terminal.h . step now returns a
terminal_t::difference_type . Remove the step function in visionary.C that you wrote
for the firstvisionary Homework, and replace it with the following inline friend of classwabbit .

56 friend terminal_t::difference_type step(const wabbit *w1,
57 const wabbit *w2) {
58 return step(w1->it, w2->it);
59 }

(13) Ourdifference function works only for a two-dimensional, Cartesian terminal. It has there-
fore been moved to the new classterminal , in line of terminal.h . Remove thedifference friend
of classwabbit that you wrote for the firstvisionary homework.

Our originalsignum function invisionary.C took a genericint , and was not a member func-
tion or friend of any class. Thenewsignum function in line 173 ofterminal.h takes a
terminal<CHAR>::difference_type . Since the data type of its argument was specific to class
termianl<CHAR> , I made it a friend of that class. Remove the originalsignum in visionary.C .

(14) Theradius of vision is unsigned, so it should become aterminal_t::size_type .
▲

How we could have managed the transition to iterators and difference_type’s

(1) The previous Homework could have begun by changing the name of classterminal to
oldterminal :

1 t emplate <class CHAR = char>

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

2 c lass oldterminal {
3 declarations for private members;
4 public:
5 declarations for the public members:
6 oldterminal, ˜oldterminal
7 background
8 x max, ymax
9 get, put, put, put

10 key, wait, beep,
11 in_range, next
12 distance, step,
13 keypad_t, keypad
14 };

(2) Then we could have publicly derived a terminal class containing the new public members, and
call-throughs for the old member functions that we want to keep.

15 template <class CHAR = char>
16 class terminal: public oldterminal<CHAR> {
17 public:
18 terminal(CHAR initial_background): oldterminal<CHAR>(initial_background) {}
19
20 //Seven new members:
21
22 typedef size_t size_type;
23 typedef ptrdiff_t difference_type;
24 typedef CHAR value_type;
25 typedef map<char, difference_type> keypad_t;
26
27 class iterator {declarations for members and friends};
28 class proxy {declarations for members and friends};
29 keypad_t keypad() const;
30
31 //Six old members that we want to keep permanently:
32
33 CHAR background() const {return oldterminal<CHAR>::background();}
34 unsigned xmax() const {return oldterminal<CHAR>::xmax();}
35 unsigned ymax() const {return oldterminal<CHAR>::ymax();}
36
37 char key() const {return oldterminal<CHAR>::key();}
38 void wait() const {oldterminal<CHAR>::wait();}
39 void beep() const {oldterminal<CHAR>::beep();}
40
41 //Old members that we want to keep only during the transition period:
42
43 bool in_range(int x, int y, int dx = 0, int dy = 0) const {
44 return oldterminal<CHAR>::in_range(x, y, dx, dy);
45 }
46
47 double distance(int x1, int y1, int x2, int y2) const {
48 return oldterminal<CHAR>::distance(x1, y1, x2, y2);
49 }
50
51 void step(int x1, int y1, int x2, int y2, int *dx, int *dy) const {
52 oldterminal<CHAR>::step(x1, y1, x2, y2, dx, dy);

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.4 Template Argument Deduction 987

988 Banishthe Complexity to a Container: a Case Study Chapter 9

53 }
54 };

Because the inheritance in the above line 16 was public, we can employ either style:

55 terminal<printable_t> term(’.’);
56
57 //Old style.
58 //x, y, x1, y1, x2, y2 are unsigned’s, s is a string.
59
60 term.put(x, y, ’A’);
61 term.put(x, y, s);
62 double dist = term.difference(x1, y1, x2, y2);
63
64 int dx, dy; //uninitialized variables
65 term.step(x1, y1, x2, y2, &dx, &dy);
66
67 //New style.
68 //it, it1, it2 are terminal<printable_t>::iterator’s, s is a string.
69
70 *it = ’ A’;
71 copy(s.begin(), s.end(), it);
72 double d = difference(it1, it2);
73 terminal<printable_t>::difference_type d = t erm.step(it1, it2);

(3) After the transition period, we could have disallowed the above lines 57−65 by changing the
public to private in the above line 16 and removing lines 41−53.The new classterminal will be a
container adaptorproviding access to part of the functionality of the underlyingoldterminal . See p.
935 for other examples.

9.5 Alternative Traversals

Tr av erse the same container in two different orders

In a container, the order of the elements is not a property of the elements or of the container. An
order is imposed on the elements by the iterator that traverses them.A different iterator can impose a dif-
ferent order. We already saw that every container with bidirectional iterators can have a rev erse iterator (pp.
856−858). Hereis another example.

In Western music the interval between two consecutive notes is called ahalf step.An octave is com-
posed of twelve half steps. In the following program the first iterator traverses the notes of an octave in
order of increasing pitch. In this order, C and C# are right next to each other: they are consecutive keys on a
piano keyboard.

But in the chord progressions of most pieces of music, C and C# are very remote from each other. A
C chord is more likely to be followed by a G than a C#; a song that starts in the key of C would be more
likely to switch to G than to C#. We say that C and G are consecutive keys in a different ordering, called
the circle of fifths.The key signatures also follow the circle of fifths: the key of G has one sharp, D has
two sharps, A has three sharps, etc. The iterator in line 28 ofmain.C traverses the notes along the circle
of fifths.

Theoperator* in line 63 constructs and returns anote object. Itmust therefore return by value,
not by reference. Ditto for theoperator[] in line 64. operator[] callsoperator+ (line 132), so
operator[] must be defined after thisoperator+ is declared (lines 125−126).I didn’t bother to
define postfix operations for the iterator. And comparisons with< or > are meaningless: since the container
is circular, any such comparison would return true.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Five of the notes have alternative names (lines 22−27), so we provide the i/o manipulatorssharp
andflat analogous to thecartesian andpolar in pp. 362−366. Columns 2 and 3 of the output exer-
cise them.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reverse/note.h

1 #ifndef NOTEH
2 #define NOTEH
3 #include <iostream>
4 #include <iterator>
5 #include <cassert>
6 using namespace std;
7
8 ostream& sharp(ostream& os);
9 ostream& flat(ostream& os);

10
11 class note {
12 static const int subscript; //subscript of new element in ios_base::iword
13
14 unsigned i; //number of half steps above C
15 //in range 0 to n - 1 inclusive
16 public:
17 static const unsigned n = 12; //number of half steps in an octave
18 /*
19 The value of each enum is its number of half steps above C.
20 The five sharps are the black keys on the piano: a pair and a trio.
21 */
22 enum {
23 C, C_SHARP, D, D_SHARP, E, F, F_SHARP, G, G_SHARP, A, A_SHARP, B,
24
25 //alternative names for the five black keys
26 D_FLAT = C_SHARP,
27 E_FLAT = D_SHARP,
28 G_FLAT = F_SHARP,
29 A_FLAT = G_SHARP,
30 B_FLAT = A_SHARP
31 };
32
33 note(unsigned initial_i): i(initial_i) {assert(i < n);}
34
35 friend ostream& operator<<(ostream& os, const note& no);
36
37 friend ostream& sharp(ostream& os) {
38 os.iword(note::subscript) = 0; / /the default
39 return os;
40 }
41
42 friend ostream& flat(ostream& os) {
43 os.iword(note::subscript) = 1;
44 return os;
45 }
46
47 class const_iterator:
48 public std::iterator<random_access_iterator_tag, note, unsigned,
49 const note *, const note&> {

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.5 Alternati ve Traversals 989

990 Banishthe Complexity to a Container: a Case Study Chapter 9

50
51 unsigned i; //number of half steps above C
52 const unsigned stride;
53
54 static difference_type distance(const const_iterator& it1,
55 const const_iterator& i2);
56 public:
57 const_iterator(unsigned initial_i, unsigned initial_stride = 1)
58 : i(initial_i), stride(initial_stride) {
59 assert(initial_i < n);
60 assert(0 < stride && stride < n);
61 }
62
63 const note operator*() const {return i;}
64 const note operator[](int i) const;
65
66 const_iterator& operator=(int j) {
67 assert(0 <= j && j < n);
68 i = j ;
69 return *this;
70 }
71
72 const_iterator& operator+=(int j) {
73 i += j * stride;
74 i %= n;
75 return *this;
76 }
77
78 const_iterator& operator-=(int j) {
79 i -= j * stride;
80 i %= n;
81 return *this;
82 }
83
84 const_iterator& operator++() {return *this += 1;}
85 const_iterator& operator--() {return *this -= 1;}
86
87 friend difference_type operator-(const const_iterator& it1,
88 const const_iterator& it2);
89
90 friend bool operator==(const const_iterator& it1,
91 const const_iterator& it2) {
92 return it1.i == it2.i;
93 }
94
95 friend bool operator>(const const_iterator& it1,
96 const const_iterator& it2) {
97 return distance(it1, it2) < n;
98 }
99

100 friend bool operator>=(const const_iterator& it1,
101 const const_iterator& it2) {
102 return it1 == it2 || it1 > it2;
103 }

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

104 };
105 };
106
107 inline bool
108 operator!=(const note::const_iterator& it1, const note::const_iterator& it2) {
109 return !(it1 == it2); //return !operator==(it1, it2);
110 }
111
112 inline bool
113 operator<=(const note::const_iterator& it1, const note::const_iterator& it2) {
114 return it2 >= it1;
115 }
116
117 inline bool
118 operator<(const note::const_iterator& it1, const note::const_iterator& it2) {
119 return it2 > it1;
120 }
121
122 inline const note::const_iterator
123 operator-(note::const_iterator it, int i) {return it -= i;}
124
125 inline const note::const_iterator
126 operator+(note::const_iterator it, int i) {return it += i;}
127
128 inline const note::const_iterator
129 operator+(int i, note::const_iterator it) {return it += i;}
130
131 inline const note
132 note::const_iterator::operator[](int i) const {return *(*this + i);}
133 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reverse/note.C

1 #include <cstdlib>
2 #include <cassert>
3 #include "note.h"
4 using namespace std;
5
6 c onst int note::subscript = ios_base::xalloc();
7
8 / /Return the distance from it2 to it1 (the integer you’d have to add to it2 to
9 / /get to it1, or note::n if there is no such integer.

10
11 note::const_iterator::difference_type
12 note::const_iterator::distance(const const_iterator& it1,
13 const const_iterator& it2)
14 {
15 assert(it1.stride == it2.stride);
16 difference_type d = 0;
17
18 for (const_iterator it = it2; it != it1 && d < note::n; ++it, ++d) {
19 }
20
21 return d;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.5 Alternati ve Traversals 991

992 Banishthe Complexity to a Container: a Case Study Chapter 9

22 }
23
24 note::const_iterator::difference_type operator-(const note::const_iterator& it1,
25 const note::const_iterator& it2)
26 {
27 const note::const_iterator::difference_type d =
28 note::const_iterator::distance(it1, it2);
29
30 if (d >= note::n) {
31 cerr << *it1 << " is inaccessible from " << *it2
32 << " v ia a stride of " << it1.stride << ".\n";
33 exit(EXIT_FAILURE);
34 }
35
36 return d;
37 }
38
39 ostream& operator<<(ostream& os, const note& no)
40 {
41 static const char *const a[][12] = {
42 {"C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"},
43 {"C", "Db", "D", "Eb", "E", "F", "Gb", "G", "Ab", "A", "Bb", "B"}
44 };
45
46 assert(no.i < note::n);
47 const int s = os.iword(note::subscript);
48 assert(0 <= s && s < 2);
49 return os << a[s][no.i];
50 }

To begin and end each scale on the same note,note::C , I would like to loop 13 times.I wish I
could use the following call tocopy , but it would loop only one time and then halt.

1 c opy(note::const_iterator(note::C),
2 note::const_iterator(note::C) + 1, os);

The algorithms were not designed for circular containers. See pp. 999−1000 for another example.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reverse/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "note.h"
4 using namespace std;
5
6 t emplate <class INPUT, class SIZE_TYPE, class OUTPUT>
7 v oid my_copy_n(INPUT in, SIZE_TYPE s, OUTPUT out)
8 {
9 f or (; s > 0; --s) {

10 *out = * in;
11 ++in;
12 ++out;
13 }
14 }
15
16 int main()

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

17 {
18 ostream_iterator<note> os(cout, "\n");
19
20 my_copy_n(note::const_iterator(note::C), note::n + 1, os);
21 cout << "\n";
22
23 cout << flat;
24 my_copy_n(note::const_iterator(note::C), note::n + 1, os);
25 cout << "\n";
26
27 //Traverse the Circle of Fifths.
28 my_copy_n(note::const_iterator(note::C, 7), note::n + 1, os);
29 cout << sharp;
30
31 return EXIT_SUCCESS;
32 }

Output printed in three columns to save space.

C C C
C# Db G
D D D
D# Eb A
E E E
F F B
F# Gb Gb
G G Db
G# Ab Ab
A A Eb
A# Bb Bb
B B F
C C C

▼ Homework 9.5a: spiral iterator

Write aspiral_iterator for classterminal .

1 t ypedef terminal<printable> terminal_t;
2 t erminal_t term(’.’);
3
4 s tring s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
5 " abcdefghijklmnopqrstuvwxyz";
6
7 c onst terminal_t::iterator center(term, term.xmax() / 2,
8 t erm.ymax() / 2);
9

10 copy(s.begin(), s.end(), terminal_t::spiral_iterator(center));

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.5 Alternati ve Traversals 993

994 Banishthe Complexity to a Container: a Case Study Chapter 9

k j i h g f e

l Q P O N M d

m R E D C L c

n S F A B K b

o T G H I J a z

p U V W X Y Z y

q r s t u v w x

Give it a two-argument constructor too.

11 terminal_t::spiral_iterator it(term.xmax() / 2, term.ymax() / 2);

The arguments of the two-argument constructor do not necessarily have to be on the screen.For example,
the following iterator would sweep the screen the way we read a printed page, left to right and top to bot-
tom.

12 terminal_t::spiral_iterator it(term.xmax() / 2, -term.xmax());

In the constructor forwabbit , we currently look only in one direction for an empty location.

13 while (*it != g->term.background()) {
14 ++it;
15 }
16

Change this to

17 game::terminal_t::spiral_iterator s = i t;
18 while (*s != g->term.background()) {
19 ++s;
20 }
21 it = s ;

Of course, we should also have a test for end-of-screen.

A spiral iterator would radically simplifyvisionary::decide . The ‘‘closest animal’’ code in
visionary::decide really belongs in spiral_iterator::operator++.
▲

9.6 Port the Game to Terminal with a Different Topology

▼ Homework 9.6a:

Run the server f or the ring terminal

The ring terminal is a Java applet. TheJava compiler javac created the two.class files.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

1$ cd $dir/term0
2$ /bin/javac Term0.java
3$ chmod 444 Term0.class ReadFromClient.class

When two programs have a conversation carried by TCP, the one that initiates the conversation is
called theclient and the other program is called theserver.We say that the client ‘‘connects’’ to the server,
and the server ‘‘accepts’’ the client. On the other hand, the server begins running before the client. In fact,
most servers run 24 hours per day.

The Java applet is a TCP server; our C++ program will be its client. Since the applet is a TCP server,
we’ll have to giv e it permission to do things that it would not normally be allowed to do in its ‘‘sandbox’’.
In Internet Explorer on Windows,

(1) Pull down the Tools menu and selectInternet Options... . An Internet Options win-
dow will appear.

(2) Click on theSecurity tab.

(3) SelecttheInternet content zone. It has a picture of a globe.

(4) PresstheCustom Level... button. ASecurity Settings window will appear.

(5) Scrolldown toMicrosoft VM and click on it if necessary to pop up theJava
Permissions under it. Press theCustom radio button.

(6) PresstheJava Custom Settings... button. AnInternet window will appear.

(7) Click on theEdit Permissions tab.

(8) Double-clickon theUnsigned Content padlock if necessary to make theRun Unsigned
Content padlock appear.

(9) Double-clickon theRun Unsigned Content padlock if necessary to make the threeRun
in Sandbox , Disable , Enable radio buttons appear.

(10) PresstheEnable radio button.

(11) PresstheOKbutton to dismiss theInternet window.

(12) PresstheOKbutton to dismiss theSecurity Settings window.

(13) If it says ‘‘A re you sure you want to change the security settings for this zone?’’, clickYes.

(14) Click theOKbutton to dismiss theInternet Options window.

On my iMac,

Apple menu ->
System Preferences... ->
Network ->
Proxies

Then I checked the first three (FTP, Web, andSecure Web), and unchecked the last three (Streaming ,
Gopher , andSOCKS Firewall).

To launch the server, point your web browser at

http://i5.nyu.edu/˜mm64/INFO1-CE9266/term0/

There is a tilde in front of themm64. term0 has a zero, not an uppercase letterO.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.6 Port the Game to Terminal with a Different Topology 995

996 Banishthe Complexity to a Container: a Case Study Chapter 9

For debugging, the terminal lists the ordinate of each character and the IP address and port number of
the host.

Listening on port 9266 of 192.168.2.10...

0

1

2

3

4
5

6
7

89101112
13

14
15

16

17

18

19

20

21

22

23

24
25

26
27

28 29 30 31 32
33

34
35

36

37

38

39

To verify that the server was in theLISTEN state, I launched theTerminal application on the Mac
where I was running the browser. This gav eme a Unix shell window in which I checked the network sta-
tus.

netstat -a -f inet -p TCP | awk ’NR <= 2 || /\.9266/’
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 * .9266 *.* LISTEN

You can selectView Source from the browser’s menu bar to examine thePARAMtags named
port andxmax:

7$ cat -n /home1/m/mm64/public_html/INFO1-CE9266/term0/index.html |
awk ’8 <= NR && NR <= 13’

8 <APPLET CODE = "Term0.class"
9 WIDTH = 500 HEIGHT = 500>

10 <PARAM NAME = "port" VALUE = 9266>
11 <PARAM NAME = "xmax" VALUE = 40>
12 This browser does not understand the APPLET tags or does not have Java enabled.
13 </APPLET>

The value ofport must be in the range 0−65535, because a port number is two bytes in the TCP
protocol. Thevalue ofxmax must be in the range 1−255, because it must fit into a single byte of X52.9266
protocol.

The web page also has a link to the Java source code of the server, consisting of two classes named
Term0 andReadFromClient .

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

We must launch the server before the client.Unlike most servers, this one will accept only one
client. We must therefore launch the server again every time we run our client.To re-launch the server,
press the browser’s ‘‘Refresh’’ button while holding down the ‘‘Ctrl’ ’ key. (Without the control key, we
would be refreshing the HTML page but not the applet in it.)

To re-launch the server immediately, we would have to bind it to a different TCP port number each
time. (Thereis a two-minute waiting period before a TCP port number ceases to be in use; look up the
TIME_WAIT state in a TCP/IP book.)If you don’t want to wait two minutes, change the port number by
changing thePARAMtag forport , and line 11 of the followingmain.C .

Find your IP address

(1) To find the IP address of a Macintosh host running OSX,

Apple Menu → System Preferences... → Network → TCP/IP

(2) To find the IP address of a Windows host,

Start → Programs → Accessories → Command Prompt
ipconfig for Windows 2000 or NT
winipcfg for Windows 95 or 98

(3) To find the IP address(es) of a Unix host,

1$ ifconfig -a | more

The client

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/term0/term0.h

1 #ifndef TERM0H /* This file can be #include’d in either C or C++. */
2 #define TERM0H
3
4 /* T hese two functions must be called in pairs. */
5 v oid term0_construct(const char *ip, unsigned short port);
6 v oid term0_destruct(void);
7
8 /* L egal x values go from 0 to term0_xmax() - 1 inclusive. */
9 unsigned term0_xmax(void);

10
11 /* Display a character or string on the screen. */
12 void term0_put (unsigned x, char c);
13 void term0_puts(unsigned x, const char *s);
14
15 /* Return the character at the given position on the screen. */
16 char term0_get(unsigned x);
17
18 /* Return the key the user pressed. If no key was pressed, return ’\0’
19 immediately. */
20 char term0_key(void);
21
22 void term0_wait(int milliseconds); /* 1000 milliseconds == 1 second */
23 void term0_beep(void);
24 #endif

Line 10 must have the IP address and TCP port number of the server. Line 20 can apply the%=oper-
ator to the expression++x because the prefix++ returns an lvalue (pp. 12−13).

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.6 Port the Game to Terminal with a Different Topology 997

998 Banishthe Complexity to a Container: a Case Study Chapter 9

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/term0/main.C

1 #include <iostream>
2 #include <cstdlib>
3 extern "C" {
4 #include "term0.h"
5 }
6 using namespace std;
7
8 i nt main()
9 {

10 term0_construct("192.168.66.96", 9266);
11 const unsigned xmax = term0_xmax();
12 unsigned x = 0 ;
13
14 term0_put(x, ’X’);
15 char c = t erm0_get(x);
16 term0_put(x + 1, c);
17
18 term0_puts(2, "Type printable chars ending w/ q.");
19
20 for (x = 0; x < xmax; ++x %= xmax) { //x = x + 1, x = x % xmax
21 while ((c = term0_key()) == ’\0’) {
22 }
23
24 if (c == ’q’) { //quit
25 goto done;
26 }
27
28 term0_put(x, c);
29 }
30
31 done:;
32 term0_wait(3000); //three seconds
33 term0_beep();
34 term0_destruct();
35 return EXIT_SUCCESS;
36 }

List of the three source files that constitute the client

(1) term0.h andterm0.c . These are the only two written in C; the other is in C++.

(2) main.C

Compile the client under Unix

The minus lowercase L’s stand for ‘‘library’’. nsl is the ‘‘Network Services Library’’.

1$ gcc -c term0.c
2$ g++ -o ˜/bin/tester main.C term0.o -lcurses -lsocket -lnsl
3$ ls -l ˜/bin/tester

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Run the client

After the server has started listening, you can run the client. The client begins by outputting the
server’sxmax to confirm that it has established a connection to the server.

1$ tester
Trying 192.168.20.196...
Connected to 192.168.20.196.
term0 xmax == 40

Meanwhile, the server will displayAccepted client and the client’s IP address. Theserver should
now be in theESTABLISHEDstate.

netstat -a -f inet -p TCP | awk ’NR <= 2 || /\.9266/’
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 f tcg5faculty2.ed.9266 i5.nyu.edu.46053 ESTABLISHED

The client should also be in theESTABLISHEDstate. Oni5.nyu.edu (Solaris), the-P option ofnetstat
is uppercase, thetcp argument is lowercase, and the header is the first four lines of output.

netstat -a -f inet -P tcp | awk ’NR <= 4 || /\.9266/’

TCP: IPv4
Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -------
i5.46053 FTCG5FACULTY2.EDLAB.ITS.NYU.EDU.9266 65535 0 49640 0 ESTABLISHED

You may now hav eto ‘‘wake up’’ the server by clicking on its window or by hiding the other win-
dows. You may even hav eto hide the server’s window and pop it up again.

The characters you type will be displayed counterclockwise around the ring.When the client discon-
nects from the server by callingterm0_destruct , this function will output

Connection closed.
2$ echo $? See the client’s exit status.
0 The client’s exit status should be 0.

Meanwhile, the server will displayConnection closed by client . Wait two minutes before launch-
ing the server again.

The X52.9266 protocol

The server and client obey a set of rules called the X52.9266 protocol. This protocol is carried by
TCP; the server is bound to port 9266. After accepting the client, the server sends one byte to the client
giving the value ofxmax. (This means thatxmax must be less than 256.)In the above picture,xmax is
40.

After receiving the above byte, the client sends pairs of bytes to the server. The first byte in each pair
is anx coördinate. Thesecond byte is the character to be displayed at that coördinate.If the second byte is
00000111 , the server will emit a beep instead of displaying a character. In this case, the first byte will be
ignored.

Meanwhile, the server will send each keystroke to the client as a separate byte.

The conversation can be terminated by either the client or the server. Calling thedestroy method
of the server will close the connection, but we have no way of predicting when the browser will do this.

▼ Homework 9.6b:

Classterminal saved us the trouble of calling theterm_ C functions directly. Create a class
terminal0 to save us the trouble of calling theterm0_ functions directly. I invite you to copy as much
as possible from the classterminal on pp. 969−977.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.6 Port the Game to Terminal with a Different Topology 999

1000 Banishthe Complexity to a Container: a Case Study Chapter 9

The member functionskey andbeep of classterminal0 will no longer be static. Perhaps we
should throw in the towel and makewait non-static too.

Classterminal0 will be a template class. Also create the four data types that the user will be
aw are of,

terminal0::size_type
terminal0::difference_type
terminal0::value_type
terminal0::iterator , derived fromstd::iterator<random_access_iterator_tag, T>

and the data type that the user will be unaware of.

terminal0::proxy

Write a test program for classterminal0 . I invite you to copy as much as possible from the test
program for classterminal on pp. 979−983.
▲

▼ Homework 9.6c:
Version 5.1 of the Rabbit Game: port the game to the ring terminal

The holy grail

A game and itswabbit ’s are currently hardwired to occupy a terminal<CHAR> . We can tem-
platized classesgame andwabbit to inhabit any container whose iterators are bidirectional:

1 game<terminal<printable_t> > game1(’.’);
2 game<terminal<char> > game2(’.’);
3 game<terminal<> > game3(’.’); //same as line 2
4 game<> game4(’.’); //same as line 2
5
6 / /w isi "wide", L is "long".
7 game<terminal<wchar_t> > game5(L’.’);
8
9 game<terminal0<printable_t> > game6("192.168.20.196", 9266, ’.’);

Derive the two terminal classes from an abstract base class.

The following diagram shows only the inheritance relationships. No attempt was made to show the
data types that are plugged in as template arguments (e.g., classprintable_t). The two-dimensional
classterminal has been renamedterminal2d .

terminal

terminal2d terminal0

1 t emplate <class CHAR = char, class DIFF = ptrdiff_t>
2 c lass terminal {
3 public:
4 v irtual void beep() const = 0;
5 v irtual CHAR background() const = 0;
6 v irtual DIFF rand() const = 0;
7
8 t ypedef map<char, DIFF> keypad_t;
9 v irtual keypad_t keypad() const = 0;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

10 };
11
12 template <class CHAR>
13 class terminal2d: public terminal<CHAR> {
14 //declarations for members
15 };
16
17 template <class CHAR>
18 class terminal0: public terminal<CHAR> {
19 //declarations for members
20 };

9.7 Avoid a Fat Interface with Virtual Base Classes
Classwabbit contains all the members and friends needed for classesmanual andvisionary .

These members are present even if there are no animals of these classes.

1 c lass wabbit {
2 / /For original (pre-map) class manual, whose needs were modest.
3
4 c har key() const {return g->term.key();}
5 v oid beep() const {g->term.beep();}
6
7 / /For original (pre-difference_type) class visionary
8
9 t ypedef game::master_t::const_iterator const_iterator;

10 const_iterator begin() const {return g->master.begin();}
11 const_iterator end() const {return g->master.end();}
12
13 friend void difference(const wabbit *w1, const wabbit *w2,
14 int *dx, int *dy);
15 };

How can we avoid loading the base classwabbit with special-purpose features for individual derived
classes?

Why are all of these functions up in classwabbit anyway? Well, they hav eto be there because the
g pointer is a private data member of classwabbit . This makes it impossible for the derived classes to get
services from thegame without going through classwabbit .

Perhapsg should be somewhere else. Is there a way the derived classes can get these services
directly from thegame? If so, can we avoid loading classgame with special-purpose features?Let’s
moveg. What design pattern is this?

game_base object

game<manual> object game<visionary> object

manual object visionary object

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.7 Av oid a Fat Interface with Virtual Base Classes 1001

1002 Banishthe Complexity to a Container: a Case Study Chapter 9

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/fat/game.h

1 c lass game_base {
2 protected:
3 t ypedef terminal<printable_t> terminal_t;
4 c onst terminal_t term;
5
6 t ypedef list<wabbit *> master_t;
7 master_t master;
8
9 public:

10 game(const terminal_t::value_type& c = ’.’);
11 };
12
13 template <class T>
14 class game: public virtual game_base {
15 public:
16 game(const terminal_t::value_type& c): game_base(c) {}
17 };

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/fat/wabbit.h

1 c lass wabbit {
2 private:
3 t ypedef game::terminal_t terminal_t;
4 t erminal_t::iterator it;
5 t erminal_t::value_type c;
6 / /no longer has a game *
7
8 v irtual game *get_game() const = 0;
9 public:

10 wabbit(arguments for constructor) {game_get()->push_back(this);}
11 //etc.
12 };

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/fat/manual.h

1 c lass manual; //forward declaration
2
3 t emplate <> //specialization of a template class
4 c lass game<manual>: public virtual game_base {
5 game(const terminal_t::value_type& c = ’.’): game_base(c) {}
6
7 f riend class manual;
8 c har key() const {return term.key();}
9 v oid beep() const {term.beep();}

10 };
11
12 class manual: public virtual wabbit {
13 game<manual> *const g;
14 game *get_game() const {return g;}
15
16 void punish() const {g->beep();}

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

17 terminal_t::difference_type decide() const {g->key();}
18 };

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/fat/visionary.h

1 c lass visionary; //forward declaration
2
3 t emplate <> //specialization of a template class
4 c lass game<visionary>: public virtual game_base {
5 game(const terminal_t::value_type& c = ’.’): game_base(c) {}
6
7 f riend class visionary;
8 t ypedef master_t::const_iterator const_iterator;
9 c onst_iterator begin() const {return master.begin();}

10 const_iterator end() const {return master.end();}
11
12 //a friend of class wabbit
13 void difference(const wabbit *w1, const wabbit *w2, int *dx, int *dy);
14 };
15
16 class visionary: public virtual wabbit {
17 game<visionary> *const g;
18 game *get_game() const {return g;}
19
20 terminal_t::difference_type decide() const {g->begin();}
21 };

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/fat/main.C

1 c lass great_game: public game<manual>, public game<visionary> {
2 great_game(const terminal_t::value_type& c = ’.’)
3 : game_base(c), game<manual>(c), game<visionary>(c) {}
4 } ;
5
6 i nt main()
7 {
8 great_game g;
9 r eturn EXIT_SUCCESS;

10 }

9.8 TheEvolution of a Member: a Diachronic Flipbook

The evolution of a member function

(1) The original version ofterminal::put lines 36−47 oftermial.C on p. 161 was

1 v oid terminal::put(unsigned x, unsigned y, char c)
2 {
3 i f (isprint(static_cast<unsigned char>(c)) == 0) {
4 c err << "unprintable character "
5 << static_cast<unsigned>(c) << ".\n";
6 exit(EXIT_FAILURE);
7 }

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.8 The Evolution of a Member: a Diachronic Flipbook 1003

1004 Banishthe Complexity to a Container: a Case Study Chapter 9

8
9 c heck(x, y); //error checking for x, y

10 term_put(x, y, c);
11 }

(2) After introducing exceptions, thecerr andexit in the above lines 4−6 went somewhere else,
to theprint member function of classunprintable .

12 void terminal::put(unsigned x, unsigned y, char c) throw (unprintable)
13 {
14 if (isprint(static_cast<unsigned char>(c)) == 0) {
15 ostringstream ost;
16 ost << "unprintable character "
17 << static_cast<unsigned>(static_cast<unsigned char<(c))
18 << " at l ocation (" << x << ", " << y << ")";
19 throw except(ost);
20 }
21
22 check(x, y);
23 term_put(x, y, c);
24 }

(3) After introducing templates, theif statement in the above line 14 went somewhere else, to a con-
structor for classCHAR. The argumentc was passed by value, and any error checking was performed by a
constructor for classCHAR, not by terminal::get .

25 template <class CHAR>
26 void terminal<CHAR>::put(unsigned x, unsigned y, CHAR c)
27 {
28 check(x, y);
29 term_put(x, y, c);
30 }

(4) Finally, the member functionterminal::put was abolished. Insteadof calling this function,
we now write an expression such as

31 *it = ’ A’; //it.operator*().operator=(’A’);

which calls these three functions:

32 template <class CHAR>
33 const element iterator::operator*() const
34 {
35 return proxy(*this); //call constructor for class proxy, shown below
36 }

37 template <class CHAR>
38 proxy::proxy(const iterator& initial_it): it(initial_it)
39 {
40 throw exception if it is off the screen;
41 }

42 //Constructor for c does error checking for c, if any.
43 template <class CHAR>
44 proxy& proxy::operator=(CHAR c) const
45 {
46 term_put(it.x(), it.y(), c);
47 return *this;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

48 }

The evolution of the data members of class rabbit

(1) In the original classrabbit , every rabbit contained a pointer to aterminal object that was
not a member of any class.

1 c onst terminal term(’.’);
2
3 c lass rabbit {
4 c onst terminal *t; //read-only pointer to the terminal in line 1
5 unsigned x, y;
6 c har c;
7 } ;

(2) For a while, the data memberc became static. The data memberst andc becameconst .

8 c onst terminal term(’.’);
9

10 class rabbit {
11 const terminal *const t;
12 unsigned x, y;
13 static const char c;
14 };

(3) When therabbit ’s shared alist as well as aterminal , we grouped the two shared vari-
ables into agame object. Thet data member in the above line 11 became a read/write pointerg to a
game in line 21. (Read/write, so arabbit could put itself on, and take itself off, the master list.

15 class game {
16 const terminal term;
17 list<rabbit *> master;
18 };
19
20 class rabbit {
21 game *const g;
22 unsigned x, y;
23 static const char c;
24 };

(4) When we introduced single inheritance, the data membersg, x , y , and c moved from class
rabbit to classwabbit . (‘‘ Data members follow code.’’) The master list changed from a
list<rabbit *> to a list<wabbit *> . c became non-static again, now that it the samec served
different species.

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.8 The Evolution of a Member: a Diachronic Flipbook 1005

1006 Banishthe Complexity to a Container: a Case Study Chapter 9

25 class game {
26 const terminal term;
27 list<wabbit *> master;
28 };
29
30 class wabbit {
31 game *const g;
32 unsigned x, y;
33 const char c; //non-static again
34 };
35
36 class rabbit: public wabbit {
37 //no longer has data members of its own
38 };

(5) With multiple inheritance, classrabbit changed from a child ofwabbit to a grandchild.Then
the inheritance changed from public to private or protected.

39 class game {
40 const terminal term;
41 list<wabbit *> master;
42 };
43
44 class wabbit {
45 game *const g;
46 unsigned x, y;
47 const char c;
48 };
49
50 class brownian: protected virtual wabbit {
51 //no data members of its own
52 };
53
54 class victim: private virtual wabbit {
55 //no data members of its own
56 };
57
58 class rabbit: private brownian, private victim {
59 //no data members of its own
60 };

(6) Classesvictim andrabbit became instantiations of template classes.

61 class game {
62 const terminal term;
63 list<wabbit *> master;
64 };
65
66 class wabbit {
67 game *const g;
68 unsigned x, y;
69 const char c;
70 };
71
72 class brownian: protected virtual wabbit {

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

73 //no data members of its own
74 };
75
76 template <int HUNGRY, int BITTER>
77 class rank: private virtual wabbit {
78 //no data members of its own
79 };
80
81 typedef rank<INT_MIN, INT_MIN> victim_t;
82
83 template <class MOTION, class RANK, char C>
84 class grandchild: private MOTION, private RANK {
85 //no data members of its own
86 };
87
88 typedef grandchild<brownian, victim_t, ’r’> rabbit_t;

(7) Classterminal became a template class, with a public member namedvalue_type . The
const char c in the above line 69 changed toterminal_t::value_type in line 105.

89 template <class CHAR>
90 class terminal {
91 public:
92 typedef CHAR value_type;
93 };
94
95 typedef terminal<printable_t> terminal_t;
96
97 class game {
98 const terminal_t term;
99 list<wabbit *> master;

100 };
101
102 class wabbit {
103 game *const g;
104 unsigned x, y;
105 const terminal_t::value_type c;
106 };
107
108 class brownian: protected virtual wabbit {
109 //no data members of its own
110 };
111
112 template <int HUNGRY, int BITTER>
113 class rank: private virtual wabbit {
114 //no data members of its own
115 };
116
117 typedef rank<INT_MIN, INT_MIN> victim_t;
118
119 template <class MOTION, class RANK, char C>
120 class grandchild: private MOTION, private RANK {
121 //no data members of its own
122 };
123

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.8 The Evolution of a Member: a Diachronic Flipbook 1007

1008 Banishthe Complexity to a Container: a Case Study Chapter 9

124 typedef grandchild<brownian, victim_t, ’r’> rabbit_t;

(8) Classterminal became an STL-compliant container, with public members namediterator ,
size_type , anddifference_type . Theunsigned x andy in the above line 104 became the
terminal_t::iterator in line 147.

125 template <class CHAR>
126 class terminal {
127 public:
128 typedef CHAR value_type;
129 typedef size_t size_type;
130 typedef ptrdiff_t difference_type;
131
132 class iterator {
133 size_type i; //takes the place of x and y
134 };
135 };
136
137 typedef terminal<printable_t> terminal_t;
138
139 class game {
140 const terminal_t term;
141 list<wabbit *> master;
142 map<terminal_t::value_type, master_t::size_type> count;
143 };
144
145 class wabbit {
146 game *const g;
147 terminal_t::iterator it;
148 const terminal_t::value_type c;
149 };
150
151 class brownian: protected virtual wabbit {
152 //no data members of its own
153 };
154
155 template <int HUNGRY, int BITTER>
156 class rank: private virtual wabbit {
157 //no data members of its own
158 };
159
160 typedef rank<INT_MIN, INT_MIN> victim_t;
161
162 template <class MOTION, class RANK, char C>
163 class grandchild: private MOTION, private RANK {
164 //no data members of its own
165 };
166
167 typedef grandchild<brownian, victim_t, ’r’> rabbit_t;

9.9 Move the Complexity into the Data Types
Here are declarations for typical variables in C and C++ respectively. They are exaggerated, but only

slightly:

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

1 i nt i; /* C */
2
3 map<pair<unsigned, unsigned>, wabbit *>::const_iterator it = m.begin(); //C++

The data types in C are generic.For example, the above i could be used as a counter for any loop or as a
subscript for any array. The data types in C++ are specialized.For example, theit can be used only for a
list<wabbit *> .

Here are declarations for typical containers,

4 i nt a[10]; /* C */
5
6 map<terminal_t::value_type, master_t::size_type> count; //C++

The name of the data type of the C++ container in the above line 6 is actually even more complicated: the
terminal_t andmaster_t are typedefs for the template classesterminal<printable_t> and
list<wabbit *> .

The data types of the variables have become more complicated in C++. What do we get in return?
There are fewer variables and fewer lines of executable code.

7 v oid wabbit::move() //C style
8 {
9 i nt dx; //uninitialized variables

10 int dy;
11 decide(&dx, &dy);
12
13 x += dx;
14 y += dy;

15 void wabbit::move() //C++ style
16 {
17 const terminal_t::difference_type d = decide();
18
19 it += d;

In other words, some of the complexity of the program has been moved from the executable code to
the declarations. This is good because the compiler is more likely to catch an error in a declaration than an
error in executable code.For example, if we accidentally write-= instead of+= in the above line 13, or if
we forget the line entirely, the compiler will not catch it. But ifd is declared to be the wrong data type in
line 17, the program will not compile.

The C++ data types also make the code more flexible. For example,

(1) We can turn features on and off at compile time by plugging in the names of different data types.
This eliminates one need for conditional compilation.

20 terminal<printable_t> term1(’.’); //This object does error checking.
21 terminal<char> term2(’.’); //This object doesn’t.

(2) We can mix and match features just by plugging in the names of different data types. This eliminates
one need for copying and pasting. Furthermore, the template hides the private multiple inheritance.

22 new grandchild<immobile, predator_t, ’B’>(this, it);
23 new grandchild<brownian, victim_t, ’r’>(this, it);

(3) We can migrate to a different environment just by plugging in the names of different data types.

24 //typedef terminal<char> terminal_t;
25 //typedef terminal<printable_t> terminal_t;
26 typedef terminal0<printable_t> terminal_t;

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

Section 9.9 Move the Complexity into the Data Types 1009

1010 Banishthe Complexity to a Container: a Case Study Chapter 9

27
28 class game {
29 terminal_t it;
30 list<wabbit *> master;
31 map<terminal_t::value_type, master_t::size_type> count;
32 };

printed 4/8/14
9:12:30 AM

All rights
reserved ©2014 Mark Meretzky

