Containers, Iterators, and Algorithms

We haveseen the template classesctor andlist |, the most heavily used containers in the C++
Standard Template Librarywe will examine one more, clagsap, but will only glance at the otherslhe
STL is so consistent that once yeei'sen the three big containers, ywei'sen them all. Aswadence,
look at the totally predictable classetack (pp. 155-157),string (pp. 451-454),queue (pp.
798-799), ananultimap (pp. 802-803).

8.1 Classesmp andpai r

Classmap has member functions whose arguments and return values are phtypeso we’'ll do
that little class first.

Class pair

We dten need a class that does nothing but hold pablic data members, possibly of feifent
types. Sinceéhe members are public, we can declare the classtagch . A C++struct is the same
as aclass except that the members are public byaddf Inparticulara G++ struct could hae mem-
ber functions; an example is the constructor in lindBdt astruct should hae ro member functions
beyond a constructor that merely copies iguanents into the data membefsr anything more elaborate,
we probably want alass .

#include <string>
#include "date.h"
using namespace std;

struct point {

double x, y;

point(double initial_x, double initial_y): x(initial_x), y(initial_y) {}
b

©CoOo~NOOOUTPA~,WNPE

10 struct name {

11 string first, last;

12

13 name(const string& initial_first, const string& initial_last)
14 : first(initial_first), last(initial_last) {}

15}

16

17 struct event {

18 string name;

19 date d;

20

21 event(const string& initial_name, const date& initial_d)

Pe0608 AN hesenea ©2014 Mark Meretzky

786 Containers,lterators, and Algorithms Chapter 8

22 : name(initial_name), d(initial_d) {}
23}

Instead of the alwve dasses, the standard library has one template class meined The data types
T1 andT2 must be cop constructible because line 37 calls theiryopnstructors. (Thisestruction will
come up on p. 800.) The typedefs will be used in the definition of the function cgésttlst and
select2nd on pp. 937-938.

24 /[Excerpt from the header file <utility>.
25

26 //T1 and T2 must be copy constructible.
27

28 template <class T1, class T2>

29 struct pair {

30 typedef T1 first_type;

31 typedef T2 second_type;

32
33 T1 first;
34 T2 second;
35
36 pair(const T1& initial_first, const T2& initial_second)
37 :first(initial_first), second(initial_second) {}
38}
The following program declares objects obtdifferent pair types: apair<double,double>
in line 18, and pair<string,string> in line 21.

A helper function
There are three ways of passingar object to a function.
(1) The following line 25 passes the péaito the functiorf .

(2) If a variable is used only once, it can be an anonymous tempaiagy26 constructs one of type
pair<double double> by calling the constructor for that class.

(3) An easier way to construct an agomus pair is to call the standard library function
make_pair inline 27. Itis ahelper functionlike the ones on pp. 781-783.

The &pression'Independence day" in line 29 is of data typeonstchar[17] , including
the terminatindg\0’ . Themake_pair in that line therefore constructs and returns a
pair<char[17],date> . If that is what you want, fine. But to gefpair<string,date> , we

must imitate line 30. It calls the constructors for clasteeg anddate and then passes theseotw
anonymous objects toake_pair .

To accept the dierse types of pairs passed to it in lines 10-14, the funttimust obviously beery
flexible. Infact, it is another template function, diknin andmake_pair . It will accept ay type of pair
to whose data members we can applyth@perator.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/map/pair.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <string>

#include <utility> //for pair and make_pair
#include "date.h"

using namespace std;

/ /T1 and T2 must be puttable (i.e., able to be output with <<).

©O© oo~NO OA~

0608 AN hesenea ©2014 Mark Meretzky

Section 8.1 Classesrap andpair 787

10 template <class T1, class T2>
11 inline void f(const pair<T1, T2>& p)

12 {

13 cout <<"("<<p.first<<", " << p.second << ")\n";

14}

15

16 int main()

17 {

18 pair<double, double> A(3.0, 4.0);

19 cout <<"PointAis (" << Afirst<<", " << A.second << ").\n";

20

21 pair<string, string> signer("John", "Hancock");

22 cout << "The signeris" << signer.first<<™""

23 << signer.second << ".\n";

24

25 f(A);

26 f(pair<double, double>(3.0, 4.0));

27 f(make_pair(3.0, 4.0)); /[construct a pair<double, double>
28

29 f(make_pair("Independence Day" , date(date::july, 4, 1776)));
30 f(make_pair(string("Independence Day"), date(date::july, 4, 1776)));
31

32 return EXIT_SUCCESS;

33}

Here is the definition fomake_pair .

34 /I[Excerpt from <utility>

35

36 //T1 and T2 must be copy constructible.

37

38 template <class T1, class T2>
39 inline pair<T1, T2> make_pair(const T1& t1, const T2& t2)

40 {
41
42}

return pair<Tl, T2>(t1, t2);
Paoint A'is (3, 4). lines 18-19
The signer is John Hancock. lines 21-23
3, 4) line 25: the pair is gair<double, double>
3,4) line 26
3,4) line 27
(Independence Day, 7/4/1776) line 29: the pair is gair<char[17], date>
(Independence Day, 7/4/1776) line 30: the pair is gair<string, date>

A map is an array whose subscripts need not be integers.

Like an aray, amapis a container whose subscripts must all be of the same type. The subscripts of
an array must be integers, and nogaige mes at that. But the subscripts ofrap can be ap strict
weakly comparable type, with no restrictions as to @lees. Inour example, thgravity map in line
10, the subscript of each element will beting and the value of each element will bdauble . The
<angle bracketsenclose tw arguments.

Other languages ka the same kind of generalized arradwk calls it an associate aray, Perl and
Ruby call it a hash, andviaalls it aMapwith an uppercaskl

0608 AN hesenea ©2014 Mark Meretzky

abhwNRE

CQOWwoOoO~NOOOUODMWNPE

788 Containers,lterators, and Algorithms Chapter 8

The elements of map are different from those of the other containdfsich element of wector
or alist is a single value, and an iterator fovextor orlist gives us me value at a timeWe ceref-
erence the iterator with the asterisk in line 4:

vector<int> v(argument(s) for constructjr
v ector<int>::iterator it = v.begin();
i f ('v.empty()) {
cout << *it << "\n"; /[Output one integer.
}

But each element of mapis apair of values, and an iterator forraap gives us apair of values at a
time. Thefirst andsecond data members of each element are calledstiscript (or key) and the
value. The header filemap>in line 5 includes theutility> header file for claggair .

We muld dereference map iterator with the asterisks and dots in line 57. But the arrows in 58 and
59 do the job more easily.

Line 12 inserts an element into the map. The elemenbscript is"Mercury” and its value is
.27 . When we apply a subscript to an object, we are calling the abjpettator]] member function.

The elements of map do not remain in the order in which thevere inserted. By default, thare
rearranged by applying theoperator to the subscript of eachwndement. Specificallywe reve havea
later element whose subscripkishat of an earlier element. The subscripts ofgravity elements, for
example, arestring s, and the< operator applied to twstring s checks for alphabetical ordefhat’s
why the loop in lines 55-60 visits the planets alphabeticdllye subscripts must be strict weakly compa-
rable. D sort them in a different ordesee pp. 793-794To use a non-built-in data type as the subscript of
amap, we nust first mak it possible to apply the operator to it (p. 753).

Having the elements in order allows the lookup in line 42 toalseef Assuming a map with ele-
. . n o
ments in no particular orderve would have loop throung of them, on thearage, before finding the

one we are looking forBut since the elements are in ordee haveto examine only logn of them, een

in the worst case, to find the desired ol¢e first examine the element in the middle, and then divide and
conquer If there were 32 elements, for example, we wouligk aexamine at most only fevof them. For
logarithms, see p. 773.

Even faster would be map where the elements were Il@akup by hashing. The official C++ Stan-
dard Library doesm’haveahash_map, but mary vendors supply it.

A map assumes that the subscripts can be compared withdbperatoy but it does not assume the
can be compared with=. Instead of checking twaubscripts for equalityit only attempts to check them
for equivalence.Two vaues are said to be egalent if neither one is less than the other (p. 7A8hen
searching for a subscript, either with thgerator[] in line 42 or with thdind on pp. 791-792, the
mapis satisfied when it finds a subscript aglént to the one being sought.

Line 24 checks for inputaflure becausweight would be left holding garbage if the inputiled.
Line 32 does the same check, becaname would be left holding the null string. Lines 33-35 also accept
an end-of-file as a legitimate way to break out of the loop.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/map/mainl.C

#include <iostream>

#include <iomanip>

#include <cstdlib>

#include <string>

#include <map> //for map; include <utility> for class pair
using namespace std;

i nt main()

{

map<string, double> gravity; //Default constructor constructs empty map.

0608 AN hesenea ©2014 Mark Meretzky

Section 8.1 Classesrap andpair 789

11

12 gravity["Mercury"] = .27; [llgravity.operator[]("Mercury") = .27,
13 gravity["Venus"] = .85

14 gravity["Earth"] = 1.00;

15 gravity['Mars"] = .38

16 gravity["Jupiter"] = 2.33;

17 gravity["'Saturn"] = .92

18 gravity["Uranus"] = .85

19 gravity["Neptune"] = 1.12;

20 gravity["Pluto"] = .44

21

22 cout << "How many pounds do you weigh on Earth? ";

23 double weight;

24 if (!(cin >>weight)) { //if (cin.operator>>(weight).operator!()) {
25 return EXIT_FAILURE;

26 }

27

28 for () {

29 cout << "Type name of planet, or g to quit, and press RETURN: ";
30

31 string name;

32 if (!(cin >>name)) {

33 if (cin.eof()) {

34 break;

35 }

36 return EXIT_FAILURE;

37 }

38 if (name =="q") {

39 break;

40 }

41

42 const double factor = gravity[name]; //gravity.operator[](hame);
43

44 if (factor == 0.0) {

45 cout << "No planetis named \"" << name << "\".\n";
46 } else{

a7 cout << "You would weigh " << weight * factor

48 << " poundson"<<name <<"\n";

49 }

50 }

51

52 cout <<"\n"

53 cout << setprecision(2) << fixed; //two digits to right of decimal point
54

55 for (map<string, double>::const_iterator it = gravity.begin();
56 it !=gravity.end(); ++it) {

57 /lcout << (*it).first << " " << (*it).second << "\n";

58 cout << left << setw(7) << it->first << right << " "

59 << setw(4) << it->second << "\n";

60 }

61

62 return EXIT_SUCCESS;

63}

P 0608 AN hesenea ©2014 Mark Meretzky

64
65

66

67

68

790 Containers,lterators, and Algorithms Chapter 8

How many pounds do you weigh on Earth? 150

Type name of planet, or g to quit, and press RETURN: Mars
You would weigh 57 pounds on Mars.

Type name of planet, or g to quit, and press RETURN: Mongo
No planet is named "Mongo".

Type name of planet, or g to quit, and press RETURN: q
Earth 1.00 applying the operatok to string 's yields alphabetical order
Jupiter 2.33

Mars 0.38

Mercury 0.27

Mongo 0.00 Line 42 unintentionally insertedongo.

Neptune 1.12

Pluto 0.44

Saturn 0.92

Uranus 0.85

Venus 0.85

Two typedefs that male a map easier to use
Insert lines 64 and 65 immediately before the declaratiogréaiity in the abwoe line 10.

typedef map<string, double> map _t;
typedef map_t::value_type pair_t; //another name for pair<string, double>

Themap_t typedef in the abee line 64 will let us simplify the ahe line 10 to

map_t gravity; /IDefault constructor constructs empty map.
We @n also simplify the alve lines 55-56 to

for (map_t::const_iterator it = gravity.begin(); it = gravity.end(); ++it) {

Every container in the C++ Standard Library has a public member naashesl type |, giving the
data type of each element stored in the contai@ar own containers also had thelue_type member:
(1) classstack , pp. 153-154
(2) clasmode, p. 214
(3) We assume that angONTAINERclass has galue_type in line 18 oftypename.C on p. 675.
(4) clasgerminal |, pp. 742-743, 1 (12).

(5) Thenext version of classode should hae had avalue_type on p. 805.
(6) Thefinal version of classerminal will have avalue_type in line 20 ofterminal.h on p.

970.
A mapelement is actually a pair of values, smapvalue_type is apair . Inour case,itis a
pair<string, double> , for which the typedef in the ab® line 65 is a covenient name.| could

have written 65 as
typedef pair<string, double> pair_t;
but I didn’t want to repeat the argumenrtstring, double> in lines 64 and 65.

A faster way to insert an element into a map

The abee pogram showed aabt and dirty way to construct a map, insert elements, and look them
up. (Fastto write, that is, but sloto execute.) W can improe dl three operations.

We would expect that the member functioperator(] in the aboe line 12 would create an ele-
ment for Mercury and initialize its value t87 . Unfortunately this is not what happens. It creates an

0608 AN hesenea ©2014 Mark Meretzky

Section 8.1 Classesrap andpair 791

element whose value is initialized@d , and then assign27 to the walue. Wheralid the momentary
0.0 come from? This is anapthat holdsdouble 's, so he operator]] called the default constructor
for typedouble . See the default constructors for the built-in types on p. 660.

Our values are merelgouble 's, so te initialization and reassignment dbtake long. For other
data types, hwever, it would be faster to initialize to the corre@lwe once and for allTo do this, change
the abwoe line 12 to the call to thimsert member function in lines 69-78.

In the follawving line 69, the argument @fsert is apair_t consisting of a subscript and alwe:

a pair<string, double> . The &pressionpair_t("Mercury", .27) constructs an angn
mous object of this type, which is then passeiddert . Note that line 69 could not ha sid
make_pair("Mercury", .27) , because that would f1@ mnstructed a

pair<char[8], double>

The return value adhsert is apair of a different type, consisting ofraap_t::iterator and
abool . Thebool will be true if the insertion was successful. If so, the iterator will refer to timyne
inserted pair containintMercury" and.27 :

69 pair<map_t::iterator, bool> p = gravity.insert(pair_t("Mercury", .27));

70

71 if (p.second){ /lp.second is a bool

72 map_t::iterator it = p.first; [Ip.first is a map_t::iterator

73 string s = i t->first; /Isubscript

74 double d = i t->second, /lvalue

75 cout <<"Inserted the pair\"" << s <<"\", " << d <<"\n"

76 } else{

77 cerr <<"Notinserted. \"Mercury\" must have already been in the map.\n";
78 }

The abee lines 72-74 stored the iterateubscript, and value into theanablesit , s, andd. We
can also use them directly in lines 83-84.

79 pair<map_t::iterator, bool> p = gravity.insert(pair_t("Mercury", .27));

80

81 if (p.second){

82 cout << "Inserted the pair \""

83 << p.first->first << "\", "

84 << p.first->second << ".\n";

85 } else{

86 cerr <<"Notinserted. \"Mercury\" must have already been in the map.\n";
87 }

Find an element without contaminating the map

We're lucky that no planet has zero gity. The abwee line 44 is unable to distinguish between an
unsuccessful lookup and a planet whose gravifds. Even worse, if the user types a noisent name
such agvongo, line 42 will create an element fMongo and initialize its value t®.0 . (As before, the
initial value comes from the default constructor for tfeeble .) In a future example, it may be benefi-
cial for operator(] to construct a e element and initialize it to the default value (p. 796). But for the
present, we want to look up a string without inadvertently creating/&lement.

To do this, change the ale lines 42-49 to

88 map_t::const_iterator it = gravity.find(name);

89

20 if (it == gravity.end()) {

91 cout << "No planetis named \"" << name << "\".\n";
92 } else{

93 [lit->first is the subscript (a string),

0608 AN hesenea ©2014 Mark Meretzky

94
95
96
97

792 Containers,lterators, and Algorithms Chapter 8

/lit->second is the value (a double).
cout << "You would weigh " << weight * it->second
<< " poundson" << name <<"\n";

A faster way to construct a map

The default constructor in the almline 10 constructed an empty map, which was then populated by
the calls tooperator]] in lines 12-20. But the ta+raigument constructor in the following line 25 is a
faster way to mada map: it will be born with the nine elements already in it. (Older versions of Microsoft
did not hae the two-argument constructor for clamap.)

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/map/main2.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>

4
5
6
7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

#include <string>
#include <map> //includes <utility>
using namespace std;

i nt main()

{

typedef map<string, double> map_t;
typedef map_t::value_type pair_t; //another name for pair<string,double>

const pair_ta[] ={

pair_t("Mercury", .27),
pair_t("Venus", .85),
pair_t("Earth", 1.00),
pair_t("Mars", .38),
pair_t("Jupiter”, 2.33),
pair_t("Saturn", .92),
pair_t("Uranus", .85),
pair_t("Neptune", 1.12),
pair_t("Pluto", .44)

h
const size_t n = sizeof a/ sizeof a[0];
const map_t gravity(a, a + n);

cout << "How many pounds do you weigh on Earth? ";
double weight;
if (!(cin >> weight)) {
return EXIT_FAILURE;
}

for () {
cout << "Type name of planet, or g to quit, and press RETURN: ";

string name;
if ((cin >> name)) {
if (cin.eof()) {
break;

}
return EXIT_FAILURE;

D608 AN hesenea ©2014 Mark Meretzky

Section 8.1 Classesrap andpair 793

42 }
43 if (name =="q") {
44 break;
45 }
46
a7 const map_t::const_iterator it = gravity.find(name);
48 if (it == gravity.end()) {
49 cout << "No planetis named \"" << name << "\".\n";
50 } else{
51 cout << "You would weigh " << weight * it->second
52 << " poundson"<<name <<"\n";
53 }
54 }
55
56 cout <<"\n"
57 cout << setprecision(2) << fixed;
58
59 for (map_t::const_iterator it = gravity.begin();
60 it !=gravity.end(); ++it) {
61 cout << left << setw(7) << it->first << right << " "
62 << setw(4) << it->second << "\n";
63 }
64
65 return EXIT_SUCCESS;
66 }
How many pounds do you weigh on Earth? 150
Type name of planet, or g to quit, and press RETURN: Mars
You would weigh 57 pounds on Mars.
Type name of planet, or g to quit, and press RETURN: Mongo
No planet is named "Mongo".
Type name of planet, or g to quit, and press RETURN: q
Earth 1.00
Jupiter 2.33
Mars 0.38
Mercury 0.27
Neptune 1.12 find did not insertMongo.
Pluto 0.44
Saturn 0.92
Uranus 0.85
Venus 0.85

v Homework 8.1a: sort the subscripts in a different order

Add a third template gument,greater<string> , to the data type of thgravity = map. Note
that the argument is the name of a data type; wetsan pp. 769-770.Given this template argument, the
third function argument of the constructor will defaulgteater<string>()

#include <string>

#include <map>

#include <functional> //for class greater
using namespace std;

OO, WN B

map<string, double, greater<string> > gravity(a, a + n);

P060a AN hesenea ©2014 Mark Meretzky

794 Containers,lterators, and Algorithms Chapter 8

Instead of applying the operator to the subscripts, the map willwapply theoperator() mem-
ber function of an object of clagseater<string> to the subscripts. In what order does fibre loop
visit the elements now?

A

v Homework 8.1b: why doesn’t this map compile?

Line 18 constructs an empty map. Line 19 looks for an element whose subda@iftli3) . There
is no such element, so line 19 should create one just as tembim1.C created an element fdMongo.

What do we hae © do to make the program compile? Hint: we dameed theoperator==

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/map/comparable.C

#include <iostream>
#include <cstdlib>
#include <map>
using namespace std;

class key {
i nti;
public:
key(int initial_i): i(initial_i) {}

©CoOoO~NOOOUOTA,WNPE

10

11 friend bool operator==(const key& key1, const key& key?2) {
12 return keyl.i == key2.i;
13 }

14}

15

16 int main()

174

18 map<key, int>m;

19 cout << m[key(10)] << "\n";
20 return EXIT_SUCCESS;
21}

A

v Homework 8.1c:
Version 4.4 of the Rabbit Game: a map instead of a searching loop

Remaore the array of structures frommanual::decide . Replace it by a map takeschar and
gives us lack a pair of integers.
1 map<char, pair<int, int> > keypad,;

manual::decide will no longer need the searching loop in lines 36-5&af.C on pp. 198-199.
manual.C will have © include the header filkkmap>and sayusingnamespacestd; if it does not
already.

The abee line 1 shows he natural it is for templates to nedf.this freaks you out, heever, we can
build the data type of theap with the typedefs in lines 4 and &ach pair ofdx, dy offsets will be stored
in thepair<int, int> in line 4. Each element of thmeapin line 6 will be thepair in line 7.

/ [Excerpt from manual.C, showing part of manual::decide.

t ypedef pair<int, int> step_t;

OO, WN

t ypedef map<char, step_t> map_t;

D608 AN hesenea ©2014 Mark Meretzky

Section 8.1 Classesrap andpair 795

7 t ypedef map_t::value_type pair_t; //another name for pair<char, step_t>
8 ! Iwhich is another name for
9 / Ipair<char, pair<int, int> >
10
11 static const pair_t a[] = {
12 pair_t(h’, step_t(-1, 0)), eft,
13 pair_t(j’, step_t(0, 1)), /[down,
14 /letc.
15 3
16 static const size_t n =//etc.
17 static const map_t keypad(a, a + n);
18
19 if (const char k = get the keystroke, if any) {
20 const map_t::const_iterator it = keypad.find(k);
21 if (we found k) {
22 put the two offsets into *dx and *dy
23 (hint: it->second.first is the horizontal offset);
24 return;
25 }
26
27 punish(); //[Punish user who pressed an illegal key.
28 }
29
30 /[Arrive here if user pressed no key, or pressed an illegal key.
31 *dx = *dy=0;
32}
Thetypedefstep_t in the abwee line 4 is only temporaryln the world to come, aariable that
holds adx, dy offset will eventually be of data typéerminal_t::difference_type (p. 967).
This will also be the return type of the functiamabbit::decide , difference , andstep .
A

v Homework 8.1d:
Version 4.5 of the Rabbit Game: a map instead of a counting loop

To make the program fasteletgame::count be a map.
1 map<char, int> count;

Its member functioperator]] will take achar representing a species (for rabbit) and return
the number of objects of this species that currently exist inaimeg Vi will call only operator]] , not
find ; see belov.

First, havever, note that the ab@ declaration has been simplifie@Qur game is no longer hardwired
to run on a terminal that holds ordar 's. And we should not assume thatian is big enough to hold
the maximum number of animals on the master Bsprofessional would therefore declare the map as

2 map<terminal_t::value_type, master_t::size_type> count;
employing four typedefs:
(1) terminal_t in line 112 on p. 744;
(2) value_type onp. 790;
(3) master_t onp. 465;
(4) size_type on pp. 433-434 and 434.

See hw natural it is to hae data types with standardized nameslie_type , size_type) for each
container?

D608 AN hesenea ©2014 Mark Meretzky

796 Containers,lterators, and Algorithms Chapter 8

count will be a private, non-static data member of clgssne. Construct it after the master list: it
would male no £nse to count the animals on the list before there was a list. The constructor for class
game will pass no arguments to the constructordount , just as it passes no arguments to the construc-
tor formaster . Since no array is passed to the constructocéamt , don’t bother to create theair_t
typedef for it. And since we will not be not iterating througgiunt , don’t bother to create thmap_t
typedef for it either.

Every constructor for clasgabbit will say

3 ++g->count|c]; /[++g->count.operator[](c);
immediately after inserting the address of thevlman wabbit into the master list(We aurrently hae
only one constructor for clasgabbit ; the copy constructor is undefined.) Note that the does not
incrementy. Itincrementg->count[c]
++[[| g [-> |count [1c|]
The first time that the member functioperator[] is called with a gien characterit will create an ele-
ment for that character and initialize its value to 0. In fact, aengiplementation of theperator]]
function for classnap<char, int> would be
4 i nt& map<char, int>::operator[](char c)
5 {
6 const map<char, int>::iterator it = find(c);
7 i f (it!l=end(){
8 | lit->first is the char, it->second is the int.
9 r eturn it->second;
10 }
11
12 const pair<map<char, int>::iterator, bool> p =
13 insert(pair<char, int>(c, int()));
14
15 if (p.second){ //The insertion was successful.
16 /Ip.first->first is the char, p.first->second is the int.
17 return p.first->second;
18 }
19
20 /lLet's hope we never get here.
21}

Back on pp. 791-792perator]] contaminated the map when it constructed & element
("Mongo’’). Here,though, it is exactly what weamt. Thefirst call to the constructor foabbit_t will
pass arr’ to the constructor for clasgabbit , which will pass thér to theoperator]] member
function of the gme’scount , which will create an element f&r and initialize it to 0. The ++ will
then increment it to 1Subsequent calls to the constructorraobit t will not perform the initializa-
tion to 0, but the will perform the increment.

The destructor for clasgabbit will say

22 --g->count|c]; /I--g->operator.operator[](c);

immediately before removing the address of the dyiagbit from the master list.

Remaore the member functiogame::count . The code that recognizes when ttemg is wer
(lines 19-27 ofjame.C on p. 570) will nav say count['r’] instead ottount(’r’)
A

0608 AN hesenea ©2014 Mark Meretzky

OO, WN P

~

10
11
12
13
14
15
16
17
18
19

20
21
22
23

Section 8.1 Classesrap andpair 797

v Homework 8.1e:
Version 4.6 of the Rabbit Game: a map instead of the big switch

The animals of different species were constructed with aviilgh statement; see lines 21-41 of
game.C on p. 569. But awitch should be used only when eamdse contains different code. Our
case 's were almost identical.

With a map, the bigwitch can be reduced to the statements in lines 23-2%bdlwen better,
these statements will notveto change when a mespecies is added.

(1) Our map will tak a daracter and return a pointer to a function that constructs an animal of the
corresponding species.wish the function could be the constructor for each species. But although there
are pointers to other member functions, there is no such thing as a pointer to a constructor or destructor.

Define the following template function in thgrandchild.h header file, inspired by the
make_pair function in pp. 786-787. It is not a member function or friend gfcass.

t emplate <class MOTION, class RANK, char C>
i nline void make_grandchild(game *initial_g,
unsigned initial_x, unsigned initial_y) {

new grandchild<MOTION, RANK, C>(initial_g, initial_x, initial_y);

There will be one instantiation of this function for each species of anifoapoint to an instantia-
tion, we can use a plain old pointer to a function: merciftiigre is no such thing as a “pointer to an
instantiation of a template function'Hereis the declaration for a pointprthat can point to the instantia-
tion of make_grandchild for ary species:

/ Ip is a pointer to function.
void (*p)(game *, unsigned, unsigned);

To get the name of the data type of this pointex remove the semicolon and the name of the pointer.
void (*)(game *, unsigned, unsigned)

This is the data type plugged into line 10.

(2) Define the following map at the startgefme::game , before the rectangular array of characters.
It takes achar and returns a pointer to the instantiationnwdke_grandchild for the corresponding
species.

Themap_t andpair_t inlines 10 and 11 are the avypedefs from p. 790. The fir&" in line
14 is the character in the rectangular arragame::game ; the second is the character that the user sees
on the screen.

typedef map<char, void (*)(game *, unsigned, unsigned)> map _t;
typedef map_t::value_type pair_t;

static const pair_t species[] ={
pair_t(W’, make_grandchild<manual, predator_t, "W’>), //wolf
pair_t(r’, make_grandchild<brownian, victim_t, 'r’>), //rabbit
/letc.

¥

static const size_t n = sizeof species / sizeof species|[0];

static const map_t m(species, species + n);

(3) Change the nested loops in lines 18-4gamfie.C on p. 569 to

for (size_ty=0;y<ymax; ++y) {
for (size_t x = 0; x < xmax; ++x) {
if (term.in_range(x, y) && ay][x] '=".") {
const map_t::const_iterator it = m.find(a[y][X]);

Peb608 AN hesenea ©2014 Mark Meretzky

24
25
26
27
28
29
30
31
32

O©CoOoO~NOOOUTA,WNPE

798 Containers,lterators, and Algorithms

if (we didn't find the character afy][x]) {

Chapter 8

construct and throw an exception;
}
/ICall the make_grandchild function for this species.
it->second(this, X, Y); [lor (*it->second)(this, X, y);

}

Classgame curently ‘knows about’ every class dexied from classwabbit . The file game.C
includes the headers for the ded dasses, and has to be recompiled whienthey change. Buiwe are
now in a position to eliminate these dependencies. The rectangular array of charactersraag ¢ha be
passed as arguments to the constructor for gas®. Think about this but dohdo it.

A

Class queue

Thus &r, our game has been limited to at most amual animal. W will now permit more than
one, allowing us to he nmore than one human playefo do this, we will need a container calledjaecue.

A stack is “last hired, first fired”; a queue is “first hired, first fired”.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/queue.C

#include <iostream>
#include <cstdlib>
#include <stack>
#include <queue>
using namespace std;

i nt main()

{

stack<int>s; //Construct an empty stack.

s.push(10);
s.push(20);
s.push(30);

cout <<s.top() <<"\n";
s.pop();

cout << s.top() <<"\n";
s.pop();

cout << s.top() <<"\n";
s.pop();

cout <<"\n"

gueue<int> g; //Construct an empty queue.
g.push(10);

g.push(20);

g.push(30);

cout << q.front() <<"\n";

printed 4/8/14
9:06:03 AM

All rights
reserved

©2014 Mark Meretzky

33
34
35
36
37
38
39
40
41
42
43
44}

Section 8.1 Classesrap andpair 799

g.pop();

cout <<q.front() <<"\n";
d.pop();

cout <<q.front() <<"\n";
d.pop();

cout <<"\n"<<qg.empty() <<"\n";

return EXIT_SUCCESS;

30 stack is LIFO: lastin, first out
20
10

10 queue is FIFO: first in, first out
20
30

1 line 41: abool is output as d or 0.

v Homework 8.1f: use a map to allw more than one animal to be manual

Eachmanual animal will hase respond to a different set oéystrokes. For example, one might
respond to

h left

j down
k up

| right

Another might respond to eight of theyk on he numeric kypad:

lower left
down
lower right
left

right

upper left
up

upper right

O©CoO~NOOOR~WNE

But nonv we havea rew roblem. Supposthe user typed theelystroke8 when it was the turn of the
h-j-k-Imanual to move. What should that manual do with theyktroke? Hav could theh-j-k-I
manual deliver the lkeystroke to he 1-2-3-4-6-7-8-9manual ? And hav could theh-j-k-I
manual beep if there were nmanual authorized to recee tis keystroke?

There will have © be a entral clearinghouse for all incomingystrokes; the place to put it is in the
game object. Thegame will dispatch each déystroke to the appropriatenanual , issuing a beep if there is
none.

(1) Give dassgame the following four prvate members.As on p. 794, a'step” will be a pair of
numbers describing the direction in whictanual should go in response to ayktroke.

t ypedef pair<int, int> step_t;

Pb60a AN hesenea ©2014 Mark Meretzky

0o~NO®

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

800 Containers,lterators, and Algorithms Chapter 8

A ‘“‘dispatch’ is a marching order It tells one particulamanual to take a $ep in a certain directionThe
dispatch can contain only an address, nonthaual itself, because manual is not copy constructible
(p. 786).

t ypedef pair<manual *, step_t> dispatch_t;

game.h will need a forward declaration for the warchnual , just like the one for the wordiabbit .
A ‘‘dispatcher’issues a dispatch in response to a character froneyhedcd.
t ypedef map<char, dispatch_t> dispatcher _t;
Thegame should hae me dispatcher.
dispatcher_t dispatcher; //non-static private data member of class game
game.h will have o include the header fikkmap>. The constructor fogame should pass no guments
to the constructor for the dispatcher.

(2) The rectangular array of charactergame::game gives us hex, y coérdinates of each animal
we construct, including themanual animals. Butthere is no pleasing way for this array to also contain
eachmanual s list of keystrokes and the corresponding step¥e will have o put this information into a
separate data structure.

And theres another problem.An object must be ready to assume its responsibilities by the time its
constructor has completed. This means that eaahual object must its list of &ystrokes and steps
before this happensWe ould pass the list as an extra argument to the constructondoual , but it
would be simpler if the number of constructor arguments Yeryespecies of animal remained the same.
The constructor fomanual will have © daim its keystrokes and steps by calling a function, rather than by
receiving an extra argument.

Add the following prvate, non-static, non-inline member function to clgame.
void claim(manual *m, unsigned x, unsigned y);

The constructor for clageanual will call claim , passing it the argumentisis , initial_x ,
initial_y . Since the function is pvate, classnanual , like dasswabbit , will have © be a fiend of
classgame.

The functiongame::claim will contain arrays such as the following.

t ypedef pair<char, step_t> keystroke _t;

static const keystroke_t wolf1[] = {

keystroke t(’h’, step_t(-1, 0))//left
keystroke_t(’j’, step_t(0, 1))//down
/letc.
h
static const keystroke_t wolf2[] = {
keystroke t('1’, step_t(-1, 1)), [Nower left
keystroke t('2’, step_t(0, 1))//down
/letc.
h
/letc.

struct animal {
size t X; //subscripts of the manual in char array in game::game
size t Y;
const keystroke_t *begin;
const keystroke t *end,;

Pe0608 AN hesenea ©2014 Mark Meretzky

Section 8.1 Classesrap andpair 801

27 b

28

29 static const animal af] = {

30 {10, 10, wolfl, wolfl + sizeof wolfl / sizeof wolf1][0]},
31 {15, 15, wolf2, wolf2 + sizeof wolf2 / sizeof wolf2[0]},
32 /letc.

33 3

34 static const size_t n = sizeof a / sizeof a[0];

game::claim will load the abwe values into the dispatchetines 47-48 construct and insert a pair
whose first member is@har and whose second igdespatch_t . We then check the return value’s
second memberwhich is abool .

35 for (constanimal*p=a;p<a+n; ++p){

36 if (p->X==X&& p->y ==Y) {

37 for (const keystroke_t *q = p->begin; q < p->end; ++q) {
38 const dispatcher_t::const_iterator it =

39 dispatcher.find(g->first);

40

41 if (it != dispatcher.end()) {

42 construct and throw an exception:
43 there’s already a manual

44 that responds to the character g->first;
45 }

46

a7 if (!dispatcher.insert(make_pair(g->first,
48 dispatch_t(m, g->second))).second) {
49 construct and throw an exception:
50 the insert failed for some other reason;
51 }

52 }

53 return;

54 }

55 }

56

57 construct and throw an exception:

58 there should be no manual at codrdinates x, y;

59}

(3) Give dassmanual the following two private members.manual.h will have © include the
header file<queue>, and sayusingnamespacestd,; . manual::push can mention the prate
membergame::step_t because clagsanual is a friend of clasgame.

60 gueue<game::step_t> a;
61 void push(const game::step_t& step) {q.push(step);}

(4) Just before givingvery animal a chance to e, letgame::play distribute all the outstanding
keystrokes to the manuals.

62 for (;; term.wait(250) {

63

64 while (const char ¢ = term.key()) {

65

66 const dispatcher_t::const_iterator it =
67 dispatcher.find(c);

68

69 if (it == dispatcher.end()) {

0608 AN hesenea ©2014 Mark Meretzky

70
71
72
73
74
75
76
77
78
79
80
81

82

83
84
85
86
87
88
89
90

91

802 Containers,lterators, and Algorithms Chapter 8

term.beep(); //No manual responds to this key.
} else{

Iit->first is the character ¢

/lit->second is a dispatch_t

/lit->second.first is a pointer to a manual

/lit->second.second is a step_t

const dispatch_t& dispatch = it->second;
dispatch.first->push(dispatch.second);

}

for (master_t::const_iterator it = master.begin(); //etc.

You can insert code at the almline 65 to mak thegame::play function return if the user has pressed
g for “quit’’. Thedispatch reference in the abe line 76 is merely a notational cemience. Vithout
it, line 77 would hae 1 be written as follows.

it->second.first->push(it->second.second);

Declaregame::play to be a friend of clagmanual , with a comment saying that it is to allow
game::play to callmanual::push

(5) Finally, manual::decide will contain only the folleving. Thestep in line 86 can be a refer
ence as long as we do not attempt to use it aftggdhdn 89. See pp. 156-157.

it (g.empty()) {
*dx = *dy=0;

} else{
const game::step_t& step = q.front();
*dx = step.first;
*dy = step.second;

} d.pop();

(6) Thewabbit::key function is no longer used, so you can reeib.

One last problemThepop in the abwe line 89 changes theg data member of clagaanual . This
will not compile, sincalecide is aconst member function of that class. One choice would be to let the
decide member function of claswabbit and all of its descendants be nmmst . The alternatie
would be to declarg to be amutabledata member of clagsanual :

mutable queue<game::step_t> q;

This permits the value of the data memipéo be changed by@nst member function of class
manual . Anothermutable data member will be on p. 751.
A

v Homework 8.1g: fly in formation

If two or more manual 's responded to the sameyktroke, they would fly in formation. To realize
this vision, change thdispatcher from amapto amultimap . A multimap is like amap, except
that it can contain tavor more pairs with the sanfest ~ data member.

All of these pairs will be stored consesely in the multimap , snce the elements of a
multimap , like those of anap, are ordered (by default) by applying theperator to the subscripts.

Theinsert member function of anultimap returns an iterator referring to thewig-inserted
element. Ignoréhe return wlue. Jusassume that the insertion was successful.

Instead of calling théind member function of anap dispatchercall theequal_range member
function of amultimap dispatcher It will return a pair of iterators referring to thedirening and end of
the range of elements thateahe desired subscript.

0608 AN hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUOTA, WNPE

OO, WN P

Section 8.2.1 A Singly-Linked List 803

Include the header fikkmap>for classmultimap

/ IExcerpt from game::play

const pair<dispatcher_t::const_iterator, dispatcher_t::const_iterator>
r ange = dispatcher.equal_range(c);

i f (range.first ==range.second){ //The range is empty.
t erm.beep(); //No manual responds to this key.
} else{
f or (dispatcher_t::const_iterator it = range.first;
it !=range.second; ++it) {

Ilas in the above lines 76-77,
const dispatch_t dispatch = it->second;
dispatch.first->push(dispatch.second);

8.2 Endowv a Data Structure with an Iterator

A data structue is ary source of or destination for data, consisting of a series of values all of the
same data type. An array or linked list in memary hput or output file on the disk, or a TCP/IP connec-
tion to another host are all examples of data structures. The data structure may be readesnlyly, or
read/write; sequential access or random access. The values read from or written to the data structure are
called theelements.

The Standard dmplate Library (STL) contains a wealth of functions, includiog , copy , find ,
and my own &vaite, random_shuffle . They can read and write the elements ity @ata structure that
complies with the librarg requirements. Thesmay be stated simply: the data structure muge lzaype
of iterator that can loop through itClassesector , list , and mapall have iterators. Een the humble
array has an iteratdior a pointer is a perfectly legitimate iterator.

A data structure endwed with an iterator is calledantainer. Each type of container requires a dif-
ferent type of iterator A template function which will accept iterators of magpes is called amalgo-
rithm. The functions in the STL are algorithms. Note that the arguments passed to an algorithm are not the
containers themselves, but iterators that refer to elements in the containers.

We will turn three data structures into STL-compliant containers by endowing them with iterators.
The ideal to which we aspire is to &a#tn terator looping through a containand dress it up with the oper
ators!=, *, and ++ to male it look like a pinter looping through an array.

i ntaf] ={10, 20, 30},
const size_t n = sizeof a / sizeof a[0];

for(nt*p=a;p!=a+n;++p){
cout << *p << "\n";
}

Having a uniform notation for all containers is desirable in itself. It will alsoaradir content accessible
to the algorithms.

The three data structures were chosen tovslitderent approximations to our ideal. Our purpose is
shav that each data structure can be turned into a container by meansvapéeficial additions, without
disturbing ai existing code.

P06 AN hesenea ©2014 Mark Meretzky

804 Containers,lterators, and Algorithms Chapter 8

8.2.1 ASingly-Linked List

Consider the following circa-1985 linked listhe nodes are defined in lines 6—-8 and 2daafe.h
on p. 806, and the list of them is created and destroyed in lines 10-18 and 58nékh.6f on pp.
807-808. Thevhole thing could hae keen a C programmingercise from a generation ago.

Our purpose is to makit STL-compliant with the least possible modificatioWe will resist the
temptation to rewrite the data structure in C4#s a concession to contemporary expectations of comfort,
we provide only tw amenities: the constructor in lines 10-11noide.h , and the calls tmew instead of
malloc in lines 11-13 ofnain .

The loop in lines 15-17 ahain.C is the traditional \&y to access this data structure. The imple-
mentation of the linkd list lies naked to our gaze: the poirgen a structure, the arrows that dereference
the pointerthe names of the fields, and the comparison to zero. The loop demands specipkrtsee
with structure and pointers thereto, andribde structure in particular.

To make the data structure STL-compliant, we create iteeator class in lines 13-29 of
node.h . We gveit the last nam@ode by nesting it inside of clas®de, just as clasbill ~ was rested
inside of clasglinton on p. 420.The iterator class has the followingdirimmings. Somere mem-
bers, some are friends, and some are neithiee first four are used in our first exhibit, the loop in lines
24-26 ofmain.C . The last one will be used by our second exibit, the calls to the algorithms in lines
33-56.

(1) Thebegin iterator refers to the first element of the contairidre end element refers to the slot in
this container where the non-existel®lément’ after the last element would be if there was one
(which of course there is). Sedines 20-21 ofnain.C . If the container holds no elements,
begin has the same value esd.

(2) The==and!= operators compare twiterators (lines 20-22 and 33-36rafde.h).

(3) The* operator returns a read/write reference tovilee in the node to which the iterator refers
(line 17 ofnode.h). Donot apply thes to theend iterator.

(4) Theprefix and postfix-+ operators mee te iterator forward one element (lines 18 and 26-31 of
node.h). Donot apply the++ to theend iterator.

(5) We dso write a specialization of the template cléssator_traits for this type of iteratqr
containing fie public typedefs (lines 38-47 obde.h).

With these trimmings, we can write the loop in lines 24-2@ah.C . The comments in 23 and 25
shav what these lines are actually doing. The poipténat lay exposed in lines 15-17 is still there, but is
now discretly hidden as the pdte data membep in line 14 ofnode.h . The code that bristled with
arraws is still there, bt is nav packaged in the bodies of the functions (member functions, friends, and nei-
ther) in lines 16-36 afiode.h . We ae left with a loop that is totally generic. The loop would stibirky
completely unchanged, if the name of ather container were inserted in front of the double colon in line
24:vector<int> |, list<date> , ec.

We @an do more with thexpressiortit than just print it in line 25 ahain.C . We can assign to it
in line 31, because theperator* member function in line 17 afode.h returns a read/write reference.
Incidentally lines 30-31 ofnain.C can be combined to

* ++it = 20; /lit.operator++().operator*() = 20;
But lines 29-30 cannot be combined to
node::iterator it = begin + 1; //operator+(begin, 1)

since we hee rot written anoperator+

Two ++ operators for classode::iterator are implemented in lines 18 and 26—-3Totle.h .
As usual, the postfix+ calls the prefixt+ to do most of its work (line 29). Similarlgperatorl= calls
operator== to do most ofts work (line 35).

Our iterators gie s acess to thgalue member of eachode, but not to the address of each node.
The loop in lines 58—-62 ahain.C must therefore be written in terms of pointers, not iteratdvs.take
care to goid the increment of death (pp. 444-445).

D608 AN hesenea ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 805

A specialization of class iterator_traits

When we create a neclass of iteratgrwe nust also, at least for mo create a specialization of class
iterator_traits for it. The<iterator> header file in line 3 afiode.h contains the general tem-
plate for classterator_traits . Lines 39-46 ohode.h create the specialization
iterator_traits<node::iterator>

Like cin andcout , the general template belongs to namesgtate(p. 20). A specialization must
belong to the same namespace as its general template, so we enclose it in lines 3&aerdH& name-
space declarations on p. 1021.

Classiterator_traits should be usednly by an algorithm. It gies the algorithm fie \ital
facts about the data type of an iterator that the algorithmvescas an gument.

(1) To find out if iterators of this type can be decremented, the algorithm can check the
iterator_category member in line 41 ofiode.h . In our example, the answer is no. Tligetator
categories’and their “tags’ will be explained later in this chapter.

(2) An algorithm can use its iteratoigament to access an element in a contaifiee algorithm can
store a coyp of the element, a pointer to the element, or a reference to the element, in variables of the types
given by the memberwvalue_type , pointer , and reference in lines 42, 44, and 45 afode.h .
For an ekample, see thealue_type in line 6 of the algorithniter_swap on p. 764.

(3) Our linked list inmain.C contained three elements, originally holding tladues10, 15, 30.
The directed distance from the first to the laasw2 elements; from the last to the first was -2 elements.
Thus, a signed integrablue must be used to hold the distance between the elements to whitdrawors
refer Should the walue beint , long , or vmething morexotic? Thedifference_type member in
line 43 ofnode.h gives the data type that should be used. This type will be large enough to hold the long-
est possible distance, but no larger than necessatgcided that oudifference_type would be a
typedef forptrdiff_t , the data type of the distance betweea pwinters in C or C++.ptrdiff_t in
turn is a typedef in the header fdestddef> , which is included by the header fi@erator> in line
3 of node.h . Examples are the variable in line 64, and the function retalurevin line 61, in the algo-
rithms on p. 810.A difference_type can also used to count the number of elemeBkamples are
the variable in line 77, and the function return value in line 74, on p. 810.

The five members ofiterator_traits will correspond to the fiy aguments of the template
classiterator on p. 813. Three of these arguments—the ones corresponding to our members
difference_type , pointer , and reference —uwill have default values, so tlyemust be declared
last. Themembers ofterator_traits could hae keen declared in grorder, but for consistencwe
order them in agreement with the argumentseohtor

Resist the temptation to rewrite @erything!

The data type of the payloaidt) was mentioned in lines 7, 10, 17, 42, and 44-430dke.h . We
should hae written it only once, in a typedef namedlue_type at line 6%. Better yet, aode should
have been anode<int> so we could h& rodes for other data types.

Furthermore, we could kia avoided the litay of

head =
head =
head =

when lines 11-13 afain.C created the listWe $ould hae gven dassnode a mnstructor that inserts
the newborn node at the head of the list. Témgablehead should hae been a static data member of class
node, updated by the constructor.

Even betterwe dould change the scheme to let ugehaore than (or less than) one lide ould
have made a ne class, singly_linked_list . head should hae keen a non-static, pate data
member of this class; amegin andend should hae been non-static, public member functionseltke
begin andend of classesrector |, list , and map. Classedterator andnode should hae keen
members osingly_linked_list

0608 AN hesenea ©2014 Mark Meretzky

806 Containers,lterators, and Algorithms Chapter 8

But we dont want to rewrite the whole program in contemporary C¥We just want to slap on an
iterator to mak the content of the list accessible to the STL algorithms.

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/node_container/node.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iterator> [[for iterator_traits and forward_iterator_tag
4 using namespace std,;
5
6 struct node {
7 i ntvalue;
8 node *next;
9
10 node(int initial_value, node *initial_next)
11 :value(initial_value), next(initial_next) {}
12
13 class iterator {
14 node *p;
15 public:
16 iterator(node *initial_p = 0): p(initial_p) {}
17 int& operator*() const {return p->value;}
18 iterator& operator++() {p = p->next; return *this;} //prefix
19
20 friend bool operator==(const iterator& it1, const iterator& it2) {
21 return itl.p == it2.p;
22 }
23 3
24 %,
25
26 inline const node::iterator operator++(node::iterator& it, int)//postfix
274
28 const node:iterator old = it;
29 ++it; /lit.operator++();
30 return old;
31}
32
33 inline bool operator!=(const node::iterator& it1, const node::iterator& it2)
344
35 return I(itl == it2); [Ireturn loperator==(it1, it2);
36}
37
38 namespace std {
39 template <>
40 struct iterator_traits<node::iterator> {
41 typedef forward_iterator_tag iterator_category;
42 typedef int value_type;
43 typedef ptrdiff_t difference_type;
44 typedef int *pointer;
45 typedef int& reference;
46 h /I[semicolon at end of class
47} /Ino semicolon at end of namespace
48 #endif

P060a AN hesenea ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 807

Pass the content of a container to an algorithm

Now that our data structure is an STL-compliant contawercan pass its content to (most of) the
algorithms in the STL. Lines 33-56 are ajee.. The tasks commonly done with simple loops &nd
statements—sorting, searching, counting, comparingre-ldh been written once and for all in the STL.
We will never haveto write these loops again.

Why do we haveto provide the zero for theccumulate in line 43? Why isn't zero the dedult
starting point?Well, we dont always want to start at zerd=or multiplication, we would want to start at 1.
Obsenre that the template classultiplies in lines 55-58 of the excerpts on p. 810 is jus tike tem-
plate clasgreater on p. 770. Thexg@ressiommultiplies<int>() in line 46 ofmain.C constructs
an anonymous object of this class. The object is then pasaedumulate , which calls the object’s
operator() member function in line 49 of theeerpts. Br another way to accumulate, see line 30 of
valarray.C on p. 899.

Themin_element algorithm in line 50 returns an iterateo we nust apply & to dereference it.
Of course, line 49 must first check that the iterator refers to an elehirat53-54 shw that we can store
a returned iterator in a variable for later dereferencing.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/node_container/main.C
1 #include <iostream>
2 #include <cstdlib> /lfor abs
3 #include <algorithm> [[for find, distance, count, min_element, max_element
4 #include <numeric> /ffor accumulate

5 #include "node.h"
6 using namespace std,;

7
8 i nt main()
9 {
10 /[Construct a | ist containing 10, 15, 30.
11 node *head = new node(30, 0);
12 head = new node(15, head); //Insert 15 ahead of 30.
13 head = new node(10, head); //Insert 10 ahead of 15.
14
15 for (const node *p = head; p != 0; p = p->next) {
16 cout<< p->value << "\n";
17 }
18 cout <<"\n";
19
20 const node::iterator begin(head);
21 const node::iterator end;
22
23 [lfor (node::iterator it = begin; operator!=(it, end); it.operator++()) {
24 for (node::iterator it = begin; it != end; ++it) {
25 cout << *it<<"\n"; /lcout << it.operator*() << "\n";
26 }
27 cout<< "\n";
28
29 node::iterator it = begin;
30 ++it; /lit.operator++();
31 *it = 20; [/lit.operator*() = 20; overwrite the 15.
32
33 const node::iterator found = find(begin, end, 20);
34
35 if (found==end){ //if (operator==(found, end)) {
36 cout << "20 was not found.\n";

0608 AN hesenea ©2014 Mark Meretzky

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65}

808 Containers,lterators, and Algorithms Chapter 8

} else{
cout << "20is at position " << distance(begin, found) << ".\n";

}

cout << "Value 20 occurs " << count(begin, end, 20) << " times.\n"
<< "There are " << distance(begin, end) << " values.\n"
<< "Sum of the values is " << accumulate(begin, end, 0) << ".\n"

<< "Product of the values is "
<< accumulate(begin, end, 1, multiplies<int>())
<< Il.\nll;

if (begin !=end) {
cout << "Smallestvalue is " << *min_element(begin, end)
<<"\n";

const node::iterator biggest = max_element(begin, end);
cout << "Biggest value is " << *higgest << ", at position "
<< distance(begin, biggest) << ".An";

for (const node *p = head; p '=0;) {
const node *const prev = p;

p = p->next;
delete prev; /lcan do this even though prev is a const *
}
return EXIT_SUCCESS;
10 lines 15-17
15
30
10 lines 24-26
15
30
20 is at position 1. lines 33-39
Value 20 occurs 1 times. line 40
There are 3 values. line 42
Sum of the values is 60. line 43
Product of the values is 6000. lines 45-47
Smallest value is 10. lines 49-51
Biggest value is 30, at position 2. lines 53-54

Simple definitions for the algorithms

The algorithms are template functionlglost of them ta& a mir of iterators, coventionally named
first andlast

If these iterators are equal, the algorithm will process no elements at all. Otherwise, the algorithms

assume thdast is accessiblefromfirst |, i.e., that we can get frofirst tolast with a finite num-
ber of increments. It is the programngersponsibility to mag wure thatfirst andlast refer to ele-
ments in thesamecontainey and thatlast comes aftefirst . Failure to do so may result in an infinite

0608 AN hesenea ©2014 Mark Meretzky

1
2
3
4
5

6
7
8

9
10
11
12

13
14

15}

16

Section 8.2.1 A Singly-Linked List 809

loop or program crash.

find andmin_element return an iterator of the type thatsvpassed to thenaccumulate
returns ar. distance andcount return adifference_type for the type of iterator that was passed
to them. It would ma& more sense focount to return an unsigned result, since its retuatu® will never
be ngative. And we could do it ifterator_traits had a typedef giving this unsigned type
(size_type would be a good name). But you go to war withitkeator_traits you have, not the
iterator_traits you might want or wish to ka.

The STL alvays assumes that an iterator is fast enough to pass and retwaluéyline 6). This cre-
ates a local copof the iteratorwhich we can then increment without disturbing the original (lineS&i-
larly, lines 61 and 74 assume thalitierence_type can be passed and returned bjue. (61is the
return type of the function in 62; I'm sorry thevouldn't fit on the same line.)

A T, on the other hand, is passed and returned by reference weheossible (lines 6, 75). The tem-
plate function doeshknow what T is; it could be a type that ixgensve (ead: slow) or impossible to
copy. The anogmousT constructed in line 57 must be returned by value, since it is an automsuddicle.
We want to pass th& in line 36 by value, since we Y@ o ceate and return a wel anyway Also, the
numeric algorithms such agccumulate assume that & is a type such as suchf&sat |, double , or
complex<double> , which are fast enough to pass slue. Seep. 962-964 for the numeric algo-
rithms.

Look for these definitions in the header filealgorithm> , <numeric> , <functional>
Unofficially, they may be in other headers included by these ones.

/ [Excerpts from <algorithm>, <numeric> (accumulate), <functional> (multiplies)
#include <iterator> [[for iterator_traits

t emplate <class IT, class T>
IT f ind(IT first, IT last, const T& t)

{
f or (; first |= last; ++first) {
i f (*irst==1t){
break;
}
}
return first;

17 template <class IT>
18 IT min_element(IT first, IT last)

19{

20
21
22
23
24
25
26
27
28
29
30
31
32

33}

if (first ==last) {
return last;

}

IT it ="first;

while (++first I= last) {
if (*first < *it) {
it = first;
}
}

return it;

0608 AN hesenea ©2014 Mark Meretzky

810 Containers,lterators, and Algorithms

34

35 template <class IT, class T>
36 T accumulate(IT first, IT last, T t)

37 {
38
39
40
41
42
43}
44

for (; first != last; ++first) {
t 4= *irst;

}

return t;

45 template <class IT, class T, class OPERATION>
46 T accumulate(IT first, IT last, T t, OPERATION op)

47 {
48
49
50
51
52
53}
54

for (; first = last; ++first) {
op(t, *first);

t =

}

return

t;

55 template <class T>
56 struct multiplies: public binary_function<T, T, T> {

57
58}
59

T operator()(const T& a, const T& b) const {return a * b;}

60 template <class IT>
61 typename iterator_traits<IT>::difference_type
62 distance(IT first, IT last)

63 {
64
65
66
67
68
69
70
71}
72

typename

iterator_traits<IT>::difference_type d = 0;

for (; first I= last; ++first) {

++d;

}

return

d;

73 template <class IT, class T>
74 typename iterator_traits<IT>::difference_type
75 count(IT first, IT last, const T& t)

76 {
77
78
79
80
81
82
83
84
85
86}

typename

iterator_traits<IT>::difference_type n = 0;

for (; first = last; ++first) {
(*irst ==1) {

if

}
}

return

printed 4/8/14

9:06:03 AM

++n;

n;

All rights

reserved

Chapter 8

©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 811

If the op in the abee line 46 is a pointer to a function, line 49 will call the function. If dipeis an
object, line 49 will call theperator() member function of the object. It will belaas if we had writ-
ten

87 t = op.operator()(t, *first);

Will min_element still work if we give it a range of elements that are not sorted? What will
min_element return if we gve it a range containing tevor nore elements tied for being the smallest?
What will min_element return when line 96 ges it an enpty range?

88 #include <vector>
89 #include <algorithm>
90 using namespace std;

91

92 int af] ={10, 20, 10};

93 const size_t n =sizeof a/ sizeof a[0];

94 vector<int> v(a, a + n);

95 vector<int>::iterator itl = min_element(v.begin(), v.end());
96 vector<int>::iterator it2 = min_element(v.begin(), v.begin());

A simpler way to create an iterator_traits for class node::iterator

There is a simpler ay to create clasierator_traits<node::iterator> . If the five
typedefs are public members of classle::iterator (lines 16—-20), we will no longer kia © define a
specialization of clasgerator_traits

The word int in line 23 could nw be written asvalue_type . In fact, the entirént& could be
written asreference if you think the code would be clearer (ibuldn't, at least not at this stageBut
these fie typedefs are not primarily intended for use in clasde::iterator

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/node_container/node2.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iterator> [[for forward_iterator_tag
4 using namespace std,;
5
6 struct node {
7 i ntvalue;
8 node *next;
9
10 node(int initial_value, node *initial_next)
11 :value(initial_value), next(initial_next) {}
12
13 class iterator {
14 node *p;
15 public:
16 typedef forward_iterator_tag iterator_category;
17 typedef int value_type;
18 typedef ptrdiff_t difference_type;
19 typedef int *pointer;
20 typedef int& reference;
21
22 iterator(node *initial_p = 0): p(initial_p) {}
23 int& operator*() const {return p->value;}
24 iterator& operator++() {p = p->next; return *this;} //prefix
25

Pe0608 AN hesenea ©2014 Mark Meretzky

812 Containers,lterators, and Algorithms Chapter 8

26 friend bool operator==(const iterator& it1, const iterator& it2) {

27 return itl.p == it2.p;

28 }

29 3

30}

31

32 inline const node::iterator operator++(node::iterator& it, int)//postfix

33{

34 const node:iterator old = it;

35 ++it;

36 return old;

37}

38

39 inline bool operator!=(const node::iterator& it1, const node::iterator& it2)

40{

41 return I(itl == it2); [Ireturn loperator==(it1, it2);

42}

43 #endif

The general template for clagerator_traits , in the following lines 7-14, will nev suffice

for classnode::iterator . Line 10 mentions the data typgpenamelT::value_type . The
template agumentIT must therefore stand for a class with a member narake type that is the
name of a data type. Ourwelassnode::iterator has the required member in the abdine 17.
The following line 10 creates anotherlue_type |, this one a member of class
iterator_traits<IT> . Itis a ypedef that stands for the same data typgmename
IT::value_type . One by one, the fevtypedef members of clas§ are replicated as members of the
general templateA specialization for clasaode::iterator is no longer needed.

13

Are there an types of iterator that would still need a specializatiai@l, a pointer is a completely
legitimate iteratar But a pointer does not @ the five typedef members (only objectsveamembers), so a
pointer data type wuld not be a Igd template agumentIT for the generaiterator_traits . The
library therefore has specializations for iterators that are pointers, in lines 16 afAd @8. s& on p. &3,
separate specializations are needed for read/write pointers and read-only pointers.

/ [Excerpts from <iterator>.
#include <cstddef> [ffor ptrdiff_t

/ /IT must be a class that has five public members that are data types,
/ Inamed iterator_category, value_type, difference_type, pointer, reference.

t emplate <class IT>

struct iterator_traits {
t ypedef typename IT::iterator_category iterator_category;
typedef typename IT::value_type value_type;
typedef typename IT::difference_type difference_type;
typedef typename IT::pointer pointer;
typedef typename IT::reference reference;

14 %

15

16 template <class T>
17 struct iterator_traits<T *> {

18 typedef random_access_iterator_tag iterator_category;
19 typedef T value_type;

20 typedef ptrdiff_t difference_type;

21 typedef T *pointer;

22 typedef T& reference;

Pe060a AN hesenea ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 813

23}

24

25 template <class T>
26 struct iterator_traits<const T *> {

27
28
29
30
31

typedef random_access_iterator_tag iterator_category;

typedef T value_type; /lread/write
typedef ptrdiff_t difference_type;
typedef const T *pointer; /lread-only pointer

typedef const T& reference; /lread-only reference

32}

33
34
35
36
37
38

It would seem that thealue_type in the abwoe line 28 should be eonstT ; after all, the mem-
bers in 30 and 31 amonst . But even if the iterator is read-onla value that has been copied out of a
container does not 1@ o be teld in a read-only variable (line 36). On the other hand, the pagriteline
37 points to a value that is still in the container; it must be a read-only pd8nt@tarly for the reference
in line 38.

In line 37, the* and& are built-in operatorsThey cancel each other out and can be reedo But
for iterators that are not pointers, thevould stand for a call to the iteratsiperator* function. In
that case, th& and* would both hae © be written.

int a[] ={10, 20, 30}
const int*it=a;

int = * i /INo need to make i a const int,
const int *p = &*it; /[but p must be a const int *
const int&r= *it; /land r must be a const int&.

An even simpler way to create an iterator_traits for class node::iterator

Instead of writing the fi@ typedefs in lines 16-20 of the almnode2.h , there is an easier way to
give these members to classde::iterator . We an simply dene tis class from a base class that
already has the memberghe base class is the following template claAg. first sav this technique on pp.
769-770, where the base class was an instantiation of the templatardagsfunction

1 / /Another excerpt from <iterator>.
2 #include <cstddef> //for ptrdiff_t
3
4 t emplate <
5 class CATEGORY,
6 class T,
7 class DIFFERENCE = ptrdiff_t,
8 class POINTER =T *,
9 class REFERENCE = T&
10 >
11 struct iterator {
12 typedef CATEGORY iterator_category;
13 typedef T value_type;
14 typedef DIFFERENCE difference_type;
15 typedef POINTER pointer;
16 typedef REFERENCE reference;
17}

Any class that is publicly dered from class
iterator<forward_iterator_tag, int, ptrdiff_t, int *, int&>

would inherit these fig typedefs:

0608 AN hesenea ©2014 Mark Meretzky

814 Containers,lterators, and Algorithms Chapter 8

18 typedef forward_iterator_tag iterator_category;
19 typedef int value_type;

20 typedef ptrdiff_t difference_type;

21 typedef int *pointer;

22 typedef int& reference;

We cerive aur iterator from this base class in line 13, without bothering to wateeg for the last three
template arguments.

Thanks to thaisingnamespacestd in line 4, we would normally not need to mentigd in
line 13. But we hee wo dasses with the same first name, oode::iterator and the standard
library std::iterator . Without thestd:: , the rightmostterator in line 13 would be the local
classiterator (classnode::iterator), triggering a chain of disasters. Firsf,dhis class is not a
template class; the angle brackets in of line 13 would not comfild.let’s mot even think about dexiing
a dass from itself.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/node_container/node3.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iterator> [[for std::iterator and forward_iterator_tag
4 using namespace std,;
5
6 struct node {
7 i ntvalue;
8 node *next;
9
10 node(int initial_value, node *initial_next)
11 . value(initial_value), next(initial_next) {}
12
13 class iterator: public std::iterator<forward_iterator_tag, int> {
14 node *p;
15 public:
16 iterator(node *initial_p = 0): p(initial_p) {}
17 int& operator*() const {return p->value;}
18 iterator& operator++() {p = p->next; return *this;} //prefix
19
20 friend bool operator==(const iterator& it1, const iterator& it2) {
21 return itl.p == it2.p;
22 }
23 3
24},
25
26 inline const node::iterator operator++(node::iterator& it, int)//postfix
274
28 const node:iterator old = it;
29 ++it;
30 return old;
31}
32
33 inline bool operator!=(const node::iterator& it1, const node::iterator& it2)
344
35 return I(it1 == it2); [Ireturn loperator==(it1, it2);
36}
37 #endif

0608 AN hesenea ©2014 Mark Meretzky

abhwN

Section 8.2.1 A Singly-Linked List 815

How closely have we goproached our ideal?

Can our iterator ne read values from a linked list with the same notation as a pointer readigs v
from an array? Pretty much so. The operaters*, and ++ can be applied to the iteratoBut the--
operatoy prefix and postfix, is conspicuously abseAt-- is impractical (read: too slow) because the list is
singly-linked. Itwould have been like a @lmon fighting its way upstream.

Also absent is almperator< to compare tw iterators. Itwould hase © determine the relate
positions on the list of the wdements to which the iterators reféBut the only way to do this would be
to start at the left iterat@’dement, and loop along the list until we encounter either the right iteraler’
ment or the end of the list, whichee comes first. This would not beadnstant timeoperation; the time
would depend on v mary elements hee © be \sited.

For the same reason, we did not writeogorerator- to measure the distance between itgrators.
The only way to do this would be to walk from one to the otteemting the elements as we gdimilarly,
operators such as= and[] , which we regularly apply to pointers, would be tooasfor our linked list.
Executing the expressiaon+=20 would tale twice as long ag += 10

To sum up, we can apply the following binary operators to a pointer but not to our iterator.
—t-t==<<=>>=]

Because of these limitations, will see that node::iterator will qualify as only a ‘forward” itera-
tor (pp. 839-840), not a “bidirectionabne (pp. 840-841). This was the meaning of the
forward_iterator_tag we sav in line 40 ofnode.h on p. 806.

A singly-linked list, classlist , has already been writterit’s ot officially in the STL, but man
vendors supply it anywayinclude the header fikeslist> and dont decrement the iterators.

v Homework 8.2.1a: create class node::const_iterator

We saw aconst_iterator for classvector in line 14 ofconst_iterator.C on p. 436.
Create aonst_iterator for classnode . Do not remave the existing clasierator

Give it the last nam@ode, like aur classiterator . For the reason in the § (4) belowe nust
defineconst_iterator beforeiterator . Both definitions will be inside thicurly brace} of class
node .

Classnode::const_iterator will be exactly like the existing classode::iterator (don’t
forget the postfix increment), but with the following changes.

(1) The data memberwill be a read-only pointer.

const node *p;

The argument of the constructor favde::const_iterator will also be a read-only pointer.
(2) The whole point of aonst_iterator is to prerent the assignment in line 4 from compiling.
node::const_iterator it = begin;
i f (it!=end){ [fif there is a node,
* it = 20; /lwon’t compile
}
Theoperator* member function ofiode::const_iterator will therefore return a read-only refer

ence. (Areturn by value would pwvent the following line 11 from compiling.)

const int& operator*() const {return p->value;}

Similarly, if classconst_iterator had anoperator-> member function (which it doeg)y
the pointer that it returns would Ve be ead-only There will be aroperator-> in our next &le.

(3) As in the abee line 4, aconst_iterator cannot change the value of s in a container
But we are free to change the value ofrdan that has been copied out of the container (lines 9-10vpelo
Thevalue_type member of clasgerator_traits<node::const_iterator> can therefore
remainint . But the pointer in line 11 and the reference in line 12 musbhst to point and refer to a

D608 AN hesenea ©2014 Mark Meretzky

7
8

10
11
12
13

14
15

16
17
18
19
20
21
22
23

24

25

816 Containers,lterators, and Algorithms

value still in the container.

node::const_iterator it = begin;

i f (it!=end){
i nti=*it;
++i;
const int *p = &*it; /[const int *p = &it.operator*();
const int&r = *it;
}

Classconst_iterator will therefore be devied from class

std::iterator<forward_iterator_tag,
const int*, constint&>

int, ptrdiff_t,

(4) Do not mak it possible to covert a node::const_iterator
That would be a breach of security.

node *head = new node(30, 0);
head = new node(20, head);
head = new node(10, head);

node::const_iterator it = head;

/ITry to change the 10 to 15.
*static_cast<node::iterator>(it)

Do not allow this to compile.
15;

But corversion in the other direction, fromode::iterator
harmless and ceenient. For example, aoperator==

node::const_iterator
node::iterator 's, node::const_iterator

andoperator!=

Add the following public member function to classde::iterator

operator const_iterator() const {return p;}

Define aroperator== andoperator!l= for two node::const_iterator
operator== andoperator!= for two node::iterator
node::iterator and anode::const_iterator

it == cit

will now behave & if we had swritten the following, calling theperator==
node::const_iterator 's.

operator==(it.operator node::const_iterator(), cit)

8.2.2 Anlinput File

The second data structure we turn into a container will hetr@am
(not a random access input file). The fallog is a text file nameuhfile
demonstrate aaperator-> member function as well as aperator*

to node::const_iterator

Chapter 8

to a node::iterator

, would be
that tale two

's would be able to handle all of our comparisons between
's, and ary combinatin thereof.

's, and remae the

's. An expression that compares a

that compares two

such as a sequential input file
. It contains dates so we can
for the iterator.

71411776
10/29/1929
12/7/1941

printed 4/8/14
9:06:03 AM

All rights

resened ©2014 Mark Meretzky

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17

18
19

Section 8.2.2 An Input File 817

The loop in lines 15-17 is the traditional way to access this data structure. The constructor for class
ifstream opens the file in lines 9-13, the destructor closes the file in line 18p¢hator! and
operatorvoid * member functions tell us if the file is healtland, if so, the>> operator reads from
the file. The latter is theperator>> friend of classdate that we wrote in lines 7-65 afate.C on
pp. 338-339. If we break out of the loop because of end-of-file, line 19 r&Xtiis SUCCESS For ary
other reason, we retueXIT_FAILURE.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/infile/ifstream.C

#include <iostream> //for cout and cerr
#include <fstream> [[for ifstream
#include <cstdlib>

#include "date.h"

using namespace std;

nt main(int argc, char **argv)

i
{

20}

O©CoOoO~NOOOUTPA,WNPE

i fstream ifs("infile");
if (lifs) { /fif (ifs.operator!()) {
cerr << argv[0] << ": couldn’t open infile\n";
return EXIT_FAILURE;
}
for (date d; ifs >> d;) { //operator>>(ifs, d).operator void *();
cout <<d<<"\n" /loperator<<(operator<<(cout, d), "\n");
}
return ifs.eof() ? EXIT_SUCCESS : EXIT_FAILURE;
71411776
10/29/1929
12/7/1941

Read from the file with an iterator

All of the abave rotation was specific to data structures that are input filet's aeate an iterator
that can read dates from an input file, or from anddtezam , with the same notation as a pointer read-
ing dates from an arrayVe will return to the details laterFor nav, we hurry ahead and admire the falle
ing mainl.C andmain2.C .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/istream_iterator_date.h

#ifndef ISTREAM_ITERATOR_DATEH
#define ISTREAM_ITERATOR_DATEH
#include <iostream>

#include <iterator>

#include "date.h"

using namespace std;

class istream_iterator_date:
public iterator<input_iterator_tag, date, ptrdiff_t,
const date *, const date&> {

istream *ist;

0608 AN hesenea ©2014 Mark Meretzky

818 Containers,lterators, and Algorithms Chapter 8

13 bool ok; /itrue if this iterator has a healthy istream

14 date d; Ilthe date read most recently from the file

15

16 void read() {

17 if (oK) {

18 ok = *ist >> d; //ok=operator>>(*ist,d).operator void *();
19 }

20 }

21 public:

22 istream_iterator_date(istreamé& initial_is)

23 ©ist(&initial_is), ok(true) {read();}

24 istream_iterator_date(): ist(0), ok(false) {}

25

26 const date& operator*() const {return d;}

27 const date *operator->() const {return &**this;}

28

29 istream_iterator_date& operator++() {read(); return *this;}
30

31 friend bool operator==(const istream_iterator_date& it1,

32 const istream_iterator_date& it2) {
33 return itl.ok == it2.0k && (litl.ok || itl.ist == it2.ist);

34 }

35}

36

37 inline const istream_iterator_date operator++(istream_iterator_date& it, int)
38{

39 const istream_iterator_date old = it;

40 ++it;

41 return old;

42}

43

44 inline bool operator!=(const istream_iterator_date& it1,

45 const istream_iterator_date& it2) {

46 return I(itl == it2);

47}

48 #endif

With our nev iterator the loop in lines 18-20 is totally generic,dikhe one in lines 24-26 of
main.C on p. 807. The iterator whose constructor takes no argument (line 16) refers to the slot in the con-
tainer where the non-existerglement’ after the last elementould be. It represents the end of this input
file. In fact, it will represent the end @y input file, just as &40’ represents the end ofyaarray of
characters.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/mainl.C

#include <iostream>

#include <fstream>

#include <cstdlib>

#include "date.h"

#include "istream_iterator_date.h"
using namespace std;

i nt main(int argc, char **argv)

{

CQOwoo~NOOUODWNLPE

=Y

ifstream ifs("infile");

0608 AN hesenea ©2014 Mark Meretzky

11
12
13
14
15
16
17
18
19
20
21
22
23}

24

25
26

27
28

29
30

31
32

Section 8.2.2 An Input File 819

if (lifs) {
cerr << argv[0] << ": couldn’t open infile\n";
return EXIT_FAILURE;

}

const istream_iterator_date end;

for (istream_iterator_date it(ifs); it I= end; ++it) {
cout << *jt<<"\n"
}

return EXIT_SUCCESS;

71411776
10/29/1929
12/7/1941

Call a member function of each object in the container

The operator* member function of the iterator returns the value ofdhi object being read
from the containerThe abee line 19 behees as if we lad written the following.

cout << it.operator*() <<"\n";

To call theprint member function of eaatlate , we an change line 19 to

(*it).print();
cout <<"\n";

It will behave as if we had written the following.

it.operator*().print();
cout <<"\n%

Since ouprint does the same thing aperator<< , the output will be the same.

71411776
10/29/1929
12/7/1941

But theres a smpler way to call the@rint member function of each objediVe an change line 19
to

it->print();
cout <<"\n";

It will behave & if we had written the following, calling theperator-> member function of the iterator

it.operator->()->print();
cout <<"\n"

We &pect that the@perator-> function would tak two aguments, because the operator taks
two operands. Aftemll, theoperator== function takes tw arguments because the= operator taks
two operands. Bubperator-> takes no arguments at allt simply returns the address of tdate
object to which the iterator referdhe address and the following member name (fifire in line 29
above) are then used as operands of atrae-> , supplied by the computewhich is the rightmost> in
line 31 abwe. This is the “pointer to structuredperator built into C and C++Once again, the output is
the same.

0608 AN hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA,WNPE

10{
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30}

820 Containers,lterators, and Algorithms Chapter 8

71411776
10/29/1929
12/7/1941

Pass the data in the container to an algorithm.
We @an nav pass our data to an algorithm (line 21).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/main2.C

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <algorithm>

#include "date.h"

#include "istream_iterator_date.h"
using namespace std;

i nt main(int argc, char **argv)

ifstream ifs("infile");

it (lifs) {
cerr << argv[0] << ": couldn’t open infile\n";
return EXIT_FAILURE;

}

const istream_iterator_date end;
const date crash(date::october, 29, 1929); /Istock market

const istream_iterator_date it =

find(istream_iterator_date(ifs), end, crash);
if (t==-end){

cout << "The file does not contain " << crash << ".\n";
} else{

cout << "The file contains " << crash << ".\n";

}

return EXIT_SUCCESS;

The file contains 10/29/1929.

Detect end-of-file

We might expect that each element in a range will be read bypgbeator++ member function of
an iterator But there are toreasons wioperator++ cannot do all the readingConsider first an itera-
tor that refers to the first element of a non-empty range. The first call to the isogEnator* must
return the first value in the rangeee if there was no previous call éperator++

Next consider an iterator that refers to the fitedement’ of an empty range. (It actually refers to no
element at all; its value is merely equal to that ofidise iterator) Thefirst call to!=last must return
false, een if there was no previous call aperator++ . In fact, aty call to |= last must be able to
detect in adance if the next application of theoperator would attempt to access the non-existelet *
ment’ beyond the end of the range. In the loopriainl.C on p. 819, for example, the comparison to

0608 AN hesenea ©2014 Mark Meretzky

Section 8.2.2 An Input File 821

end in line 18 must be able to detect if the fellog * in line 19 would access the non-existent element.
And in thefind algorithm on p. 809, the comparisonldast in line 8 must be able to detect if thexne
in line 9 would access the non-existent element.

These tw requirements are critical fowery STL algorithm that reads from a range, and will compli-
cate the design of the iteratoFhe problem is that aifstream or otheristream does not detect end-
of-file until it has attempted to read beyond the end of the file.

Let's demonstrate this by trying to read from an empty filde will use the/dev/null file: on my
platform (Unix), it is alvays present but alays empty The attempted read in line 19 will fail, making no
change tal. But theifstream cannot detect this in advance (line 17).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/eofl.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include "date.h"

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23}

using namespace std;

nt main(int argc, char **argv)

i
{

i fstream ifs("/dev/null™);
if (lifs) {
cerr << argv[0] << " couldn’t open /dev/null\n";
return EXIT_FAILURE;
}
cout << boolalpha;
cout <<ifs.eof() <<"\n";
date d;
ifs >> d; /Ireads nothing because it reaches end-of-file
cout <<ifs.eof() <<"\n";
return EXIT_SUCCESS;
false line 17 does not detect eof yet, even thougletirerno dates to be read
true line 20

But an iterator isxpected to detect end-of-contairmfore the* which attempts to access the non-
existent “element’. Theiterator must compare equal to #m&d iterator in line 17.

Thedate that line 22 copies intd was neve not read from the file. It is the dumnalate that was
created when the constructor for the iterator passed no arguments to the constructordateclass

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/eof2.C

#include <iostream>

#include <fstream>

#include <cstdlib>

#include "istream_iterator_date.h"
#include "date.h"

using namespace std;

i nt main(int argc, char **argv)

P0608 AN hesenea ©2014 Mark Meretzky

822 Containers,lterators, and Algorithms Chapter 8

9 {

10 ifstream ifs("/dev/null");

11 if (lifs) {

12 cerr << argv[0] << ": couldn’t open /dev/null\n";

13 return EXIT_FAILURE;

14 }

15

16 istream_iterator_date it(ifs);

17 const istream_iterator_date end;

18

19 cout << boolalpha;

20

21 cout << (it ==end) << "\n";

22 date d = *it

23 cout << (it ==end) << "\n";

24

25 return EXIT_SUCCESS;

26}
true line 21 detects eof even befdne attempted read in line 22
true line 23

Now we can explain the camluted design of the iterator istream_iterator_date.h on pp.
817-818. Itwould seem natural for theperator* to read each date from the fil8ut if we did that,
there would be no way for a previolgs operator to detect end-of-file.

Our solution is to hae the constructor attempt to read the first date from the file (line 23 in.the
file), storing it in a data membdr(line 14). Theoperator++ member function also attempts to read a
date, storing it in the same data member (line X¥hen thel= operator is called, the read has therefore
already been attempted. If the finds that the read as successful, the algorithm catiperator*
which returns the data member (line 26).

The boolean data membek in line 13 is true if the iterator has atream , and if theistream
has not yet encountered end-of-file or other errors. The value of the expression

*ist >> d

in line 18 is*ist , which is conerted to abool when stored imk. Thebool will be true if the>> was
successful.

Of course, not\ery iterator has afstream ; the end iterator in lines 16-18 afmainl1.C on p.
819 did not hee me. This,ncidentally explains wty theist data member in line 12 of
istream_iterator_date.h has to be a pointenot a referencelt had to be one or the other since
we are not allowed to cgm dream (pp. 324-326)Now a pointer can easily point to no variable, but we
should neer havea reference that refers to nanable. Sincanistream is not alvays presentist has
to be a pointer.

What about the forbidding logicakgression in line 39 oftream_iterator_date.h ? Two
iterators are considered equal ifyrae both at the end-of-file, or if there both reading from the same
input stream. Le$ consider these tavcases separately.

The date returned byperator* is read in a prgous call to the iteratos’ constructor or
operator++ . If that read encountered end-of-file, line 18 setothalata member toafse. Meanwhile,
anend iterator alvays has itk set to false (line 24)The operator== in line 37 considers grtwo
iterators to be equal if theikk 's are both &lse. Thigneans that thend iterator marks the end not only of
our input stream, but of gnnput stream. I8 like the charactef0’ , which marks the end of wrstring.

operator== also considers gntwo iterators reading from the same stream to be equalidp
that neither has encountered end-of-file y&tcomparison of tw iterators reading from the same input

Peb608 AN hesenea ©2014 Mark Meretzky

27

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

Section 8.2.2 An Input File 823

stream is therefore not very illuminatingperator== andoperator!= should be used only to com-
pare an iterator that is reading and moving ithen line 18 ofmain1.C on p. 819) with a stationasnd
iterator.

As usual, may functions call other functions to do theiosk. Theoperator!= in line 44 calls
theoperator== in line 31; the postfioperator++ in 37 calls the prefix one in 29.

A new example is theoperator-> in line 27, which returns the address of the most recently read
date. Theoperator* in line 26 returns thealue of this date, so 27 simply returns the address of this
vaue. Theexpressiorthis in line 27 is the address of the iteratthis is the value of the iterator;

**this is the value returned by ttoperator* member function of the iterator; agd*this is the
address of the value returned by tiperator* member function of the iteratoiWe can tale this address
because the return valueaygerator* is a reference.

operator-> could hae keen defined as follows, but | wanted it to be free of code specific to class
istream_iterator_date

const date *operator->() const {return &d;}

How closely have we goproached our ideal?
Ideally, we would like to read from a container with an iterator with the same notation used to read

from an array with a pointeM/e acept that ouistream_iterator_date suffers from the same lim-
itations that plagued theode::iterator , Starting with the absence of-a operator But
istream_iterator_date will turn out to be gen more delicate.

The following line 17 shows that we can mak opy of this iteratoy dlowing us to pass it byalue
to a function. But we must never increment one copy and coenpaderefeence the otherThe followving
program shows what goes wrong if we try thi$e first date in the file is read by the constructor in line 16
and stored in the iteratoiThe second date is read in line ZDhe loop in lines 23-25 misses the second
date in the file, which has been siphonddwgfthe increment in line 20.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/interfere.C

#include <iostream>

#include <fstream>

#include <cstdlib>

#include "istream_iterator_date.h"
using namespace std;

i nt main(int argc, char **argv)
{
i fstream ifs("infile");
if (lifs) {
cerr << argv[0] << "™ couldn’t open infile\n";
return EXIT_FAILURE;

}

const istream_iterator_date end;
istream_iterator_date it1(ifs);
istream_iterator_date it2 = itl;

if (it2 '=end) {
date d = *++it2;
}

for (;itl = end; ++itl) {
cout << *tl <<"\n";

P0608 AN hesenea ©2014 Mark Meretzky

25
26
27
28}

O©CoOoO~NOOOUTA, WNPE

10{
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32}

824 Containers,lterators, and Algorithms Chapter 8

}

return EXIT_SUCCESS;
71411776 first date in the file
12/7/1941 third date in the file

A practical consequence is that the falilog program &ils. Linel17 constructs the iteratbegin .
Line 20 passes the iterator bglwe, constructing a cgpf it. Theloop in thedistance algorithm incre-
ments the copuntil it reaches end-of-file. Saaf al is well. But at line 23 begin has already been
exhausted when we cgpt agan. Thiscopy is born prematurely aged: the underlying input file is already
at end-of-file, and the loop in thied algorithm is neer entered.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/main3.C

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <algorithm>

#include "date.h"

#include "istream_iterator_date.h"
using namespace std;

i nt main(int argc, char **argv)

ifstream ifs("infile");

if (lifs) {
cerr << argv[0] << " couldn’t open infile\n";
return EXIT_FAILURE;

}

const istream_iterator_date begin(ifs);
const istream_iterator_date end;

cout << "The file contains " << distance(begin, end) << " dates,\n";

const date crash(date::october, 29, 1929); /Istock market
const istream_iterator_date it = find(begin, end, crash);

if (it==-end){
cout << "notincluding " << crash << ".\n";
} else{
cout << "including " << crash <<"\n"
}
return EXIT_SUCCESS;
The file contains 3 dates, Line 20 correctly counted the elements,
not including 10/29/1929. but line 23 did not seah through them.

To rejuvinatebegin , we would hare © mess around with its pdte members.A better way to fix
the program is to rewind the underlyifigtream back to the start of the file (lines 22-28) and create a

0608 AN hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA,WNPE

10 {
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46}

Section 8.2.2

An Input File 825

fresh iterator at line 33l wish we could rewind by callingeekg (p. 382), but we cannofseek’ a file
that has already been i to end-of-file. We haveto rewind the file by closing and reopening Before

line 23 can close the file successfulipe 22 must turn éfthe file’s failbit
when line 20 encountered end-of-file.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/infile/main4.C

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <algorithm>

#include "date.h"

#include "istream_iterator_date.h"
using namespace std;

i nt main(int argc, char **argv)

ifstream ifs("infile");

it (lifs) {
cerr << argv[0] << ": couldn’t open infile\n";
return EXIT_FAILURE;

}

const istream_iterator_date end;

cout << "The file contains "
<< distance(istream_iterator_date(ifs), end) << " dates,\n";

ifs.clear(ifs.rdstate() & 7ios_base::failbit);
ifs.close();
it (lifs) {
cerr << argv[0] << ": couldn’t close infile\n";
return EXIT_FAILURE;

}

ifs.open("infile");

it (lifs) {
cerr << argv[0] << ": couldn’t reopen infile\n";
return EXIT_FAILURE;

}

const date crash(date::october, 29, 1929); //stock market

const istream_iterator_date it =

find(istream_iterator_date(ifs), end, crash);
if (t==-end){

cout << "notincluding " << crash << ".\n";
} else{

cout << "including " << crash <<"\n"

}

return EXIT_SUCCESS;

printed 4/8/14
9:06:03 AM

. This bit was turned on

hesenea ©2014 Mark Meretzky

826 Containers,lterators, and Algorithms Chapter 8

The file contains 3 dates,
including 10/29/1929.

Unfortunately the call tofind in the abee lines 31-32 does not tell us all we wish to wnd/\e
have dscovered that a certain date is in the fileit ve dont know where in the file it is. The problem is
that anistream_iterator_date , the return value of this call fond , is good at getting dates from a
file, but does not mark a location in a filé/e will have b write a nev algorithm with a different return
type; see p. 837.

More surprises happen when we compare tapies of anistream_iterator_date . First,
look at the paradoxical output of line 1The == operator beliees that aty two iterators are equal if the
are reading from the same stream,vjated that thg havenot reached end-of-inputincidentally if you
change line 17 to

cout << (*jitl == *++itl) <<"\n"; //now we’re comparing two dates

it will become false, at least on platforms thedleate thetitl before thes++itl

Next, obsere that the iterators in line 20 are equiideed,it2 was rewly minted by the copcon-
structor in the previous line. But the expressions in line 21 are une§§jpparently our iterators lack the
substitution poperty, basic to Western Thought. kaan this be?

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/infile/paradox.C
1 #include <fstream>
2 #include <cstdlib>
3 #include "istream_iterator_date.h"
4 using namespace std,;
5
6 i nt main(int argc, char **argv)
7
8 i fstream ifs("infile");
9 i f(lifs){
10 cerr << argv[0] << ": couldn’t open infile\n";
11 return EXIT_FAILURE;
12 }
13
14 cout << boolalpha;
15
16 istream_iterator_date it1(ifs);
17 cout << (itl == ++itl) << "\n";
18
19 istream_iterator_date it2 = itl;
20 cout <<(itl== it2) <<"\n";
21 cout << (++itl == ++it2) << "\n";
22
23 return EXIT_SUCCESS;
24}
true line 17
true line 20
false line 21

The explanation is simple. The constructor in thevadme 16 read the first date from the file; the
++ in line 17 read the secondVhichever iterator is incremented first in line 21 will read the third date, and
its ok data member will remain true. The other iterator will encounter end-of-file, aokl itsll be set to
false. (Therds no way to predict whick+ will execute first in line 21: precedence and associativig gi

Pb60a AN hesenea ©2014 Mark Meretzky

Section 8.2.3 An Output File 827

us no decision since the increments are not adjacent. See pp. 14-16.)

The moral is that while aistream_iterator_date can be copied, but only one goghould
be used. There is an ghmt way to enforce thisWe haveoften passed a function argument as an ynon
mous temporatyletting us soid the bother of imenting a name for it. Our most recent example was the
first argument ofind in line 21 ofmain2.C on p. 820.Now we haveanother reason to makhe tempo-
rary anoymous. Ifanistream_iterator_date is passed by value, there areoteopies. Butf the
original is a anonymous, there is no way it can be usedeorreentioned by the caller after it has been
passed to an algorithm.

Because of these limitations—no decrement, use only one copy—we will see that our

istream_iterator_date will qualify as only an “input iteratol’(pp. 834-837). The STL already
has an iterator li&kistream_iterator_date , but it is better because it is a template. Simply include
the header filiterator> and construct aistream_iterator<date> . See pp. 850-855.

8.2.3 AnOutput File

The Moving Finger writes; and, having writ,
Moves on: nor all thy Piety nor Wit

Shall lure it back to cancel half a Line,
Nor all thy Teas wash out a Wat of it.

—Rubaiyat of Omar Khayydmuatrain 51

The third data structure we turn into a container will be a sequential output file opsifeam .
We will write three integers to a text file nameudtfile

The traditional way to access this data structure is with the loop in lines 1ThaZxonstructor for
classofstream opens the file in lines 8-12, the destructor closes the file in lines 20 or 24, the
operator! member function tells us if the file is healih lines 9 and 19, and tk& operator in line 19
writes anint to to the file. If all the integers and newlines were successfully written, line 24 returns
EXIT_SUCCESS

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/outfile/ofstream.C

1 #include <iostream>

2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include <fstream>
#include <cstdlib>
using namespace std;

i nt main(int argc, char **argv)
{
ofstream ofs("outfile");
i f (lofs){
cerr << argv[0] << ": couldn’t open outfile\n";
return EXIT_FAILURE;

}

const intaf] = {10, 20, 30};
const size_t n = sizeof a/ sizeof a[0];

for (constint*p=a;p<a+n;++p){
/i (operator<<(ofs.operator<<(*p), "\n").operator!()) {
if (!(ofs << *p <<"\n"){
return EXIT_FAILURE;
}

0608 AN hesenea ©2014 Mark Meretzky

828 Containers,lterators, and Algorithms Chapter 8

23
24 return EXIT_SUCCESS;
25}
The program creates an output foetfile , containing the three integers.
10
20
30

Write to the file with an iterator

All of the abave rotation was specific to data structures that are output filetss aeate an iterator
that can write integers to an output file, or to anotistream , with the same notation as a pointer writing
integers to an arraylThe end result will be the loop in the following lines 18-20.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/outfile/main.C

1 #include <fstream>

2 #include <cstdlib>

3 #include "ostream_iterator_int.h"
4 using namespace std,;

5
6 i nt main(int argc, char **argv)
7
8 ofstream ofs("outfile");
9 i f (lofs){
10 cerr << argv[0] << ": couldn’t open outfile\n";
11 return EXIT_FAILURE;
12 }
13 ostream_iterator_int it(ofs);
14
15 const intaf] = {10, 20, 30};
16 const size_t n = sizeof a / sizeof a[0];
17
18 for (constint*p =a; p<a+n; ++p, ++it) {
19 *it = *p; [lit.operator*().operator=(*p);
20 }
21
22 return EXIT_SUCCESS;
23}
The output file is
10
20
30
A proxy object

When we apply th& operator to an object, we are really calling dperator* member function
of that object.For example, the abee line 19 calls th@perator* of it . We would expect this function
to write an integer to the output file.

Heres why it cant. Theabove line 19 behees as if we las said the following.
1 i t.operator*() = *p;

0608 AN hesenea ©2014 Mark Meretzky

N

Section 8.2.3 An Output File 829

The operator* is a member function af , so it has access to thestream * data member thereof.
But theoperator* receves no aguments. Irparticular it neve receves the inteyer \alue*p . To write
the value to a file, a function musieaeccess to thestream * in the iterator and to the value.

It would be nice if the&r and the= could call a single member function iof , taking the*p as its
argument. Thebove line 19 would then do the following, and the function wouldehacess to the
ostream * and to the integer value.

i t.single(*p); N wish *it = *p; could do this.

But this is wishful thinking. The taroperators* and= will not turn into a single function call, at
least not in this language. Is therey avay the same effect could be obtained with the machinery at our dis-
posal?

Let's brainstorm. Theoperator* member function ot will construct and return an angmous
object that contains a cppf all the data int . Then the= in the abwee line 19 will call theoperator=
member function of the anonymous object, as in the comment in thatTliveoperator= will have
access to thestream * and to the integer value .

The anonymous object will be of the data typexy in lines 11-16 of the following
ostream_iterator_int.h . For corvenience, we gie it the last namestream_iterator_int
When an iterator'sperator* constructs and returngpaoxy , the proxy will hold a cop of the
ostream * that was in the iteratofThe actual write to the file will takdace in theproxy ’s
operator=

The definition of clasproxy (lines 11-16 imstream_iterator_int.h) had to come before
the definition ofoperator* (line 20). After all, operator* cant create groxy unless it knows what
aproxy is.

The ost data member of the ostream_iterator_int in line 9 of
ostream_iterator_int.h is not*const , dlowing us to assign one iterator to another:
i t1=it2; /litl.operator=(it2);

But theost data member of theroxy object in line 12 igconst , because we mer want to assign one
proxy to anotherThe following expressiotit2 cannot be used as the right operand of an assignment.

/ lwon’t compile: itl.operator*().operator=(it2.operator*());
*itl = *it2;

In fact, the only thing itan be used as is the left operand of an assignment whose right operamat is an
or corvertible thereto. Clasproxy has no other member functions.

For another proxy object, see p. 968.

Machinery not needed by an output iterator

Some of the machinery of claissream_iterator_date becomes irreleant in our nev class
ostream_iterator_int . An input file can be exhaustedjttwe boldly assume that an output file can
absorb ayp amount of data.We reve need to compare amstream_iterator_int to an end-of-file
iterator so here are noperator== oroperator!= functions. V& can n&er use a pair of
ostream_iterator_int 's to delimit a range of elements passed to an algorit(ffor an algorithm
that will accept a singlestream_iterator_int , See thecopy on p. 844.)

For the same reason, titerator_traits for classostream_iterator_int has no
difference_type . The output file is infinite, so we would need an infinitely large variable to count
how mary writes we hae performed. Ifwe do need to count the number of writes, we can usually use the
difference_type of some other containetn the abee main.C , for example, the number of iigers
to write was determined by the number of integers in the contaimeline 15. Since this container is an
array we oould tally this number with a variable of data tygiee t

An ostream_iterator_int does not let us use the values written to the contaidece the
value is written, its gone. Thdterator_traits therefore has nealue_type , pointer , or

Peb60a AN hesenea ©2014 Mark Meretzky

830 Containers,lterators, and Algorithms Chapter 8

reference . And if the \alue were an object, rather thaniain , an ostream_iterator_ would not
let us use anmember of the object. It therefore hasaperator-> member function either.

The four unnecessary typedef membergavhtor_traits are still present, but all of them are
void and should neer be wsed (line 8 of thestream_iterator_int.h).

The prefixoperator++ , in line 21 ofostream_iterator_int.h , has no work to do.We
define it anywaybecause our iterator will be passed to algorithms that apptyta the iteratar The
operator++ is non€onst , even though it changes no data members, because people would be puzzled
if they found that the could increment &@onst iterator The postfixoperator++ | in line 24 of
ostream_iterator_int.h , Is even more superfluousl gaveit the customary definition only from
habit. Itcould just as well hae keen defined as

const ostream_iterator_int& operator++(int) {return *this;}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/outfile/proxy/ostream_iterator_int.h

1 #ifndef OSTREAM_ITERATOR_INTH
2 #define OSTREAM_ITERATOR_INTH
3 #include <iostream>
4 #include <iterator>
5 using namespace std;
6
7 class ostream_iterator_int:
8 public iterator<output_iterator_tag, void, void, void, void> {
9 ostream *ost;
10
11 class proxy {
12 ostream *const ost;
13 public:
14 proxy(ostream *initial_ost): ost(initial_ost) {}
15 void operator=(int i) const {*ost << i << "\n";}
16 3
17
18 public:
19 ostream_iterator_int(ostream& initial_ost): ost(&initial_ost) {}
20 const proxy operator*() const {return ost;} //means return proxy(ost);
21 ostream_iterator_int& operator++() {return *this;}
22},
23
24 inline const ostream_iterator_int operator++(ostream_iterator_int& it, int)
25
26 const ostream_iterator_int old = it;
27 ++it;
28 return old;
29}
30 #endif

v Homework 8.2.3a: male aure there are no unauthorized proxies

An ostream_iterator_int::proxy should be constructed only by the function
ostream_iterator_int::operator* . Enforce this by making the constructor for clagssxy
private. To call the constructogperator* will now haveto be a friend of clagsroxy .

(1) Let the constructor for clapsoxy be private. And,of course, clasgroxy should remain a pri-
vate member of clagsstream_iterator_int

0608 AN hesenea ©2014 Mark Meretzky

Section 8.2.3 An Output File 831

(2) To dlow operator* to construct groxy , add the follaving declaration to the definition of
classproxy .

1 f riend const proxy ostream_iterator_int::operator*() const;

(3) Line 20 of the abee ostream_iterator_int.h on p. 830 was both a declaration and defi-
nition for the functionoperator* . It will have © be $lit in two. Thedefinition of clasproxy now
mentionsoperator* , so hiedeclaration of this function will hae o come before the definition of class
proxy . Andoperator* creates groxy , so hedefinition of this function will hae o come after the
definition of clasgproxy .

The declaration obperator* and the definition oproxy can remain within thé curly brace}
of the definition of clasestream_iterator_int . The declaration abperator* will look lik e this:

2 const proxy operator*() const;

But the definition obperator* will have © be noved to a pint after the braces. It will look lithis:

3 i nline const ostream_iterator_int::proxy ostream_iterator_int::operator*() const
4 {
5 r eturn ost; //means return proxy(ost);
6 }
The abee line 5 could callproxy by its first name, since it is inside the body of a member function of
classostream_iterator_int . But the abwe line 3 has to calproxy by its full name
ostream_iterator_int::proxy , dnce it is outside the body of a member function of class
ostream_iterator_int
(4) The declaration fooperator* now mentionsproxy before the computer has seen the defini-
tion for this class.You will have © write a forward declaration f@roxy (pp. 465-466), in therivate
section of the definition of clagstream_iterator_int , but before the declaration foperator*
Weas it worth it?
A
Eliminate the proxy class
We oould avoid the separatproxy class by lettingpstream_iterator_int be its own proxy:
—On the Web at
http://i5.nyu.edu/ Omme64/book/src/outfile/noproxy/ostream_iterator_int.h
1 #ifndef OSTREAM_ITERATOR_INTH
2 #define OSTREAM_ITERATOR_INTH
3 #include <iostream>
4 #include <iterator>
5 using namespace std;
6
7 class ostream_iterator_int:
8 public iterator<output_iterator_tag, void, void, void, void> {
9 ostream *ost;
10 public:
11 ostream_iterator_int(ostreamé& initial_ost): ost(&initial_ost) {}
12 const ostream_iterator_int& operator*() const {return *this;}
13 void operator=(int i) const {*ost << i << "\n";}
14 ostream_iterator_int& operator++() {return *this;}
15}
16
17 inline const ostream_iterator_int operator++(ostream_iterator_int& it, int)
18{
19 const ostream_iterator_int old = it;

P0608 AN hesenea ©2014 Mark Meretzky

832 Containers,lterators, and Algorithms Chapter 8

20 ++it;

21 return old;
22}

23 #endif

With the samenain.C , we et the same output file.

10
20
30

Unfortunately this way is less securdVith a separate proxy class, thein line 19 ofmain.C on
p. 828 must hae exactly one asteriskWithout the proxy class, thie could be written with annumber of
asterisks, orven with none at all. But we dohivant to allav that freedom. Line 19 might be transplanted
into an algorithm somedagausing a bg when the algorithm is passed an iterator of a type that requires
exactly one asterisk. (Let’hope that no one forgets the in line 18.)

How closely have we goproached our ideal?

Ideally, we would like to write to a container with an iterator with the same notation used to write to
an array with a pointerLike istream_iterator_date our ostream_iterator_int is missing
the following operators:

—t -tz = <<=>>]

Similarly, we @n cojy an ostream_iterator_int but we cannot use both copies. Furthermore, the
result of applying arf to anostream_iterator_int can be used only as the left operand of an
assignment.

For these reasons, owstream_iterator_int will qualify only as an “output iterator’(pp.
837-839). Th&TL already has an iterator dilostream_iterator_int , but it is better because it is a
template. Simplyinclude the header filgiterator> and construct anstream_iterator<int>
See pp. 850-855.

Different induction variables for different data structures

The variable whosealue changes during each iteration of a loop is callednthection variable
Below are four data structures with four loops. The loopgehdfferent types of induction variables: the
integeri in line 4 vs. the pointer to a structysen line 14 vs. the pair aiinsigned 's in line 21 vs. the
streamcin in line 32. Each loop applies different code to the induction variable to access an element of a
container: thg square braakqd in line 5 vs. the> line in 15 vs. theéerm_put in line 22 vs. theget
in line 32. Each loop has different code to update the induction variable, underlined inaapkee Each
loop has different code to test the induction variable<timein line 4 vs. the=0 in line 14 vs. thef
statement in lines 24-27 vs. tliet in line 32.

(1) This loop accesses each element by applysguare braatq to the induction ariablei , and
updates by applying++:

i ntaf] ={31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
const size_t n = sizeof a / sizeof a[0];

f or (size_ti=0;i<n;++i) {
cout << afi] << "\n";

OO, WN P

}
(2) This loop accesses each element by apphpinglue to the induction &riablep, and updates
p by applying= p->next

struct {
8 i nt value;

~

P060a AN hesenea ©2014 Mark Meretzky

Section 8.2.3 An Output File 833

9 node *next;
10 } node;
11
12 node *head =0;
13
14 for (node *p = head; p |=0; p = p->next) {
15 cout << p->value <<"\n";
16 }

(3) This loop calls the C functions on pp. 85-89, and therefore lamduction \ariablesx andy.
It accesses each element by passing them to the fubetionget . The code to update them is too com-
plicated to fit at the end of line 21, so | ved it to lines 24-28:

17 extern "C" {
18 #include "term.h"

19}

20

21 for (unsigned x =0, y = 0; y < term_height();) {
22 cout <<term_get(x,y);
23

24 if (++x>=term_width()) {
25 X = 0;

26 ++y,;

27 cout <<"\n";

28 b

29 }

(4) This loop copies the standard input to the standard output, one character at a time. It accesses
each element by calling thget member function ofin . Although it is not obvious, the inductioan-
able of this loop igin since its internal state is changing as we read each character.

30 #include <iostream>
31 using namespace std;

32

33 for (char c; cin.get(c) ;) {/[for (char c; cin.get(c).operator*();) {
34 cout.put(c);

35 }

The equalent loop in C must hee ac that is wider than &har , because &har is not big enough to
hold every possible return value getchar

36 #include <stdio.h>

37

38 int ¢

39

40 while ((c = getchar()) I= E OF){
41 putchar(c);

42 }

But once the induction variable—oanables—has been hidden as agte data member of an itera-
tor, our loops will be identical except for the names of the data types:

43 for (my_container::const_iterator it = c.begin(); it != c.end(); ++it) {
44 cout << *it<<"\n";

45 }

46

a7 for (your_container::const_iterator it = c.begin(); it I= c.end(); ++it)}
48 cout << *it<<"\n";

P 0608 AN hesenea ©2014 Mark Meretzky

834 Containers,lterators, and Algorithms Chapter 8

49 }
We @an then write them once and for all as a template.

50 template <class CONTAINER>
51 void print_loop(const CONTAINER& c)

52{

53 for (typename CONTAINER::const_iterator it = c.begin(); it != c.end();
54 ++it) {

55 cout << *it<<"\n";

56 }

57}

8.3 lIterator Categories

An algorithm is a template function that raesi an terator But it has no idea what the iterator’
data type is. All it has to work with is the opaque widrd

1 t emplate <class IT>
2 void myalgorithm(IT it)
3 {

What can the algorithm do with the iterator? If the algorithm applies theperator to an iterator of
type “IT ", will it compile? The risk is real: we kia en three iterators cannot be decremented, starting
with our node::iterator on p. 806.How can an algorithm find out what an iterator of tyfe can,
and can not, do?

The iterator data types areviied into five categories, depending on the operators that can be
applied to the iterator and Wwamuch time thg take. A cateyory is not a data type; it is an infinite set of
data types.

Input iterator
For a data typd T to qualify as annput iterator, it must be able to do the following.

(1) An iterator must be cgpronstructible and assignabl&V/e rmust be able to compare dviterators
with == and!=, dereference an iterator with and increment an iterator witht+ (prefix and postfix).

When we dereference the iteratare must get a alue. Ifthe iterator is a pointeit cannot be a
pointer tovoid . If the iterator is an object, itgperator* cannot returvoid .

For example,
t emplate <class IT>
void my_algorithm(IT first, IT last) //pass by value
{

for (; first = last; ++first) {
cout << *first << "\n"; //use value of *first, e.g., output it

OO, WN P

}

There is no requirement that we be able to compare iterators with the four other comparison opera-
tors <, <=, >, or >=. There is no requirement that we be able to dereference an iterator with the other
dereferencing operatdf , or decrement it with-- (prefix or postfix). There is no requirement thatyan
thing sane will happen if we dereference or increment an iterator that is equal to a cemathé@gerator.

“No requirement’means that anything can happen without disqualifying the iterator from being an input
iterator “Anything” includes, but is not limited to, failure to compile, crashing the program, undefined
behavior and working as naively expected.

(2) Theoperator++ in our clasdstream_iterator_date had a side effect: it discarded the
previousdate and input the next onélheoperator* had no side &ct. Butfor other classes of input

0608 AN hesenea ©2014 Mark Meretzky

Section 8.3 Iterator Categories 835

iterators, it might be theperator* that has a (possibly destrued side efect. Consequentlythere is

no requirement that we be able to dereference an input iterator more than once. Each element can be read

from the container only once. dtlike reading a byte from a Unix pipe: the read is destrecti

1 t emplate <class IT>
2 void my_algorithm(IT first, IT last)
3 {
4 f or (; first |= last; ++first) {
5 cout << *first << "\n";
6 cout << *first << "\n"; /Ino guarantee that this will work
7 }
To use the value of an element more than once, we coulditojerator_traits<IT> must

have avalue_type member:

8 t emplate <class IT>
9 void my_algorithm(IT first, IT last)

10{

11 for (; first = last; ++first) {

12 typename iterator_traits<IT>::value_type t = *it;

13 cout <<t<<"\n";

14 cout <<t<<"\n";

15 }
Or we could ma& a winter to the value read from the contajreerd dereference the pointer more than
once. iterator_traits<IT> must h&e apointer member or aeference member Just be

careful to apply th& operator to the iterator onnce.

16 template <class IT>
17 void my_algorithm(IT first, IT last)

18 {

19 for (; first != last; ++first) {

20 typename iterator_traits<IT>::pointer p = &*first;
21 cout <<*p<<"\n%

22 cout <<*p<<"\n"; /lthis will work

23 }

There is no requirement, Wever, that the pointer will still point to the same element after the iterator has
been incremented. (And whing might happen if we attempt to increment or dereference an iterator that is
equal tolast .)

24 template <class IT>
25 void my_algorithm(IT first, IT last)

26 {

27 while (first = last) {

28 typename iterator_traits<IT>::pointer p = &*first;
29

30 /Ithis *p will work

31 cout <<*p<<"\n“

32

33 ++first;

34

35 /Ino guarantee that this *p will still work

36 cout <<*p<<"\n“

37 }

38

39 cout << *first <<"\n"; /lunpredictable behavior

40 ++first; /lunpredictable behavior

Pe060a AN hesenea ©2014 Mark Meretzky

836 Containers,lterators, and Algorithms Chapter 8

(3) We nust hae a eference data type
iterator_traits<IT>::reference
that can refer to each element of the contasubject to the same eeat as thepointer

41 template <class IT>
42 void my_algorithm(IT first, IT last)

43 {

44 for (; first != last; ++first) {

45 typename iterator_traits<IT>::reference r = *first;
46 cout <<r<<"\n"

47 }

(4) We nust hae a dita type
iterator_traits<IT>::value_type
that can hold the values in the containéthis type is assignable, we can say

48 template <class IT>
49 void my_algorithm(IT first, IT last)

50 {

51 for (; first != last; ++first) {

52 typename iterator_traits<IT>::value_type t = *first;
53 cout <<t<<"\n";

54 }

(5) The data type
iterator_traits<IT>::difference_type

must be a signed irgeal data type (p. 61) that can hold the distance in elements betweswoaterators
referring to elements in the same contgieeen the largest possible containdfor example, a variable of

type difference_type must be big enough—but no bigger than necessary—to count the number of
elements read from grontainer.

55 template <class IT>
56 void my_algorithm(IT first, IT last)

57 {

58 typename iterator_traits<IT>::difference_type n = 0O;
59 for (; first = last; ++first) {

60 ++n;

61 }

(6) The epression*it++ must perform the dereferenbefore the increment, despite the higher
precedence of the postfi¢ operator The expression

62 X = *it++;

must behee & if we had said

63 temp = *it;
64 ++it;
65 X = temp;

To get the desired effect, the postéiperator++ would perform no incrementlt would return a
proxy object (pp. 828—-829) containg a pointer or reference to the itefdterproxys operator* would
then dereference the iterator; the prexgestructor would increment the iteratddisaster would result
from our normal procedure of copying the iteratacrementing the original, and then dereferencing the

copy:

0608 AN hesenea ©2014 Mark Meretzky

66
67
68
69

1
2
3
4
5

Section 8.3 Iterator Categories 837

/ICan’t increment one copy and dereference the other copy.
temp =it

++it;

X = *temp;

(7) The data type
iterator_traits<|T>::iterator_category

must be a typedef for the data typput_iterator_tag

If we copy an input iteratoy there is no requirement that we be able to use both coffigse”
means test, dereference, and increment.) There is no requirement that

itl == it2
must imply
++it == ++it2

Our class istream_date_iterator was an nput iterator; the template class
istream_iterator will be another gample. Aswe shall see, these classes will not qualify as iterators
of ary other category.

Our classesode::iterator and node::const_iterator also qualify as input iterators.
So will list<int>::iterator , vector<int>::iterator , and the data typént* . These
types will qualify as iterators of other cgtgies as well. But the data type*const is not an input

iterator We cannot apply the+ operator to it, so it is merelytavial iterator.

v Homework 8.3a: write an algorithm that will accept input iterators

We found a date in an input file by calling thied algorithm in lines 32-39 ofmain4.C on p.
825. Butwe did not find where in the file the datasMocated. The problem is that the return value of this
call tofind was merely an input iteratorThis category of iterator can read values from a contameér
does not mark a position in the container.

Write another algorithnfjnd_distance , that will give ws this information. It will be a template
function like thefind on p. 809, accepting the same threguarents. Theeturn type of
find_distance should be thelifference_type for the type of iterators passed to
find_distance . You have dready seen he to do tis: the return type of théistance algorithm on
p. 810 was thelifference_type for the type of iterators passeddstance . find_distance
will return the position of the desired value in the contaioer1 if the value is not found. (The position
numbers should start at zero.)

Be sure thafind_distance will work correctly if its first two aguments are merely input itera-
tors. For example, do not try to cgpan iterator and then use both copies. Do not try to read the same
value more than once.
A

Output iterator

For a cata type T to qualify as aroutput iteator, we must be able to do the following with iterators
of that type.

(1) An iterator must be cgponstructible and assignabléVe must be able to us@ as the left op-
erand of an assignment (ondy not += or the other assignment operatorgjnally, we nust be able to
incrementt with ++ (prefix and postfix).For example,

t emplate <class IT>
void my_algorithm(IT it) //pass by value

{

for(as long as we want to loppt +it) {
*it= some valugmaybe a different one eladime

0608 AN hesenea ©2014 Mark Meretzky

NOoO o~ WNPEP

NOoO o~ WNPRE

NOoO o~ WNPRE

=

838 Containers,lterators, and Algorithms Chapter 8

}

There is no requirement that we be able to comparéténators. Therés no requirement that we be
able to use thexpressior*it when it isnot the left operand of an assignment. There is no requirement
that we be able to assign more than once to the same element:

t emplate <class IT>
void my_algorithm(IT it)
{
for(as long as we want to loppt +it) {
*it= some valug
*it= some valug/ /no guarantee that this will still work

}

There is no requirement that we cawénévo consecutre increments without an intervening assign-
ment:

t emplate <class IT>
void my_algorithm(IT it)
{
for(as long as we want to loppt +it) {
*it= some valug
++it; //no guarantee that we can skip an element

}

Similarly, there is no requirement that we can skip the first element.

t emplate <class IT>

void my_algorithm(IT it)

{

/ Ino guarantee that we can skip the first element

f or (++it; as long as we want to loppt +it) {
*it= some valug

}

An input iteratoyon the other hand, can definitely skipepan dement that it doestivant to read.
(2) The expressiotit++ =t must behee & if we has said
*it=1t;
++it;

In other words, the dereference and assignment must be perfoefioeelthe increment.

In some cases this would belavard to implement, because theeessiorfit++ always executes
the ++ before the*. (The postfix++ has higher precedence than thg¢ To get the desired effect, we
would hare © let the postfixt+ perform no increment at all, and let it return a proxy object (pp. 828-829).
The operator* of the proxy will then return another proxy objedhe operator= of the second
proxy object will increment the iteratatereference it, and perform the assignmetartunately howeve,
none of this was necessary for our clasigeam_iterator_int . For unrelated reasons, the
operator++ functions of that class did nothing, so it didmiatter whether theexecute before or after
the dereference and assignment.

(3) The data type

iterator_traits<|T>::iterator_category

must be a typedef for the data tygéput_iterator_tag . There is no requirement that
iterator_traits<IT> have any ¢her members.

Our class ostream_iterator_int was an atput iterator; the template class
ostream_iterator will be another gample. Aswe shall see, these classes will not qualify as iterators

0608 AN hesenea ©2014 Mark Meretzky

PO OWoOoO~NOOUODWNLE

B

12
13
14
15

Section 8.3 Iterator Categories 839

of ary other category.

Our class node::iterator also qualifies as an output iterator So will
list<int>::iterator , vector<int>::iterator , and the data typent* . These types will
qualify as iterators of other categories as well. Butthrest_iterator classes are not output iterators.

Neither is the data typsonstint *,

Forward Iterator

For a data typdT to qualify as dorward iterator, we must be able to do the following with iterators
of that type.

(1) A forward iterator must be able to deegything that an input iterator or an output iterator can do.
It must therefordoe an input iterator and an output iterat¢fhere is one exception; see lvelo For exam-

ple,

t emplate <class IT>
void my_algorithm(IT first, IT last) //pass by value
{
f or (; first |= last; ++first) { /[compare
t ypename iterator_traits<IT>::value_type t = *first; //read
* first = typename iterator_traits<IT>::value_type(); //write

i f (++first == last) { /Iskip
break;

}

(2) A forward iterator cannot exhibit the abnormal behaviors that would be tolerated in an input or
output iteratar To gart with,

itl == it2
must imply
++it == ++it2

If we copy a forward iteratorwe @n use both copies without them interfering with each otfeally, we
can read or write the same element more than onceyiordar We can therefore use twor more for
ward iterators to loop through the same container at the same time. An example is the pair of iterators
first andprevious in the following homeork.

There is one exception to the requirement that a forward iterator be able to do all the work of an out-
put iterator A forward iterator can be read-only and still qualify as being dotw A read/write forvard
iterator is said to benutable; a read-only one ismmutable. (These terms will also apply tthidirec-
tional” and “random access'terators.) Arexample of an immutable forward iterator was our
node::const_iterator back on pp. 815-816. Buven if it is immutable, a forward iterator can still
do maty things that a mere input iterator cannot. It can read the same value twice.

for (node::const_iterator it = begin; it I= end; ++it) {
cout <<*jt<<"\n"
<< *It << ||\nu;
}
(3) The data type
iterator_traits<IT>:iterator_category

must be a typedef for the data tyfpeward_iterator_tag . Since a forvard iterator is an input itera-
tor, itsiterator_traits must also gvethe membersalue_type , difference_type ,
pointer , andreference

0608 AN hesenea ©2014 Mark Meretzky

840 Containers,lterators, and Algorithms Chapter 8

Our classesode::iterator andnode::const_iterator were input iterators and foexd
iterators. Thesame is true oflist<int>::iterator , which some vendors supply as part of the
STL. Aswe shall see, these classes will not qualify as iteratorsyafthar category.

Classedist<int>::iterator , vector<int>::iterator , and the data typent* are
also input and forward iterators. These types will qualify as iterators of other categories too. But
istream_iterator_date and ostream_iterator_int are not forward iteratorsWe @annot
copy them and use both copies.

v Homework 8.3b: adjacent find

Theadjacent_find algorithm in the standard library tda pair of forward iterators referring to
a range of elements. It searches for the first occurenceocédjacent equalalues. Althoughhe iterators
do not write into the containghey must be forward, not merely input. This is becausy ¢he copied
(previous=first in line 9), and then one cpps dereferenced*previous in line 10) after the
other cop has been incrementedfirst in line 9).

Our input iteratoistream_iterator_date just happens to work as an argument to
adjacent_find , but only because we were lyckistream_iterator_date reads from the input
stream inoperator++ . Its operator* does nothing, so there is no harm inydog an iterator and
calling theoperator* of both copies. But there may be other input iterators wbpseator* per-
forms detectable @rk. Inthis case, we could not access the same element twice by cgdénator*
twice.

1 / /Excerpt from <algorithm>
2 / /IT must be a forward iterator, and
3 [/ ltypename iterator_traits<IT>::value_type must be equality comparable.
4
5 t emplate <class IT>
6 IT a djacent_find(IT first, IT last)
7
8 i f (first!=last){ //if there are elements,
9 f or (IT previous = first; ++first I= last; previous = first) {
10 if (*first == *previous) {
11 return previous;
12 }
13 }
14 }
15
16 return last;
17}

To make the algorithm applicable to mamore types of iterators, rewrite it to accept iterators that
are merely input iterators. Instead ofiisg a copy of the previous iteratpisavea mpy of the preious
value that was read from the contain@he price you will pay is that the data type

iterator_traits<IT>::value_type will now haveto be cop constructible and assignabléist
these requirements in the commenb. avoid conflict, give the algorithm a different name.
A

Bidirectional Iterator

A bidirectional iteator meets all the qualifications of a forward iterataerg bidirectional iterator
is a forward iterator In addition, a bidirectional iterator must also accept the operatpboth prefix and
postfix. Thedata type

iterator_traits<|T>:iterator_category

must be a typedef for the data typdirectional_iterator_tag

0608 AN hesenea ©2014 Mark Meretzky

Section 8.3 Iterator Categories 841

Classedist<int>::iterator , vector<int>::iterator , and the data typent* are
input, forward, and bidirectional iterators. The lasb types will qualify as iterators of another category as
well. Butnode::iterator was ot bidirectional.

Random Access lIterator

A random access itator meets all the qualifications of a bidirectional iteratorerg random
access iterataos a ddirectional iteratar In addition, we must be able to apply three groups of additional
operators to the iterator.

(1) We nust be able to makthe iterator jump.We must be able to say

it+d
it - d
it+=d
it-=d

whered is an expression of typterator_traits<|T>::difference_type

(2) We nmust be able to find the relagi position and distance betweencierators that refer to ele-
ments in the same containéie nmust be able to compare iterators with all six relational operators:

== < >
I= >= <=

An algorithm must also be able to find the distance in elements betwedsrators by subtracting them
(itl - it2), yielding a result of typéerator_traits<IT>::difference_type

(3) We must be able to apply tHg operator to the iteratorAny iterator can access the element to
which it refers*it . A random access iterator must also be able to access other elétfj@gnts;
itf10] ,it[-10]

To qualify as random access,iever, the iterator must be able to do still moifeor any valuen of
type iterator_traits<IT>::difference_type , we nmust be able toxecuteit+=n just as
fast as++it . We can certainly do this if the iterator is a pointer to an array elementidon@e. Infact,

a pointer is the classicxample of a random access iteratBut for an iterator that refers to an element in a
linked list,it +=n has to be slower thantit . We cannot trael from one element to another without
visiting every intervening element. As the distances become grdahtetrarel time increases. The stan-
dard librarylist<int>::iterator is therefore merely a bidirectional iteratofhe map iterator is
also merely bidirectional because its underlying data structure is aAaé&, we cannot go from one ele-
ment to another without visiting/ery intervening one.

All the other operators mustork in constant time. Cor example, the operatgrs=, >, >=, and the
- that measures the distance betweamiterators, must be as fast=asand!= . It must be possible to tell
which of two iterators is first without visiting all the intervening elememad itf10] must be as fast as
itf0] and*it

v Homework 8.3c: a sort that accepts bidirectional iterators

The sorter template function irsorter.h on p. 762 accepted only random access iterators,
since it applied the operatorsand[] to them. Obsere the error messages you get when passing it a pair
of bidirectional iterators such &st<int>::iterator 's.

Rewrite the algorithm to accept iterators that are merely bidirectiofiéle < in line 17 of
sorter.h can staybut the ones in line 15 and 16 willveat go. Theit[0] inline 17 can be changed
to*it . How would you get rid of th§l] init[1] ?

Test the algorithm by passing it a pair of bidirectional iterators such as
list<int>::iterator 's.

A

0608 AN hesenea ©2014 Mark Meretzky

842 Containers,lterators, and Algorithms Chapter 8

v Homework 8.3d: a sort that accepts forward iterators

Now rewrite thesorter template function to accept iterators that are merelydodw You will no
longer be able to apply the operator (prefix or postfix) to the iterators. Hint: create a variable of the iter
ator’sdifference_type to count hav mary times your loops hee iterated.

A

The hierarchy of iterator categories

Each iterator category is an infinite set of data types. Thkesfig are werlapping and nestedror
legibility, the set of output iterators is dashed

ostream_iterator_int
ostream_iterator<int>

insert_iterator<int>

int * const int *

vector<int>::iterator vector<int>::const_iterator

random access

list<int>::iterator list<int>::const_iterator
map<int, int>::iterator map<int, int>::const_iterator
bidirectional
node::iterator node::const_iterator
U foovad —r——r-——"—"—"——— L

istream_iterator_date

istream_iterator<int>

input
mutable immutable

An iterator is allowed to beverqualified for its job For example, a read/write pointer and a standard
library vector<int>::iterator are random access iterators. Butthee also completely tgtimate
bidirectional iterators. In fact, thioelong to all fie categories. V¢ say that thg are modelsof all five.

The standard library has definitions foreftag dasses,one for each iterator cagery. Even though
they haveno members, each tag class is #edént data type and can be used for function naradoad-
ing. For example, we could ke two functions with the same name if one took an argument of class
random_access_iterator_tag and the other an argument of class
bidirectional_iterator_tag . The tags will be used for no other purpose.

The inheritance relationships between the tag classes correspond to the inclusion relationships
between the iterator caferies. Br example, eery random_access_iterator_tag objectis also a
bidirectional_iterator_tag object, and wery random access iterator is also a bidirectional itera-
tor. (Although every forward iterator is both an input iterator and an output iterelss

P060a AN hesenea ©2014 Mark Meretzky

~No b~ wWN PR

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators 843

forward_iterator_tag is derved only from classinput_iterator_tag . No one remembers
why it was not also dered from classoutput_iterator_tag J)

input_iterator_tag output_iterator_tag

forward_iterator_tag

bidirectional_iterator_tag

random_access_iterator_tag

| IExcerpt from <iterator>

struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional_iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public bidirectional_iterator_tag {};

The iterator_category member of an iterata@’iterator_traits must be a typedef for
one of the fie tag classesFor example, clas#terator_traits<node::iterator> originally had
the following member (line 40 afode.h on p. 806).

t ypedef forward_iterator_tag iterator_category;

A simpler way to accomplish the same result is towdetie iterator from a base class (line 1%0fle3.h
on p. 814).

class iterator: public std::iterator<forward_iterator_tag, int> {

v Homework 8.3e: define a category tester

Define a class that acts as an input iterath a specialization oterator_traits to go with
it. Theclass must output an error messageadrté compile if the user tries to mak do aything that an
input iterator does not need to do. This includes dereferencing the iterator before checking for end-of-
range; reading the same value more than once; copying the iterator and then dereferencing and/or incre-
menting both copies. Do the same for the other four categories.
A

8.4 Algorithmsin the Standard Template Library

8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators

The algorithms are template functiorihe ones in the standard library are defined in the header files
<algorithm> and<numeric> . Here is a simple definition faopy ; compare the other algorithms on
pp. 808-811.

The template gumentINPUT represents a data type that is at least an input iter@ier other con-
ventional names ar®OUTPUT FORWARIBIDIRECTIONAL, and RANDOMIt's dkay if INPUT is more
than just an input iteratort could also be forward, bidirectional, or random acceisilarly, OUTPUT

0608 AN hesenea ©2014 Mark Meretzky

O©CoOo~NOOOUTA, WNPE

NRPRRRRRERRRRE
QOO ~NOUDNWNROOO~N®UAWNEPR

NN
N -

WNDNNDNDNNN
QOWoO~NO U bW

w w
N -

844 Containers,lterators, and Algorithms

could be more than just an output iterator as long as it is mutable (line 5).

INPUT andOUTPUTdo not hae 1o refer to values of»actly the same type. But we must be able to

assign a value of typggpenameiterator_traits<INPUT>::value_type

*result . For example]NPUT andOUTPUTcould beshort * andint* | or
vector<short>::const_iterator andint* . But if they werewabbit *
to thecopy function would not compile.

An algorithm alvays assumes that an iterator is small enough to pass
We dso assume that an iterator is incrementable (line 4), whichyiourclass

Chapter 8

to the expression

andint* | the call

and return by value (line 2.)

output_iterator_int had to hae an operator++ even though it did nothing (p. 830).

t emplate <class INPUT, class OUTPUT>
OUTPUT copy(INPUT first, INPUT last, OUTPUT result)

{

f or (; first = last; ++first, ++result) {

* result = *first;

}

r eturn result;
}
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/copy/copy.C

#include <iostream>

#include <cstdlib>

#include <vector>

#include <list>

#include <algorithm> //for copy
using namespace std;

i nt main()
{
int a[] ={10, 20, 30}
const size_t n = sizeof a/ sizeof a[0];

vector<int> v(3); /Ilborn containing 0, 0, 0
copy(a, a + n, v .begin()); /ICan copy an array into a vector.

for (vector<int>::const_iterator it = v.begin(); it 1= v.end(); ++it) {
cout << *jt<<"\n"

}
cout <<"\n"
list<int> li(3); /lborn containing 0, 0, 0
copy(v.begin(), v.end(), li.begin()); //Can copy a vector into a list.
for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
cout << *it<<"\n";
}
cout <<"\n"
vector<int> big(5); /ICan copy part of a container into another.
copy(v.begin(), v.begin() + 2, big.begin() + 3);
for (vector<int>::const_iterator it=big.begin(); it = big.end(); ++it){
cout << *it<<"\n";
}
cout <<"\n%
0608 AN hesenea ©2014 Mark Meretzky

33
34
35
36}

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators 845

/lcopy(big.begin(), big.end(), v.begin()); //may crash the program
return EXIT_SUCCESS;

10
20
30

v Homework 8.4.1a: call the copy algorithm

(1) When we put a pointer data membpento classstack , we had to write a cop constructor (p.
153) and amperator= (p. 311) for that class. These member functiongfar loops to cop the data
membera. Replace each loop with a call to tbepy algorithm.

(2) Thenext member function of cladfe has nestefor loops cop to one array into another
(pp. 144-147). Replace theaMoops with a single call to treopy algorithm.

The first argument afopy should be the address of the first element of the.aBiage the array is
two-dimenstional, the first element haotabscripts. Thestatic data membeggnax andxmax were cre-
ated on pp. 239 and 423-424.

c opy(&newmatrix[0][0], &newmatrix[ymax][0], &matrix[0][0]);

As in C, a leading and a trailing0] will cancel each other out.

copy(newmatrix[0], newmatrix[ymax], matrix[0]);

The copy algorithm should also be called by tlife constructor that takes an array as ajuar
ment.
A

Overwrite with an iterator
The common ground on which he had at last brought both sides together was not
ground he had diswered, but ground he had created.

—Robert A. CaroThe Yeas of Lyndon Johnson: Master of the Senatel005

We will use the cop algorithm to introduce three mekinds of iterators: inserters, stream iterators,
and reverse iterators.

Let’s recall what the normal kind of iterator do€ghev.begin() in line 13 returns an angmous
iterator referring to the first element of thector We can apply at to this iterator because a vector iterator
is random access. The sum is another anonymous iteeftoring to the second element of the vector.

When line 14 writes into a container using this iterater elemenfl1 to which the iterator refers is
overwritten. Thishas no effect on the vectsidze or capacity.

0608 AN hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

O~NO O WNPE

846 Containers,lterators, and Algorithms Chapter 8

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inserter/overwrite.C

#include <iostream>
#include <cstdlib>
#include <vector>
using namespace std;

i nt main()
{
const int af] = {10, 21, 30};
const size_t n = sizeof a / sizeof a[0];
vector<int> v(a, a + n);
cout <<'"size ==" << v.size() << ", capacity == " << v.capacity() << "\n";
vector<int>::iterator it = v.begin() + 1; /IRefer to the 21.
*it = 20; //Overwrite the 21.
cout << '"size ==" << v.size() << ", capacity == " << v.capacity() << "\n";
for (it =v.begin(); it I= v.end(); ++it) {
cout << *it<<"\n";
}
return EXIT_SUCCESS;

size == 3, capacity ==
size == 3, capacity ==
10
20
30

The nev kind of iterator is called amserter; its data type has the formidable name in line Ad.
easier way to approach it is through tlzdues that its constructor puts into it: a reference to ¢lotowv
and the iteratov.begin() + 1 which we sa in the abee line 13. The inserter refers to the element
30.

When line 15 writes into a container with an inseiteg element to which the inserter refers is not
overwritten. Insteada new dement is inserted in front of it and the container becomeggiaAfter the
insertion, the iterator continues to refer to the 30.

Performing the insertion in front of the inserter afous to insert the meelement anywhere in the
container For example, we can insert awelement at the end of a container by using an inserter that
refers to theend “ element’. An inserter that inserted thew&lement after the inserter would not be able
to insert the n& element at the beginning of a container.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/inserter/inserter.C

#include <iostream>

#include <cstdlib>

#include <vector>

#include <iterator> [lfor insert_iterator
using namespace std;

i nt main()

{

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse lterators 847

10
11
12
13
14
15
16
17
18
19
20
21
22
23}

const int a[] = {10, 30, 40};
const size_t n = sizeof a/ sizeof a[0];

vector<int> v(a, a + n);

cout << '"size ==" << v.size() << ", capacity == " << v.capacity() << "\n";
insert_iterator<vector<int> > in(v, v.begin() + 1); //Refer to the 30.

*in = 20; lnsert 20 in front of the 30.
cout <<'"size ==" << v.size() << ", capacity ==" << v.capacity() << "\n";

for (vector<int>::const_iterator it = v.begin(); it 1= v.end(); ++it) {
cout << *jt<<"\n"

}

return EXIT_SUCCESS;

10
20
30
40

size == 3, capacity ==
size == 4, capacity ==

Three types of inserters

1)
(2)
3)

list

There are three types of inserter:

theplain oldinserter in lines 14-20, for inserting anywhere in a container;

thefront inserterin lines 21-24, for inserting meelements at the front of a container;
thebad inserterin lines 26-28, for inserting meelements at the end of a container.

There is no such thing as a front inserter feeetor , so his time we’'ll hae © demonstrate with a
. Bear in mind that éist iterator is not random access, so thia the abee line 13 will no longer

compile. W'll have 1 use thet++ in the following line 14.

Note that the constructor for a plain old inserter takesarguments (line 14), while the ones for the

other types ta&ane argument each (lines 22 and 26).

An inserter is an output iterato€ode that recges an nserter will therefore increment it after each

dereference. This harmless because incrementing an inserter does nothing (line 19).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inserter/inserters.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>

4 #include <iterator> //insert_iterator, front_insert_iterator, back_insert_iterator

{

using namespace std;

i nt main()

const int a[] = {30, 70, 80};
const size_t n = sizeof a/ sizeof a[0];

list<int> li(a, a + n);
list<int>::iterator it = li.begin();
insert_iterator<list<int> > i n(li, ++it); //Refer to the 70.

0608 AN hesenea ©2014 Mark Meretzky

848 Containers,lterators, and Algorithms Chapter 8

15 *in = 40; /lnsert 40 immediately in front of the 70.
16 /IAt this point, in still refers to the 70.

17 *in = 50; /lnsert 50 immediately in front of the 70.
18 /IAt this point, in still refers to the 70.

19 ++in; /[++ does nothing to an inserter: in still refers to the 70.
20 *in = 60; //nsert 60 immediately in front of the 70.
21

22 front_insert_iterator<list<int> > fi(li);

23 *i = 20; /lnsert 20 at the front of the list.

24 *i = 10; /lnsert 10 at the front of the list.

25

26 back_insert_iterator<list<int> > bi(li);

27 *pi = 90; /lnsert 90 at the end of the list.

28 *pbi = 100; //nsert 100 at the end of the list.

29

30 for (it = li.begin(); it != li.end(); ++it) {

31 cout <<*t<<""™;

32 }

33 cout <<"\n"

34

35 return EXIT_SUCCESS;

36}

10 20 30 40 50 60 70 80 90 100

Construct an anonymous inserter and pass it to a function

We @an alvays gve a rame to a ariable. Br example, lines 8-10 declare three inserters, which we
then pass to an algorithm.

1 #include <list>
2 #include <iterator> [lfor inserter, front_inserter, back_inserter
3 using namespace std;
4
5 | ist<int> li(a, a + n);
6 | ist<int>::iterator it = li.begin();
7
8 i nsert_iterator<list<int> > in(li, ++it);
9 f ront_insert_iterator<list<int> > fi(li);
10 back_insert_iterator<list<int> > bi(li);
11
12 my_algorithm(in);

13 my_algorithm(fi);
14 my_algorithm(bi);

But if an inserter is used only once, theneb eason to declare a name forWe aan simply call its
constructorwhich returns an anonymous inserter to W then pass the newborn insertef to

15 my_algorithm(insert_iterator<list<int> >(li, ++it));
16 my_algorithm(front_insert_iterator<list<int> >(1i));
17 my_algorithm(back_insert_iterator<list<int> >(li));

Here is an een easier way to do the same thing. The following functions construct and return the
same three kinds of inserter§hey are template functions, l&kmin andmake_pair , whose aguments
tell them what type of return value weamt. For example, the gumentli of data typdist<int> in
line 19 tellsfront_inserter to construct and return an anonymous

0608 AN hesenea ©2014 Mark Meretzky

18
19
20

NNNRPRREPRPRERRRRR
NFPOOWO~NODUDMWNROOO~N®DUAWNEPR

WINDNNDNDNNN
CQOWoO~NO U bW

w w
N -

W ww
a b~ w

36}

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators 849

front_insert_iterator<list<int> >

my_algorithm(inserter(li, ++it)); //construct insert_iterator<list<int> >
my_algorithm(front_inserter(li)); /[construct front_insert_iterator<list<int> >
my_algorithm(back_inserter(li)); //construct back_insert_iterator<list<int> >

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/inserter/copy.C

#include <iostream>

#include <cstdlib>

#include <vector>

#include <iterator> [lfor inserter and back_inserter
#include <algorithm> //for copy

using namespace std;

i nt main()
{
const intaf] ={10, 21, 31, 41, 50, 90};
const size_t na = sizeof a / sizeof a[0];
vector<int> v(a, a + na);
/IOverwrite the 21, 31, 41 with 20, 30, 40.
/[The third argument in line 18 refers to the 21.
const int b[] = {20, 30, 40};
const size_t nb = sizeof b / sizeof b[0];
copy(b, b + nb, v.begin() + 1);
llInsert 60, 70, 80 in front of the 90.
/[The third argument in line 24 refers to the 90.
const intc[] ={60, 70, 80};
const size_t nc = sizeof c / sizeof c[0];
copy(c, ¢ + nc, inserter(v, v.begin() + 5));
llInsert 100, 110, 120 at the end of the vector.
const short d[] ={100, 110, 120};
const size_t nd = sizeof d / sizeof d[0];
copy(d, d + nd, back_inserter(v));
for (vector<int>::const_iterator it = v.begin(); it 1= v.end(); ++it) {
cout <<*t<<""™;
}
cout <<"\n"
return EXIT_SUCCESS;

10 20 30 40 50 60 70 80 90 100 110 120

When not to use an inserter

If all you want to do is insert a value into a contaiiits faster to call the containsihsert mem-
ber function.We saw dasslist 's on p. 444; classrector has one too (line 12). In fact, there is also an
insert function that can do mannsertions at once (line 16Y.his is much faster than applying do an
inserter @er and over again.

P060a AN hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

1
2

850 Containers,lterators, and Algorithms Chapter 8

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inserter/insert.C

#include <iostream>
#include <cstdlib>
#include <vector>
using namespace std;

i nt main()

{
const int af] = {10, 60},
const size_t n = sizeof a / sizeof a[0];
vector<int> v(a, a + n);

v.insert(v.begin() + 1, 20)

const int b[] = {30, 40, 50};
const size_t nb = sizeof b / sizeof b[0];
v.insert(v.begin() + 2, b, b+ n b

for (vector<int>::const_iterator it = v.begin(); it 1= v.end(); ++it) {
cout <<*t<<""

}

cout <<"\n";

return EXIT_SUCCESS;

10 20 30 40 50 60

An inserter should be used only as aguanent of an algorithm that must be capable of eitiaer- o
writing or inserting. We pass a normal iterator to the algorithm when wanito werwrite one or more
elements; we pass an inserter when we want to inseromes. Ouexample will be thecopy algorithm.

Stream iterators

An ostream_iterator is a conduit leading to an output strearaut , cerr , clog , or to an
output file. An istream_iterator is a conduit leading in from an input streazim or an input file.
We wrote our evn stream iterators on pp. 816—832, but the ones in the standard libary are better because
they are templates.They can read and write grdata type. Of course, grgiven ostream_iterator
can write values of only one data type to the output stréamexample, the
ostream_iterator<int> in line 9 can output onlynt ’s. (See pp. 1047-1048 for the rarely-used
second argument of the template.)

The constructor for clagsstream_iterator takes two arguments. Thdirst is the output stream;
the optional second argument is a string to be output after each item.

On some platforms, thet in line 12 is required betweeneey pair of assignments tot . (Fortu-
nately,copy always applies a+ to its third agument.) Orother platforms, the+ may do nothing.For
portability, the ++ should alvays be written.

Line 19 will not compile because astream_iterator is not an input iteratorThis means that
anostream_iterator can be used as the third argumentayy , but not as the first or second.
—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/stream_iterator/ostream_iteratorl.C

#include <iostream>
#include <fstream> [[for ofstream

o608 AN hesenea ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators 851

3 #include <cstdlib>
4 #include <iterator> [lfor ostream_iterator
5 using namespace std;

6

7 i nt main()

8 {

9 ostream_iterator<int> it(cout, " bottles of beer on the wall\n");
10
11 *it = 100;
12 ++it;
13 *it = 99;
14 ++it;
15 *it = 98;
16 ++it;
17
18 /[--it; /lwon’t compile: this class has no operator-- function
19 /lint i = * it; //lwon’t compile: an ostream_iterator is not an input iterator
20
21 ofstream of("outfile");
22 ostream_iterator<int> os(of, "\n");
23 *os = 100;
24 ++0s;
25 *os = 99;
26 ++0s;
27 *os = 98;
28 ++0s;
29
30 return EXIT_SUCCESS;
31}

The abee lines 11-12 may be combined to

32 *it++ = 100;

Instead of declaring thestream objectof in the abee line 21 and using it only in 22, we should
malke it an aonymous temporaryChange lines 21-22 to

33 ostream_iterator<int> os(ofstream("outfile"), "\n");

The standard output produced by lines 9-16 is

100 bottles of beer on the wall
99 bottles of beer on the wall
98 bottles of beer on the wall

Theoutfile produced by lines 21-28 is

100
99
98

Pass a stream iterator to an algorithm

The abee autput could be doneaéter by writing directly to the output with<. A stream iterator
like an nserteyis intended only for use by an algorithm.

P060a AN hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA,WNPE

10{
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39}

852 Containers,lterators, and Algorithms Chapter 8

The following call to thecopy algorithm will process the vector dhte ’s in line 19. The normal
way to output the contents of a container is with the loop andcout in lines 21-23.

To oautput the same data with a stream iteratéhe type we will need is the
ostream_iterator<date> in line 26. We oould then loop through the container in 27-29. But these
lines are for demo purposes anlince we knav that we're writing to the standard outputsifaster to use
thecout loop in lines 21-23. An output stream iterator should be used only agamet of a template
function that must be capable of writing either to a container or to an output siAsapass a normal iter
ator to the function when we want to write to a container; we pass an output stream iterator wiaen we w
to write to an output stream.

For example, the call to theopy algorithm in line 32, with the output stream iteraterin line 26,
does all the work of the loop in 27-29.

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/stream_iterator/ostream_iterator2.C

#include <iostream>

#include <cstdlib>

#include <vector>

#include <algorithm> //for copy and fill_n
#include <iterator> [lfor ostream_iterator
#include "date.h"

using namespace std;

i nt main()

const date af] ={
date(date::july, 4,1776),
date(date::october, 29, 1929),
date(date::december, 7,1941),
date(date::july, 20, 1969),
date(date::september, 11, 2001)

h

const size_t n = sizeof a / sizeof a[0];

vector<date> v(a, a + n);

for (vector<date>::const_iterator it = v.begin(); it != v.end(); ++it) {
cout << *jt<<"\n"

}

cout <<"\n%

ostream_iterator<date> os(cout, "\n");

for (vector<date>::const_iterator it = v.begin(); it != v.end(); ++it, ++0s) {
*0s = *it;

}

cout <<"\n";

copy(v.begin(), v.end(), 0s);
cout <<"\n"

fill_n(ostream_iterator<char>(cout), 80, ™*);
cout <<"\n"

return EXIT_SUCCESS;

Pb608 AN hesenea ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators 853

71411776 lines 21-23
10/29/1929

12/7/1941

7/20/1969

9/11/2001

71411776 lines 26-29
10/29/1929

12/7/1941

7/20/1969

9/11/2001

71411776 line 32
10/29/1929

12/7/1941

7/20/1969

9/11/2001

kkkkkkkkkkkkkkkhkkkkkkkkkkhhkkkkkkkkhkkkkhhkkkkkkkkkkhkkkhkkkkkkkkkkhhkkhkkkkkkkkkkhkkkx

Here is a simple definition for tHél_n algorithm. Usuallythe first two arguments of an algo-
rithm are a pair of iteratorfirst andlast . But since we require nothing morel@f than that it be an
output iteratorthere would be no guarantee that a comparisofiref andlast would even compile.
We terefore pass a count of any type that can be compared and decremented>wite assume than
is integral and therefore fast enough to passdhyev Se¢. 881 for anothern algorithm.

1 / /Excerpt from <algorithm>
2
3 t emplate <class IT, class N, class T>

4 IT f ill_n(IT it, N n, const T& t)
5 {
6 for(;n>0;-n){
7 *it=t;
8 ++it;
9 }
10
11 return it;
12}

The following program copies its standard input directly to the standard output, integer dsr.inte
Along the vay, it condenses all the whitespace between suaseeggdut integers into a single wkne.
Since each iterator is mentioned only once, it can be an anonymous temporary.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stream_iterator/copy.C

#include <iostream>
#include <cstdlib>
#include <iterator>
#include <algorithm>
using namespace std;

i nt main()

{

copy(
istream_iterator<int>(cin),

istream_iterator<int>(),

PO OWoOoO~NOOUOD»WNLPE

B

0608 AN hesenea ©2014 Mark Meretzky

854 Containers,lterators, and Algorithms Chapter 8

12 ostream_iterator<int>(cout, "\n")
13);
14 return EXIT_SUCCESS;
15}
Warning. Theistream_iterator<int> in the abee line 10 delers only the integers read

from input. It discards the whitespace between th@&ims is because the iterator calls@erator>>
which discards whitespace.

For integers, this is probably what weawt. For characters, we will probably be dismayed when the
whitespace eliminated.

16 copy(

17 istream_iterator<char>(cin),
18 istream_iterator<char>(),

19 ostream_iterator<char>(cout)
20);

To read @ery characterwhitespace or not, do the following before calloapy . See p. 359.
21 cin >> noskipws;

Another way to copevery character was in p. 329.

Pass a stream iterator to a constructor

I'd like to read intgers from the standard input and store them intectovv, stopping when the
input is xhausted. Ishould “slurp’ the entire input lik the following statement in the language Perl.

#Perl example.
#The expression @v provides an "array context” for the expression <STDIN>.
@v = <STDIN>;

The two arguments of the vect@’'mnstructor are the beginning and end of the standard input.

—On the Web at
http://i5.nyu.edu/ Omm64/book/src/stream_iterator/constructor.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <vector>

4 #include <iterator>

5 #include <algorithm>
6 using namespace std,;
7

8

i nt main()

9 {
10 vector<int> v(istream_iterator<int>(cin), istream_iterator<int>());
11 sort(v.begin(), v.end());
12 copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));
13
14 return EXIT_SUCCESS;
15}

Unfortunately the syntax in the alve line 10 did not define @wector namedv. It declared a func-
tion nameds. Then line 11 complained because a function has no members.

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators 855

constructor.C: In function ’int main()’:

constructor.C:11:9: error: request for member 'begin’ in 'v’, which is of
non-class type ’std::vector<int>(std::istream_iterator<int>,
std::istream_iterator<int> (*)())’

constructor.C:11:20: error: request for member 'end’ in 'v’, which is of

Why did line 10 thinkv was a function? Theollowing is a simpler example of the same problem.
The first four declarations declare the same fundtiaeturning avector<int> . Its first argument is an
integer; the second is a pointer to a function that takes no arguments andiméeturns

The declaration in line 5 omits the asteridfow that it's gone, the surrounding parentheses are no
longer needed. The declaration in line 6 omits the nanpe dhe one in line 7 adds unnecessary but per
missible parentheses around the name ¢f. 671). This is xactly the syntax we ke in the abee line
10. Itdeclares a function. It does not call the constructor facéov Given a gatement with tw possible
interpretations, declaration or function call, the languageyal treats it as a declaration. See pp. 671 and
807-808 for simpler examples.

An obscure rule of grammar lets us fix thidle annot hae parentheses around an argument in a
declaration for a functionBut we can hee parentheses around an actual argument when the function is
called. Inparticular when calling a constructowe an hae parentheses around an argument of the con-
structor In this example, we & three choices. Line 8 has parentheses around the entire first argument,
int (i) . Line 9 has parentheses around the secandrant,int () . Line 10 has parentheses around
both. Lines8-10 are definitions for an object namied The objects constructor takes tav arguments,
which in this case are the anonymous temporaries returned by the one- and zero-argument constructors for
the data typnt . We saw the one-argument constructor on p. 134 and the zero-argument one on p. 660.

1 #include <vector>
2 using namespace std,;
3
4 vector<int> f(int i , i nt(*p)()); //Declare a function named f.
5 vector<int> f(int i, i nt p 0) /IDeclare a function named f.
6 vector<int> f(int i, i nt 0); //Declare a f unction named f.
7 vector<int> f(int (i) , int 0); //Declare a f unction named f.
8 vector<int> f((int (i)), int 0); /IDefine an object named f.
9 vector<int> f(int (i) , (int (0); //Define an object named f.
10 vector<int> f((int (i)), (int (0); //Define an object named f.
To fix line 10 of the abee constructor.C , parentheses around the first argument would be fine.
11 vector<int> v((istream_iterator<int>(cin)), istream_iterator<int>());
| love anorymous temporaries as much as thetmean. But we canvaid the whole issue by giving names
to the iterators.
12 const istream_iterator<int> begin(cin);
13 const istream_iterator<int> end;
14
15 vector<int> v(begin, end);

Although the abee lines 11 and 15 mocompile, thg cannot knav how mary elements are in the
vector until the input has beenxtausted. Onlythen can the allocate a block of memory of the correct
size. Thevalues may hee b be opied through a series of blocks of geometrically increasing sizes until
they reach their final resting place. If the values are objects, this will be done by calling thetooep
structor.

0608 AN hesenea ©2014 Mark Meretzky

856 Containers,lterators, and Algorithms Chapter 8

Reverse iterators

When you apply the operatet to areverse iteator, it goes backard. Whernyou apply-- , it goes
forward. Areverse iterator has to be bidirectional.

Therbegin member function of a container returns eerse iterator that refers to the last element
of the container Therend function returns a ke&rse iterator that refers to the empty slot where the ele-
ment before the first element would Héthe container is emptybegin would return the same iterator
asrend , just asbegin would return the same iterator asd.

Classesvector , list , map and string have areverse_iterator member (line 14).
Classestack andqueue have ro iterators at all, neerse or otherwise. Theredso a
reverse_iterator template class (lines 23-25) for creating \erge iterator out of a pointer oryan

other bidirectional iterator.

The loop in line 14 is for demonstration purposes.oAlyeverse_iterator is intended for use
only as the argument of an algorithm.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/reverse_iterator/reverse_iterator.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <vector>

4 #include <iterator> //for ostream_iterator and reverse_iterator template
5 #include <algorithm>

6 using namespace std,;

7
8 i nt main()
9 {
10 const intaf] = {10, 20, 30};
11 const size_t n = sizeof a/ sizeof a[0];
12 vector<int> v(a, a + n);
13
14 for (vector<int>:reverse_iterator it = v.rbegin();
15 it !=v.rend(); ++it) {
16 cout << *jt<<"\n"
17 }
18 cout <<"\n";
19
20 copy(v.rbegin(), v.rend(), ostream_iterator<int>(cout, "\n"));
21 cout <<"\n";
22
23 copy(reverse_iterator<const int *>(a + n),
24 reverse_iterator<const int *>(a),
25 ostream_iterator<int>(cout, "\n"));
26
27 return EXIT_SUCCESS;
28}

D608 AN hesenea ©2014 Mark Meretzky

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18}

19

Section 8.4.1 copy, Inserters, Stream Iterators, and Reerse Iterators 857

30
20
10

30
20
10

30
20
10

v Homework 8.4.1b: const_evese_iterator

A reverse_iterator , like a pain olditerator , dso comes in @onst_ flavor. But when
we try to use it, something goes wrong on some compilers.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/reverse_iterator-
/const_reverse_iterator.C

#include <iostream>
#include <cstdlib>
#include <vector>
using namespace std;

i nt main()

{
const int a[] = {10, 20, 30};
const size_t n = sizeof a / sizeof a[0];
vector<int> v(a, a + n);

for (vector<int>::const_reverse_iterator it = v.rbegin();
it I=v.rend(); ++it) {
cout << *jt<<"\n"

}

return EXIT_SUCCESS;

30
20
10
Therend member function of @onst container returns aonst_reverse_iterator . But
our vectotv in the abee line 12 is notonst . Itsrend function returns a plain old
reverse_iterator . See p. 314 for a previous example of@st and noneonst objects haing
different member functions.
There is nooperatorl= that will compare arector<int>::const_reverse_iterator
with avector<int>::reverse_iterator . Apply one of the first three fixes.

(1) Cast ther in the abee line 13 to aconst vector and then call itsend function. We ectually
cast it to a reference tocanst vector, to avoid making a copy; see p. 81.

it !=static_cast<const vector<int>&>(v).rend();

0608 AN hesenea ©2014 Mark Meretzky

858 Containers,lterators, and Algorithms Chapter 8

(2) Cast thev.rend() in line 13 to avector<int>::const_reverse_iterator . We
assume that an iterator is fast to oo we tn’t bother casting it to a reference.
20 it !=static_cast<vector<int>::const_reverse_iterator>(v.rend());
(3) The cleanest solution is to lealine 13 the way it is, and define aperator!= function that

compares the tavtypes of iterators. It packages the cast in theyal§io@).

21 inline bool operator!=(vector<int>::const_reverse_iterator itl,

22 vector<int>:: reverse_iterator it2) {
23 return itl != static_cast<vector<int>::const_reverse_iterator>(it2);
24}
(4) Ideallyoperator!'= should be a template function, a superficial change to the §b@),

25 template <class T>
26 inline bool operator!=(typename vector<T>::const_reverse_iterator it1,

27 typename vector<T>: reverse_iterator it2) {
28 return itl 1=
29 static_cast<typename vector<T>::const_reverse_iterator>(it2);
30}
But we cant do it. See"template argument deductiom pp. 977-979.
A

v Homework 8.4.1c: other copies
(1) What goes wrong if the source and destination rangespyf overlap?

i ntaf] ={10, 20, 30, 40, 50, 60},
const size_t n = sizeof a / sizeof a[0];

/ /Want to move the 10 to where the 30 is, etc.
copy(a,a+4,a+?2);

abhwNRE

Fix it by calling copy_backward with the same three argumentscapy . This time, the agjuments
must be bidirectional iterators.

(2) What happens if you pass the arguments oy topeverse_copy or unique_copy ? (The
first two arguments ofeverse_copy must be bidirectional iterators.)

6 const string a[] = {"hello", "hello", "hello", "goodbye", "goodbye"};
7 const size_t n = sizeof a / sizeof a[0];
8 unique_copy(a, a + n, ostream_iterator<string>(cout, "\n"));
(3) remove_copy takes four arguments.
9 const string a[] = {"hello", "™, ™, "goodbye", "},
10 const size_t n = sizeof a/ sizeof a[0];
11 /ISkip the empty lines.
12 remove_copy(a, a + n, o stream_iterator<string>(cout, "\n"), ");
(4) replace_copy gives us nstant Cockng
13 char a[] = "Henry Higgins\n";
14 const size_t n =sizeof a/ sizeof a[0] - 1;
15 replace_copy(a, a + n, o stream_iterator<char>(cout), 'H’, '\");
(5)rotate_copy cuts the deck.
16 char a[] = "housedog";
17 const size_tn =sizeof a/ sizeof a[0] - 1;

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.2 find,find_if,andFunction Objects 859

18 rotate_copy(a, a + 5 a + n, o stream_iterator<char>(cout));
19 Cout << ll\nll;

8.4.2 find,find_if,and Function Objects
Thefind algorithm searches for a value in a container.

1 t emplate <class INPUT, class T>
2 | NPUT find(INPUT first, INPUT last, const T& t)
3 {
4 f or (; first |= last; ++first) {
5 i f (*irst==1){
6 break;
7 }
8 }
9

10 return first;

11}

The agumentt does not necessarily V&t be of he same data type as the elements in the container: we
can search for double value in a container ot 's. Had the algorithm been defined as followsy an
third argument we supply would be forcibly veried to the element typalMe would then receie a varn-

ing as thedouble was truncated tant .

12 /INot the definition in the standard library.
13

14 template <class INPUT>

15 INPUT find(INPUT first, INPUT last,

16 const typename iterator_traits<INPUT>::value_type& t)
17 {

18 for (; first != last; ++first) {

19 if (Hirst==1){

20 break;

21 }

22 }

23

24 return first;

25}

find repeatedly uses the= operator in the ahwe line 5 to find what it looking for For example,
the following line 13 uses= to compare the integer 30 with the integers in the aragd line 32 uses=
to compare the date of the moon landing with the dates irettterv. To compile line 32, we must mak
classdate equality comparableWe could write anoperator== that takes twalate s, or an
operator int that cowerts adate to an intger An == operator applied to twdates would then be
the built-in== that compares twintegers.

The third argument dind in line 32 is the objeanoon constructed in line 31But moonis men-
tioned nowhere else, so there is no needve fa rame. Itcould hae keen an an angmous object like
the date in line 41.

If our iterators were forward iterators and our containes wlready sorted, we could perform a
binary search.This is faster than thénd algorithm. For example, the elements oheap are sorted by
subscript, and the magid member function will perform a binary seardfor containers that hee o
find member function, you could call thénary search algorithm. Thefind algorithm should be
used only when the iterators are not forward or the container is not sorted.

P0608 AN hesenea ©2014 Mark Meretzky

860 Containers,lterators, and Algorithms Chapter 8

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/find.C

O©CoOoO~NOOOUTA, WNPE

i
{

#include <iostream>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include "date.h"
using namespace std;

nt main()

const int a[] = {10, 50, 30, 40, 20}; /Ineed not be sorted for find
const size_t n = sizeof a / sizeof a[0];

const int *const p = find(a, a + n, 30);

if (p==a+n){
cout << "Didn't find 30.\n";
} else{
cout << "Found 30 at position " << p - a <<".\n";

}

const dated[] ={
date(date::october, 29, 1929),
date(date::july, 4,1776),
date(date::july, 20, 1969),
date(date::september, 11, 2001),
date(date::december, 7,1941)

¥

const size_t nl = sizeof d / sizeof d[0];

vector<date> v(d, d + nl);

const date moon(date::july, 20, 1969);
const vector<date>::const_iterator it1 = find(v.begin(), v.end(), moon);

if (itl ==v.end()) {
cout << "Didn'tfind " << moon << ".\n";
} else{
cout <<"Found" << moon << " at position " << it1 - v.begin() << ".\n";

}

const vector<date>:.const_iterator it2 =
find(v.begin(), v.end(), date(date::july, 4, 1776));

if (it2 ==v.end()) {
cout << "Didn't find it.\n";
} else{
cout << "Found it at position " << it2 - v.begin() << ".\n";

}

return EXIT_SUCCESS;

Pb60a AN hesenea ©2014 Mark Meretzky

OO, WN B

Section 8.4.2 find,find_if,andFunction Objects 861

Found 30 at position 2. lines 13-19
Found 7/20/1969 at position 2. lines 31-38
Found it at position 1. lines 40-46

v Homework 8.4.2a: let cookie::operator new call find

Let theoperator new member function of clagokie call thefind algorithm to find the first
false inthe array obool 's. See p. 419.
A

v Homework 8.4.2b: let class life’operator- call find
On pp. 441-442 we wrote @perator- function to measure the distance between life

objects. ltcontains dor loop that searches forlidée in avector<life> by callingoperator==
Perform the search by callifigd
A

v Homework 8.4.2c: let thefind member function call thefind algorithm

Our rudimentary versions of classest andmap had afind member function on pp. 696-702.
Let this member function do its work by calling fired algorithm.
A

v Homework 8.4.2d: an operator< for the template class set

Implement theoperator< in pp. 777 and 778 that takesohwf the standard librarget objects,a
andb, and returns true i& is a proper subset bf. Youroperator< should be a template function whose
two arguments are read-only referenceset<T> .

A

Binders

For more complicated searching tasks, we will need function objects and combinations thézeof.
sav the function objecgreater on pp. 769-770. It inherits three typedef members named

first_argument_type , second_argument_type , andresult_type from its base class.
/ [Excerpt from <functional>
t emplate <class T>
struct greater: public binary_function<T, T, bool> {
bool operator()(const T& a, const T& b) const {return a > b;}
b

An object of this class, such as tyan the following line 18, can do only one thing for us: iteskwo
arguments and tells us if the first is greater than the secdmds usual when an object has only one signif-
icant member function, not counting whageconstructor or destructor it might¥e the member function

is namedoperator() . Itis called in line 20. It takes tavdouble amuments and returntsue if the
first argument is greater than the second.

Of course, this kind of object is intended for use only within an algorithime 20 is just a demon-
stration. Ifall we want to do is compaf®0 and98.6 , we an simply the line 20 to

i f (100.0 > 98.6) {

If 98.6 is the most common second argument, it would beergent if we didnt haveto write it all
the time. | wish we had an object just &élg, except that it would be hardwired to u88.6 as the second
argument of itoperator() member function.

That's what the object nametever is in line 26. It has a public member function named
operator() , called in line 28, which takes om®uble amument and returnsue if the argument is
greater tha98.6 .

D608 AN hesenea ©2014 Mark Meretzky

862 Containers,lterators, and Algorithms Chapter 8

The easiest way to understafeler is to look at its tw data members.We @ant see them
directly—theyre private—hut we can see the bnerguments passed to its constructor in line 28ver
has a cop of g and a98.6 stored permanently inside it. In line 28, thgerator() member function
of fever passes its gument100.0 , and the98.6 data member diever , to the operator() mem-
ber function of theg data member dever . Theoperator() member function ofever then returns
the return value of theperator() member function of.

Line 34 passes thiever object to a functiorf. But there is no need towg a rame to the
binder2nd object. Anobject that is used only once should be an ymomus temporaryLine 35 con-
structs one and passes ifto

The helper functiorbind2nd in line 36 is an easieray to construct dinder2nd object. Its
return type is dictated by the data type of its arguments, jeshikfunctionanake_pair , inserter
front_inserter , and back_inserter . (In fact, the same was true of owery first template func-
tion, min.) For example, the twarguments in line 36 makit construct and return a
binder2nd<greater<double> > , which is then passed fa

Line 37 is just lile line 36, except it doednuse thegreater<double> objectg. In its place, it
constructs an angmousgreater<double> object by calling the constructor with no arguments for
this class.

The functionf in lines 6—14 is very forging. Itwill acceptany predicate to which we can apply a
double in parentheses and from which we can get a result thabis or corvertable thereto (line 9).

—On the Web at

http://i5.nyu.edu/ Omm64/book/src/find_if/bind.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <functional> //for greater, binder2nd, and bind2nd
4 using namespace std,;
5
6 t emplate <class PREDICATE>
7 void f(const PREDICATE& predicate)
8 {
9 i f (predicate(100.0)) {
10 cout << "100.0 passes the test.\n";
11 } else{
12 cout << "100.0 fails the test.\n";
13 }
14}
15
16 int main()
17 {
18 greater<double> ;
19
20 if (9(100.0, 98.6)) { /lif (g.operator()(100.0, 98.6)) {
21 cout << "You have a fever.\n";
22 } else{
23 cout << "Your temperature is normal.\n";
24 }
25
26 binder2nd<greater<double> > f ever(g, 98.6);
27
28 if (fever(100.0)) { /lif (fever.operator()(100.0)) {
29 cout << "You have a fever.\n";
30 } else{
31 cout << "Your temperature is normal.\n";

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.2 find,find_if,andFunction Objects 863

32 }
33
34 f(fever);
35 f(binder2nd<greater<double> >(g, 98.6));
36 f(bind2nd(g, 98.6));
37 f(bind2nd(greater<double>(), 98.6));
38
39 return EXIT_SUCCESS;
40}
You have a fever. lines 18-24
You have a fever. lines 26-32
100.0 passes the test. line 34
100.0 passes the test. line 35
100.0 passes the test. line 36
100.0 passes the test. line 37

Here are definitions for clagénder2nd and the functiobind2nd ; line 56 is thgpunchline. The
“smaller’ function object is of clask; its operator() takes two aguments. The' larger’ function
object is of clasbinder2nd ; its operator() takes one argument.

Now at last we can see one use for the typedef menfibgrsargument_type)
second_argument_type , andresult_type of classgreater on pp. 769-770. The
second_argument_type of the smaller function object becomes the type of the data met@bef
the larger function object (line 48We @n also see whthe second_argument_type cannot be a ref-
erence. Thenitial_x2 in line 51 is a reference to tecond_argument_type , and there is no
such thing as a reference to a reference.

41 //Excerpt from <functional>

42

43 template <class F>

44 class binder2nd: public unary_function<typename F::first_argument_type,

45 typename F:result_type> {
46 protected:

47 F f

48 typename F:second_argument_type x2;

49 public:

50 binder2nd(const F& initial_f,

51 const typename F::second_argument_type& initial_x2)

52 : f(initial_f), x2(initial_x2) {}

53

54 typename F:result_type

55 operator()(const typename F::first_argument_type& x1) const {
56 return f(x1, x2);

57 }

58}

59

60 template <class F, class X2>

61 inline binder2nd<F> bind2nd(const F& f, const X2& x2)

62 {

63 return binder2nd<F>(f, typename F::second_argument_type(x2));
64}

The bigger function object also has otwtypedefs of its wn, argument_type and

result_type , which it inherits from its base classary_function . This would allav the bigger
function object be part of aven bigger one.

0608 AN hesenea ©2014 Mark Meretzky

864 Containers,lterators, and Algorithms Chapter 8

65 //Excerpt from <functional>
66

67 template <class T1, class T2>
68 struct unary_function {

69 typedef T1 argument_type;
70 typedef T2 result_type;
71}

v Homework 8.4.2e: define class binderlst and a function bind1st

Define a template cladsinderlst similar to binder2nd . Like binder2nd , it will make a
larger function object (with one gument) out of a smaller one (withawrguments). Thigime, it will be
the smaller function objectfirst argument that is hardwired in. Also neasbind1st helper function.

The standard library already habiaderlst andbindlst belonging to namespastd , so wse
a double colon to specify that yours belong to no namespace. When you test them, remember to change
greater toless .

f (bind2nd(greater<double>(), 98.6));
2 f (::bind1st(less<double>(), 98.6)); //should do the same thing

=Y

A

Search an array with find_if

If we know the exact value we’re looking fave all find . If we're looking for ag value that satis-
fies a predicate, i.e., that makesfantrue, we calfind_if

Here is a simple definition fdnd_if in the header filgalgorithm> . The first two aaguments
must be input iterators, kkthe first two arguments offind . The third must be a predicate that caretak
one agument of the type (or ceatible to the type) read by the input iteratoFxr example, the input iter
ators can be pointers tiot , and the predicate can be a pointer to a function thastakint and returns
abool .

1 t emplate <class INPUT, class PREDICATE>
2 | NPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
3 {
4 f or (; first |= last; ++first) {
5 i f (predicate(*first)) {
6 break;
7 }
8 }
9
10 return first;
11}

We @n search a container ioft 's either by callingfind with a third argument that is ant , or
by callingfind_if with a third argument that is a predicate acceptingian

One example of a predicate would be the funatjerater_than_30 in line 8. To sarch a con-
tainer for the first number greater than 3@eghe address afreater_than_30 to thefind_if in
line 15.

The functiongreater_than_30 has the threshold 30 hardwired in. But we ddmaveto write a
separate function for each thresholls in the previous program, th@nd2nd function in line 22 will
construct and return an anonymous object that can act as a pretikagerator() member function
will do exactly the same thing as the functigreater_than_30 . It's the same kind of angmous
predicate as the one in the abdine 37.

The compose2 function in lines 30—-34 builds a big function object out of three smaller oFtes.
big objects operator() member function takes onet argument and returnsue if the agument

P060a AN hesenea ©2014 Mark Meretzky

Section 8.4.2 find,find_if,andFunction Objects 865

lies between 35 and 43 his operator() does its work by passing its argument to dperator()
of the “greater than 35bbject and the “less than 4%jbject; the results are passed to dperator()
of the *and” object. Inthe diagram, the binary operators are solid, the unary operators are dashed, and the
values that are not function objects are dott¥¢éke had to usecompose?2 becausdogical_and is a

binary operator It has nothing to do with the fact thgiteater andless are binary operators.

S

F-———=———- compose2 — - - - - ——- T
. — bind2nd — — bind2nd — |
> o35 i fesl i< | a5 1
Lo 3 Lol 3
L e L L J

compose2 is not part of the Standard Template Librargo ine 5 had to include
<ext/functional> and line 30 had to mention the namespaaggnu_cxx (with a double underscore
before theg).

Since there are so mamvays to compose functions, | think a better namectompose2 would
have beencompose_fglx g2x after the mathematical expression

f(91(x), 92(x))

See the punchline (line 23) of the fragment after theiatig program; compare with line 56 aloand
the f(g1(X1), g2(%)) on p. 909. In our casgl andg2 would be the “greater than 3%ind “less than 45’
functions, and would be the “logical andfunction.

—On the Web at

http://i5.nyu.edu/ Omm64/book/src/find_if/find_if1.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <algorithm>
4 #include <functional> [ffor greater, less, logical_and, bind2nd
5 #include <ext/functional> //for compose2
6 using namespace std;
7
8 i nline bool greater_than_30(int i) {return i > 30;}
9
10 int main()
11
12 const int a[] = {10, 30, 20, 40, 50}; /Ineed not be sorted for find_if
13 const size_t n =sizeof a/ sizeof a[0];
14
15 const int*p =find_if(a, a + n, greater_than_30);
16 if (p==a+n){
17 cout << "Found no int greater than 30.\n";
18 } else{
19 cout <<"Found" <<*p<<"at position " << p-a<<"\n"
20 }
21
22 p = find_if(a, a + n, bind2nd(greater<int>(), 30));
23 if (p==a+n){
24 cout << "Found no int greater than 30.\n";
25 } else{
26 cout <<"Found" <<*p<<"at position " << p-a<<"\n"
27 }
28
29 p = find_if(a,a+n,
30 __gnu_cxx::compose2(

0608 AN hesenea ©2014 Mark Meretzky

866 Containers,lterators, and Algorithms Chapter 8

31 logical_and<bool>(),
32 bind2nd(greater<int>(), 35),
33 bind2nd(less<int>(), 45)
34)
35);
36
37 if (p==a+n){
38 cout << "Found no int in the range 35 to 45 exclusive.\n";
39 } else{
40 cout <<"Found" <<*p<<"atposition"<<p-a<<"\n"
41 }
42
43 return EXIT_SUCCESS;
44}

Found 40 at position 3. lines 15-20

Found 40 at position 3. lines 22-27

Found 40 at position 3. lines 29-41

Here is a definition for cladegical_and ; it's analogous to clasgreater (pp. 769-770).We

could not hae ramed itand because this is a C+€yword, a synonym for th&& operator.
/ [Excerpt from <functional>
t emplate <class T>

struct logical_and: public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const {return x && y;}

OO, WN P

b

Here is a definition for cladsinary_compose . It is alled ‘binary” because thé in line 23
takes tvo aguments. Thidine is the punchlinel think a better name for this class wouldé&een
composer_fglx_g2x

7 | IExcerpt from <ext/functional>
8 / /ICompose three functions f, g1, and g2 like this: f(g1(x), g2(x))
9

10 template <class F, class G1, class G2>

11 class binary_compose: public

12 unary_function<typename G1::argument_type, typename F:result_type> {
13 F f

14 Gl 91,

15 G2 g2;

16 public:

17 binary_compose(const F& initial_f,

18 const G1& initial_g1, const G2& initial_g2)

19 : f(initial_f), g1(initial_g1), g2(initial_g2) {}

20

21 typename F:result_type

22 operator()(const typename G1::argument_type& x) const {
23 return f(g1(x), g2(x));

24 }

25}

compose? is like the functionamake_pair , inserter , and bind2nd : it constructs and returns
an anonymoubinary_compose object whose data type depends on the three argumentsrei® g
compose?2.

P0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.2 find,find_if,andFunction Objects 867

26 template <class F, class G1, class G2>

27 inline binary_compose<F, G1, G2>

28 compose?2(const F& f, const G1& g1, const G2& g2)
29{

30 return binary_compose<F, G1, G2>(f, g1, g2);
31}

An ideal language

The function body in line 8 of the amfind f1.C is simple, but is far from its point of use in
line 15. The anonymous object in lines 30—-34 is used on the spot*—but the notation is dfEadéilthe
best of both wrlds, use the newer version of C++ called C++0x. The empty pair square brackets indicates
that the anonymous function (fambda function”) does not use yawariables from the surrounding func-
tion, in this casenain .

1 p = find_if(a, a + n, [] (int x) -> int {return x > 35 && x < 45;});

Search a container of objects with find_if

Before we can compiléox , we must male dass date “greater than or equalomparable. W
could define amperator>= function or aroperatorint function.

But as in the last program, we dbhaveto bother writingfox . Thebind2nd function in line 35
will construct and return an anonymous predicate wbpseator() member function will do the same
thing asfox . We saw a1 analogous object in line 22 of the previous program.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/find_if/find_if2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <algorithm>
5 #include <functional> /ffor greater, less, logical_and, bind2nd
6 #include <ext/functional> //for compose2
7 #include "date.h"
8 using namespace std;
9
10 inline bool fox(const date& d) {
11 static const date turn_of _the_century(date::january, 1, 1901);
12 return d >= t urn_of_the_century; //return operator>=(d, turn_of_the_century);
13}
14
15 int main()
16 {
17 date d[]={
18 date(date::july, 4,1776),
19 date(date::october, 29, 1929),
20 date(date::july, 20, 1969),
21 date(date::december, 7,1941),
22 date(date::september, 11, 2001)
23 3
24 const size_t n = sizeof d / sizeof d[0];
25 vector<date> v(d, d + n);
26
27 vector<date>::const_iterator it = find_if(v.begin(), v.end(), fox);
28 if (it==v.end()){

Pe060a AN hesenea ©2014 Mark Meretzky

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58}

868 Containers,lterators, and Algorithms Chapter 8

cout << "Found no date greater than or equal to January 1, 1901.\n";
} else{
cout <<"Found" << *it << " at position " << it - v.begin() << ".\n";
}
it = find_if(v.begin(), v.end(),
bind2nd(greater_equal<date>(), date(date::january, 1, 1901)));
if (it==v.end()){
cout << "Found no date greater than or equal to January 1, 1901.\n";
} else{
cout <<"Found" << *it << " at position " << it - v.begin() << ".\n";
}
it = find_if(v.begin(), v.end(),
__gnu_cxx::compose2(
logical_and<bool>(),
bind2nd(greater_equal<date>(), date(date::january, 1, 1901)),
bind2nd(less<date>(), date(date::january, 1, 2001))
)
);
if (it==v.end()) {
cout << "Found no twentieth century date.\n";
} else{
cout <<"Found" << *it << " at position " << it - v.begin() << ".\n";
}
return EXIT_SUCCESS;
Found 10/29/1929 at position 1. lines 27-32
Found 10/29/1929 at position 1. lines 34-41
Found 10/29/1929 at position 1. lines 43-55

v Homework 8.4.2f: should game::get call find_if?

game::get could perform its search by callifijmd_if if we passed an object of the fallimg

classat_location tofind_if . To let us mention theperator() member of class

at_location in line 17, we must define claas location before classwabbit . To let us mention
thex andy members of classabbit in line 21, we must define the function

at_location::operator() after classwabbit .

/ [Excerpt from wabbit.h

class wabbit; /IForward declaration lets line 12 mention wabbit.

class at_location {
const unsigned x;
const unsigned y;

public:

at_location(unsigned initial_x, unsigned initial_y)

x(initial_x), y(initial_y) {}

bool operator()(const wabbit *p) const;

printed 4/8/14
9:06:03 AM

hesenea ©2014 Mark Meretzky

Section 8.4.2 find,find_if,andFunction Objects 869

13}

14

15 class wabbit {

16 /letc.;

17 friend bool at_location::operator()(const wabbit *p) const;
18}

19

20 inline bool at_location::operator()(const wabbit *p) const {

21 return X == p->X && Yy == p->y;

22}

The first tvo aguments passed to find_if will be of type
game::master_t::const_iterator , causing the return value &hd_if to be of the same type.
The return value ojame::get , howeve, will continue to be game::master_t::value_type

The Homevork does not ask you to makame::get callfind_if . It asks you to decide if &
worth it.

Is there an easieray to call an algorithm to do the work wiabbit::get ? Let's brainstorm.
Suppose we made it possible to compare (witk)gawabbit * and apair<unsigned,
unsigned> . Then we could pass tlpair tofind . Instead of having andy data members in a
wabbit , should classvabbit be denved from clasgair<unsigned,unsigned> ?
A

Build a function object out of a pointer to a function

The third argument dfnd_if is usually a predicate that returnb@ol . But it could also be the
strlen in line 14: it returns a@ize_t , which is cowertible to bool . This line searches for a string
whose length is not zero.

Line 23 will search for a string whose length isTa do this, we will build a bigger function object
out of the tvo gnaller ones in lines 25 and 2&omething will go wrong, heever, if we try to build the
bigger object directly out cftrlen

The second argument of the functioomposel in line 24 must be an object with a public member
namedargument_type . We havealready seen that the functioompose2 had similar requirements:
its second and third arguments had teehthe same membeWe saw what theargument_type was
used forin line 21 of the definition for claggnary _compose on p. 866.

But suppose we want to use a plain old pointestien , not a function object, as an argument of
composel or compose2? A pointer has nargument_type member; in &ct, it has no members at
all. Only objects hae members. @ supply the necessary members, we can wrap the pointer in the-follo
ing function object.

X is the data type of each object in the contaiipeis a pointer to a function whose argument ¥ a
and whose return value isya Classpointer_to_unary_function is derived from class
unary_function , which gves it the typedefargument_type andresult_type

Thex in line 7 is passed by value to thperator() to ensure that the functidp cannot change
the objects in the container.

t emplate <class X, class Y>
class pointer_to_unary_function: public unary_function<X, Y> {
protected:
Y ("p)(X);
public:
explicit pointer_to_unary_function(Y (*initial_p)(X)): p(initial_p) {}
Y operator()(X x) const {return (*p)(x);}

O~NO O WNPE

b

0608 AN hesenea ©2014 Mark Meretzky

870 Containers,lterators, and Algorithms Chapter 8

The functionptr_fun constructs and returngainter_to_unary_function , just as
make_pair (pp. 786-787) constructs and returrzaa .

9 t emplate <class X, class Y>
10 inline pointer_to_unary_function<X, Y> ptr_fun(Y (*p)(X)) {

11 return pointer_to_unary_function<X, Y>(p);
12}
Because of thexplicit in the abwoe line 6, the abee line 11 cannot be changed to
13 return p;
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/find_if/ptr_fun.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> [[for strlen
4 #include <algorithm> [ffor find_if
5 #include <functional> [ffor bind2nd, ptr_fun
6 #include <ext/functional> //for composel
7 using namespace std,;
8
9 i nt main()
10{
11 const char *const a[] = {", "hello", "goodbye"};
12 const size_t n = sizeof a/ sizeof a[0];
13
14 const char *const *p = find_if(a, a + n, strlen);
15
16 if (p==a+n){
17 cout << "Every string was of length 0.\n";
18 } else{
19 cout << "The first non-empty string was a["
20 << p-a<<"] ==\ "<rp<<"\"\nY
21 }
22
23 p = find_if(a,a+n,
24 __gnu_cxx::composel(
25 bind2nd(equal_to<size_t>(), 7),
26 ptr_fun(strlen)
27)
28);
29
30 if (p==a+n){
31 cout << "No string was of length 7.\n";
32 } else{
33 cout << "The first string of length 7 was a["
34 << p-a<<'"l=\ "<<tp<<"\"\n"
35 }
36
37 return EXIT_SUCCESS;
38}

In the abwe line 14, thesize_t return \alue ofstrlen is implicitly corverted tobool by theif
inside thefind_if algorithm. Ifyour compiler complains about this, use the code in lines 23-28 with
the7 changed t®.

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.2 find,find_if,andFunction Objects 871

The first non-empty string was a[1] == "hello". lines 14-21
The first string of length 7 was a[2] == "goodbye". lines 23-35

v Homework 8.4.2g: define unary_compose and composel

The helper functiomomposel constructs and returns an object of clasary_compose , just as
the helper functiomompose2 constructs and returns an object of claissiry_compose

Define classunary_compose and the functionrcomposel. Classunary _compose will be
derived from the template clagmary_function , just like dassbinary_compose . Class
unary_compose will have wo data memberg andg. Hint: the punchline (i.e., the body of the
operator() member function of claashary_compose) will be

1 r eturn f(g(x));

The class is called “unarybecause thé takes one gument. Bettenames founary _compose and
composel might have leencomposer_fgx andcompose_fgx , after the mathematical expression

f(9(x))

A

Call a member function of each object in a container of objects

In the abwe @mntainer ofchar * s, each element was passed to $tieen function. Butit would
be more realistic to e a ontainer ofstring objects, where each element hassite member func-
tion called.

Our originalfind_if ~ passed each element to the predicate (line 5).

1 t emplate <class INPUT, class PREDICATE>
2 | NPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
3 {
4 f or (; first |= last; ++first) {
5 i f (predicate(*first)) {
6 break;
7 }
8 }
9
10 return first;
11}

It looks like we will need another version éihd_if whose third argument is a predicate that is a pointer
to a member function (line 19). Each element wiltdtne pointed-to member function called.

12 //IPREDICATE must be a pointer to a member function of
13 /ltypename iterator_traits<INPUT>::value_type.

14

15 template <class INPUT, class PREDICATE>

16 INPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
17 {

18 for (; first = last; ++first) {

19 if ((*first.*predicate)()) {

20 break;

21 }

22 }

23

24 return first;

25}

0608 AN hesenea ©2014 Mark Meretzky

872 Containers,lterators, and Algorithms Chapter 8

But a cleer function object lets us do the job with the original definitiofiraf_if . T is the data
type of each object in the containgr is a pointer to @onst member function of clask. Y is the data
type of the return value of the member function to wigigboints. Its called a ‘ref_ " because theé is
passed by reference in line 10. This line is the punchline.

| [Excerpt from <functional>.

t emplate <class Y, class T>
class const_mem_fun_ref t: public unary_function<T, Y> {
Y (T::*p)() const;
public:
explicit const_mem_fun_ref t(Y (T::*initial_p)() const)
p(initial_p) {}

[
QOwo~NOOUODWNLPE

Y operator()(const T& t) const {return (t.*p)();}
11}

The helper functiomem_fun_ref constructs and returnscanst_ mem_fun_ref t | just as the
functionptr_fun constructs and returngpainter_to_unary_function

12 template <class Y, class T>
13 inline const_mem_fun_ref_t<Y, T> mem_fun_ref(Y (T::*p)() const) {

14 return const_mem_fun_ref t<Y, T>(p);
15}
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/find_iffmem_fun_ref.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <string> /[for class string
4 #include <algorithm> [ffor find_if
5 #include <functional> [[for bind2nd, mem_fun_ref
6 #include <ext/functional> //for composel
7 using namespace std,;
8
9 i nt main()
10{
11 const string a[] = {"", "hello", "goodbye"};
12 const size_t n = sizeof a/ sizeof a[0];
13
14 const string *p = find_if(a, a + n, mem_fun_ref(&string::size));
15
16 if (p==a+n){
17 cout << "Every string was of length 0.\n";
18 } else{
19 cout << "The first non-empty string was a["
20 << p-a<<'"l=\ "<<tp<<"\"\n"
21 }
22
23 p = find_if(a,a+n,
24 __gnu_cxx::composel(
25 bind2nd(equal_to<string::size_type>(), 7),
26 mem_fun_ref(&string::size)
27)
28);

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.2 find,find_if,andFunction Objects 873

29

30 if (p==a+n){

31 cout << "No string was of length 7.\n";

32 } else{

33 cout << "The first string of length 7 was a["

34 << p-a<<'l=\ "<<rp<<"\"\nY

35 }

36

37 return EXIT_SUCCESS;

38}
The first non-empty string was a[1] == "hello". lines 14-21
The first string of length 7 was a[2] == "goodbye". lines 23-35

v Homework 8.4.2h: define class mem_fun_ref t

Define a classnem_fun_ref t . It will be the same as clasenst mem_fun_ref t |, except
that it will hold a pointer to a nocenst member function. Define anotherem_fun_ref function to
construct and return an object of classm_fun_ref t
A

Call a member function of each object in a container of pointers to objects

Instead of the ahe @ntainer of objects, it would b&en more realistic to hae a ontainer of point-
ers to objects. It looks l&kwe will need another ersion offind_if | this time with the>* operator in
line 5.

1 t emplate <class INPUT, class PREDICATE>

2 | NPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
3 {

4 f or (; first I= end; ++first) {

5 i f ((Hirst->*predicate)()) {

6 break;

7 }

8

}
9

10 return first;
11}

But another cleer function object lets the original definitionfaid_if do the job As before,T is
the data type of each object in the containeis a pointer to &onst member function of clask. Y is
the data type of the return value of the member function to whphints. LinelO is the punchline.

/ [Excerpt from <functional>

t emplate <class Y, class T>
class const_mem_fun_t: public unary_function<const T *, Y> {
Y (T::*p)() const;
public:
explicit const_mem_fun_t(Y (Y::*initial_p)() const)
p(initial_p) {}

=
Qowo~NOOUODWNLPE

Y operator()(const T *pt) const {return (pt->*p)();}
11}

b6 AN hesenea ©2014 Mark Meretzky

874 Containers,lterators, and Algorithms Chapter 8

The functionmem_fun constructs and returnscanst_mem_fun_t , just as the function
mem_fun_ref constructs and returnscanst_ mem_fun_ref t

12 template <class Y, class T>
13 inline const_mem_fun_t<Y, T> mem_fun(Y (T::*p)() const) {

14

15}

©CoOo~NOOOUTA~,WNPE

return const_mem_fun_t<Y, T>(p);
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/find_iffmem_fun.C
#include <iostream>
#include <cstdlib>
#include <string> /[for class string
#include <algorithm> [ffor find_if
#include <functional> [[for bind2nd, mem_fun
#include <ext/functional> //for composel
using namespace std;
i nt main()

10{

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

const string *a[] = {
new string("),
new string("hello"),
new string("goodbye")
¥

const size_t n = sizeof a / sizeof a[0];
const string *const *p = find_if(a, a + n, mem_fun(&string::size));

if (p==a+n){
cout << "Every string was of length 0.\n";
} else{
cout << "The first non-empty string was a["
<< p-a=<<' == " << Fp << "\"\n";

}

p = find_if(a,a+n,
__gnu_cxx::composel(
bind2nd(equal_to<string::size_type>(), 7),
mem_fun(&string::size)

f (p==a+n){
cout << "No string was of length 7.\n";
} else{
cout << "The first string of length 7 was a["
<< p-a<<' ==\ "<<®p<<"\"\n"

}

for (conststring *const*p=a+n-1;p>=a; --p) {
delete *p;

}
return EXIT_SUCCESS;

451}

P060a AN hesenea ©2014 Mark Meretzky

1
2
3

N

5
6
7
8

©

10{
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26}

Section 8.4.2 find,find_if,andFunction Objects 875

The first non-empty string was a[1] == "hello". lines 18-25
The first string of length 7 was a[2] == "goodbye". lines 27-39

v Homework 8.4.2i: define class mem_fun_t

Define a classnem_fun_t . It will be the same as clasenst_ mem_fun_t , except that it will
hold a pointer to a nooenst member function. Define anotherem_fun function to construct and
return an object of claggem_fun_t .

A

Find all of them, not just the first one

How do we find every element of a container that satisfies a predicate, not just the firsWéméave
to callremove_copy_if , which copies all the items for which the predicatilse. It's dmilar to the
remove_copy we savon p. &H8.

The contents of the source container (the aarayline 11) remain unchanged.he destinatiow is
an empty container that will be expanded (line 14), so the thiguh®nt ofremove_copy _if must be
an inserter (line 15)A non-inserter iterator such asegin() would overwrite memory beyond the end
of the containercausing the program to hloup (if we are lucly). Insteadof inserting the output into a
vector, we @n write it directly to the standard output (line 21).

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/remove_copy_if/main.C

#include <iostream>
#include <cstdlib>
#include <vector>

#include <iterator> /lfor back_inserter and ostream_iterator
#include <functional> //for notl

#include <algorithm> /ffor remove_copy_if

using namespace std;

i nt main()

const int a[] = {10, 30, 40, 20, 50}; /Ineed not be sorted for remove_copy_if
const size_t n =sizeof a / sizeof a[0];

vector<int> v,
remove_copy._if(a, a + n, b ack_inserter(v), bind2nd(greater<int>(), 30));
copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));

cout <<"\n";

remove_copy._if(
a, a+n,
ostream_iterator<int>(cout, "\n"),
bind2nd(greater<int>(), 30)

);

return EXIT_SUCCESS;

0608 AN hesenea ©2014 Mark Meretzky

876 Containers,lterators, and Algorithms Chapter 8

10 lines 14-17
30
20

10 lines 19-21
30
20

It's aanoying to hare © write the opposite of the desired predicate in thevaline 22. To search for
the first value less than or equal to 30, | wish we could write the more natural predicate

bind2nd(less_equal<int>(), 30) . We @an do this with the one-argument functioatl . It
takes a predicate and constructs and returns one that yield the opposite result. The following linel2 is the
punchine.
1 / /Excerpts from <functional>.
2
3 t emplate <class F>
4 class unary_negate: public unary_function<typename F::argument_type, bool>
5 {
6 protected:
7 F f;
8 public:
9 explicit unary_negate(const F& initial_f): f(initial_f) {}
10
11 bool operator()(const typename F::argument_type& X) const {
12 return 1(x);
13 }
14 };

15 template <class F>

16 inline unary_negate<F> notl(const F& f) {
17 return unary_negate<F>(f);

18}

We @an nav change the abe@ lines 19-23 to the following.

19 remove_copy._if(
20 a, a +n,
21 ostream_iterator<int>(cout, "\n"),
22 notl(bind2nd(less_equal<int>(), 30))
23);
Even better write your avn copy_if algorithm and forget abouemove_copy if and the
notl .
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/remove_copy_if/copy_if.h

#ifndef COPY_IFH
#define COPY_IFH

t emplate <class INPUT, class OUTPUT, class PREDICATE>
OUTPUT copy_if(INPUT first, INPUT last, OUTPUT result, PREDICATE predicate)
{
f or (; first |= last; ++first) {
i f (predicate(*first)) {
* result = *first;

©CoOo~NOOOUOTPA, WNPE

0608 AN hesenea ©2014 Mark Meretzky

10
11
12
13
14

15}

Section 8.4.2 find,find_if,andFunction Objects 877

++result;

}

return result;

16 #endif

17 #include "copy_if.h"

18
19
20
21
22
23

copy._if(
a, a + n,
ostream_iterator<int>(cout, "\n"),
bind2nd(less_equal<int>(), 30)
);
Let's print the printable characters ins&rings . We must cowert each character tonsigned
char before passing it tsprint . To see what would go wrong otherwise, see line 15 of
static_cast.C on p. 65.

Recall that a bilt-in type has a one-argument constructor; our first example was in linedsio.&f
on p. 136.With the template guments in the following line 29, tHBEST(source) in line 9 will call
the constructor for typensignedchar . We must sayDEST(source) instead of an unadorned
source because the constructor for thESTtype might beexplicit

—On the Web at

http://i5.nyu.edu/ Omm64/book/src/remove_copy_if/convert.h
1 #ifndef CONVERTH
2 #define CONVERTH
3 #include <functional> //for unary_function
4 using namespace std,;
5
6 t emplate <class SOURCE, class DEST>
7 class convert: public unary_function<SOURCE, DEST> {
8 public:
9 DEST operator()(const SOURCE& source) const {return DEST(source);}
10}
11
12 #endif
13 #include <iostream>
14 #include <cctype> [ffor isprint
15 #include <string>
16 #include <iterator> [lfor ostream_iterator
17 #include <functional> [ffor ptr_fun

18 #include <ext/functional> //for composel
19 #include "convert.h"

20 #include "copy_if.h"

21 using namespace std;

22
23
24
25
26
27
28

copy._if(
s.begin(),
s.end(),
ostream_iterator<char>(cout),
__gnu_cxx::composel(
ptr_fun(static_cast<int (*)(int)>(isprint)),

D608 AN hesenea ©2014 Mark Meretzky

29
30
31

32
33
34
35
36

878 Containers,lterators, and Algorithms Chapter 8

convert<char, unsigned char>()

);

isprint returns anint , so he composel in the abwe lines 22-25 constructs an ayamous
object whoseoperator() returns anint . If line 8 ofcopy_if.h on page p. 876 complains about
corverting thisint to abool , you can define eompose_fghx and change the ab® lines 22-25 to

compose_fghx(

convert<int, bool>(),
static_cast<int (*)(int)>(isprint),
convert<char, unsigned char>()

8.4.3 Algorithmsthat call Functions, and Additional Function Objects

The five dgorithms in this section call a user-supplied functioduring each iteration of a loop.
This keeps the body of the loop separate from the control structure tleetgggs. The body is written as
the functionf ; the control structure is written in the algorithrny body can be plugged into arontrol
structure.

The name of the algorithm acts as documentation. Instead of writingyverkd “for " at the head
of every loop, we can writéor_each for a loop that readgenerate for a loop that writes, and

transform for a loop that does both. The following diagram shows what happens during each iteration.

transform one container
*t2 = f(*itl);

generate
*it = f();

for_each
f(*it);

transform two containers
*t3 = f(*itl, *it2);

generate_n
*it = ();

copy
*t2 = *itl

assign use
to an element an element

for_each

Thefor_each algorithm passes each value in a container to a funcisnusual, thd in line 2
could be a pointer to a function of ongyament, or it could be a function object whagerator()
takes one argument.

1 t emplate <class INPUT, class FUNCTION>

2

FUNCTION for_each(INPUT first, INPUT last, FUNCTION f)

3 {

0608 AN hesenea ©2014 Mark Meretzky

©O© oo~NO OA~

©CoOoO~NOOOUTA, WNPE

10
11
12

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 879

foor (; first = last; ++first) {
f (*first); /lignore the return value of f, if any

}

r eturn f;

Let’s grint the elements in a contain@umbering each one. The container is in lines 18-24; its ele-
ments arestring objects.

Line 26 constructs an anonymous function object of the ktessnumberer<string, int> ,
inserting the &lue 6 into it. We pass the container and the function objectoro each , which passes
each element of the container to thpgerator() member function of the objeciWhenfor_each is
finished, it passes the function object back to us in theeabw 8. Our function object has the member
functionoperatorint in the following line 12. Line 18 calls this function to vert the object into an
int .

The dedult initial value of the data membiershould be0 if COUNTERS int , OL if COUNTERS
long , date() if COUNTERs date , etc. Butthere is no need to write a specialization for each data
type. LinelO simply calls the default constructor for data t@@UNTERSee p. 660.

To print the elements of only one containigwould have been easier to write a traditiorfar loop.
For mary containers, each with elements of different types gisier to pass a function object to
for_each

Do not callfor_each if the library has a more specific algorithio copy, find, count, or accumu-
late, it is easier to catlopy , find , count , or accumulate

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/library/line_numberer.h

#ifndef LINE_NUMBERERH
#define LINE_NUMBERERH
#include <iostream>

using namespace std;

t emplate <class DATA, class COUNTER = int>
class line_numberer {
COUNTER i;
public:
line_numberer(COUNTER initial_i = COUNTERY()): i(initial_i) {}
void operator()(const DATA& data) {cout << i++ << " " << data << "\n";}
operator COUNTER() const {return i;}

13}
14 #endif

CQOwoo~NOOUODWNLPE

=Y

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/for_each.C

#include <iostream>
#include <cstdlib>
#include <string>

#include <algorithm>
#include "line_numberer.h"
using namespace std;

i nt main()

{
const string a[] = { //Macbeth 1V i

D608 AN hesenea ©2014 Mark Meretzky

880 Containers,lterators, and Algorithms

11 "Toad, that under cold stone”,

12 "Days and nights has thirty one",

13 "Swelt'red venom, sleeping got,",

14 "Boil thou first i’ th’ charmed pot."

15 3

16 const size_t n = sizeof a/ sizeof a[0];

17

18 const inti=for_each(a, a + n, line_numberer<string>(6));
19 cout << "\nThe next line number will be " <<i << "\n\n";
20

21 const char c = for_each(a, a + n, line_numberer<string, char>('A"));
22 cout << "\nThe next line number will be " << ¢ << "An\n";
23 return EXIT_SUCCESS;

24}

Chapter 8

6 Toad, that under cold stone

7 Days and nights has thirty one

8 Swelt'red venom, sleeping got,
9 Boil thou first i’ th’ charmed pot.

The next line number will be 10.
A Toad, that under cold stone

B Days and nights has thirty one
C Swelt'red venom, sleeping got,

D Boil thou first i’ th’ charmed pot.

The next line number will be E.

for_each can do more than read the elemerifbe call in line 11 of the follwing hal.h can
modify them. Thestring::value_type is just a hypercorrect way of sayingar .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/decrement.h

#ifndef DECREMENTH

#define DECREMENTH

#include <functional> //for unary_function
using namespace std;

t emplate <class T>
class decrement: public unary_function<T, void> {
public:
void operator()(T& t) const {--t;} //read/write reference

©CoOoO~NOOOUTA,WNPE

10}
11 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/hal.C

#include <iostream>
#include <cstdlib>
#include <string>
#include <algorithm>
#include "decrement.h

abhwNRE

printed 4/8/14 All rights
9:06:03 AM reserved

©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 881

6 using namespace std,;

7
8 i ntmain() //HAL-9000 computer in "2001: a Space Odyssey"
9 {
10 string s = "IBM"
11 for_each(s.begin(), s.end(), decrement<string::value_type>());
12 cout <<s<<"\n"
13 return EXIT_SUCCESS;
14}
HAL
Examples ofor_each modifying the elements of a container with an STL function object are in
lines 28-29 omem_fun.C on p. 942. Those elements will be objects and pointers thereto.
generate

Thegenerate algorithm writes into a containeso is iterators must be output iterators. But it also
compares the iterators, soyhaust also be input iterator§ogether they must be forward iterators.

15 template <class FORWARD, class FUNCTION>
16 void generate(FORWARD first, FORWARD last, FUNCTION f)

17 {

18 for (; first != last; ++first) {
19 *first = f();

20 }

21}

If your iterators are merely output, not forward, cgherate_n . As with thefill_n algorithm,N can
be aly data type that can be decremented and comparedwith

t emplate <class OUTPUT, class N, class FUNCTION>
void generate_n(OUTPUT first, N n, FUNCTION f)
{
for(;n>0; --n, ++first)
* first = 1();
}

NOoO o~ WNPRE

To demonstrate generation, etverwrite a range with random irgers. Thehird argument of the
generate inline 21 is a plain old pointer to a function, not a function object.

8 #include <cstdlib> /ffor rand
9 #include <vector>

10 #include <algorithm>

11 using namespace std;

12
13 vector<int> v(argument(s) for constructr
14 generate(v.begin(), v.end(), rand);
v Homework 8.4.3a: class pointer_to_generator
To overwrite a container with the getives of random integers, | wish we could say the following.

1 #include <cstdlib> /ffor rand

2 #include <vector>

3 #include <functional> [ffor negate

4 #include <ext/functional> //for composel

0603 AN hesenea ©2014 Mark Meretzky

882 Containers,lterators, and Algorithms Chapter 8

5 #include <algorithm>

6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

using namespace std;
vector<int> v(argument(s) for constructjr

generate(
v.begin(),
v.end(),
__gnu_cxx::composel(
negate<int>(),
ptr_fun(rand)

);

The two ptr_fun ’s in the standard library t@ka minter to a function of one or twerguments. But
rand is a function with no guments. Afunction taking no arguments, or a function object whose
operator() takes no arguments, is calledyenerator. Examples are the standard library functiand
in the abwoe line 15 and an object of the following classisecutive

To get the abwe @mde to compile, we will hae © define the following classes and functions.

(1) Define a template class nangherator . It will be just like the template classes
unary_function andbinary_function on pp. 863-864 and 769-770, except that it willhenly
one template argument, and its only member willdsailt_type

(2) Derve a emplate class namgmbinter_to_generator . It will be just like dass
pointer_to_unary_function on pp. 869-870, except that it will be ded from your class
generator , contain a pointer to a genergtand hase an operator() that takes no guments. Class
pointer_to_generator will need only one template argument.

(3) Define another helper function namad fun . It will be just like the one on pp. 869-870,
except that its gyjument will be a pointer to a function that is a generatat its return value will be an
object of clasgienerator . Thisptr_fun will need only one template argument.

(4) Define a template class nanmamposer_fg . It will be just like dassunary_compose on
p. 871, except that it will be dead from clasgyenerator andg will be a generatorClass
composer_fg will need only one template argument.

(5) Define a helper function namezbmpose fg . It will be just like the helper function
composel on p. 871, except that its second argument will be a generEitercompose_fg function
will need only one template argument.

In place of the abe lines 10-17, we can mosay the following,

generate(
v.begin(),
v.end(),
compose_fg(
negate<int>(),
ptr_fun(rand)

A

An iterator instead of a generator

Whenerer we need to generate a series of conseeutnlues, we write dor loop with a counter
and an incrementThe counter and the increment can be written once and for all in the following template
classconsecutive . A stride or increment can easily be added.

o608 AN hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

10
11
12}

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/consecutive/consecutive.h

#ifndef CONSECUTIVEH
#define CONSECUTIVEH

/ IT must be copy constructable and incrementable.

t emplate <class T = int>

class consecutive {
T

public:
consecutive(const T& initial_t = T()): t(initial_t) {}
T operator()() {return t++;}

13 #endif

©CoOo~NOOOUTA,WNPE

10{

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28}

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/consecutive/main.C

#include <iostream>
#include <cstdlib>
#include <iterator>
#include <algorithm>
#include "date.h"
#include "consecutive.h"
using namespace std;

i nt main()

const size tn=10;
int a[n];

generate(a, a + n, c onsecutive<int>());
copy(@, a + n, o stream_iterator<int>(cout, " "));

cout <<"\n";

generate_n(ostream_iterator<char>(cout), 26, consecutive<char>('A’));
cout <<"\n"

generate_n(ostream_iterator<date>(cout, "\n"), 3, consecutive<date>());
/[Output the address of each array element.
generate_n(ostream_iterator<int *>(cout, "\n"), 3,

consecutive<int *>(a));

return EXIT_SUCCESS;

883

0608 AN hesenea ©2014 Mark Meretzky

884 Containers,lterators, and Algorithms Chapter 8

0123456789 line 14:generate with a pair of forwad iterators
ABCDEFGHIJKLMNOPQRSTUVWXIifi& 18:generate_n with one output iterator
4/8/2014 line 21

4/9/2014

4/10/2014

Oxffbff140 line 24:sizeof (int) == on my machine
Oxffbff144

Oxffbff148

But when we do more than just generate the range of values, this approach wasteSosseem-
ple, lets gck out the prime numbers in a range of g&es. Aprime numberis a positve integer that is
greater than 1 and whose only factors are itself and 1.

Generating the entire range in lines 15-16 is senselessly profligate, since the prime numbers are so
few and far between. Lines 33-34 commit the same Binally, we haveto hope that thentn in line 33
can fit into avector<int>::size_type

The function object

modulus<int>()

in line 39 takes tew argumentsdividend anddivisor , and returngdividend%divisor . The big-
ger function object

bind1st(modulus<int>(), n)

takes only one argument, and returns zero if the argument is a divisorSiice zero and non-zero can be
implicitly corverted tofalse andtrue , this function object can be used as a predicate. Férehigger
predicate

notl(bind1st(modulus<int>(), n))

does just the opposite. It takes an argument and retturs if the argument is a divisor of. Since we
hope than will be a prime, we hope théhd_if will not find what it is looking for.

The code can be madeea smpler by making a typedef far iterator<int>

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/consecutive/prime.C

#include <iostream>

#include <cstdlib>

#include <vector>

#include <iterator>

#include <functional> /Inotl, ptr_fun, equal_to, modulus, bind1st, bind2nd
#include <ext/functional> //composel

#include <algorithm>

#include "consecutive.h"

using namespace std;

O©CoOoO~NOOOUTA, WNPE

10

11 bool isprime(int n);

12

13 int main()

14 {

15 const size tn=30;
16 int a[30];

17 generate_n(a, n, consecutive<int>(1));
18

19 remove_copy._if(

20 a,

21 a + n,

Peb60a AN hesenea ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 885

22 ostream_iterator<int>(cout, "\n"),
23 notl1(ptr_fun(isprime))
24);
25 return EXIT_SUCCESS;
26}
27
28 bool isprime(int n)
29{
30 if (n<2){
31 return false; /IThe smallest prime is 2.
32 }
33
34 vector<int> v(n - 2); /la vector of n - 2 zeros
35 generate(v.begin(), v.end(), consecutive<int>(2));
36
37 return find_if(
38 v.begin(),
39 v.end(),
40 __gnu_cxx::composel(
41 bind2nd(equal_to<int>(), 0),
42 bind1st(modulus<int>(), n)
43)
44) ==v.end();
45}
2
3
5
7
11
13
17
19
23
29

O©CoOo~NOOOUTA, WNPE

We @an aoid the waste of space by writing the countiragiable and the increment in an iterator
instead of a generatoPleasantly the increment can mobe pefix (line 16) instead of postfix (line 11 of
the abeoe consecutive.h). Classt_iterator has more lines of source code tltmmsecutive
but it is totally stereotyped.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/t_iterator/t_iterator.h

#ifndef T_ITERATORH
#define T_ITERATORH
#include <iterator>
using namespace std;

/ IT must be copy constructable (line 13), incrementable (line 16),
/ land equality comparable (line 25).

t emplate <class T = int>

10 class t_iterator: public iterator<forward_iterator_tag, T> {

11

T t

P D608 AN hesenea ©2014 Mark Meretzky

886 Containers,lterators, and Algorithms

12 public:

13 t_iterator(const T& initial_t = T()): t(initial_t) {}
14 const T& operator*() const {return t;}

15

16 t_iterator& operator++() {++t; return *this;}

17

18 const t_iterator operator++(int) {

19 const t_iterator old = *this;

20 ++*this;

21 return old;

22 }

23

24 friend bool operator==(const t_iterator& it1, const t_iterator& it2) {
25 return itl.t == it2.t;

26 }

27}

28

29 template <class T>

30 inline bool operator!=(const t_iterator<T>& it1, const t_iterator<T>& it2) {
31 return I(itl == it2);

32}

33 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/t_iterator/prime.C

#include <iostream>
#include <cstdlib>
#include <iterator>
#include <functional>
#include <ext/functional>
#include <algorithm>
#include "t_iterator.h"
using namespace std;

©CoOo~NOOOUOTA,WNPE

10 inline bool isprime(int n)

114

12 return n >= 2 && find_if(

13 t_iterator<int>(2),

14 t_iterator<int>(n),

15 __gnu_cxx::composel(

16 bind2nd(equal_to<int>(), 0),
17 bind1st(modulus<int>(), n)
18)

19) ==t_iterator<int>(n);

20}

21

22 int main()

23

24 remove_copy._if(

25 t_iterator<int>(1),

26 t_iterator<int>(30),

27 ostream_iterator<int>(cout, "\n"),
28 notl(ptr_fun(isprime))

29);

printed 4/8/14
9:06:03 AM

All rights
reserved

Chapter 8

©2014 Mark Meretzky

30

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 887

return EXIT_SUCCESS;

31}

v Homework 8.4.3b: use t_iterator
(1) Define a function to return the factorial of an integer.

i nt factorial(int n);

If nis less than or equal to 1, the function will return(\hy will we go into an almost infinite loop with-
out this test?) Otherwise, the function will call Becumulate algorithm (include the header file
<numeric>) and pass it a pair df iterator<int> 's representing the numbers from 2ntanclusive.
Also pass it an anonymous function object of ctasfiiplies<int>

(2) A perfect numbeis a positve integer that is the sum of all of its pos#idvisors that are smaller
than it. Perfect numbers are extremely rare. The first three examples are

6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+ 124+ 248

Define a function
bool isperfect(int n);

that returngrue if its agumentn is a perfect numbedf n is less than 1, the function will retufalse
(Why will we go into an almost infinite loop without this test®@jherwise, the function will create aator
of all the positie dvisors ofn that are less tham. Begn with the vector emptyCall the

remove_copy_if algorithm and pass it a pair Dfiterator<int> 's representing the numbers from
1ton-1inclusive. Also pass it a back inserter to fill up thector and a function object for picking out the
divisors ofn. Sum up all the elements in theator by callingaccumulate . If n is perfect, it will be
equal to this sum.

Find all the perfect numbers in the range 1 to 10,000 ivelu$s there an odd perfect number?

Some numbers ka a bt of factors. Ishere a way to test if a number is perfect without storing all
the factors simultaneously in a container? Could youenaakierator that loops through the factors6f
A

v Homework 8.4.3c: male t_iterator random access

Upgradet_iterator to be a random access iteratat least for the data typd&sto which the+
and< operators can be applied.

Give dasst_iterator an extra template gnmentDIFFERENCE which will be used for the
arguments and return value of the following member functions and frieked the DIFFERENCEtem-
plate argument of claserator |, let it default toptrdiff_t

3 t emplate <class T, class DIFFERENCE = ptrdiff_t>

D608 AN hesenea ©2014 Mark Meretzky

888 Containers,lterators, and Algorithms Chapter 8

4 classt_iterator: public iterator<random_access_iterator_tag, T, DIFFERENCE>
5 {
6 / letc.
7 const T& operator[[(DIFFERENCE d) const {return t + d;}
8 t _iterator& operator+=(DIFFERENCE d) {t += d; return *this;}
9
10 friend DIFFERENCE operator-(t_iterator& itl, t_iterator& it2) {
11 return itl.t - it2.t;
12 }
You can then implemerdperator++ by callingoperator+= , andoperator* by calling
operator|] . Don't forget to defin@perator< , etc.
A

v Homework 8.4.3d: redesign t_iterator

To loop throughevery value of a data type, the test has to go at the bottom of the Wepdn't
want to increment ghar that already contains the maximumlwe. Ona patform wherechar is signed,
that would result in undefined behavior.

1 #include <iostream>
2 #include <limits>
3 using namespace std;
4
5 / /Output every char.
6
7 f or (char ¢ = numeric_limits<char>::min();; ++c) {
8 cout <<c;
9 i f (c == n umeric_limits<char>::max()) {
10 break;
11 }
12 }

Unfortunately the standard algorithmsVmtheir test at the top of the loop.

13 #include <iostream>
14 #include <limits>

15 #include <iterator>

16 #include <algorithm>
17 using namespace std;

18

19 /[Doesn’t output every char.

20 It fails to output the last one, numeric_limits<char>::max().
21

22 copy(

23 t_iterator<char>(numeric_limits<char>::min()),

24 t_iterator<char>(numeric_limits<char>::max()),

25 ostream_iterator<char>(cout)

26);

An approach to correcting this is suggested by dkissam_iterator . Its default (no-ayu-
ment) constructorayeus an iterator representing the end of a range.

27 #include <iostream>
28 #include <iterator>

29 #include <algorithm>
30 using namespace std;
31

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 889

32 /[Copy the standard input to the standard output.
33
34 copy(
35 istream_iterator<char>(cin),
36 istream_iterator<char>(), /lend-of-input
37 ostream_iterator<char>(cout)
38);
Let's aeate a similat_iterator representing the end of a range afues. Decidevhich of the follav-

ing designs is better.

(1) Line 49 specifies the starting value, but line 50 does rvat thanention the endingalue. The
loop will stop automatically when it reach@gmeric_limits<T>::max()

39 #include <iostream>
40 #include <limits>

41 #include <iterator>

42 #include <algorithm>
43 #include "t_iterator2.h"
44 using namespace std;

45

46 /[Output every char.

47

48 copy(

49 t_iterator<char>(numeric_limits<char>::min()),
50 t_iterator<char>(),

51 ostream_iterator<char>(cout)

52);

Give the iterator the extra data member in line 10. It can betpboen in line 13, or becom&ue
in line 32. Thds_specialized static member in line 31 tsue if there is a specialization of class
numeric_limits for the data typd. If not, themax function returns no meaningful result.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/t_iterator/t_iterator2.h

1 #ifndef T_ITERATOTH

2 #define T_ITERATOTH

3 #include <cstdlib> /ffor exit

4 #include <iterator>

5 #include <limits>

6 using namespace std,;

7

8 t emplate <class T = int, class DIFFERENCE = ptrdiff_t>

9 classt_iterator: public iterator<randoom_access_iterator_tag, T> {
10 bool at end; //true if we have reached end of range
11 T
12 public:
13 t_iterator(): at_end(true) {}
14 t_iterator(const T& initial_t): at_end(false), t(initial_t) {}
15
16 const T& operator*() const {
17 if (at_end) {
18 cerr << '"dereference exhausted t_iterator\n";
19 exit(EXIT_FAILURE);
20 }
21 return t;
22 }

0608 AN hesenea ©2014 Mark Meretzky

890 Containers,lterators, and Algorithms Chapter 8

23

24 t_iterator& operator++() {

25 if (at_end) {

26 cerr <<'increment exhausted t_iterator\n";

27 exit(EXIT_FAILURE);

28 }

29

30 typedef numeric_limits<T> limits; /[for convenience
31 if (limits::is_specialized && t == limits::max()) {

32 at end = true;

33 } else{

34 ++t;

35 }

36 return *this;

37 }

38

39 friend bool operator==(const t_iterator<T, DIFFERENCE>& it1,
40 const t_iterator<T, DIFFERENCE>& it2) {
41 return itl.at end == it2.at_end &&

42 (itl.at_end | it1.t == it2.t);

43 }

44

45 [letc.

46 };

47

48 /letc.

49 #endif

To use the abee t_iterator to loop through eery possibledate , we would hare o define a
specialization of classumeric_limits for classdate .

50 #include <limits>

51 #include "date.h"

52 using namespace std;

53

54 namespace std {

55 template <>

56 class numeric_limits<date> {

57 public:
58 static const bool is_specialized = true;
59
60 static date min() throw () {
61 static date d(date::;january, 1, numeric_limits<int>::min());
62 return d;
63 }
64
65 static date max() throw () {
66 static date d(date::december, 31, numeric_limits<int>::max());
67 return d;
68 }
69 };
70}
(2) The followingt_iterator has the two-argument constructor in line 83.

71 #include <iostream>

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects

72 #include <limits>

73 #include <iterator>

74 #include <algorithm>
75 #include "t_iterator3.h"
76 using namespace std;

77
78
79
80
81
82
83
84
85
86

/[Output every char.

typedef numeric_limits<char> limits;

copy(
t_iterator<char>(limits::min(), limits::max()),
t_iterator<char>(),
ostream_iterator<char>(cout)

);
Line 11 has yet another data member.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/t_iterator/t_iterator3.h

1 #ifndef T_ITERATOTH
2 #define T_ITERATOTH
3 #include <cstdlib> /lfor exit
4 #include <iterator>
5 using namespace std;
6
7 t emplate <class T = int, class DIFFERENCE = ptrdiff_t>
8 classt_iterator: public iterator<random_access_iterator_tag, T> {
9 bool at_end; /ltrue if we have reached end of range
10 T
11 const T end;
12 public:
13 t_iterator(): at_end(true), end() {}
14
15 t_iterator(const T& initial_t, const T& initial_end):
16 at_end(false), t(initial_t), end(initial_end) {}
17
18 operator*() and operator== as in t_iterator2.h
19
20 t_iterator& operator++() {
21 if (at_end) {
22 cerr and exit;
23 }
24
25 if (t==-end){
26 at end = true;
27 } else{
28 ++t;
29 }
30 return *this;
31 }
32
33 /letc.
34}
35

891

Peb608 AN hesenea ©2014 Mark Meretzky

892 Containers,lterators, and Algorithms Chapter 8

36 //etc.
37 #endif

OCO~NOOOUTLA,WNPE
—~~

A

transform one input container

Like for_each , the transform algorithm reads each element of an input contairigke
generate , it writes to each element of an output containdre two containers could be the same one.
But if they are not, thg must be of the same length.

t emplate <class INPUT, class OUTPUT, class FUNCTION>
OUTPUT transform(INPUT first, INPUT last, OUTPUT result, FUNCTION f)

f or (; first = last; ++first, ++result) {
* result = f(*first);

}

r eturn result;

Line 19 outputs a string inuWercase. Lin€2 cowverts the characters tansignedchar to pre-
vent them from sign extending when passedotower . For theconvert template class, see p. 877.
Line 21 needs the cast because the C++ Standard Library has more than one function with thii@ame.
one we use here is inherited from the C Standard Library; the otlesr abdcale object as its second
argument (p. 1041).

Line 26 demonstrates that the same range can be used for both input andLongp84 outputs the
code number of each character in a striMg @rvert each character tnsignedchar and then to
unsigned to display the codes as nongatve integers. D e what would go wrong if we went directly
tounsigned , look at line 15 obtatic_cast.C on p. 65.

Line 17 outputs the originatring . The template clas&lentity is not part of the standard
library; its operator() member function takes one argument and returns its unchanged.

Had we wanted to beypercorrect, we could ke written string::value_type in place of the
char inline 15.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/library/transform1.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype> [ffor toupper and tolower
4 #include <string> /ffor string
5 #include <iterator> [lfor ostream_iterator
6 #include <algorithm> [ffor transform
7 #include <functional> [ffor ptr_fun
8 #include <ext/functional> //for composel, identity
9 #include "convert.h" /ffor convert
10 using namespace std;
11
12 int main()
13 {
14 string s = " Hello\n";
15 ostream_iterator<char> it(cout);
16
17 transform(s.begin(), s.end(), it, __gnu_cxx::identity<char>());
18
19 transform(s.begin(), s.end(), it,

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 893

20 __gnu_cxx::composel(
21 ptr_fun(static_cast<int (*)(int)>(tolower)),
22 convert<char, unsigned char>()
23)
24);
25
26 transform(s.begin(), s.end(), s.begin(),
27 __gnu_cxx::composel(
28 ptr_fun(static_cast<int (*)(int)>(toupper)),
29 convert<char, unsigned char>()
30)
31);
32 cout <<s;
33
34 transform(
35 s.begin(), s.end(),
36 ostream_iterator<unsigned>(cout, "),
37 convert<char, unsigned char>()
38);
39 cout <<"\n"
40
41 return EXIT_SUCCESS;
42}
Hello
hello
HELLO
726976 76 79 10

The call totransform in the abee line 26 does the same work as

43 for (string::iterator it = s.begin(); it = s.end(); ++it) {
44 *it = t oupper(static_cast<unsigned char>(*it));
45 }

For examples otransform where the elements are objects and pointers thereto, see lines 33-34 of
mem_fun.C on p. 942.To transform avalarray , see pp. 899-900.

transform two input containers
There is also ransform that takes tw input containers of equal length.

1 t emplate <class INPUT1, class INPUT2, class OUTPUT, class FUNCTION>
2 OUTPUT transform(INPUT1 firstl, INPUTL1 last1, INPUT2 first2, OUTPUT result,
FUNCTION f)
{
f or (; firstl = lastl; ++firstl, ++first2, ++result) {
* result = f(*first1, *first2);
}

r eturn result;

CQwoo~NOOOU bW

In this case, the last argumenttnsform must be a binary functionWe supply the start of the
second input container in line 21.

0608 AN hesenea ©2014 Mark Meretzky

894 Containers,lterators, and Algorithms Chapter 8

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/library/transform2.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator>
5 #include <functional> //for plus
6 #include <algorithm>
7 using namespace std,;
8
9 i nt main()
10{
11 const size tn=5;
12 int al[n] ={1700, 1900, 1900, 1900, 2000},
13 int bl[n] ={ 76, 29, 41, 69, 1},
14
15 vector<int> a(al, al + n);
16 vector<int> b(b1, bl + n);
17 vector<int> C;
18
19 transform(
20 a.begin(), a.end(),
21 b.begin(),
22 back_inserter(c),
23 plus<int>()
24);
25
26 copy(c.begin(), c.end(), ostream_iterator<int>(cout, "\n"));
27 return EXIT_SUCCESS;
28}
1776
1929
1941
1969
2001
We havejust seen one C++ equalent for thearray opeations that are built into other languages.
(An alternatve is on . 897-900.) In PL/I, for example, we could/babne the same thing with
29 C = A+ B [* PL/l example; A, B, C are arrays. */
Here are tw more exkamples. W& can do
30 C =A*™B,; [* PL/l example: ** is exponentiation */
with
31 transform(
32 a.begin(), a.end(), //a, b, c are vectors of double now
33 b.begin(),
34 back_inserter(c),
35 static_cast<double (*)(double, double)>(pow)
36);

And we can do

P 0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 895

37 C =A+B/2; [* PL/I example: take the average */
with

38 transform(

39 a.begin(), a.end(),

40 b.begin(),

41 back_inserter(c),

42 compose_fgx1_x2(

43 bind2nd(divides<double>(), 2.0),

44 plus<double>()

45)

46);

Did | mention that we would ke t write our avn compose_fgx1 x2 ? f will be a unary function (in
this case, “divide by 2"), ang will be a binary function (in this case, “add’ In the

compose_fglx_g2x example on p. 865 was the binary function angl andg2 were unary func-
tions. Thefollowing line 61 is the punchline.

47 template <class F, class G>
48 class composer_fgx1_x2: public

49 binary_function<typename G::first_argument_type,

50 typename G::second_argument_type,
51 typename F:iresult_type> {

52 F f

53 G g;

54 public:

55 composer_fgx1l_x2(const F& initial_f, const G& initial_g)
56 : f(initial_f), g(initial_g) {}

57

58 typename F:result_type operator()(

59 const typename G:: first_argument_type& x1,

60 const typename G::second_argument_type& x2) const {
61 return f(g(x1, x2));

62 }

63}

64

65 template <class F, class G>

66 inline class composer_fgx1_ x2<F, G> compose_fgx1_x2(const F& f, const G& @)
67 {

68 return compose_fgx1_ x2<F, G>(f, g);

69 }

Warning: there is no way to predict the order in whignsform will process the elements of the
ranges. Théollowing transform behaes unpredictably.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/library/fibonacci.C

#include <iostream>
#include <cstdlib>
#include <iterator>
#include <algorithm>
#include <functional>
using namespace std;

i nt main()

{

O©CoOoO~NOOOUTPA, WNPE

D608 AN hesenea ©2014 Mark Meretzky

896 Containers,lterators, and Algorithms Chapter 8

10 const size tn=10;
11 int a[n] ={0, 1}; /initialize the first two elements
12
13 transform(a, a+n-2 a+1l a+ 2 p lus<int>();
14 copy(a, a + n, o stream_iterator<int>(cout, "\n"));
15 return EXIT_SUCCESS;
16}
0
1
1 The Fibonacci series: from this point onwards,feagmber is the sum of the twoepious.
2
3
5
8
13
21
34

The two input containers gen to transform can h&e dements of different types. Often one con-
tainer holds objects; the other holds arguments for a member function of each bbjéa. folloving
example, the containers holdging objects and subscripts for the member functibn Unfortunately,
classstring has more than onat function, for the same reason that clagstring had more than
one function namedperator(] on p. 314.To gmplify line 21, lines 14-15 created a pointer naraed
to the member function namstting::at that returns &tring::const_reference , which is a
hypercorrect way of sayingpnstchar &.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/at.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>

4 #include <iterator> [lfor ostream_iterator
5 #include <functional> [lfor mem_fun_ref
6 #include <algorithm> [ffor transform
7 using namespace std,;
8
9 i nt main()
10{
11 const size tn=3;
12 string a[n] = {"abe", "ike", "jake"}; //container of objects
13 string::size_type b[n] ={1, 1, 0}; /[container of subscripts
14 string::const_reference (string::*const at)(string::size_type) const =
15 &string::at;
16
17 transform(
18 a, a+n,
19 b,
20 ostream_iterator<string::value_type>(cout, "\n"),
21 mem_fun_ref(at)
22);
23
24 return EXIT_SUCCESS;
25}

D608 AN hesenea ©2014 Mark Meretzky

26
27
28
29
30

Section 8.4.4 Array Operations with val array 897

Without the pointer in the abe lines 14-15, line 21 would fia been

mem_fun_ref(
static_cast<
string::const_reference (string::*)(string::size_type) const>
(&string::at)

)

The call tomem_fun_ref in line 21 constructs and returns an anonymous object of class
const_mem_funl_ref t<string::value_type, string, string::size_type>

This class is similar to the classnst_mem_fun_ref t we sav on p. &2. OBJECTis the data type of
each object in the containgp is a pointer to @onst member function of cla’®BJECT X andY are the
data types of the gnment and return value of the member function to whpighoints. Line36 is the
punchline.

31 //Excerpt from <functional>.

32

33 template <class Y, class OBJECT, class X>
34 class const_mem_funl_ref t: public binary_function<OBJECT, X, Y> {

35 private:

36 Y (OBJECT:*p)(X x) const;

37 public:

38 explicit const_mem_fun_ref _t(Y (OBJECT::*initial_p)() const)

39 p(initial_p) {}

40

41 Y operator()(const OBJECT& object, X x) const {return (object.*p)(x);}
42 };

The helper functiomem_fun_ref constructs and returnscanst_ mem_fun_ref t | just as the
functionptr_fun constructs and returngpainter_to_unary_function

43 template <class Y, class OBJECT, class X>
44 inline const_mem_funl_ref t<Y, T> mem_fun_ref(Y (OBJECT::*p)(X x) const) {

45

46}

return const_mem_funl_ref_t<Y, OBJECT, X>(p);

8.4.4 Array Operations with val arr ay

A valarray s a vector of numbers for aggrasty optimized, high-speed computation. Using a
valarray , the array operation on pp. 894-895 can be done more simply with thex+b in the fol-
lowing line 17. In fact, ayof the following statements could be written after line Eér the math func-
tions, we would change thant> ’s to <double> 's.

P060a AN hesenea ©2014 Mark Meretzky

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

898 Containers,lterators, and Algorithms Chapter 8

c =10; assignl0 to ead dement ot

c += 10; add10 to eat dement oft

c = a; copy eah dement ofa into the corresponding elementof

c += a; add eab dement ofa to the corresponding elementof

c=a+ 10; let eatr dement ot be 10 greater than the corresponding elemen&of
c=(a+Db)/2 ; Ileteah dement ot be the aveage d the corresponding elementsaandb
cC = -a

C <<=2; left-shift eab dement oft

valarray<bool> equal = a == b;,

= sqrt(a);

= pow(a, b);

sin(a);

= atan(a, b);

= c.shift(2); copyc[?2] intoc[0] ,c[3] intoc[l] , etc.

OO0 000
1

Like an aray orvector ,the elements of walarray are stored consecudly in memory and can
be accessed with a subscript (line 2Byr avalarray , the subscript should be of typze t . Like an
array the only aailable iterators are plain old pointers (line 25).

Sincec is not aconst , thec[0] in line 25 is an lalue and we can tekits address. (See the fol-
lowing Homavork.) Butthe&c[0] cannot be rewritten as These brackets are tbhperator[] mem-
ber function, which is not guaranteed to cancel with&h&milarly, the&c[n] cannot be rewritten as
c+n. Instead of doing pointer arithmetic, thepeesisonc+n would yield a nes valarray each of
whose elements i3 greater than the corresponding elemert.of

Theshift andcshift member functions in lines 32 and 36 eaomst . But theresize in line
40 will overwrite the old values of the elements. Its second argument defaiifs favhereT is the data

type stored in thgalarray . In our exampleT isint , whose default constructor constructs a zero.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/valarray/valarray.C

#include <iostream>

#include <cstdlib>

#include <valarray> //for valarray
#include <iterator>

#include <algorithm>

using namespace std;

i nt main()
{
const size tn=5;
int al[n] ={1700, 1900, 1900, 1900, 2000};
int bl[n]={ 76, 29, 41, 69, 1}
valarray<int> a(al, n); //born containing 1700, 1900, 1900, 1900, 2000
valarray<int> b(b1, n);
valarray<int> c=a+b;
for (size_ti=0;i<c.size(); ++i) {
cout <<cfij<<"";
}
cout <<"\n%
ostream_iterator<int> it(cout, " ");

Pe0608 AN hesenea ©2014 Mark Meretzky

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44}

O©CoOoO~NOOOUTPA,WNPE

10
11
12
13
14

Array Operations with val array 899

shift; negative argument for right

Section 8.4.4

copy(&c[0], &c[c.size()], it);

cout <<"\n%

cout << "c.min() ==" << c.min() << "\n"
<< "c.max() == " << c.max() << "\n"
<< "c.sum() == " << c.sum() << "\n";

c = a + b.shift(2); /Neft

copy(&c[0], &c[c.size()], it);

cout <<"\n%

¢ = a + b.cshift(2); /lcircular

left shift; negative for right

copy(&c[0], &c[c.size()], it);
cout <<"\n%
c.resize(6, 1000); [Isix 1000's
copy(&c[0], &c[c.size()], it);
cout <<"\n"
return EXIT_SUCCESS;
1776 1929 1941 1969 2001
1776 1929 1941 1969 2001
c.min() == 1776
c.max() == 2001
c.sum() == 9616
1741 1969 1901 1900 2000 left shift : zeroes enter from right end
1741 1969 1901 1976 2029
1000 1000 1000 1000 1000 1000

The following line 16 shows an egalent for thetransform

algorithm. Thestandard library con-

tains seeral different functions namesigrt , so he address of thdoublesqgrt
mally have © be written as

static_cast<double (*)(double)>(sqrt)

But theapply function of avalarray<double>
double , so here is no ambiguity.

—On the Web at

http://i5.nyu.edu/ Cmmé64/book/src/valarray/apply.C

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <valarray>
#include <iterator>
#include <algorithm>
using namespace std;

i nt main()
double a[] ={1, 16, 81};
const size_t n = sizeof a/ sizeof a[0];

valarray<double> v(a, n);

ostream_iterator<double> it(cout, "\n");

printed 4/8/14
9:06:03 AM

All rights
reserved

function would nor

will accept only a function whose argument is a

©2014 Mark Meretzky

900 Containers,lterators, and Algorithms Chapter 8

15
16 v = v.apply(sqrt); [loverwrite v
17 copy(&v[0], &v[n], it);
18 cout <<"\n"
19
20 valarray<double> w = v.apply(sqrt); //don'’t overwrite v
21 copy(&wl0], &w(ny, it);
22 return EXIT_SUCCESS;
23}
1 lines 16-17
4
9
1 lines 20-21
2
3

v Homework 8.4.4a: define an operator<< for valarray

Classvalarray has nooperator<< function. Defineone in a header file named
valarray_putto.h . It will not need to be a member function or a friend of elass.

As usual, the second argument in line 8 will be a read-only reference to the variable being output.

1 #ifndef VALARRAY_PUTTOH
2 #define VALARRAY_PUTTOH
3 #include <iterator>
4 #include <algorithm>
5 using namespace std;
6
7 t emplate <class T>
8 ostream& operator<<(ostreamé& ost, const valarray<T>& v)
9 {
10 /[The &v[0] and &v[v.size()] won’'t compile.
11 copy(&v[0], &v[v.size()], ostream_iterator<T>(ost, "\n"));
The operator(] member function of a nocenstvalarray<T> returns aT&, dlowing the
return value to be used as an Ivalue (pp. 12-13). The “addresgpefator& can therefore be applied to
the return value of this function. But tluperator]] member function of @onstvalarray<T>

returns ar without the&. (It returns ther by value.) Itsreturn \alue is merely an rvalue, so t&g[0] in
the abwoe line 7 will not compile. Instead of callirgppy , you will have 1o write afor loop to output the
elements one by one. Could you call #mply member function?

See pp. 74-76 for functions that return Ivalues and rvalues; p. 314 for classesowdtfetent
operator(] functions.
A

What is the data type of a+b?

What exactly is the data type of thepeessiona+b in line 17 ofvalarray.C on p. 898?The
expression was used as if it wergadarray , but the truth is more complicated.

Theoperator+ function, or ag function that returns ealarray by value, returns an object that
has the same friends and public memberscamsivalarray . It might even be aconst
valarray . But there is no guarantee of this, which means thabpleeator<< we just wrote may
reject the argumerat+b in the following line 10.

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.4 Array Operations with val array 901

1 #include <iostream>
2 #include <valarray>
3 #include "valarray_putto.h" //previous homework
4 using namespace std,;
5
6 valarray<int> a(argument(s) for constructjr
7 valarray<int> b(argument(s) for constructjgr
8
9 cout << g; /iwill compile: a is a valarray<int>
10 cout <<a+hb; /Imay not compile: a + b may not be a valarray<int>
11 cout << valarray<int>(a + b);//will compile
A slice of a valarray
A slice is a set of elements having equally spaced subscriptvataeray . The subscripts are
stored in an object of clasiice . Line 12 constructs a slice that holds the subscripts 0, 2, 4, He3.
three arguments are the starting subscript, the number of subscripts, and the stride.
Watch what happens when line 15 usesdlice object as the subscript olvalarray
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/valarray/slice.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray>
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 i nt main()
9 {
10 const size tn=10;
11 valarray<int> v(n); //born containing n int()’s, i.e., n zeroes
12 slice s(0, 5, 2); /levery other subscript, starting with O
13
14 v[1] = 10; //subscript is a size_t
15 v[s] = 20; //subscript is a slice object
16
17 copy(&v[0], &v[n], ostream_iterator<int>(cout, "\n"));
18 return EXIT_SUCCESS;
19}
20
10
20
0
20
0
20
0
20
0

Let's use slices to build a Sie d Eratosthenes for finding prime numbel&e dart with a list of the
integers from O tn—1 inclusive. Disregard the 0 and 1Keep the 2, but reme its larger multiples: 4, 6,

P0608 AN hesenea ©2014 Mark Meretzky

902 Containers,lterators, and Algorithms Chapter 8

8, etc. Keep the 3, but remw its larger multiples: 6, 9, 12, etc. The integer 4 has already beeregtmo
Keep the 5, but remve its larger multiples: 10, 15, 20, etc. In each step, line 1Zdetshe next surving
integer Line 13 keeps this inger, but remaves its larger multiples.We leare it as an ®ercise for the
reader to change thier loop andif in lines 16-22 into a call to a standard library algorithm.

Warning: if v were avector , the two arguments in line 10 would be in the opposite ordage line
10 ofvector.C on p. 430.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/valarray/sieve.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <valarray>
4 #include <algorithm>
5 using namespace std;

6
7 i nt main()
8 {
9 const size tn = 30;
10 valarray<bool> v(true, n); //born containing n true’s
11
12 for (size_tp =2; 2*p < n; p =find(&v[p+1], &v[n], true) - &V[O]) {
13 v[slice(2 * p, n /p-1,p)] =false; /lremove the multiples of p
14 }
15
16 /IPrint the subscripts of the true elements.
17
18 for (size_ti=2;i<n;++i){
19 it (V[{
20 cout <<i<<"\n"
21 }
22 }
23
24 return EXIT_SUCCESS;
25}
2
3
5
7
11
13
17
19
23
29

What is the data type of v[s]?

What exactly is the data type of thepeessiornv[s] in line 15 ofslice.C on p. 901? It depends
on the data type of. Classvalarray has twooperator[] member functions, ongonst and one
non-const , returning different types. Sinaeis notconst , thev[s] is an anonymous object of class
slice_array<int> . This type of object acts as a reference to the selected elementvalttinay

The constructors forslice_array are prvate. We cn create one only by calling the
operator|] member function of clasglarray , which is a friend oklice_array . We havedone

0608 AN hesenea ©2014 Mark Meretzky

1
2
3

Section 8.4.4 Array Operations with val array 903

this several times; the following line 24 does it again.
Only two groups of operators can be applied &iee_array

(1) We can assign a scalar to each element of the slice (line 24). Be warned that the assignments can
happen in aporder, depending on the hardware.

(2) We an assign the elements ofralarray<int> to each element of the slice (lines 27-30).
Again, the assignments can happen ynauder.

To do anything else with the elements to whictslace_array refers, thg must first be copied
into avalarray . This can be done by initialization (line 21) or by assignment (line 22). If the
valarray is to be used only once, it can be an anonymous temporary (lines 10 and 32).

Here are three examples.

(1) There is aperator+= to add avalarray to aslice_array (line 28), but none to add a
scalar to aslice_array (line 25). To get this line to compile, we had to define oummperator+=
that copies thslice_array into avalarray (line 10).

Our operator+= would normally be a member function (p. 283). But clglése_array has
already been written, and we dbowant to modify a Standard Library clasko our relief, we find that our
operator+= does not need to be a member function or a friend.

The assignment in line 10 assignsvnalues to the elements of thalarray to whichs refers.
But it does not changeitself, which merely acts as a reference to the members. This alltaise
const inline 9. In fact, it has to beonst because thexpressiorv[s] in line 25 is an angimmous tem-
porary.

(2) There is also noperator|] for aslice_array . We don't want to define one, either
because anperator[] must alvays be a member function (p. 287o gpply the subscripi0] to the
v[s] , line 32 first had to constructvalarray from thev[s]

(3) There is nooperator= that assigns onslice_array to another Line 33 constructs an
anonymouwalarray and then calls theperator= we sav in line 27.

From these restrictions we conclude thatliee_array is intended to be only an intermediate
result. Thefinal result should reside invalarray

The assignment operators retwaid , forcing us to gecute them in separate statements. Lines 29
and 33 cannot be combined to the following.

V[t] = v[s] *= w; /lwon’t compile: the expression v[s] *= w is void

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/valarray/slice_array.C

#include <iostream>
#include <cstdlib>
#include <valarray>

4 #include <iterator>
5 #include <algorithm>
6 using namespace std,;
7
8 t emplate <class T>
9 i nline void operator+=(const slice_array<T>& s, const T& t) {
10 s = valarray<int>(s) +t;
11}
12
13 int main()
14 {
15 int af] ={0, 10, 20, 30, 40, 50, 60, 70, 80, 90}
16 const size_t n = sizeof a/ sizeof a[0];
17 valarray<int> v(a, n);

0608 AN hesenea ©2014 Mark Meretzky

904 Containers,lterators, and Algorithms Chapter 8

18 slice s(0, 5, 2);
19 slice t(1, 5, 2);
20
21 valarray<int> w = V[s]; //initialization
22 w = Vv[s]; /lassignment
23
24 v[s] = 10;
25 v[s] +=10; /lcall line 9
26
27 v[s] = w
28 v[s] +=w;
29 v[s] *=w;
30 /letc.
31
32 cout << valarray<int>(v[s])[0] << "\n";
33 V[t] = vJs]; //behaves as if we had said v[t] = valarray<int>(v[s]);
34
35 copy(&v[0], &v[v.size()], ostream_iterator<int>(cout, "\n"));
36 return EXIT_SUCCESS;
37}
0 line 32
0
0
800 = (20 + 20)x 20
800
3200
3200
7200
7200
12800
12800
The v in the abee line 17 is norconst . Now let us suppose that were const . The
operator(] member function of @onstvalarray returns an object that has the same friends and
public members as @nstvalarray . It might even be a constvalarray . We an therefore help
ourselves to the cornucopiavalarray operations we saearlier.
38 valarray<int> c = vI[s]+V[t];
39 valarray<double> d = sart(v[s]); [/if v were a valarray<double>

Rememberthough, that is nov aconst . Thev[s] is no longer an Ivalue, so we cannot say
40 v[s] = sqrt(c);

Andv[s] is not necessarily an object of typalarray , which means there is no way to write a portable
operator<< forv[s] . The moral, once again, is to goihe final result into aalarray

41 cout <<vIs]; /INo way to make this portable.
42 cout << valarray<int>(v[s]); //Must say this instead.

A multi-dimensional matrix

The Siee example vas intended only as a learning tool. The real purpose of slicing is to let us
access @alarray as if its elements were arranged imsoand columns. Thisgs us he rav material
for creating the vectors and matrices of Linear Algebra.

P060a AN hesenea ©2014 Mark Meretzky

Section 8.4.4 Array Operations with val array 905

Sincev is const , the expressions/[row0] andv]col0] can be multiplied together as if the
werevalarray 's. (They might even be valarray ’s.) If v were notconst , these expressionsowld
beslice_array ’'s. They would hare b be orverted tovalarray ’s before the* operator could be
applied to them. In both cases, the product woule ldhthe friends andonst member functions as a
valarray . (It might even be avalarray)

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/valarray/dimension.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <valarray>
4 using namespace std,;

5

6 i nt main()

7

8 intaf] ={2,3,5, 7}

9 const valarray<int> v(a, sizeof a / sizeof a[0]);
10
11 I*
12 Treat the valarray as if it were the following 2 by 2 matrix.
13 This interpretation, called "row-major order", is used in C and C++.
14 2 3
15 5 7
16 *
17 slice row0(0, 2, 1); /lrow vector containing 2 and 3
18 slice col0(0, 2, 2); /[column vector containing 2 and 5
19 cout << (v[rowO] * v[col0]).sum() << "\n";
20
21 [*
22 Treat the valarray as if it were the following 2 by 2 matrix.
23 This interpretation, called "column-major order", is used in Fortran.
24 2 5
25 3 7
26 *
27 slice fortran_row0(0, 2, 2); //row vector containing 2 and 5
28 slice fortran_col0(0, 2, 1); //column vector containing 2 and 3
29 cout << (v[fortran_rowQ] * v[fortran_col0]).sum() << "\n";
30 return EXIT_SUCCESS;
31}

19 =2x2+3x5 (dot product)
19 =2%x2+5x%x3

A multi-dimensional slice
Consider the matrix

0 1 2 3 4
1011121314
2021222324
3031323334

and its two-dimensional submatrix

0608 AN hesenea ©2014 Mark Meretzky

906 Containers,lterators, and Algorithms Chapter 8

111213
212223

The top rav of the submatrix is
111213
This rav can be described glice(6, 3, 1) . The left column of the submatrix is

11
21

This column can be described blce(6, 2, 5) . Together these tw dices span the tardimen-
sional submatrix. Both start with the element whose value is 11 and whose subscriphis €ubscript is
the first argument in line 23. The dweolumns in lines 17-18 hold the remaining@aments of the con-
structors of the slices. There areotenlumns because the submatrix has thmensions.

Theg in line 23 is ageneralized slice which may hae nore or less than twdmensions. Thealter-
natives for the data type of thgg] in line 24 are similar to those for ths] in line 15 ofslice.C on
p. 901. Sincev is const , v[g] has all the friends and public members a@bastvalarray , includ-
ing thesum in line 24. If v were notconst , v[s] would be of typegslice_array<int> and we
would have o change line 24 to

1 cout << valarray<int>(v[g]).sum() << "\n";

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/valarray/gslice.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <valarray>
4 using namespace std,;

5

6 i nt main()

7

8 i nta]] ={

9 o, 1, 2, 3 4
10 10, 11,12, 183, 14,
11 20, 21,22, 23, 24,
12 30, 31,32,33,34
13 3
14 const valarray<int> v(a, sizeof a / sizeof a[0]);
15
16 const size tn=2; /Inumber of dimensions of submatrix
17 size t lengthl[n] = {3, 2};
18 size t stride1[n] = {1, 5};
19
20 valarray<size_t> length(lengthl, n);
21 valarray<size_t> stride(stridel, n);
22
23 gslice g(6, length, stride);
24 cout <<v[g].sum() << "\n";
25 return EXIT_SUCCESS;
26}

102 =11+12+13+21+22+2

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.4 Array Operations with val array 907

mask_array and indirect_array

The subscript in line 18 is\alarray<bool> . The one in line 19 is walarray<size t>
The resultingv[s] andv[t] have data types similar to the[s] in line 15 ofslice.C on p. 901.
Sincev is notconst , they cannot be subscriptedlo print them, we must cgpthe referenced elements
into avalarray and then print it.

See p. 958 for another way to permute the elements of a container.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/valarray/mask.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <valarray>

4 #include <iterator>

5 #include <algorithm>

6
7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26}

using namespace std;

i nt main()
{

int vi[] = {0, 10, 20, 30, 40, 50},
bool s1[] ={false, true, false, true, true, false};
size t t1[] = {3, 4, 1};
valarray<int> v(v1, sizeof v1 / sizeof v1[0]);
valarray<bool> s(s1, sizeof s1 / sizeof s1[0]);
valarray<size_t> t(t1, sizeof t1 / sizeof t1[0]);
valarray<int> w = V[s]; /N[s] is a mask_array<int>
valarray<int> X = VI[t; /[t is an indirect_array<int>
ostream_iterator<int> it(cout, "\n");
copy(&wl0], &wlw.size()], it);
cout <<"\n"
copy(&x[0], &x[x.size()], it);
return EXIT_SUCCESS;

10 elements in original order

30

40

30 elements in a permuted order

40

10

v Homework 8.4.4b: print the Sieve with a mask_array

Create avalarray<int> namedw, containingn zeroes. Ogrwrite it with the integers from 0 to
n-1 inclusive by passing a pair df iterator 's to thecopy algorithm. Thercopyw][v] into another
valarray<int> and print it, where is thevalarray<bool> holding the Siee d Eratosthenes (pp.
901-902).
A

Pb60a AN hesenea ©2014 Mark Meretzky

©CoOo~NOOOTPA,WN

908 Containers,lterators, and Algorithms Chapter 8

v Homework 8.4.4c: play the game of life on a valarray

Let the matrix data member of classlife , and the newmatrix variable in
life::operator++ , be of ype valarray<bool> . Do not change the type dife::matrix_t

For corvenience, gie dasslife the following private, static member function. It returns the sub-
script in thematrix of the element that the user sees at colMgmow y. Insert error checking if desired.

static size_t xy(size_t x, size_ty) {return y * (xmax + 2) + x;}

The constructor will makthe matrix big enough to hold themax columns and/max rows that
the user sees, plus the bord€hefalse in line 3 is unnecessarsince it defaults tdool() . The
initial_matrix[y-1] in line 7 is a pointer to bool .

| ife::life(const matrix_t initial_matrix)
0(0), matrix(false, (life_ymax + 2) * (life_xmax + 2))

{
for (size_ty=1;y<=life_ymax; ++y) {
matrix[slice(xy(1, y), life_xmax, 1)]
= valarray<bool>(initial_matrix[y - 1], life_xmax);
}
}
For each x, y that the user seeéfe::operator++ should subscript thenatrix with a

gslice describing the & 3 submatrix centered at, y. The result of this subscripting will be a
valarray<bool> of nine elementsPsss it to thecount algorithm to count ho mary of the elements
aretrue . (Sincelife::operator++ already has a local variable namgalnt , you will have ©
refer to the algorithm astd::count .) Atthe end ofife::operator++ , thenewmatrix may be
copied intomatrix simply by saying

matrix = newmatrix;

Don't bother to allev the user to specify thidled andempty characters. Jusbpy thebool ’s
to the output stream with astream_iterator<bool>

Another game that can be implemented witrakarray is Sudoku. It is played on a*9 matrix
of integers. Theelements are accessed one &t atime, one column at a time, or one 3 submatrix at a
time.
A

8.4.5 Them n_el enent Algorithm and an Application

Themin_element algorithm returns an iterator referring to the smallest element in a range of terri-
tory. If the range is emptynin_element returns its second gument. Vith two arguments (lines 26 and
30 of the follaving min_element.C), it compares the elements by applying theperator to themIf
you're not satisfied witke, a tird argument can supply a different kind of comparison (lines 33, 36, 39).
The third argument must be a predicate taking &aguments, returningrue if its first argument is less
than its second by your definition of “less than”.

The iterators passed toin_element must do more than those passedital_if . Line 10
copies an iterator and line 13 dereferences both copigis. means thecannot be merely input iterators.
They must be at least forward iterator§hey must also be forard iterators because each value is read
more than once. Note thatin_element , like cur other forward iterator algorithmdjacent_find
(p- 840), is careful not to cgany value of typerT.

The predicate passedrun_element is more complicated that the one passefiht if . The
former is a predicate of twarguments; the latteof one agument. Asusual, the data type of the elements
in the range must be the same as (oweuible to) the data type of the arguments of the predidatber-
wise, the call tonin_element will not compile.

Pe060a AN hesenea ©2014 Mark Meretzky

Section 8.4.5

1 / /Excerpt from <algorithm>

2

3 t emplate <class FORWARD>

4 FORWARD min_element(FORWARD first, FORWARD last)
5 {

6 i f (first==1last){
7 r eturn last; /lrange is empty
8 }
9
10 FORWARDIt = first;
11
12 while (++first I= last) {

13 if (*irst <*it) {

14 it = first

15 }

16 }

17

18 return it;

19}

20

21 template <class FORWARD, class COMPARE>

Theri n_el erent Algorithm and an Application

909

22 FORWARD min_element(FORWARD first, FORWARD last, COMPARE compare)

23{

24 if (first ==last) {

25 return last;

26 }

27

28 FORWARDIt = first;

29

30 while (++first I= last) {
31 if (compare(*first, *it)) {
32 it = first
33 }

34 }

35

36 return it;

37}

The following class and function are named after the mathematical expression

f(9(x1), 9(x2))

Line 21 is the punchline. Compare thég;(x), g»(x)) on p. 865.

—On the Web at
http://i5.nyu.edu/

#ifndef COMPOSER_FGX1_GX2

#define COMPOSER_FGX1_GX2

#include <functional> //for binary_function
using namespace std;

/ /ICompose the functions f(g(x1), g(x2)).

t emplate <class F, class G>

CQOwoo~NOOUOD WNPE

=Y

printed 4/8/14
9:06:03 AM

class composer_fgx1_gx2: public binary_function<typename G::

Cmm64/book/src/min_element/composer_fgx1 _gx2.h

argument_type,

typename

All rights
reserved

G::argument_type,

©2014 Mark Meretzky

910 Containers,lterators, and Algorithms Chapter 8

11 typename F:result_type> {
12 F f
13 G g;
14 public:

15 composer_fgx1l_gx2(const F& initial_f, const G& initial_g)
16 : f(initial_f), g(initial_g) {}

17

18 typename F:result_type operator()(

19 const typename G:argument_type& x1,

20 const typename G:argument_type& x2) {

21 return f(g(x1), 9(x2));

22 }

23},

24

25 template <class F, class G>

26 inline composer_fgx1_gx2<F, G> compose_fgx1_gx2(

27 const Fé&initial_f,
28 const G& initial_g)
29
30 return composer_fgx1l_gx2<F, G>(initial_f, initial_g);
31}
32 #endif
The pressiomearer_to_32_func in line 33 is a straightforward predicatesithe address of

the free function in lines 10-11Unfortunately this function has thealue 32 hardwired into it, so we
have o write a different function to search for a different numhlé€s dso called via a pointeso t’'s dow.

A more corenient way to ma& predicates is by constructing objects of clasarer_to in lines
13-19. Insteadf hardwiring the32 into an object of this class, line 36 can pass3thas an argument to
the object mnstructor The 32 is then used by the objesbperator() function in line 18. Line 36
can just as easily put a different number into a different object of this class. Furthermore, the
operator() is inline.

The header filecstdlib> declares seral functions namedbs .

=Y

i nt abs(int);
2 | ong abs(long);

(There are alsfloat , double , andlongdouble versions, in<kcmath> .) Hadthere been only one,

we would not hee reeded the explicit templategaments<int, int> for the ptr_fun function in
line 43.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/min_element/min_element.C

#include <iostream>

#include <cstdlib> /[for abs and EXIT_SUCCESS

#include <vector>

#include <algorithm> /ffor min_element

#include <functional> [ffor ptr_fun

#include <ext/functional> //for composel
#include "composer_fgx1_gx2.h"
using namespace std;

©CoOoO~NOOOUTA,WNPE

10 //Return true if the first argument is nearer to 32 than the second argument is.
11 inline bool nearer_to_32_func(int a, int b) {return abs(a - 32) < abs(b - 32);}
12

13 //Return true if the first argument is nearer to 32 than the second argument is.

0608 AN hesenea ©2014 Mark Meretzky

Section 8.4.5 Theri n_el ement Algorithm and an Application 911

14 class nearer_to {

15 const intn;

16 public:

17 nearer_to(int initial_n): n(initial_n) {}

18 bool operator()(int a, int b) const {return abs(a - n) < abs(b - n);}

19}

20

21 int main()

22 {

23 const int a[] = {50, 10, 30, 35, 40};

24 const size_t n = sizeof a/ sizeof a[0];

25

26 const int *const p = min_element(a, a + n);

27 cout << "The smallest number in the array is " << *p << ".\n";

28

29 const vector<int>v(a, a + n);

30 vector<int>::const_iterator it = min_element(v.begin(), v.end());

31 cout << "The smallest number in the vector is " << *it << ".\n";

32

33 it = min_element(v.begin(), v.end(), nearer_to_32_func);

34 cout << "The number that's nearest to 32 is " << *it << ".\n";

35

36 it = min_element(v.begin(), v.end(), nearer_to(32));

37 cout << "The number that's nearest to 32 is " << *it << ".\n";

38

39 it = min_element(v.begin(), v.end(),

40 compose_fgx1_gx2(

41 less<int>(),

42 __gnu_cxx::composel(

43 ptr_fun<int, int>(abs),

44 bind2nd(minus<int>(), 32))

45)

46);

a7 cout << "The number that's nearest to 32 is " << *it << ".\n";

48

49 return EXIT_SUCCESS;

50}
The smallest number in the array is 10. lines 26-27
The smallest number in the vector is 10. lines 29-31
The number that’s nearest to 32 is 30. lines 33-34
The number that’s nearest to 32 is 30. lines 36-37
The number that’s nearest to 32 is 30. lines 39-47

v Homework 8.4.5a: flee from the nearest enemy

Thevisionary::decide on pp. 574-580 runs from the first enemy it fintlet’s make it smart
enough to run from theearestenemy or from one of the nearest enemies ibtar more are equally near
to thevisionary

The predicates in lines 9, 32, and 38éene argument; thecan be passed tmd_if . The predi-
cate in line 21 has wvarguments; it can be passednin_element

A random access container (one whose iterators are random access) is used in line 48 so it can be
passed to theort in line 52. Thebegin andend in line 49 are the member functions of claggbit
that returnvabbit::const_iterator 's. We aeated them on p. 578.

o608 AN hesenea ©2014 Mark Meretzky

912 Containers,lterators, and Algorithms Chapter 8

/ [Excerpt from visionary.C.

/ *

Return true if the other wabbit is near enough to w to be visible, and is not w

i tself. (No wabbit should be afraid of itself or should contemplate eating its
own flesh.)

*/

©CoOo~NOOOUTA,WNPE

class near_to: public unary_function<const wabbit *, bool> {

10 const wabbit *const w;

11 public:

12 near_to(const wabbit *initial_w): w(initial_w) {}

13

14 bool operator()(const wabbit *other) const {

15 return other != w && dist(w, other) <= 3;

16 }

17}

18

19 //Return true if wl is nearer to w than w2 is.

20

21 class nearer_to: public binary_function<const wabbit *, const wabbit *, bool> {
22 const wabbit *const w;

23 public:

24 nearer_to(const wabbit *initial_w): w(initial_w) {}

25

26 bool operator()(const wabbit *w1, const wabbit* w2) const {

27 /limitate the nearer_to in lines 13-19 of above min_element.C,
28 //but instead of abs, use the dist function on pp. 577-578
29 }

30}

31

32 class can_eat: public unary_function ...

33 /ILeft as an exercise: see how it's used in line 55.

341

35

36 class can_be_eaten_by: ... {

37 /ILeft as an exercise; see how it's used in line 62.

38}

39

40 //Move one step away from the nearest enemy in visual range.

41 /)If there are none, move one step toward the nearest food in visual range.

42

43 void visionary::decide(int *dx, int *dy) const

44 {

45 /IMake a vector of all the wabbits that are near enough to be
46 IIvisible to this one, not counting this one.

47

48 vector<wabbit *> visibles;

49 remove_copy._if(begin(), end(), back_inserter(visibles),
50 notl(near_to(this)));

51

52 sort(visibles.begin(), visibles.end(), nearer_to(this));
53

54 vector<wabbit *>::.const_iterator it =

P 0608 AN hesenea ©2014 Mark Meretzky

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70}

Section 8.4.5 Theri n_el ement Algorithm and an Application 913

find_if(visibles.begin(), visibles.end(), can_eat(this));

if (it != visibles.end()) {

step(*it, this, dx, dy); //Move one step away from the other wabbit.
return;

}

it = find_if(visibles.begin(), visibles.end(), can_be_eaten_by(this));

if (it !=visibles.end()) {
step(this, *it, dx, dy); //Move one step toward the other wabbit.
return;

}

*dx = *dy=0; /Nlethargic in the absence of stimulation

To verify that thedeer now flees from the nearest enenput more than ondlack_hole in
visual range. Compare these diagrams with the ones on p. 575.

Thisdeer has four enemies in visual range. It will beven around and around the numbered path.

1
1|d |8,
B,| 23
B3

Unfortunately this deer will step\aay from oneblack _hole right into the other.

And thisalien will bump its head against theulder

0608 AN hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA,WNPE

PR R RR R R
NoOoUMWNRERO

914 Containers,lterators, and Algorithms Chapter 8

8.5 TheRudiments of Dispatching

Each algorithm in the Standard Template Library requires a certain minimum category of. iterator
copy requires its first t@w arguments to be at least input iteratarsn_element requires forward itera-
tors;reverse_copy requires bidirectional; amgbrt requiressrandom_access

The iterators passed to an algorithm may exceed the minimum requireroepys, for example,
will happily accept iterators that are forward, bidirectional, or random accesact it Wwill run faster with
random access iterators.

We @an write segeral implementations for each algorithm, and let the computer select the one that
best exploits the category of iterator passed asgmant. © perform the selection at compile time, we
will make phisticated use of an elementary topic that has lain dormant since Chapter 1: function name
overloading.

8.5.1 Dispatchthe advance algorithm

Let’s dart with a simple algorithm. The library has one namé¢ance that advances an input iter
ator by adding an integer to it. Here is a pseudo-code definition showing that egdnycateterator has
its own strengths and weaknesses.

(1) We hope that the iterator gumentit is random access. If so, it can be advanced or retracted in
a dngle bound (lines 6—8). Note thdtcould be ngdtive.

(2) If the iterator is merely bidirectional, the operator cannot be applied to iVe @n still get the
job done, but more slowly (lines 10-18). Once agaioould be ngaive.

(3) If the iterator is merely a forward or input iteramust be non-rggtive. Now we haveto do
error checking (lines 20-29).

(4) If the argument is none of the ae-merely an output iteratoor not an iterator at all—we
should issue a compilation error (lines 31-33).

/ IPseudo-code excerpt from <iterator>

t emplate <class ITERATOR, class DIFFERENCE_TYPE>
void advance(ITERATOR& it, DIFFERENCE_TYPE d) //read/write reference

{
i f (it isarandom access iterafof
it +=d;
}
else if (it is a bidirectional iteratoy {
for (;d>0;-d){
++it;

}

for (;d<0;++d){
--it;
}

0608 AN hesenea ©2014 Mark Meretzky

Section 8.5.1 Dispatch theadvance algorithm 915

18 }

19

20 else if (it is a forwad or input iterato)) {

21 if (d<0){

22 cerr << "Can't move a non-bidir iterator backwards.\n";
23 exit(EXIT_FAILURE);

24 }

25

26 for (;d>0;-d){

27 ++it;

28 }

29 }

30

31 else {

32 compilation error: output iterator would neédbefore each++
33 }

34}

The advance algorithm is not needed if we already knthe iterators category In this case, we
know enough to adance the iterator in the fastest way: line 49 for a random access jtiena®64-55 for
a bdirectional. advance is needed only inside another algorithéit line 40, for example, all we ka is
the opaque nam@ERATOR We don't know the category oit , and advance must be called to select
the best code.

35 template <class ITERATOR>
36 void tiny_algorithm(ITERATOR it)

374

38 /INeed to call advance here: the category of it may be different

39 /leach time the tiny_algorithm is called.

40 advance(it, 2);

41}

42

43 int main()

44 {

45 const int a[] = {10, 20, 30, 40, 50};

46 const size_t n = sizeof a/ sizeof a[0];

47

48 int *itl = a;

49 itl +=2; //No need to call advance here--we know itl is random access.
50 tiny_algorithm(it1);

51

52 list<int> li(a, a+n)

53 list<int>::iterator it2 = li.begin();

54 ++it2; /INo need to call advance here--we know it2 is bidirectional.
55 ++it2;

56 tiny_algorithm(it2);

Now let's make the pseudo-code compilelo avoid conflict with the standard library algorithm
advance , we will name our functiormy_advance , in line 50 of the followingadvance.C .

For most applications, the best code is the fastest code. Selecting the best code for each possible cat-
egory of iterator is calledlispatching,performed at compile time by function namestoading. Instead
of writing the pseudocodi-else with three clauses, we will ¢g¢ the same name to three functions.
The functions will hae to differ in the number or data type of their arguments.

Recall that we hae five terator category tag classes (p. 842). Althougly tie empty they still
count as different data types. Most of them are related by inheritance.

0608 AN hesenea ©2014 Mark Meretzky

916 Containers,lterators, and Algorithms Chapter 8

57 /[Excerpt from <iterator>

58

59 struct input_iterator_tag {};

60 struct output_iterator_tag {};

61 struct forward_iterator_tag: public input_iterator_tag {};

62 struct bidirectional_iterator_tag: public forward_iterator_tag {};

63 struct random_access_iterator_tag: public bidirectional_iterator_tag {};

input_iterator_tag output_iterator_tag

forward_iterator_tag

bidirectional_iterator_tag

random_access_iterator_tag

Theiterator_category member of apiterator_traits class is a typedef (an alternati
name) for one of the atee five dasses. Thenes we will need for the following program are

iterator_traits<vector<int>::iterator>::iterator_category
which is a typedef forandom_access_iterator_tag ;
iterator_traits<list<int>::iterator>::iterator_category

which is a typedef fobidirectional_iterator_tag ; and
iterator_traits<node::iterator>::iterator_category

which we made a typedef féwrward_iterator_tag (p- 806).

When 63 passes\wector<int>::iterator to the template functiomy_advance in line 50,
the computer belvas as if we fad called a copof this function with gery occurrence of the nanidPUT
changed twector<int>::iterator . For example, the data type

typename iterator_traits<INPUT >::iterator_category
in line 53 is changed to

typename iterator_traits<vector<int>::iterator >:iterator_category

As we remarked, this data type is a typedef for dlasdom_access_iterator_tag . Line 53
therefore constructs an anonymous object of this clissconstructor takes no arguments, which iy wh
the parentheses are emp{Zlassrandom_access_iterator_tag actually has no constructor at all,
but we haveto write the parenthesesyavay to create an object of this class.) The anonymous object is
passed to one of the my_advance functions. Lile an terator and d@ifference_type , a tag object
is small enough to be passed by value.

To show that the__my_advance functions should not be called directly by the usiegir names
start with a double underscore. There arerse of them, in lines 10, 18, and 33, so their arguments must
differ. Since line 63 calledny_advance with a vector<int>::iterator argument, lines 52-53
call the ___my_advance whose third argument is amndom_access_iterator_tag (line 10).

Line 10 doesr’even bother to declare a name for the third argument because its valueisused. In

0608 AN hesenea ©2014 Mark Meretzky

Section 8.5.1 Dispatch theadvance algorithm 917

fact, it has no value at all—’an empty object. Only the data type of the argument is usedMigata us
from lines 52-53 to line 10For other arguments whose value is not used, see pp. 585-587.

All the work of advancing the iterator is done in themy advance at line 10. The function in
line 50 was merely dispatting function: a trick to male the call that originates in line 63 end up at line
10. Adispatching function is an inline call-througEven betterthe decision to go from lines 52-53 to
line 10 is made at compile time, not at runtime, since that is when the computer decides which function
with an werloaded name to call.

If lines 9-15 were deleted, lines 52-53 would be Fajpcall the __my_advance in line 18
because aandom_access_iterator_tag is also abidirectional_iterator_tag But
given a choice between the my_advance ’s in lines 10 and 18, lines 52-53 prefer line 10 because func-
tion name werloading selects the closest match.

Line 68 passes lgst<int>::iterator to the dispatching function in line 5his time, line
53 will construct an anonymous object of clagfirectional_iterator_tag and pass it to the
__my_advance in line 18.

Lastly, line 78 passes mode::iterator to the dispatching function, and line 53 constructs an
anorymous object of claskrward_iterator_tag . If there were a_my_advance whose third
argument was of typéorward_iterator_tag , lines 52-53 would call it. There isn't, but 52-53 are
hapyy to call the__my_advance in 33 because dorward_iterator_tag is also an
input_iterator_tag . (Theforward_iterator_tag will be sliced when it is receéd a line 33
[pp. 490-491]. But it has no value, so no one cares.)

Every forward iterator is an output iterator as well as an input itessteshy wasnt class
forward_iterator_tag derived from classoutput_iterator as well as from
input_iterator ? Well, it should hge been, and no one remembersywhwasnt. Fortunately there
is no algorithm that requires at minimum an output iterdidrthat can run faster with a forward, bidirec-
tional, or random access.

If we passed an iterator that was not an input iterator to the dispatching function in line 50, lines
52-53 would hee ro auitable__my advance to call and the program would not compiland if we
passed an argument thahsvnot an iterator at all (i.e, that had itevator_traits), line 53 itself
would not compile.

All of the abave machinery is hidden from the usedre or $ie simply callamy_advance in lines
63, 68, and 78, and automatically gets the fastest chglevith ary template, there iswhys a price to pay
A separate instantiation of each function is created for each typgwhant passed to it, and these instan-
tiations tale up pace. Buive dont care—we want the maximum speed.

The diagram shows the line number of each function definition. The dispatching function is dashed.

“my_advance 50
accepts

any input iterator

S S

__my_advance 10 __my_advance 18 __my_advance 33
receives random receives bidirectional receives input
access iterator iterator that is not iterator that is not
random access bidirectional

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/dispatch/advance.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>

0608 AN hesenea ©2014 Mark Meretzky

918 Containers,lterators, and Algorithms Chapter 8

4 #include <list>
#include <iterator> [[for iterator_traits
#include "node.h"

5
6
7 using namespace std;
8

©

t emplate <class RANDOM, class DIFFERENCE_TYPE>

10 inline void __my_advance(RANDOM& it, DIFFERENCE_TYPE d,
11 random_access_iterator_tag)

12{

13 cout <<'"random access iterator __my_advance\n";

14 it +=d;

15}

16

17 template <class BIDIRECTIONAL, class DIFFERENCE_TYPE>
18 void __my_advance(BIDIRECTIONAL& it, DIFFERENCE_TYPE d,

19 bidirectional_iterator_tag)
20{

21 cout << "bidirectional iterator __my_ advance\n";
22

23 for (;d>0;-d){

24 ++it;

25 }

26

27 for (;d<0;++d){

28 --it;

29 }

30}

31

32 template <class INPUT, class DIFFERENCE_TYPE>

33 void __my_advance(INPUT& it, DIFFERENCE_TYPE d, input_iterator_tag)
344

35 cout <<'inputiterator __my_ advance\n";

36

37 if (d<0){

38 cerr << "Can't move a non-bidirectional iterator backwards.\n";
39 exit(EXIT_FAILURE);

40 }

41

42 for (;d>0;-d){

43 ++it;

44 }

45}

46

47 [/The dispatching function is always inline.

48

49 template <class INPUT, class DIFFERENCE_TYPE>

50 inline void my_advance(INPUT& it, DIFFERENCE_TYPE d)

51{

52 __my_advance(it, d,

53 typename iterator_traits<INPUT>::iterator_category());
54}

55

56 int main()

57

P 0608 AN hesenea ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 919

58 const int a[] = {10, 20, 30, 40, 50};
59 const size_t n = sizeof a/ sizeof a[0];
60

61 vector<int> v(a, a + n);

62 vector<int>::iterator itl = v.begin();
63 my_advance(itl, 4);

64 cout << *jtl <<"\n";

65

66 list<int> li(a, a + n);

67 list<int>::iterator it2 = li.begin();
68 my_advance(it2, 4);

69 cout << *jt2 <<"\n";

70

71 node *begin = new node(50, 0);

72 begin = new node(40, begin);

73 begin = new node(30, begin);

74 begin = new node(20, begin);

75 begin = new node(10, begin);

76

77 node::iterator it3 = begin;

78 my_advance(it3, 4);

79 cout << *jt3 <<"\n";

80

81 return EXIT_SUCCESS;

82}

The function call in the alve lines 52-53 can be split into separate statements in lines 83-84.

83 typedef typename iterator_traits<ITERATOR>::iterator_category category;
84 __my_advance(it, d, category());

random access iterator __my_advance lines 61-64

50

bidirectional iterator __my_advance lines 66-69

50

input iterator __my_advance lines 71-79

50

8.5.2 Dispatchthe copy algorithm

Perhaps the most heavily used algorithroogy . Here is the simplest possible definition, accepting
ary type of input iterator as its first taerguments.

1 t emplate <class INPUT, class OUTPUT>
2 OUTPUT copy(INPUT first, INPUT last, OUTPUT result)

3

4 f or (; first = last; ++first, ++result) {
5 * result = *first;

6 }

7

8 r eturn result;

9}

0608 AN hesenea ©2014 Mark Meretzky

1
2
3

N

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23}
24

920 Containers,lterators, and Algorithms Chapter 8

A separate implementation for random access iterators

To avoid conflict with the standard library algorithocopy , we will name oursmy_copy . The dis-
patching function in the following line 39 is justdikhe one in line 50 of the ab®advance.C . Based
on the category of the first and second arguments, it will call line 9 for random access iterators, line 26 for
other categories of input iterators, andegh ©ompilation error for arguments that are none of thev@abo

Suppose the first wiiterators passed tay_copy were of a random access type, represented by the
RANDON line 9. If we were so inclined we could then compute their difference in line 16, yielding the
number of times to iteratelo hold this result, we would need a variable of data type

typename iterator_traitsKRANDOM>::difference_type

Lines 13-14 create a handye-word name for this type, which is just another namarbr, long , etc.
We saaw this use of typedef in the abmlines 83-86.

Why are we doing this? See “unrolling”, belo

my_copy 39 |
accepts |
any input iterators !

__my copy 9 __my_copy 26
receives random receives input iterators
access iterators that are ot random access
—On the Web at
http://i5.nyu.edu/ Omm64/book/src/dispatch/copyl.C

#include <iostream>
#include <cstdlib>
#include <list>
#include <iterator>
#include <algorithm>
using namespace std;

t emplate <class RANDOM, class OUTPUT>
OUTPUT _my_copy(RANDOM first, RANDOM last, OUTPUT result,
random_access_iterator_tag)

cout <<'"random access iterators\n";
typedef typename iterator_traitsKRANDOM>::difference_type
difference_type;

for (difference_type i = last - first; i > 0; --i) {
*result = *first;
++first;
++result;

}

return result;

25 template <class INPUT, class OUTPUT>
26 OUTPUT _my_copy(INPUT first, INPUT last, OUTPUT result,

27
28 {

input_iterator_tag)

Pe060a AN hesenea ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 921

29 cout <<'input iterators that are not random access\n";
30

31 for (; first != last; ++first, ++result) {

32 *result = *first;

33 }

34

35 return result;

36}

37

38 template <class INPUT, class OUTPUT>

39 inline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)

40 {

41 typedef typename iterator_traits<INPUT>::iterator_category

42 iterator_category;

43

44 return __my_copy(first, last, result, iterator_category());

451}

46

47 int main()

48 {

49 const intaf] = {10, 20, 30};

50 const size_t n = sizeof a/ sizeof a[0];

51

52 /[First two arguments of my_copy are random access iterators.
53 my_copy(a, a + n, o stream_iterator<int>(cout, "\n"));

54 cout <<"\n"

55

56 //1st 2 args of my_copy are input iterators that are not random access.
57 list<int> li(a, a + n);

58 my_copy(li.begin(), li.end(), ostream_iterator<int>(cout, "\n"));
59

60 return EXIT_SUCCESS;

61}

Unroll the loop

Introducing the extraariablei in the random access version_ofmy copy gives us abig adwan-
tage. Aloop that iterates until an integer counts down to zero((in the abwoe line 16) can rundster
than one that comparesawrbitrary variablesf{rst!=last in the abee line 31). This is not because

the pressioni > 0 can be eauated faster thafirst!=last (although it can be). It is because a

loop that compares twiterators must perform the comparison duringre iteration. But a loop that

counts down to zero can be rewritten by a smart compilevdid ¢he decrement and comparison during

most iterations.The abwoe lines 8-23 will be translated as if we had written the following functitime
program is bigger but faster.

62 template <class RANDOM, class OUTPUT>
63 OUTPUT my_copy(RANDOM first, RANDOM last, OUTPUT result)

64 {

65 typedef typename iterator_traits<KRANDOM>::difference_type
66 difference_type;

67

68 for (difference_type i = (last - first) / 8; i > 0; --i) {

69 *result = *first; ++first; ++result;

70 *result = *first; ++first; ++result;

71 *result = *first; ++first; ++result;

D608 AN hesenea ©2014 Mark Meretzky

922 Containers,lterators, and Algorithms Chapter 8

72 *result = *first; ++first; ++result;
73 *result = *first; ++first; ++result;
74 *result = *first; ++first; ++result;
75 *result = *first; ++first; ++result;
76 *result = *first; ++first; ++result;
77 }
78
79 switch (last - first) {
80 case 7:*result = *first; ++first; ++result;
81 case 6: *result = *first; ++first; ++result;
82 case b5: *result = *first; ++first; ++result;
83 case 4: *result = *first; ++first; ++result;
84 case 3: *result = *first; ++first; ++result;
85 case 2:*result = *first; ++first; ++result;
86 case 1: *result = *first; ++result;
87 case O: break;
88
89 default: cerr << "last - first == " << last - first << " in copy\n";
90 break;
91 }
92
93 return result;
94}
random access iterators lines 52-54
10
20
30
input iterators that are not random access lines 56-58
10
20
30

Another way to dispatch copy:
Separate implementations for pointers to memmuable objects

There is one case in whighy_copy can be gen faster The memcpy and memmovefunctions
from the C Standard Library mala iteral copy of a Hock of memorybit by bit. (This is called @itwise
copy.) They use specialized machine language instructions to squeeze the maximum speed out of the hard-
ware.

The first two arguments are pointers; the third argumertiza_t , is the number of bytes to cpp

1 #include <cstring> //for memcpy, memmove, size_t
2 using namespace std;

const int source[] = {10, 20, 30};
const size_t n = sizeof source / sizeof source[0];
i nt dest[n];

memcpy (dest, source, sizeof source);
memmove(dest, source, sizeof source);

O©oo~NO O~ W

memcpy s faster but we’ll usememmovebecause it worksven when the source and destinatiorertap.
We will temporarily remae the dispatching in the previous program.

P060a AN hesenea ©2014 Mark Meretzky

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Section 8.5.2 Dispatch thecopy algorithm 923

Our my_copy can do its wrk by callingmemmovewheneer two conditions are met. First, the
three arguments afiy_copy must be pointersmemmoveis a C function; it knows no other type of itera-
tor.

Second, there are certain types of object that cannot be copimadrbsnove The simplestx@ample
would be the following clasmtrospect , whose only purpose is to demonstrate what can go wrong
when an object is copied bgemmoveor memcpy. In this class, we require that tipedata member of
each object point to the object itself; tisathy it's calledintrospect

Paadoxically,memmovewill disrupt this irvariant preciselybecauseit makes a bitwise cgpof the
object. Thep data member of each copied object will be left with acecoyy of its original \alue—but
this is the address of the original object, not the address of tlie Thpse objects can be copied, but only
by their copy constructor oroperator= , not by memmoveor memcpy. At the end of each objestlife,
its destructor makes sure that it is still healfh 164).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/introspect/introspect.h

#ifndef INTROSPECTH
#define INTROSPECTH
#include <iostream>
using namespace std;

class introspect {
const introspect *const p;
public:
i ntrospect(): p(this) {}
introspect(const introspect&): p(this) {}
introspect& operator=(const introspect&) {return *this;}

friend ostream& operator<<(ostream& ost, const introspect& i) {
return ost << "introspect at address " << &i
<< " contains " << i.p;

}

“introspect() {
if (p!=this){
cerr << '"Invariant disrupted: " << *this << "\n";
}
}

23}
24 #endif

©CoOo~NOOOUTA,WNPE

10
11
12

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/introspect/main.C

#include <iostream>

#include <cstdlib>

#include <cstring> //for memmove
#include "introspect.h"

using namespace std;

i nt main()

{
constsize tn=3;
const introspect source[n];
introspect dest[n];

0608 AN hesenea ©2014 Mark Meretzky

924 Containers,lterators, and Algorithms Chapter 8

13 memmove(dest, source, sizeof source);

14 cout << "address of dest ==" << dest << "\n";
15 return EXIT_SUCCESS;

16}

address of dest == 0xffbff18c

Invariant disrupted: introspect at address 0xffbff194 contains Oxffbff1a0
Invariant disrupted: introspect at address Oxffbff190 contains 0xffbff19c
Invariant disrupted: introspect at address Oxffbff18c contains Oxffbff198

It's up to us toell the computer which types of objects can, and cannot, be coprmadraynove To
do this, we first define the family of empty classes in lines 11¥héy will serve the same purpose as the
family of empty iterator tag classes.

__either
__true __false
We then define the template classcopy _traits in lines 16-44. This is an altruistic class, like
numeric_limits and iterator_traits , whose only purpose is tovg ws information about

another data typé&. It currently delvers only one déct. Themembelis_memmovable inline 24 is a
typedef for __true if objects of typ€el can be copied bsnemmove__ false otherwise.

The general template in lines 22-25 errs on the side of safety: it assumes that no datatype
copied bymemmove It is followed by a specialization for each data type that can be so cojigdype
of pointer can be; it is only a minor ina@mience that read/write and read-only pointers must be listed sep-
arately in lines 27-35. The built-in types can also be copietchéymove To save paper lines 37-41
defined specializations for only aMfef them. Finallyline 43 indicates that clagdate can be copied by
memmove

Line 64 needs the parentheses in order to comi¢ghout them, we would be adding the pointers
result andlast

my_copy 77
accepts
any input iterators

__my_copy 59 __my_copy 68 __my_copy 47
receives read/write pointers receives read-only pointers receives all other
to memmovable values to memmovable values input iterators

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/dispatch/copy2.C

#include <iostream>

#include <cstdlib>

#include <cstring> //for memmove
#include <vector>
#include <iterator>
#include <algorithm>
#include "introspect.h
#include "date.h"
using namespace std;

OO ~NOOUTDWNPER

Pe060a AN hesenea ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 925

10

11 //The is_memmovable member of class __copy_traits is a typedef for __true or __ false.
12 struct __either {};

13 struct __true : public __either {};

14 struct __ false: public __either {};

15

16 /*

17 struct ___copy_traits takes a data type T and tells us if a variable of that type

18 can be copied with memmove. If so, the is_memmovable member of __copy_traits<T>
19 will be a typedef for __true; otherwise it will be a typedef for __ false.

20 */

21

22 template <class T>

23 struct ___copy_traits {

24 typedef __false is_memmovable;

25}

26

27 template <class T>

28 struct ___copy_traits<T *> { [Ipartial specialization
29 typedef __true is_memmovable;

30}

31

32 template <class T>
33 struct ___copy_traits<const T *>{ //same as above, but with const

34 typedef __true is_memmovable;

35}

36

37 template <> struct __copy_traits<bool > {typedef __true is_memmovable;};
38 template <> struct __copy_traits<char > {typedef __true is_memmovable;};
39 /letc.

40 template <> struct ___copy_traits<double > {typedef __true is_memmovable;};

41 template <> struct __copy_traits<long double> {typedef __true is_memmovable;};
42

43 template <> struct __copy_traits<date> {typedef __true is_memmovable;};

44 |/Etc.: define a specialization for each type T that can be copied with memmove.
45

46 template <class INPUT, class OUTPUT>

47 OUTPUT __my_copy(INPUT first, INPUT last, OUTPUT result, __either)

48 {

49 cout << '"can't use memmove\n";

50

51 for (; first I= last; ++first, ++result) {

52 *result = *first;

53 }

54

55 return result;

56 }

57

58 template <class T>

59 T* _my_copy(T *first, T *last, T* result, __true)

60 {

61 cout << "memmove with read/write source\n";
62

63 memmove(result, first, (last - first) * sizeof (T));

P 0608 AN hesenea ©2014 Mark Meretzky

926 Containers,lterators, and Algorithms Chapter 8

64 return result + (last - first);

65}

66

67 template <class T> //[same as above, but with const’s
68 T*__my_copy(const T *first, const T *last, T* result, __true)
69 {

70 cout << "memmove with read-only source\n";

71

72 memmove(result, first, (last - first) * sizeof (T));
73 return result + (last - first);

74}

75

76 template <class INPUT, class OUTPUT>

77 inline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)

78{
79 typedef typename iterator_traits<INPUT>::value_type value_type;
80 typedef typename ___copy_traits<value_type>::iis_memmovable is_memmovable;
81
82 return __my_copy(first, last, result, is_memmovable());
83}
84
85 int main()
86 {
87 const date sourcel[] ={
88 date(date::july, 4,1776),
89 date(date::october, 29, 1929),
20 date(date::december, 7,1941)
a1 3
92 const size_t nl = sizeof sourcel / sizeof sourcel[0];
93 vector<date> v(sourcel, sourcel + nl);
94 my_copy(v.begin(), v.end(), ostream_iterator<date>(cout, "\n"));
95 cout <<"\n"
96
97 const size tn2=3;
98 const introspect source2[n2];
99 introspect dest2[n2];
100 my_copy(source?2, source? + n2, dest2);
101 copy(dest2, dest2 + n2, ostream_iterator<introspect>(cout, "\n"));
102 cout <<"\n"
103
104 const size tn3=nl,;
105 date dest3[n3];
106 my_copy(sourcel, sourcel + n3, dest3);
107 copy(dest3, dest3 + n3, ostream_iterator<date>(cout, "\n"));
108 cout <<"\n"
109
110 date sourced|] = {
111 date(date::july, 20, 1969),
112 date(date::september, 11, 2001),
113 date()
114 h
115 const size_t n4 = sizeof source4 / sizeof source4[0];
116 date dest4[n4];
117 my_copy(source4, sourced + n4, dest4);

P 0608 AN hesenea ©2014 Mark Meretzky

118
119
120
121}

Section 8.5.2 Dispatch thecopy algorithm 927

copy(dest4, dest4 + n4, ostream_iterator<date>(cout, "\n"));
return EXIT_SUCCESS;
The arguments in the abmline 94 are not pointers, so we dagall memmove The ones in 100 are

pointers, but the point to objects that cannot be copiedrbgmmove The conditions fomemmoveare
fulfilled only in lines 106 and 117.

can’'t use memmove lines 87-95
71411776

10/29/1929

12/7/1941

can’'t use memmove lines 97-102

introspect at address OxffbffOb8 contains OxffbffOb8
introspect at address OxffbffObc contains OxffbffObc
introspect at address OxffbffOcO contains OxffbffOcO

memmove with read-only source lines 104-108
71411776

10/29/1929

12/7/1941

memmove with read/write source lines 110-118
7/20/1969

9/11/2001

4/8/2014

Combine the two above examples

When the follaving line 117 calls theny_copy in line 103, the namBNPUT in line 103 will stand
for the data typeonstint * . Thevalue_type inline 105 will be aypedef forint , and the
is_memmovable in line 106 will be a typedef for_true thanks to lines 30—-33. The expression
is_memmovable() in line 108 therefore calls the constructor for classue , passing it no gguments
and constructing an anonymous object of this cld$e anonymous object, and the three othguraents
in line 108, are then passed to one of the functions nanrag_copy .

There are fie functions with this name, in lines 45, 63, 76, 85, and 94. The one we just called from
line 108 will be the one in line 94, because its fourth argumenttise . my_copy calls the
__my_copy in line 94 only when the arguments are pointers to objects that can be copedibyove

On the other hand, when line 127 calls timg_copy in line 103, the namiNPUT in line 103 will
stand for the data typist<int>::iterator . Once again, thealue_type in line 105 will be
int , and theis_memmovable in line 106 will be _true . But this time, line 108 will call the

__my_copy in line 76 rather than 85 or 94 because the first pair of arguments are not pointers.

The iterator_category in lines 78-79 will bebidirectional_iterator_tag , SO ine
81 will construct an anonymous object of this class. The line will then pass the anonymous object, and
three other arguments, to themy_copy in line 63, because its fourth argument is an

input_iterator_tag . (Classhidirectional_iterator_tag is derived from class
input_iterator_tag .) This__my_copy is the best we can do with a pair of

list<int>::iterator 's, because theare input iterators that are not pointers or other random access
iterators.

Finally when line 133 calls thay_copy in line 103, the namBNPUT in line 103 will stand for the
data typeconstintrospect * . Thevalue_type in line 105 will beintrospect , and the
is_memmovable in line 106 will be__false . The latter forces line 108 to call the my copy in

0608 AN hesenea ©2014 Mark Meretzky

928 Containers,lterators, and Algorithms Chapter 8

line 76: the ones in lines 85 and 94 could be called only with a fourth argument of ddtaeype

This time, the iterator_category in lines 78-79 will be
random_access_iterator_tag , S0 ine 81 will construct an angmous object of this classThe
line will then pass the anonymous object, and three otlgermants, to the _my_copy in line 45,
because its fourth argument isaadom_access_iterator_tag . This function takes advantage of

our ability to subtract tweonstintrospect *'s.
| mycopyl03 |
| accepts |
3 any input iterators |

__my_copy 85 __my_copy 94 i __my_copy 76 |

receives read/write pointers receives read-only pointers | receives all other |

to memmovable values to memmovable values 3 input iterators |
memmove __my_copy 45 __my_copy 63

receives random
access iterators

receives input iterators
that are not random access

—On the Web at

http://i5.nyu.edu/ Ommé64/book/src/dispatch/copy3.C

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <list>
#include "introspect.h"
#include "date.h"
using namespace std;

/[for memmove

O©CoO~NOOUILP,WNPER

/ IThe is_memmaovable member of class __copy_traits is a typedef for __true or __ false.
10 struct __either {};

11 struct __ true : public __either {};

12 struct __ false: public __either {};

13

14 *

15 struct ___copy_traits takes a data type T and tells us if a variable of that type
16 can be copied with memmove. If so, the is_memmovable member of __copy_traits<T>
17 will be a typedef for __true; otherwise it will be a typedef for __ false.

18/

19

20 template <class T>

21 struct ___copy_traits {

22 typedef _ false is_memmovable;

23}

24

25 template <class T>

26 struct ___copy_traits<T *> {

27 typedef _ true is_memmovable;

28}

29

30 template <class T>

31 struct __copy_traits<const T *>{ //[same as above, but with const

printed 4/8/14
9:06:03 AM

hesenea ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 929

32 typedef __true is_memmovable;

33}

34

35 template <> struct ___copy_traits<char > {typedef _true is_memmovable;};
36 template <> struct __copy_traits<int > {typedef _true is_memmovable;};
37 /letc.

38 template <> struct __copy_traits<double > {typedef _true is_memmovable;};

39 template <> struct __copy_traits<long double> {typedef __true is_memmovable;};
40

41 template <> struct __copy_traits<date> {typedef __true is_memmovable;};
42 //Etc.: define a specialization for each type T that can be copied with memmove.
43

44 template <class RANDOM, class OUTPUT>

45 OUTPUT __my_copy(RANDOM first, RANDOM last, OUTPUT result,

46 random_access_iterator_tag)

47 {

48 cout << '"random access iterators\n";

49

50 typedef typename

51 iterator_traits<RANDOM>::difference_type difference_type;
52

53 for (difference_type n = last - first; n > 0; --n) {

54 *result = *first; //(*result).operator=(*first);

55 ++first;

56 ++result;

57 }

58

59 return result;

60 }

61

62 template <class INPUT, class OUTPUT>

63 OUTPUT _my_copy(INPUT first, INPUT last, OUTPUT result,

64 input_iterator_tag)

65 {

66 cout <<'input iterators that are not random access\n";

67

68 for (; first != last; ++first, ++result) {

69 *result = *first; //(*result).operator=(*first);

70 }

71

72 return result;

73}

74

75 template <class INPUT, class OUTPUT>

76 inline OUTPUT __my_copy(INPUT first, INPUT last, OUTPUT result, __either)
77 {

78 typedef typename iterator_traits<INPUT>::iterator_category

79 iterator_category;

80

81 return __my_copy(first, last, result, iterator_category());

82}

83

84 template <class T>

85 T* _my_ copy(T *first, T *last, T* result, __true)

P 0608 AN hesenea ©2014 Mark Meretzky

930 Containers,lterators, and Algorithms Chapter 8

86 {
87 cout << "memmove with read/write source\n";
88
89 memmove(result, first, (last - first) * sizeof (T));
20 return result + (last - first);
91}
92
93 template <class T> //[same as above, but with const’s
94 T*_ my_copy(const T *first, const T *last, T* result, __true)
95{
96 cout << "memmove with read-only source\n";
97
98 memmove(result, first, (last - first) * sizeof (T));
99 return result + (last - first);
100}
101
102 template <class INPUT, class OUTPUT>
103 inline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)

104 {

105 typedef typename iterator_traits<INPUT>::value_type value_type;

106 typedef typename ___copy_traits<value_type>::iis_memmovable is_memmovable;
107

108 return __my_copy(first, last, result, is_memmovable());

109}

110

111 int main()

112 {

113 /[Can be copied with memmove.

114 const int sourcel[] = {10, 20, 30};

115 const size_tn = sizeof sourcel / sizeof sourcel[0];

116 int destl[n];

117 my_copy(sourcel, sourcel + n, destl); //Line 108 calls 94.

118

119 /[Can be copied with memmove.

120 date source?[n];

121 date dest2[n];

122 my_copy(source?2, source2 + n, dest2); //Line 108 calls 85.

123

124 /ICan’t be copied with memmove:

125 /lthe int's are memovable, but list iterators are not pointers.

126 const list<int> li(sourcel, sourcel + n);

127 my_copy(li.begin(), li.,end(), destl); //Line 108 calls 76; 81 calls 63.
128

129 /ICan’t be copied with memmove:

130 /lthe iterators are pointers, but introspect’s are not memmovable.

131 const introspect source4[n];

132 introspect dest4[n];

133 my_copy(source4, sourced + n, dest4); //Line 108 calls 76; 81 calls 45.
134

135 /[Any type of pointer can be copied with memmove.

136 const introspect *const source5[] = {source4, source4 + 1, source4 + 2};
137 const introspect *dest5[n];

138 my_copy(source5, source5 + n, dest5); //Line 108 calls 94.

139

P 0608 AN hesenea ©2014 Mark Meretzky

140
141}

1
2
3

=
SQwoo~NOO O~

11
12
13

14}

15

Section 8.5.2 Dispatch thecopy algorithm 931
return EXIT_SUCCESS;
memmove with read-only source lines 113-117
memmove with read/write source lines 119-122
input iterators that are not random access lines 124-127
random access iterators lines 129-133
memmove with read-only source lines 135-138

A

v Homework 8.5.2a: can we do it with only one dispatching function?

Does the abee pogramcopy3.C really need tw dispatching functions, in lines 102 and 7&8an
we do it all with a single dispatching function?

! my_copy !
| accepts |
| any input iterators |
| |

__my_copy
receives read/write pointer
to memmovable values

5

—_my_copy
receives read-only pointers
to memmovable values

__my_copy
receives any other
input iterators

__my_copy
receives any other
random access iterators

N/

memmove

t emplate <class INPUT, class OUTPUT>
i nline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)
{
t ypedef typename iterator_traits<INPUT>::iterator_category
i terator_category;

t ypedef typename iterator_traits<INPUT>::value_type value_type;
t ypedef typename ___copy_traits<value_type>::iis_memmovable is_memmovable;
return __my_copy(first, last, result,

iterator_category(), /lone of the iterator tag classes
is_memmovable()); /l__true or __ false

Hint. Which__my_copy would be called by the “intersection of sétlgorithm on pp. 93-94 if the iter
ators weresector<int>::iterator 's?

The reality is ®en more complicated.On my platform, the elements of a vector are stored consecu-
tively in memory and a \ector iterator is an object whose only data member is a pointer to an elément.
vector should therefore be copied Imemmove But the iterators in line 19 are objects, not pointers, so

my_copy doesnt recognize the opportunity to calemmove
int source[] = {10, 20, 30};

printed 4/8/14
9:06:03 AM

All rights

resened ©2014 Mark Meretzky

16
17
18
19

20

932 Containers,lterators, and Algorithms Chapter 8

const size_t n = sizeof source / sizeof source[0];

vector<int> v(a, a + n);
int dest[n];
my_copy(v.begin(), v.end(), dest);

How could we mak my_copy smart enough so that the abdine 19 will callmemmové@ Note
that the existingny_copy will call memmovef we change line 19 to

my_copy(&*v.begin(), &*v.end(), dest);

but we don’t want to do that.
A

v Homework 8.5.2b: dispatch the find algorithm

Dispatch thefind algorithm. If the first and second guments are pointers (read-only or
read/write) tochar , unsignedchar , or signedchar , havethefind algorithm call the C Standard
Library functionmemchr. If the arguments are another type of random access itdatefind count a
difference_type down to zero. Otherwise, compareotiterators during each iteration.

It will be simpler tharcopy because you wohhaveto worry about _copy_traits
A

v Homework 8.5.2c: dispatch the find_distance algorithm

The find_distance algorithm we wrote on p. 837 will acceptyaimput iterators. It then incre-
ments a counter of type

typename iterator_traits<IT>::difference_type

during each iteration of a loop.

If the iterators are input iterators that are not random acoesg,the existing code. But if the itera-
tors are random access, we can get rid of the counter and do tlstgb After finding the desired ele-
ment, we can find the answer by a single subtraction@ftesators. Irfact, we can do the whole job sim-
ply by calling thefind algorithm and thelistance algorithm.

A

8.6 StandardTemplate Library Summary

We havestudied some of the STL components in depth: the contaieetsr |, list , and map; the
iterators for input streams, output streams, and the inserters; and the algsoithmsopy , find ,

find_if , andmin_element . The remaining components can be sketched in outline because the design

of the STL is so consistent. Full documentation is online at

http://www.sgi.com/tech/stl/

This summary ceers a fev components that are not officially part of the STL, but provided byman
vendors. TheSTL is the brainchild of Alexander Stepano

8.6.1 STLContainers

The following containers are not officially part of the STL.
slist

hash_set

hash_multiset

hash_map
hash_multimap

Classstring does not belong to the STL, but we list it here because it is STL-compliant. Classes

Peb60a AN hesenea ©2014 Mark Meretzky

Section 8.6.1 STL Containers 933

bitset andvalarray are present because yHi®veanoperator[]

re- iterator has | other member functions
name of class header file oreer catgory 1] for accessing elements
vector qvector> no random yes| at, front , back
string <string> no random yes| at, find , substr
deque <deque> no random yes| see below
list <list> no bidirectional | no | see below
slist <slist> no forwad no front , previous
bitset <bitset> no none yes | set, reset , test
valarray <yalarray> no none yes | [] takesslice s
map <map> sorted bidiectional | yes| O find
multimap <map> sorted bidiectional | no | U equal_range
set Kset> sorted bidiectional | no E lower_bound
multiset <get> sorted bidiectional | no | 7 upper_bound
hash_map <hash_map> hashed | forwad yes | O
hash_multimap <hash_map> hashed | forwad U find
hash_set <hash_set> hashed | forwad no E equal_range
hash_multiset <hash_set> hashed | forwad 0
stack <stack> no none no push, top, pop
gqueue <queue> no none no push, front , pop
priority <ptiority heap none no push, top , pop
_queue _queue>
Topology

Every STL container is one-dimensional. The only hint of a non-linear data structure in the library is
the binary tree in théhteap’ algorithms on pp. 961-962In Chapter 9, we will impose a dadimensional
shape on a one-dimensional container.

A container with input iterators canVeaa end; in fact, it caneen be enpty. A container whose
iterators are merely output iterators is endless.

Sequences vs. associadi ontainers

Classewector ,string ,deque,list ,andslist are calledsequencesThink of each of their
elements as having a nongagve integer subscript.Classlist is doubly-linked, classlist is singly-
linked. Een the humble array is a sequence, albeit one with no member functions or member types.

A deque is a double-ended queu€lassesleque andlist have the folloving member functions.

get push pop
element element element
front || front push_front pop_front
back | back push_back pop_back

Classesnap, set , and theirmulti - and hash_ variants are calle@dssociative container Think
of each element as having a subscript kidyg that can be gndata type.The elements of theaviousmap
containers ar@air objects, whose first data member is the subscript. The elements @ritnesget
containers are just the subscripts themselves.

We look up a subscript by passing it to a member function of the contdihermember function
find returns an iterator referring to the element with the desired subs€hpmulti - containers might
have nore than one element with avgn subscript. equal_range constructs and returngpair of iter-
ators delimiting the range of elements with the desired subscript, or the empty range wheoeltidrare
been had theexisted. lower_bound andupper_bound return the first or second iterator in this pair
when we need to kmoonly where the range begins or ends.

printed 4/8/14 All rights

9:06:03 AM reserved ©2014 Mark MeretZky

OO, WN P

934 Containers,lterators, and Algorithms Chapter 8

The data type of the elements of a container

The elements of aggn container must all be of the same data typhe data type must be assigna-
ble. Thisdisqualifies stream objects (pp. 324-32gpe_info ’'s (p. 1017)facet ’'s (p. 1036), and, for
that matterrabbit ’s (pp. 200 and 311-312). gair is assignable if its tavdata members are.

A reference is not assignable, but a pointer is. Containers usually hold pointers to objects, not the
objects themselves, so we can insert and access the objects without malangedreepies of them (pp.
440-441). Oftera container holds pointers to objects of a family of data types, allowing us to call their vir
tual functions (pp. 487-489). Buven in this case, the pointers themselves are all of the same data type.
They are pointers to the common base class of all the objects.

Sorted containers

The elements of gorted container are alays stored in increasing order of their subscripfs.
inserted in the wrong ordehey are automatically rearrangedVe saw te planets rearranged to alphabeti-
cal order on p. 788.

Increasing order is definedgatively: we never havea later subscript that is less than an earlier one.
Not surprisingly “less than’ means< by defwult. The< operator is applied to the subscript of each ele-
ment in the container.

Two subscripts are said to leguivalentif neither one is less than the othér set or mapwill not
accept tw or more elements with eqealent subscripts. Themulti - variants will.

In each sorted containdhe choice ok for “less than’ can be gerridden (line 5). Bware: the
greater<int> in the<angle brackts> of themapis the name of a data type; theeater<int>()
in the (parenthesgsof thesort in line 14 on p. 936 is an anonymous object.

#include <map>
#include <functional> //for greater
using namespace std;

map<int, double> m1; //sorted in order of <
map<int, double, greater<int> > m2; /[sorted in order of >

A priority_queue is implemented with the heap algorithms on pp. 961-962. Its elements are
ordered in a heap, not a sequence; the biggest ovesigsadt thetop .

Hashed containers

The elements of hashedcontainer are stored in a hash tabléwe hashing function accepts an ele-
ment of the hashed container and returag@ t . By default, the hashing function is tloperator()
member function of cladsash<T>, whereT is the data type of the subscript.

A hash_set or hash_map will not accept two or nore elements with equal subscriptBheir
multi - variants will. Not surprisingly‘equal” means== by default.

In each hashed containgne choice of hashing function and the choiceoffor “equals’ can be
overridden. myhash<int> must be a class whoseerator() takes annt and returns aize_t ;
myequality<int> must be a class whosperator() takes twant ’s and returns dool .

#include <hash_map>
using namespace std;

hash_map<int, double> m1;
hash_map<int, double, myhash<int>, myequality<int> > m2;

0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.2 STL Function Objects 935

Container adaptors

Classesstack , queue, and priority_queue are merelycontainer adaptas, interfaces that
allow access to part of the functionality of an underlying contaitvée will build one ourselves on pp.
986-988.

By default, stack andqueue are adaptors for clagieque ; priority_queue is an adaptor for
classvector . Ineach containeithe choice of underlying container can verddden (line 16).

12 #include <stack>
13 #include <list>
14 using namespace std;

15
16 stack<int> s1; /ladaptor for deque<int>
17 stack<int, list<int> > s2; /ladaptor for list<int>

Relatives of montainers

We havelisted classestring and bitset here, gen though thg do rot belong to the STL.
Classstring could hold ag type of values (see the typedef on p. 688), but iassekt for characters.
Classhitset has aroperator|] member function, but no iterators or other container features.

Classegair andcomplex contain tvo data members each. Thbaveno iterators.

8.6.2 STLFunction Objects

By definition, each function object has a public, non-stapierator() member function, prefer
ably inline. When we say that a function object takes certain arguments and retaluns, ave mean that
its operator() function does these things.

A unary function objectakes one ajumentx, does something with it, and returns the restiliese
classes are demrd from the template clagsary_function , from which thg inherit the two typedef
membersargument_type andresult_type

A binary function objectakes two asgumentsx1l andx2, does something with them, and returns

the result. These classes are vketifrom the template classinary_function , from which thg
inherit the three typedef membédirst_argument_type , second_argument_type , and
result_type

A generator takes no arguments and returns a restliiese classes are ded from the template
classgenerator , from which thg inherit the typedef membeesult_type . This template class is
not in the librarybut we wrote it ourselves on p. 882.

In addition to preiding the typedefs, the names of the base clasgeserator
unary_function , and binary_function act as documentation.

Our first example of a function object was clgesater (p. 769). In the following line 9, the first
argument of itoperator() is of typeconstT& . But the first template argument of its base class
binary_function in line 7 is an unadornel and the template argument in line 14 is an unadorned
int . The intent of the template argument is tovglioe data type of a variable that can be passed to the
operator() , not the mechanism by which the variable is passed.

Function objects are intended only to be passed as arguments to an algdhggmwill probably be
anonymous temporaries. Line 14 is an example.

#include <vector>

#include <functional> //ffor greater
#include <algorithm>

using namespace std;

t emplate <class T>
struct greater: public binary_function<T, T, bool>

NOoO o~ WNPEP

0608 AN hesenea ©2014 Mark Meretzky

936 Containers,lterators, and Algorithms Chapter 8

8 {
9 bool operator()(const T& x1, const T& x2) const {return x1 > x2;}
10}
11
12 vector<int> v(argument(s) for constructgr
13 sort(v.begin(), v.end()); /lincreasing order (<) by default
14 sort(v.begin(), v.end(), greater<int>()); //decreasing order (>)

For each class of function object that contains data members, therkeipex functionthat con-
structs and returns an object of that class. The classes and helper functions in 88.6.2 are declared in the
header file<functional>

8.6.2.1 Functionobjects containing no data members

The following function objects are identical to the \&bgreater , except for the operation per
formed. W\ sawgreater on p. 769multiplies on 810.

argument(s) of| return value of
name of class operator() opgrator()

equal_to X1, X2 x1 ==x2
not_equal to x1, X2 x1 1=x2
less 1, X2 x1 < x2
greater X[, X2 x1 > x2
less_equal x1, X2 X1 <=x2
greater_equal x1 X2 x1l >=x2
plus X1, X2 x1 + x2
minus x1l, x2 x1 - x2
multiplies x1, X2 x1 * x2
divides X1, X2 x1 [/ x2
modulus X1, X2 x1 % X
negate X -X
logical_and x1 X2 x1 && x2
logical_or x1, X2 X1 || x2
logical_not X IX

The following group of function objects is not officially part of the STL. Tbpération’ they per-
form is merely to return an argument, or merely a data member ajamemt. Theargument of each
select function is gpair object, whose data members are nafirei andsecond .

argument(s) of| return value of
name of class| operator() opgrator()

identity X X
projectlst x1 X2 x1
project2nd x1, X2 X2
selectlst X x.first
select2nd X x.second
Heres an aample ofidentity
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/identity.C

=Y

#include <iostream>
#include <cstdlib>
3 #include <vector>

N

P0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.2.1

Function objects containing no data members 937

4 #include <functional> /ffor not_equal_to and bind2nd
5 #include <ext/functional> //for identity
6 #include <algorithm>
7 using namespace std;
8
9 i nt main()
10{
11 int af] ={0, 0, 10, 20, 30}
12 const size_t n = sizeof a/ sizeof a[0];
13 vector<int> v(a, a + n);
14
15 vector<int>::iterator it =
16 /[Pedantic way to find the first non-zero element.
17 /ffind_if(v.begin(), v.end(), bind2nd(not_equal_to<int>(), 0));
18
19 /ISimpler way to find the first non-zero element.
20 find_if(v.begin(), v.end(), __gnu_cxx:identity<int>());
21
22 cout << "Subscript of first non-zero element is "
23 << distance(v.begin(), it) << ".\n";
24
25 return EXIT_SUCCESS;
26}
Subscript of first non-zero element is 2.
Strangly the projection objects return bylue, while the others return by reference. lithaveany
use, it lies with théransform algorithm that takes twinput containers.
The selection objects are useful for a containgragf 's, such as thenapin line 21.
—On the Web at
http://i5.nyu.edu/ Omme64/book/src/library/selectlst.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <map>
5 #include <iterator> [[for ostream_iterator
6 #include <ext/functional> //for selectlst and select2nd
7 #include <algorithm> [ffor transform
8 using namespace std;
9
10 int main()
114
12 typedef map<string, double> map _t;
13 typedef map_t::value_type pair_t;
14
15 const pair_ta[] ={
16 pair_t("Mercury", .27),
17 pair_t("Venus", .85),
18 pair_t("Earth", 1.00)
19 3
20 const size_t n = sizeof a/ sizeof a[0];
21 map_t m(a, a+n);
22

printed 4/8/14
9:06:03 AM

All rights
reserved

©2014 Mark Meretzky

938 Containers,lterators, and Algorithms Chapter 8

23 /[Output the subscripts. map_t::key_type is a typedef for string.

24 transform(

25 m.begin(), m.end(),

26 ostream_iterator<map_t::key type>(cout, "),

27 __gnu_cxx::selectlst<pair_t>()

28);

29 cout <<"\n"

30

31 /[Output the values. map_t::mapped_type is a typedef for double.

32 transform(

33 m.begin(), m.end(),

34 ostream_iterator<map_t::mapped_type>(cout, "),

35 __gnu_cxx::select2nd<pair_t>()

36);

37 cout <<"\n"

38

39 return EXIT_SUCCESS;

40}
Earth Mercury Venus lines 23-29: subscripts (in alphabetical order)
1 0.270.85 lines 31-37: the corresponding values

8.6.2.2 Functionobjects containing a pointer to a free function

A pointer_to_unary_function<ARG, RETURN> is a function object that contains a
pointer to a free (i.e., non-member) functmmwhose argument and return value are of tyjR&and
RETURN The function object takes one argumerand returng*p)(x)

A pointer_to_binary_function<ARG1, ARG2, RETURN> is a function object that con-
tains a pointer to a functigm whose arguments and returalve are of typeARG1 ARGZ and RETURN
The function object takes tmargumentsx1 andx2, and returng*p)(x1, x2) . See pp. 944-945 for a
specialization you might ka © write.

Instead of mentioning the template arguments in<duegle brackts>, it's dmpler to call the tem-

plate functiorptr_fun . It will construct and return pointer_to_unary_function or
pointer_to_binary_function of the correct type.
data agument(s) of| return value of helper
name of class member operator() operator() function
pointer_to_unary_function p X (*p)(X) ptr_fun
pointer_to_binary_function p x1, x2 *p)(x1, x2) ptr_fun

A pointer to a function can be passed directly to an algorithm. Line 24 mdssabrectly to
transform

A pointer to a function can be inserted into a function object, such as the one constructed by the
composel in line 32, only if the pointer to a function is first encased in a function object constructed by
ptr_fun . Lines 33-34 do this to tvof them:sgrt andabs.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/library/ptr_fun.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <cmath> [ffor the double sqrt and abs
4 #include <iterator> [lfor ostream_iterator
5 #include <functional> [ffor ptr_fun

0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.2.2 Function objects containing a pointer to a free function 939

6 #include <ext/functional> //for composel
7 #include <algorithm>
8 using namespace std;

9
10 int main()
114
12 double a[] ={9, -4, 2},
13 const size_t n = sizeof a/ sizeof a[0];
14 ostream_iterator<double> it(cout, " ");
15
16 /[Copy each number.
17 copy(a, a+mn, it);
18 cout <<"\n"
19
20 /[Output the absolute value of each number.
21 transform(
22 a, a+n,
23 it,
24 static_cast<double (*)(double)>(abs)
25);
26 cout <<"\n"
27
28 /[Output the square root of the absolute value of each number.
29 transform(
30 a, a+n,
31 it,
32 __gnu_cxx::composel(
33 ptr_fun(static_cast<double (*)(double)>(sqrt)),
34 ptr_fun(static_cast<double (*)(double)>(abs))
35)
36);
37 cout <<"\n"
38
39 return EXIT_SUCCESS;
40}
9 42 lines 16-18
942 lines 20-26
3 2 141421 lines 28-37

The abee lines 24 and 34 need the cast because the library has more than one functioabsgmed
we want the one that takes and returbable . Instead of repeating thiwey time we mentiorabs,
line 15 could declare a pointabs to the one we want.

41 double (*const abs)(double) = std::abs;

(Without thestd:: , our pointer would be initialized to itself.) Then in lines 24 and 34, we could change
the

static_cast<double (*)(double)>(abs)

toabs.

The standard library has pointer_to_function 's that tale nore than no arguments or more
than two arguments. Theand function, for example, tas no aguments. @ fill a container with the
square roots of random numbers, you wiléd@ write your avn pointer_to_zeroary_function
class, and anothetr_fun to construct gointer_to_zeroary_function

Pb60a AN hesenea ©2014 Mark Meretzky

42
43
44
45
46
47
48
49

940 Containers,lterators, and Algorithms Chapter 8

transform(
a, a+n,
it,
__gnu_cxx::composel(
ptr_fun(static_cast<double (*)(double)>(sqrt)),
ptr_fun(rand)
)
);
See pp. 944-945 for anoth@ointer_to_function class you might hee © write.

8.6.2.3 Functionobjects containing a pointer to a member function

A mem_fun_ref t<RETURN, OBJECT> is a function object that contains a pointeio a mem-
ber function of clas®BJECT The member function taks nogaiments and returnsRETURN The func-
tion object taks one agyumentobj (an object of clas®BJECTpassed as a read/write reference, hence the
nameref_) and returngobj.*p)()

A mem_fun_t<RETURN, OBJECT> is a function object that contains a poinpeto a member
function of clas©OBJECT The member function taks no arguments and retuREEJRN The function
object takes one gumentq (a read/write pointer to an object of cl&BJECT and returngg->*p)()

A mem_funl_ref t<RETURN, OBJECT, ARG> s a function object that contains a poinper
to a member function of cla§BJECT The argument and the return value of the member function are of
types ARGand RETURN The function object takes twarguments,obj (an object of clas©BJECT
passed as a read/write reference)saifdf classARQG, and returngobj.*p)(x)

A mem_funl t<RETURN, OBJECT, ARG> is a function object that contains a poingeto a
member function of cla’®BJECT The argument and the return value of the member function are of types
ARGandRETURN The function object takes tnergumentsg (a read/write pointer to an object of class
OBJECT andx (of classARG, and returngg->*p)(x)

There are alsgonst_ variants, in which the member function iscanst member function.In
this case, the object of cla@BJECTis passed to the function object as a read-only reference or read-only
pointer.

data agument of return value of
name of class member operator() operator() helper function
mem_fun_ref t . .
const_mem_fun_ref_ p obj (obj.*p)() mem_fun_ref
mem_fun_t - L
const_ mem_fun_t P q (@->*p)() mem_fun
data aguments of | return value of
name of class member operator() operator() helper function
mem_funl_ref t . .
const_mem_funl ref t P obj, X (pbj-*p)(x) mem_jfun_ref
mem_funl t .
const_mem_funl_t P q. % (@->*p)(x) mem_fun

Here are examples afem_fun_ref andmem_fun.

(1) Theclear in line 28 is a norgonst member function of classtring , taking no aguments
and returningvoid . The mem_fun_ref in that line therefore constructs and returns an ynons
object of type

0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.2.3 Function objects containing a pointer to a member function 941

mem_fun_ref_t<void, string>
and themem_fun in line 29 constructs and returns an anonymous object of type
mem_fun_t<void, string>
(2) Thesize in line 33 is aconst member function of classtring , taking no arguments and

returningstring::size_type . Themem_fun_ref in that line constructs and returns an gmous
object of type

const_mem_fun_ref_t<string::size_type, string>
and themem_fun in line 34 constructs and returns an anonymous object of type

const_mem_fun_t<string::size_type, string>

Theat in line 22 is aconst member function of classtring , because we're storing $'address
into a pointer to that type in line 21. (There is anotterfunction that is a nowonst member function
of classstring , so we pecify once and for all which one weamt.) Ittakes an argument of type
string::size_type and returns atring::value_type , Which is just a fipercorrect way of say-
ing char . Themem_fun_ref in line 24 constructs and returns an anonymous object of type

const_mem_funl_ref t<string::value_type, string, string::size_type>
and themem_fun in line 25 constructs and returns an anonymous object of type

const_mem_funl_t<string::size_type, string, string::size_type>

Lines 28-29 call théor_each algorithm becausstring::clear has no argument or return
vaue. Lines33-34 call thetransform with one source range becauséng::size has a return
value but no agument. Thestream iterator in line 32 prints tiséream::size_type returned by the
calls tosize . Lines 24-25 call thé&ransform with two source ranges becaus#ing::at has an
argument and a returralue. Thestream iterator in line 23 prints tkgeam::size_type returned by
the calls tcsize .

—On the Web at

http://i5.nyu.edu/ Cmme64/book/src/library/mem_fun.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <string>

4 #include <iterator>

5 #include <functional>

6 #include <algorithm>

7 using namespace std,;

8

9 i nt main()
10 {
11 const size tn=3;
12 string a[n] = {"abe", "ike", "jake"}; //container of objects
13 string *b[n] ={ /[container of pointers to objects
14 new string("abe"),
15 new string("ike"),
16 new string("jake")
17 b
18 string::size_type c[n] =41, 2, 3} /[container of subscripts
19
20 /ICall the at member function of each object, print the return values.
21 string::const_reference (string::*const at)(string::size_type) const =
22 &string::at;

060 AN hesenea ©2014 Mark Meretzky

942 Containers,lterators, and Algorithms Chapter 8

23 ostream_iterator<string::value_type> itl(cout, " ");
24 transform(a, a+n, c i t1, mem_fun_ref(at)); cout << "\n";
25 transform(b, b+ n c i tl, mem_fun (at)); cout << "\n";
26
27 /ICall the clear member function of each object. It returns no value.
28 for_each(a, a + n, mem_fun_ref(&string::clear));
29 for_each(b, b + n, mem_fun (&string::clear));
30
31 /ICall the size member function of each object, print the return values.
32 ostream_iterator<string::size_type> it2(cout, " ");
33 transform(a, a + n, i t2, mem_fun_ref(&string::size)); cout << "\n";
34 transform(b, b + n, i t2, mem_fun (&string::size)); cout << "\n";
35
36 for (size_ti=0;i<n;++i){
37 delete bi];
38 }
39 return EXIT_SUCCESS;
40}
bee line 24
bee line 25
00O line 33
00O line 34

8.6.2.4 Functionobjects containing one, two, or three other function objects

composel andcompose?2 are not diicially part of the STL. The other functions in this group are
ones we wrote oursaédg. Aunary_compose<F, G> contains tw unary function objectd, andg, of
typesF andG. Theunary_compose takes one argumertof typeG::argument_type and returns
f(a(x))

A binary_compose<F, G1, G2> contains one binary function object and two unary func-
tion objects,gl and g2, of typesF, G1, and G2 The binary_compose takes one giumentx and
returnsf(g1(x), g2(x)) . The argumenx must be covertible to G1::argument_type and
G2::argument_type

A composer_fg<F, G> (p. 882) contains one unary function objecind generator objegt, of
typesF andG. Thecomposer_fg takes no arguments and retuffig))

A composer_fgx1l x2<F, G> (pp- 894-895) contains one unary function obfe@nd binary
unary function objeag, of typesF andG Thecomposer_fgx1_x2 takes two asgumentsx1 andx2, of
type G::first_argument_type andG::second_argument_type , and returns
f(g(x1, x2))

A composer_fgx1_gx2<F, G> (p. 909) contains one binary function objécand one unary
function objecty, of typesF andG Thecomposer_fgx1l _gx2 takes two agumentsxl andx2, of type
G::argument_type , and returnd(g(x1), g(x2))

A unary_negate<G> contains a unary function objegtof type G Theunary_negate takes
one agumentx of type G::argument_type and returndg(x) . Classunary_negate is just a
shorthand. It did not exist, we could construct an object that does the same thiotlég) by saying

composel(logical_not<G::result_type>(), g)

A binary_negate<G> contains a binary function objegt of type G The binary_negate
takes tvo agumentsx1l andx2, of typesG::first_argument_type and
G::second_argument_type , and returns !g(x1, x2) . Class binary_negate is just a

0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.2.5

shorthand. It did not exist, we could construct an object that does the same thiotRésg)

Function objects containing a function object and an argument for it

compose_fgx1_x2(logical_not<G::result_type>(), g)

943

by saying

data agument(s) of return value of

name of class member(s) operator() operator() helper function
composer_fg f g none f(9() campose_fg
unary_compose f g X f (g(x) composel
composer_fgx1 x2 f, g x1, x2 f(g(x1, x2)) compose_fgx1l x2
composer_fgx1l gx2 f, g x1, x2 f(g(x1), g(x2)) compose_fgx1_gx2
binary_compose f, g1, g2 X f (g1(x), g2(x)) compose2
unary_negate g X I g(x) notl
binary_negate g x1, x2 g(x1, x2) not2

To oonstruct an anonymous function object whoperator() takes an argumentand returns
f(g(h(x))) , say either of the follwing. They do the same thing; a mathematician would say that
“function composition is assochadi”

=

composel(f, composel(g, h))
composel(composel(f, g), h)

N

In fact, you could easily define the following helper function.

#include <ext/functional>
using namespace std;

t emplate <class F, class G, class H>
i nline __gnu_cxx::unary_compose<F, __gnu_cxx::unary_compose<G, H> >
compose_fghx(const F& f, const G& g, const H& h)

9 {
10
11}

return __gnu_cxx::composel(f, __gnu_cxx::composel(g, h));

and then say

12 compose_fghx(f, g, h)

8.6.2.5 Functionobjects containing a function object and an argument for it
A binderlst<F>
F:.first_argument_type
F::second_argument_type
A binder2nd<F>
F::second_argument_type
F:.first_argument_type

contains a binary function objefctof typeF and a valuel of type
. Thebinderlst takes an argumer® of type
and returng(x1, x2)

contains a binary function objefctof typeF and a value2 of type
. Thebinder2nd takes an argumert. of type
and returng(x1, x2)

Binders appeared on pp. 861-864.

name data argument of | return value of helper

of class members operator() operator() function
binderlst f, x1 |x2 f(x1, x2) bind1st
binder2nd f, x2 |x1 f(x1, x2) bind2nd

printed 4/8/14
9:06:03 AM

All rights

resened ©2014 Mark Meretzky

©CoOoO~NOOOUTA~,WNPE

944 Containers,lterators, and Algorithms Chapter 8

v Homework 8.6.2.5a: a pointer_to_function specialization

The following code adds 10 to each integer in teetat The calls tobind2nd are successful in
lines 14 and 17. But whwon't the one in line 20 compile?

#include <iostream>
#include <vector>

#include <iterator> [lfor ostream_iterator
#include <functional> /ffor ptr_fun, bind2nd, plus
#include <algorithm> [ffor transform

using namespace std;

i nline int sum(int i, int j) {return i + j;}
i nline int crsum(const int& i, const int& j) {returni + j;}

vector<int> v(argument(s) for constructjr

transform(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"),
bind2nd(ptr_fun(sum), 10));

transform(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"),
bind2nd(plus<int>(), 10));

transform(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"),
bind2nd(ptr_fun(crsum), 10));

Thecrsum in the abwee line 20 is a pointer to a function. The pointer is of the following data type.
We wnderline the part that willventually get us into trouble.

int (*)(const int&, const int&)

The data type of this pointer causesgtrefun to construct and return a
pointer_to_binary_function object whose membeecond_argument_type is a typedef for
constint& . This typedef causes thénd2nd to construct and returnkander2nd object whose sec-
ond data member is of tygenstint& . (We saw the data member on line 48 of the definition for class
binder2nd on p. 863.) Not surprisinglythis data member is initialized by the secorguiarent passed
to thebinder2nd ’s constructor (thelO in the abwee line 20). The argument is passed by reference; as
usual, it is a reference to the data type of the data merBboethe data member is already a reference, and
there is no such thing as a reference to a reference. The program does not compile.

Fix it by specializing th@ointer_to_binary_function template class as folls. Ifits con-
structor recedes a inter to a function whose secondjament is a reference tocanst data type, the
constructor will construct pointer_to_binary_function object whose member

second_argument_type is a typedef for the same data typet Wwithout the “reference tb(line 24).
In othr words, the data typ€&in line 23 is stripped down to plain oX? in line 24.

To get it to compile withg++, | had to strip theonst out of the data type as well. The+
binder2nd has twooperator() member functions, taking arguments of type
first_argument_type& andconstfirst_argument_type& . These types will be distinct only
if first_argument_type is notconst .

21 namespace std {
22 template <class X1, class X2, class Y>
23 class pointer_to_binary_function<const X1&, const X2&, Y>:

24

public binary_function<X1, X2, Y> {

25 protected:

26

Y (*p)(const X1&, const X2&);

27 public:

P D60 AN hesenea ©2014 Mark Meretzky

Section 8.6.3 STL Algorithms 945

28 explicit pointer_to_binary_function(Y (*initial_p)(const X1&, const X2&))
29 : p(initial_p) {}
30
31 Y operator()(const X1& x1, const X2& x2) const {return (*p)(x1, x2);}
32}
33}
A

8.6.3 STLAlgorithms

A range of elements

Let first andlast be a pair of iterators referring to elements in the same contamter the
empty slot after the last element where the next element would be. Then the notation

[first, last)

represents the range of elements fiiimst to last , including the element to whidirst refers lut
not including the one to whictast refers. Iffirst andlast are equal, the range is emp®@ther-
wise,first must refer to an element that is earlier treest

These coventions allav us to tse the notatioiffirst,last) for all ranges, een empty ones.
And, of course, thécontainer’ need not be a container at all. Theotiterators might be stream iterators
referring to the standard input, an input file, or a TCP/IP socket.

Note, havever, that a range cannot be delimited by iterators that are merely output itefElters. is
no guarantee that output iterators can be compared, so our definition of when the range is empty or non-
empty becomes meaningles$o define an output range, we specify one output iterator and ageinte
count. Exampleare the n algorithms:generate_n ,fill_n , uninitialized_fill_n ,
random_sample_n (but notsearch_n).

Algorithms that search for an element in a rajfigst,last) do not return the elementhey
return an iterator that refers to the elementlast if the element is not found. The iteratonveg us
access to the element, and, if the iterator is not merely an input iterator (p. 837), tells us where in the con-
tainer the element was located.

The data type of the elements

Let T be the data type of each element in the range whose iterators are passed to an aljoeithm.
“ numeric’ algorithms (pp. 962-964) assume tAas a type such dtoat , double , or
complex<double> : one that can be copied quickly and with no sideat$. Thesalgorithms pass and
return aT by value. Theother algorithms makno sich assumption armlways pass and return &by ref-
erence.

Other arguments and returalves—iterators, predicates and other function objects, and miscella-
neous integers—are passed and returnedalmeyv AT passed to or returned by a function object is passed
by reference, except for the projection function objects.

The numeric algorithms are defined in the headekfilemeric> . The other algorithms in §8.6.3
are defined ircalgorithm>

Shorthand declarations for the algorithms

The algorithms are template functions, so e&tdclaration” should be preceded by a template pre-
amble.

1 t emplate <class FOR> FOR adjacent_find(FOR first, FOR last);
We amit the preamble to sa pace.

2 FOR adjacent_find(FOR first, FOR last);

0608 AN hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA, WNPE

946 Containers,lterators, and Algorithms Chapter 8

The following corentional names are used for template arguments that stand for data types.

IN is an input iteratorIN2 is another type of input iteratarot necessarily the same las. OUTis
an output iteratorFORis a forward iterator FOR2is another type of forward iterafawt necessarily the
same a$OR

UPREDIs a unary predicate: a function or function object that wiletake of the elements and
return abool or a value covertible thereto.BPREDis a binary predicateFUNC2is a binary function.
GENERATOR a function of no argument$&JNARYs a unary functionBINARY is a binary function.

DIFFERENCEs thedifference_type of the iterators passed ilNis an intger. RNGs a ran-
dom number generator (an object such asldractive_rng with anoperator(n) member func-
tion that returns a random number greater than or equal to zero and lass than

8.6.3.1 Read-onhAlgorithms

A read-only algorithm does not, by itself, assign a value to an element in a Famgssignment
might performed, hwmever, by a function or function object passed to the algorithm, and applied by the
algorithm to each element in the rand¥e dd this with the function objects passeddo each on pp.
880-881. Infact, nothing preents us from defining aoperator== that assigns a mevalue to its oper
ands, and having a read-only algorithm apply ¢ipisrator== to the elements. Nothing, that is, except a
decent respect for the opinions of mankind.

8.6.3.1.1 Aply no predicate to the elements

Algorithms that do not access the values of the elements at all

t emplate <class INPUT, class DIFFERENCE_TYPE d>
void advance(INPUT& it, DIFFERENCE_TYPE d); /lread/write reference

t emplate <class INPUT>
t ypename iterator_traits<INPUT>::difference_type
void distance(INPUT first, INPUT last);

The advance algorithm maes the iterator forwards or baclasds by the specified number of ele-
ments. d can be ngaive aly if the iterator is at least bidirectional as well as fardv Bevare: the first
argument is passed as a read/write reference (pp. 73-74).

Thedistance algorithm returns the number of elements in a range. Its return type is the

difference_type for the given type of iterator For examplejnt * iterators will yield a
ptrdiff_t ; vector<int>::iterator 's will yield a vector<int>::difference_type
Other algorithms that return tlokfference_type arecount , count_if , and the

find_distance we wrote on p. 837.

”

advance anddistance were gven word names, rather than the namegpérator+= " and
“operator- ", to remind the user of the cost of calling theiihey are fast for random access iterators,
but slower for other categories.

Algorithms that call a function during each iteration of a loop

t emplate <class INPUT, class FUNCTION>
FUNCTION for_each(INPUT first, INPUT last, FUNCTION f);

t emplate <class FORWARD, class FUNCTION>
void generate(FORWARD first, FORWARD last, FUNCTION f);

t emplate <class OUTPUT, class N, class FUNCTION>
OUTPUT generate_n(OUTPUT first, N n, FUNCTION f);

0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.3.1.3 Check pairs of elements for equality 947

10 template <class INPUT, class OUTPUT, class FUNCTION>

11 OUTPUT transform(INPUT first, INPUT last, OUTPUT result, FUNCTION f);
12

13 template <class INPUTL1, class INPUT2, class OUTPUT, class FUNCTION>
14 OUTPUT transform(INPUT1 firstl, INPUT1 lastl,

15 INPUT2 first2, OUTPUT result, FUNCTION f);

See the diagram on p. 878 for a summary of these algoritiilvest passed tdor_each and the
one-input-rangéransform must accept an element of the input range asdgisnaent. Thed passed to
the two-inpyt-rangetransform must accept an element of each range as iblsaguments. Thef
passed t@enerate , generate_n , andtransform must return a alue that can be stored into each
element of the output range.

To transform avalarray , see pp. 899-900.

8.6.3.1.2 Checkhe elements one at a time

t emplate <class INPUT, class T>
I NPUT find(INPUT first, INPUT last, const T& t);

t emplate <class INPUT, class T>
t ypename iterator_traits<INPUT>::difference_type
count(INPUT first, INPUT last, const T& t);

t emplate <class INPUT, class T, CLASS UNARY_PREDICATE>
I NPUT find_if(INPUT first, INPUT last, UNARY_PREDICATE unary_predicate);

©CoOo~NOOOUTA,WNPE

10

11 template <class INPUT, class T, CLASS UNARY_PREDICATE>

12 typename iterator_traits<INPUT>::difference_type

13 count_if(INPUT first, INPUT last, UNARY_PREDICATE unary_predicate);

find andcount compare their third gument to each element of the range. By default, the com-
parison is performed with the= operator To substitute an alternat comparison, pass a unary predicate
tofind_if andcount_if

find andfind_if returnlast if nothing is found; otherwise tlgeeturn an iterator referring to
the first element that satisfied thefind has a simple definition on p. 85%he C functiorstrchr does
the same job for a range of characters; the member furtithn does the same job fors&ring object.
(A well-implementediind would be dispatched to call these functions when possiffited) if has a
simple definition on on p. 864.

count has a simple definition on p. 810. There is no need¢dant andcount_if to return a
signed type, because thwill never give us a ngative \alue. Unfortunatelyclassiterator_traits
has no unsignesize_type member corresponding to the sigrbifierence_type

Classhitset has a member function that countsviaary bits arel.

#include <iostream>
#include <bitset>
using namespace std;

bitset<32> b = 0x00000000;

cout << b.count() << "\n"; /lprint O

b .flip(); Jiille] all 32 bits
cout << b.count() << "\n"; [lprint 32

O~NO O WNPE

find and find_if had to hae dfferent names. Otherwise thereowld be no way to ki
whether the third argument was the value to searclofdhe unary predicate to which each value in the
range should be passed. Ditto émunt andcount_if

0608 AN hesenea ©2014 Mark Meretzky

948 Containers,lterators, and Algorithms Chapter 8

8.6.3.1.3 Checlpairs of elements for equality

/ [There is another declaration for each of these algorithms; see below.

t emplace <class FORWARD>
FORWARD adjacent_find(FORWARD first, FORWARD last);

t emplace <class FORWARD, class SIZE_TYPE, class T>
FORWARD search_n(FORWARD first, FORWARD last, SIZE_TYPE n, const T& t);

©CoOoO~NOOOUTA, WNPE

t emplate <class INPUT, class FORWARD>

10 INPUT find_first_of(INPUT firstl, INPUT lastl, FORWARD first2, FORWARD last2);
11

12 template <class FORWARD1, class FORWARD2>

13 FORWARD1

14 search(FORWARDL firstl, FORWARDL1 lastl, FORWARD?2 first2, FORWARD?2 last2);
15

16 template <class FORWARD1, class FORWARD2>

17 FORWARD1

18 find_end(FORWARD1 firstl, FORWARD1 lastl, FORWARD?2 first2, FORWARD?2 last2);
19

20 template <class INPUT1, class INPUT2>

21 bool equal(INPUT1 firstl, INPUT1 lastl, INPUT?2 first2);

22

23 template <class INPUT1, class INPUT2>

24 pair<IN, IN2> mismatch(INPUT1 firstl, INPUTL1 last1, INPUT2 first2);

By default, the algorithms in §8.6.3.1.3 apply the operatoto pairs of elements in the rangkn
each case, an optional final argument lets us substitutéeeedtifbinary predicatef-or example, there are
two adjacent_find 's:

25 templace <class FORWARD>

26 FORWARD adjacent_find(FORWARD first, FORWARD last);

27

28 templace <class FORWARD>

29 FORWARD

30 adjacent_find(FORWARD first, FORWARD last, BINARY_PREDICATE binary_predicate);

adjacent_find finds the first occurrence [first,last) of ary two consecutie ejual \al-
ues, returning an iterator referring to the fitgie. Ifit doesnt find what its looking for, it returnslast
See the simple algorithm on p. 840.

search_n finds the first occurrence [first,last) of n consecutie mpies oft , returning an
iterator referring to the first cgp If it doesnt find what it5 looking for, it returnslast . See the po&r
example in line 26 ohdjacent_difference.C on p. 962.

find_first_of finds the first occurrence iffirstl, lastl) of ary of the values in
[first2 last2) . The C functiorstrpbrk does the same job for a range of characters. The member
functionsfind_first_of andfind_last_of do the same job forstring object.

search finds the first occurrence [firstl,lastl) of the entire rangfirst2 last2),

i.e., it finds a substring in a string, returning an iterator that refers to the first element in the subls&ing.
C functionstrstr ~ does the same job for a range of characters. The member fufioiondoes the
same job for &tring object.

find_end finds the last occurrence iffirstl, lastl) of the entire rangdfirst2,
last2) . It should hae been namedearch_end . The member functiorfind does the same job for
astring object.

0608 AN hesenea ©2014 Mark Meretzky

31
32
33
34
35
36
37
38

Section 8.6.3.1.3 Check pairs of elements for equality 949

equal returnstrue if the rangdfirstl lastl) and the range of the same length starting at
first2 have the same elements. In other words, it comparessinngs for equality The C function
strcmp does the same job for bmanges of characters, returning zero ifytlaee equal. The member
function compare does the same job for éwstring 's. To compare entire objects, not just subse-
guences, use the= operator Call theequal algorithm only when comparing subsequences of objects, or
when comparing tevarays.

vector<int> v1(argument(s) for constructir

vector<int> v2(argument(s) for constructiir

/i the entire vectors are equal,

if (vi==v2){

/i the first five elements are equal,

if (equal(vl.begin(), v1.begin() + 5, v2.begin(), v2.begin() + 5)) {
Examples are line 13 @fase_insensitive_equal_to.h on p. 951, and line 38 afatetime.h
on p. 953. The simplest way to implemenual is by callingmismatch .

mismatch finds the first element iffirstl,last1) that is different from the corresponding

element in the range of the same length startifigsé? . It constructs and returnspair of two itera-

tors that refer to these elements. The Unix utdityp does this for tw sequences of bytes.

v Homework 8.6.3.1.3a: let stack::operator== call mismatch

Let theoperator== friend of classtack do its work by callingnismatch .
A

v Homework 8.6.3.1.3b: let cookie::operator new[] call search_n

Let the operator new]] member function of classookie call thesearch_n algorithm to
find the firstn consecutiefalse ’s in the array obool 's. See p. 419.
A

A different binary predicate in place of==

Here is a binary predicate we could use in place of the operatoits name echoes that of the STL
function objectequal_to . Warning: this predicate is not aeduivadence relatiori If a is approxi-
mately equal td, and b is approximately equal to, it is not necessarily true thatis approximately equal
toc.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/approximately _equal_to.h

#ifndef APPROXIMATELY_EQUAL_TOH

#define APPROXIMATELY_EQUAL_TOH

#include <cstdlib> /ffor abs functions that take int and long

#include <cmath> [[for abs functions that take float, double, long double
#include <functional> //for binary_function

using namespace std;

/ IReturn true if t1 and t2 are within .01 of each other.

/ /("Close enough for government work.")

11 template <class T>
12 struct approximately _equal_to: public binary_function<T, T, bool> {

13
14
15

bool operator()(const T& t1, const T& t2) const {
return abs(tl - t2) < .01;

}

P060a AN hesenea ©2014 Mark Meretzky

950 Containers,lterators, and Algorithms Chapter 8

16 };
17 #endif

We @an use it as follows.

18 #include <vector>

19 #include <algorithm>

20 #include "approximately equal_to.h"
21 using namespace std;

22
23 vector<double> v(argument(s) for constructjgr
24
25 /[Find the first pair of adjacent elements that are equal.
26 vector<double>::const_iterator it = adjacent_find(v.begin(), v.end());
27
28 /[Find the first pair of adjacent elements that are approximately equal.
29 it = adjacent_find(v.begin(), v.end(),
30 approximately equal_to<double>());
Or we can hild a function object that does the same thinggmoximately_equal_to by using the

compose_fgx1l_x2 we wrote on pp. 894—-895 to compute thierage.

#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;

v ector<double> v(argument(s) for constructjr

/ IFind the first pair of adjacent elements that are approximately equal,

/ /but without approximately _equal_to.

10 vector<double>::const_iterator it = adjacent_find(v.begin(), v.end(),
11 compose_fgx1_x2(

12 bind2nd(less<double>(), .01),

13 compose_fgx1_x2(

14 ptr_fun(static_cast<double (*)(double)>(abs)),

15 minus<double>()

©CoOoO~NOOOUTA, WNPE

Another binary predicate in place of==
Here is another binary predicate we could use in place of the operator

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/library/case_insensitive_equal_to.h

#ifndef CASE_INSENSITIVE_EQUAL_TOH

#define CASE_INSENSITIVE_EQUAL_TOH

#include <cctype> /lfor tolower

#include <string> /[for class string

#include <functional> //for binary_function, equal_to, ptr_fun
#include <algorithm> //for equal

using namespace std;

/ IReturn true if the strings are equal, ignoring case.

QOwoo~NOOUODWNLPE

[

D608 AN hesenea ©2014 Mark Meretzky

Section 8.6.3.1.4 Check pairs of elements for < 951

11 struct case_insensitive_equal_to: public binary_function<string, string, bool> {

12 bool operator()(const string& s1, const string& s2) const {
13 return sl.size() == s2.size() && equal(

14 sl.begin(), sl.end(),

15 s2.begin(),

16 compose_fgx1_gx2(

17 equal_to<int>(),

18 ptr_fun(static_cast<int (*)(int)>(tolower))
19)

20);

21 }

22},

23 #endif

We @an use it as follows.

24 #include <vector>

25 #include <string>

26 #include <algorithm>

27 #include "case_insensitive_equal_to.h"
28 using namespace std;

29

30 vector<string> v(argument(s) for constructjgr

31

32 /[Find the first pair of adjacent strings that are equal.

33 vector<string>::const_iterator it = adjacent_find(v.begin(), v.end());
34

35 /[Find the first pair of adjacent strings that are equal,

36 /lignoring case.

37 it = adjacent_find(v.begin(), v.end(), case_insensitive_equal_to());

8.6.3.1.4 Checlpairs of elements for <
/ [There is another declaration for each of these algorithms; see below.
t emplate <class INPUT1, class INPUT2>

bool lexicographical_compare(INPUT1 firstl, INPUT1 last1,
I NPUT2 first2, INPUT2 last2);

t emplate <class FORWARD>
FORWARD min_element(FORWARD first, FORWARD last);

O©CoOo~NOOOUTA, WNPE

10 template <class FORWARD>

11 FORWARD max_element(FORWARD first, FORWARD last);
12

13 templace class T

14 const T& min(const T& t1, const T& t2);

15

16 templace class T

17 const T& max(const T& t1, const T& t2);

By default, the algorithms in §8.6.3.1.4 apply the operattur the elements in the rangélhey do
not attempt to apply the operator to the elements.) In each case, an optional fitalraent lets us sub-
stitute a different binary predicat&or example, there are twlexicographical_compare ’s.

18 template <class INPUT1, class INPUT2>

P060a AN hesenea ©2014 Mark Meretzky

952 Containers,lterators, and Algorithms Chapter 8

19 bool lexicographical_compare(INPUT1 first1, INPUT1 last1,

20
21

INPUT2 first2, INPUT2 last2);

22 template <class INPUT1, class INPUT2>
23 bool lexicographical_compare(INPUT1 firstl, INPUT1 last1,

24
25

©CoOo~NOOOUTA, WNPE

INPUT2 first2, INPUT2 last2,
BINARY_PREDICATE binary_predicate);

Here is a binary predicate we could use in place of the ope&rator

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/case_insensitive_less.h

#ifndef CASE_INSENSITIVE_LESSH

#define CASE_INSENSITIVE_LESSH

#include <cctype> /ffor tolower

#include <string> /[for class string

#include <functional> //for binary_function, less, ptr_fun
#include <algorithm> //for lexicographic_compare
using namespace std;

/ IReturn true if s1 is less than s2 (i.e., sl is earlier in alphabetical order),

10 /lignoring case.

11

12 struct case_insensitive_less: public binary_function<string, string, bool> {

13 bool operator()(const string& s1, const string& s2) const {
14 return lexicographic_compare(
15 sl.begin(), sl.end(),
16 s2.begin(), s2.end()
17 compose_fgx1_gx2(
18 less<int>(),
19 ptr_fun(static_cast<int (*)(int)>(tolower))
20)
21);
22 }
23}
24 #endif
lexicographical_compare returns true if[firstl, lastl) is less than(first2,

NOoO O~ WNPRE

last2) in lexicogmaphical oder. The following example sortdate objects in this order to achie
chronological order The year of each object is the primary say;khe month is the secondary soeyk
the day of the month is the tertiary soeyketc. Infact, wevve been doing Igicographical sort all along
whene&er we compare tw grings for alphabetical order.

To oonstruct a ostream_iterator<datetime> (line 22 of
lexicographical_compare.C), we must first define asperator<< for classdatetime (line 28
of datetime.h).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/datetime.h

#ifndef DATETIMEH
#define DATETIMEH
#include <iostream>
#include <iomanip>
#include <algorithm>
using namespace std;

0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.3.1.4 Check pairs of elements for < 953

8 class datetime {

9 static const size_tn = 6;
10 int a[n];
11 public:
12 enum {
13 january = 1, f ebruary, march, april, may, june,
14 july, august, september, october, november, december
15 3
16
17 /lerror checking omitted for brevity
18 datetime(int initial_month, int initial_day, int initial_year,
19 int initial_hour, int initial_minute, int initial_second) {
20 a[0] = i nitial_year;
21 a[l] = i nitial_month;
22 a[2] = i nitial_day;
23 a[3] = i nitial_hour;
24 a[4] = i nitial_minute;
25 a[5] = i nitial_second;
26 }
27
28 friend ostream& operator<<(ostream& ost, const datetime& d) {
29 const char save = ost.fill();
30 return ost << d.a[1] << "/" << d.a[2] << "/" << d.a[0]
31 << " " << s effill(0)
32 << setw(2) << d.a[3] << ""
33 << setw(2) << d.a[4] << ™"
34 << setw(2) << d.a[5] << setfill(save);
35 }
36
37 friend bool operator==(const datetime& d1, const datetime& d2) {
38 return equal(dl.a, d1.a + datetime::n, d2.a);
39 }
40
41 friend bool operator<(const datetime& d1, const datetime& d2) {
42 return lexicographical_compare(
43 dl.a, dl.a + datetime::n,
44 d2.a, d2.a + datetime::n
45);
46 }
47},
48

49 inline bool operator!=(const datetime& d1, const datetime& d2){return!(d1==d2);}
50 inline bool operator>=(const datetime& d1, const datetime& d2){return !(d1<d2);}
51 inline bool operator> (const datetime& d1, const datetime& d2){return d2 <d1;}
52 inline bool operator<=(const datetime& d1, const datetime& d2){return d2 >=d1;}
53 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/lexicographical_compare.C

#include <iostream>
#include <cstdlib>
#include <iterator>
#include <algorithm>
#include "datetime.h"

abhwNRE

P0608 AN hesenea ©2014 Mark Meretzky

954 Containers,lterators, and Algorithms Chapter 8

6 using namespace std,;

7
8 i nt main()
9 {
10 datetime af] ={
11 datetime(datetime::february, 1, 2015, 23, 0, 0),
12 datetime(datetime::february, 2, 2015, 1, 1, 1),
13 datetime(datetime::february, 2,2015, 0,59, 0),
14 datetime(datetime::march, 1, 2014, 0, 0, 0),
15 datetime(datetime::february, 2, 2015, 1, 0, 59),
16 datetime(datetime::february, 2, 2015, 1, 1, 0),
17 datetime(datetime::january, 3, 2015, 0, 0, 0)
18 3
19 const size_t n = sizeof a / sizeof a[0];
20
21 sort(a, a + n);
22 copy(a, a + n, o stream_iterator<datetime>(cout, "\n"));
23 return EXIT_SUCCESS;
24}
3/1/2014 00:00:00 Sort by year 2014 comes first.
1/3/2015 00:00:00 If years are equivalent, sort by monthJanuary comes first.
2/1/2015 23:00:00 If months ae equivalent, sort by dayThe first day of the month comes first.
2/2/2015 00:59:00 If days ae equivalent, sort by hourMidnight comes first.
2/2/2015 01:00:59 If hours are equivalent, sort by minute.
2/2/2015 01:01:00 If minutes ae equivalent, sort by second.
2/2/2015 01:01:01
min_element andmax_element find the first element with the maximum or minimum value in
[firstlast) . They returnlast if the range is emptySee the simple definition on pp. 908-909.
min andmax take dements, not iterators that refer to elements. If neither argument is less than the
other,min andmaxreturn their first ajument. (V& neve consider the case where thgaments are equal.
The algorithms in §8.6.3.1.4 do not apply #reoperator to the elements.) See the simple definition on p.
641.
8.6.3.2 Read/writealgorithms
A read/write algorithm can assign a value to an element in a raveejf eo assignment is per
formed by the function or function object passed to the algoritBot. no algorithm can resize the con-
tainer that holds the range, unless the arguments are insert iteEaterstheremove andremove_if
algorithms remee o dements. Thg merely tale the \alues we want to keep and weothem up to the
front of the range.
8.6.3.2.1 Aply no predicate to the elements
The algorithms in section §8.6.3.2.1 apply no predicate to the elements.
1 t emplate <class FORWARD, class T>
2 void fil(FORWARD first, FORWARD last, const T& t);
3
4 t emplate <class OUTPUT, class SIZE_TYPE, class T>
5 OUT fill_n(OUTPUT first, N n, const T& t);
6
7 t emplate <class OUTPUT, class INPUT>
8 OUTPUT copy(INPUT first, INPUT last, OUTPUT result);

P060a AN hesenea ©2014 Mark Meretzky

Section 8.6.3.2.1 Apply no predicate to the elements 955

9
10 template <class BIDIR1, class BIDIR2>
11 BIDIR2
12 copy_backward(BIDIR1 first, BIDIR1 last, BIDIR2 result);
13
14 template <class BIDIR>
15 void reverse(BIDIRL first, BIDIR last);
16
17 template <class BIDIR, class OUTPUT>
18 OUTPUT reverse_copy(BIDIR first, BIDIR last, OUTPUT result);
19
20 template <class FORWARD>
21 void rotate(FORWARD first, FORWARD middle, FORWARD last);
22
23 template <class FORWARD, class OUTPUT>
24 OUTPUT rotate_copy(FORWARD first, FORWARD middle, FORWARD last, OUTPUT result);
25
26 template <class RANDOM>
27 void random_shuffle(RANDOM first, RANDOM last);
28
29 template <class RANDOM, class RANDOM_NUMBER_GENERATOR>
30 void random_shuffle(RANDOM first, RANDOM last, R,
31 RANDOM_NUMBER_GENERATOR&dom_number_generator);
32
33 template <class INPUT, class RANDOM>
34 RANDOM random_sample(INPUT firstl, INPUT lastl, RANDOM first2, RANDOM last2);
35
36 template <class INPUT, class RANDOM_NUMBER_GENERATOR>
37 RANDOM random_sample(INPUT firstl, INPUT lastl, RANDOM first2, RANDOM last2,
38 RANDOM_NUMBER_GENERATOR&dom_number_generator);
39
40 template <class FORWARD, class OUTPUT, class SIZE_TYPE>
41 RANDOM random_sample_n(FORWARD firstl, FORWARD lastl, OUTPUT result,
42 SIZE_TYPE n);
43
44 template <class FORWARD, class OUTPUT, class SIZE_TYPE>
45 RANDOM random_sample_n(FORWARD firstl, FORWARD last1, OUTPUT result,
46 SIZE_TYPE n, RANDOM_NUMBER_GENERATOR& random_number_generator);

fill copies the &luet into each element dfirst,last) . fill_n copies the &luet into
each element of the range of lengttstarting atfirst . See the simple definitions on pp. 966 and 853.
Tofill —avalarray |, just assign a value to it or to a slice therexfpy andcopy_backwards copy
the input range into the output range. If the ranges doveoap, we can call either algorithm. If the end
of the input rangewerlaps with the start of the output range, calby . It copies the input range from

first tolast , returning an iterator that refers to the element after the last element in the output range.

(If the output range is emptihe return value is the thirdgument.) wher¢he next value would be copied,
if there were one morealue. (Bycontrast, the C functiostrcpy returns the address of tetrt of the
output range.) See the simple definition on p. 844 and the optimized one on pp. 919-932.

If the start of the input rangeverlaps with the end of the output range, calpy backwards . It
copies the first range frofast tofirst . The third argument afopy_backwards refers to thdast
element in the result range; this is where the first element of the source range will be copied.

copy_backwards returns an iterator that refers to the element before the first element in the output

range. (lfthe output range is emptie return value is the third argument.)

Pe060a AN hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUTA, WN P

956 Containers,lterators, and Algorithms Chapter 8

Thereverse algorithm reverses the order of the values in a rangepwriting the original ones.
reverse_copy writes the values into a different destination.

rotate and rotate_copy

void rotate(FOR first, FOR middle, FOR last);
OUT rotate_copy(FOR first, FOR middle, FOR last, OUT result);

random_shuffle

void random_shuffle(RANDOM first, RANDOM last);
void random_shuffle(RANDOM first, RANDOM last, RNG& rng);

random_sample

RANDOM random_sample(IN firstl, IN lastl, RANDOM first2, RANDOM last2);

RANDOM random_sample(IN firstl, IN lastl, RANDOM first2, RANDOM last2, RNG& rng);
RANDOM random_sample_n(FOR firstl, FOR last1l, OUT result, N n);

RANDOM random_sample_n(FOR firstl, FOR lastl, OUT result, N n, RNG& rng);

Swapping algorithms

void swap(T& t1, T& t2); [/lread/write references
void iter_swap(FOR it1, FOR it2); /lread/write iterators
FOR2 swap_ranges(FOR firstl, FOR lastl, FOR2 first2);

swap anditer_swap swap a pair of elements. Lines 8-10 all do the same thing; 10 is simpler

than 9 because we dohaveto write the asterisks.
swap_ranges swaps tw ranges of equal size.
i ntaf] ={10, 20, 30, 40},

const size_t n = sizeof a / sizeof a[0];
vector<int> v(a, a + n);

v ector<int>::iterator itl = v.begin();
v ector<int>::iterator it2 = v.begin() + 1;

swap(v[0], V[1]); /larguments are elements passed by reference
swap(*itl, *it2); /larguments are elements passed by reference
iter_swap(it1, it2); /[arguments are iterators passed by value

/[Swap first two elements and last two elements.
/IReturn v.begin() + 4, which is the same as v.end().
swap_ranges(v.begin(), v.begin() + 2, v.begin() + 2);

Each container teeptbitset and the container adaptors) hasveap member function.The

swap algorithm will call theswap member function for each container.

8.6.3.2.2 Checkhe elements one at a time

Each algorithm in 88.6.3.2.2 (except tpartition algorithms) comes in tw flavas. It can

search for elements with the valugor it can search for elements that satisfy the unary predicate.

void replace (FOR first, FOR last, const T& t, const T& tnew);
void replace_if(FOR first, FOR last, UPRED upred, const T& tnew);

D608 AN hesenea ©2014 Mark Meretzky

Section 8.6.3.2.3 Check pairs of elements for equality 957

OUT replace_copy (FOR first, FOR last, OUT result, const T& t, const T& tnew);
OUT replace_copy_if(FOR first, FOR last, OUT result, UPRED upred, const T& tnew);

FOR remove (FOR first, FOR last, const T& t);
FOR remove_if(FOR first, FOR last, UPRED upred);

OUT remove_copy (IN first, IN last, OUT result, const T& t);
OUT remove_copy_if(IN first, IN last, OUT result, UPRED upred);

BIDIR partition(BIDIR first, BIDIR last, UPRED upred);
FOR stable_partition(FOR first, BIDIR last, UPRED upred);

8.6.3.2.3 Checlpairs of elements for equality

By default, the algorithms in §8.6.3.2.3 apply the operatorto the elements in the rangén
optional final argument lets us substitute a different binary predicate.

unig and unig_copy
Unix programuniq ; list::uniq

FOR unique(FOR first, FOR last);

FOR unique(FOR first, FOR last, BPRED bpred);

OUT unique_copy(IN first, IN last, OUT result);

OUT unique_copy(IN first, IN last, OUT result, BPRED bpred);

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/unique.C

#include <iostream>

#include <cstdlib>

#include <cctype> //ffor isspace
#include <string>

#include <functional>

#include <ext/functional>

#include <algorithm>

using namespace std;

©CoOo~NOOOTA, WNPE

10 struct consecutive_blanks:

11 public binary_function<string::value_type, string::value_type, bool> {

12 bool operator()(string::value_type c1, string::value_type c2) const {

13 return cl==""'&&c2==""

14 }

15}

16

17 int main()

18{

19 string s = "It was\\n\rit\va miracle of rare device, "
20

21 replace_if(s.begin(), s.end(), static_cast<int (*)(int)>(isspace), ' ");
22 cout <<"\"'<<s<<"\"\n"

23

24 string::iterator it = unique(s.begin(), s.end(), consecutive_blanks());
25 cout <<"\"' << s.substr(0, it - s.begin()) << "\"\n";

26 cout <<"\"'<<s<<"\"\n"

27

D608 AN hesenea ©2014 Mark Meretzky

28
29}

1
2
3
4
5

958 Containers,lterators, and Algorithms Chapter 8

return EXIT_SUCCESS;

"It was a mracle of rare device,
"It was a miracle of rare device, "
"It was a miracle of rare device, rare device,

8.6.3.2.4 Checlpairs of elements for <

By default, the algorithms in §8.6.3.2.4 apply the operatdo the elements in the rangdén
optional final argument lets us substitute a different binary predicate.

Permutation

bool next_permutation(BIDIR first, BIDIR last);
bool prev_permutation(BIDIR first, BIDIR last);

By default, the permutation functions apply the operattw the elements in the rangAn optional
final argument lets us substitute a different binary predic8iece we are comparing characters in this
example, the final argument could geeater<char>()

next_permutation returnsfalse when it has arranged the elements back intwdgraphical
order. prev_permutation returnsfalse when it is gven dements that are already irxieographical
order.

To permute the elements ofvalarray , see p. 907.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/permute.C

#include <iostream>
#include <cstdlib>
#include <string>
#include <algorithm>
using namespace std;

string s = "abc"; /["abcd" has 24 permutations; "abcde" has 120

do {
cout <<s<<"\n"
} while (next_permutation(s.begin(), s.end()));

cout <<s<<"\n"
return EXIT_SUCCESS;

abc lines 11-13 output 6 = k 2 x 3 permutations starting with and ending just befake .
ach

bac

bca

cab

cha

abc line 15

0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.3.2.5 Assume that < has already been applied to the elements 959

Sorting algorithms

The aerage-case complexity aort is O(N log, N). Thismeans that if we double the number of
elements, we will more than double the time it takes to sort them. In the words of Leviticus 26:8,

And five of you shall chase a hundred,
And a hundred of you shall put ten thousand to flight.

The worst-case complexity ebrt is not specified by the C++ Standald. older versions of C++ it &as
O(N?) because it used C. A. R. HoaeQuicksort (1962), but ne it is is O(N log, N) because it uses
David R. Musses Introsort (1997).

stable_sort is guaranteed to mako unnecessary nves, leaving equiglent values in their orig-
inal order It's dower than plain oldsort ; worst case i©ON(N log, N)?, but it will be O(N log, N) if
enough memory isvailable.

Call partial_sort if you need to find only the winners for the first prize, second prize, third
prize.

void sort(RANDOM first, RANDOM last);

void stable_sort(RANDOM first, RANDOM last);

void partial_sort(RANDOM first, RANDOM middle, RANDOM last);

void partial_sort_copy(IN firstl, IN lastl, RANDOM first2, RANDOM last2);
void nth_element(RANDOM first, RANDOM nth, RANDOM last);

bool is_sorted(FOR first, FOR last);

list::sort

8.6.3.2.5 Assum¢hat < has already been applied to the elements

By default, the algorithms in §8.6.3.2.5 apply the operatdo the elements in the rangdén
optional final argument lets us substitute a different binary predicate.

bool binary_search (FOR first, FOR last, const T& t);
FOR lower_bound (FOR first, FOR last, const T& t);
FOR upper_bound (FOR first, FOR last, const T& t);

pair<FOR, FOR> equal_range(FOR first, FOR last, const T& t);

OUT merge(IN firstl, IN lastl, IN2 first2, IN2 last2, OUT result)
void inplace_merge(BIDIR first, BIDIR middle, BIDIR last);
void inplace_merge(BIDIR first, BIDIR middle, BIDIR last, BPRED bpred);

bsearch in C Standard Librarylist::merge

Set operations on a pair of ranges

These algorithms taka m@ir of ranges and perform a classic set operation on them: union, intersec-
tion, etc. Each range is a pair of input iterators. The container to which each pair belongs cadtl be a
object, but it does not kia be. Asusual, it could also bewaector |, list , or a gain old array.

By definition, a mathematical set contains only at most ong @bgach \alue. Thecontent of each
range could be a mathematical set, but it does nat babe. To show that the algorithms will work cer
rectly even if a range contains more than one g a value, we put tw@0'’s in the containeB.

The two ranges must be sorted beforeythee passed to the algorithms in §8.6.3.2.5. Bwdkfthe
algorithms assume that the rangegsehleeen sorted in order of theoperator An optional final agument
lets us substitute a different binary predicate. Note tmamltiset |, like amapor aset , will automati-
cally rearrange its elements if necessary (line 13).

The algorithms in §8.6.3.2.5 assume that the elements are comparabte oxithith the optional
predicate, but thedo not assume that the elements are comparable=withinstead of testing for equality
they assume that tov dements are equalent if neither one is less than the oth@assesmap and set
compare in the same way; see p. 788.

0608 AN hesenea ©2014 Mark Meretzky

960 Containers,lterators, and Algorithms

bool includes (IN first1, IN last1, IN2 first2, IN2 last2);

OUT set_union (IN first1, IN lastl1, IN2 first2, IN2 last2, OUT result);
OUT set_intersection (IN first1, IN lastl1, IN2 first2, IN2 last2, OUT result);
OUT set_difference (IN first1, IN lastl, IN2 first2, IN2 last2, OUT result);

OUT set_symmetric_difference(IN first1, IN lastl, IN2 first2, IN2 last2, OUT result);

A B

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/library/set.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <set>

4
5
6
7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

#include <iterator>
#include <algorithm>
using namespace std;

i nt main()

{
const int A[] ={10, 20};
const size_t nA = sizeof A / sizeof A[0];

const int b[] = {30, 20, 30};
const size_t nB = sizeof b / sizeof b[0];
const multiset<int> B(b, b + nB);

ostream_iterator<int> it(cout, " ");
cout << boolalpha << includes(A, A + nA, B.begin(), B.end()) << "\n";

cout <<"union==";
set_union(A, A + nA, B.begin(), B.end(), it);
cout <<"\n";

cout <<'"intersection ==";
set_intersection(A, A + nA, B.begin(), B.end(), it);
cout <<"\n";

cout << '"difference: A-B==";
set_difference(A, A + nA, B.begin(), B.end(), it);
cout <<"\n";

cout <<'"difference:B-A==",
set_difference(B.begin(), B.end(), A, A + nA, it);
cout <<"\n";

cout << '"symmetric difference ==";

Pe0608 AN hesenea ©2014 Mark Meretzky

Section 8.6.3.2.5

Assume that < has already been applied to the elements 961

38 set_symmetric_difference(A, A + nA, B.begin(), B.end(), it);
39 cout <<"\n"
40
41 return EXIT_SUCCESS;
42}
false Is it true thatA [0 B?

union == 10 20 30 30

intersection == 20

difference: A-B ==10
difference: B - A ==30 30
symmetric difference == 10 30 30

A nB

A uB

the elements iA but not in B
the elements iB but not in A
the elements in either one but not in both

Heap algorithms

void make_heap(RANDOM first, RANDOM last);
void push_heap(RANDOM first, RANDOM last);
void pop_heap(RANDOM first, RANDOM last);
void sort_heap(RANDOM first, RANDOM last);

bool is_heap(RANDOM

Classconsecutive

—On the Web at
http://i5.nyu.edu/

1 #include <iostream>

2 #include <cstdlib>

3 #include <algorithm>

4 #include <iterator>

5 #include "consecutive.h"
6 using namespace std,;

7

8 i nt main()

9 {

10 const size tn=10;
11 int a[n];

12 ostream_iterator<int>
13

14 generate(a,

15 copy(a, a+mn, it);
16 cout <<"\n"

17

18 random_shuffle(a,

19 copy(a, a+mn, it);
20 cout <<"\n"

21

22 make_heap(a, a + n);
23 copy(a, a+mn, it);
24 cout <<"\n"

25

26 return EXIT_SUCCESS;
27}

printed 4/8/14
9:06:03 AM

a + n);

first, RANDOM last);

was on [p. 882-883.

COmmé64/book/src/library/heap.C

it(cout, " ");

a + n, c onsecutive<int>());

hesenea ©2014 Mark Meretzky

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

962 Containers,lterators, and Algorithms Chapter 8

0123456789
4598136027
9865734021

8.6.3.3 Numericalgorithms

T accumulate(IN first, IN last, T init);

T accumulate(IN first, IN last, T init, FUNC2 func2);

OUT partial_sum(IN first, IN last, OUT result);

OUT partial_sum(IN first, IN last, OUT result, FUNC2 func?2);

OUT adjacent_difference(IN first, IN last, OUT result);

OUT adjacent_difference(IN first, IN last, OUT result, FUNC2 func?2);

The numeric algorithms are declared in the headexfileneric> . They expectT to be a hilt-in
number or combination theredfdat , double , complex<double> | etc.), and thereforeakt enough
to pass by value.

For accumulate , see the simple definition on p. 8100 sum the values in galarray , see line
30 ofvalarray.C on p. 899.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/adjacent_difference.C

#include <iostream>

#include <cstdlib>

#include <iterator>

#include <algorithm> //for sort, search_n
#include <numeric>

using namespace std;

i nt main()

{
/IA poker hand. 11,12,13,14 areJ, Q, K, A.
int af]={2,6, 3,5, 4}
const size_t n = sizeof a/ sizeof a[0];

ostream_iterator<int> it(cout, " ");
copy(a, a+mn, it);
cout <<"\n"

sort(a, a + n)j;
copy(a, a+mn, it);
cout <<"\n"

adjacent_difference(a, a-+n, a);
copy(a, a+mn, it);
cout <<"\n"

if (search_n(@a+1,a+n,n-1,1)==a+1){
cout <<"It's a straight.\n";

} else{
cout <<"It's not a straight.\n";

}
/IReconstruct the original hand.
partial_sum(a, a+n, a)

P060a AN hesenea ©2014 Mark Meretzky

Section 8.6.3.3 Numeric algorithms 963

34 copy(a, a+mn, it);
35 cout <<"\n"
36
37 return EXIT_SUCCESS;
38}

26354

23456

21111

It's a straight.

23456

v Homework 8.6.3.3a: let date::julian call accumulate
In the three-data member version of cldate , change the body afate::julian to the follaw-
ing.
1 r eturn accumulate(length + 1, length + month, day);

A

Inner product

Theinner_product algorithm returns the “dot produttf a pair of vectors, beleed of sudents
of Linear Algebra. Instead of defaulting to zero as the star@hgey you must supply it as the thirdyar
ment. Insteadf defaulting to multiplication and addition, you can supply yown @mperations as the
fourth and fifth arguments.

T i nner_product(IN firstl, IN lastl, IN2 first2, T t);
T i nner_product(IN firstl, IN lastl, IN2 first2, T t, MULT mult, ADD add);

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/library/inner_product.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath> /ffor sqrt

4 #include <vector>
5 #include <numeric> //for inner_product
6 using namespace std,;
7
8 t emplate <class T>
9 i nline T length(const vector<T>& v)
10 {
11 return sqgrt(inner_product(v.begin(), v.end(), v.begin(), T()));
12}
13
14 int main()
15 {
16 const double al[] ={3.0, 4.0},
17 const size_tnl =sizeof al / sizeof al[0];
18 vector<double> vl(al, al + nl);
19 cout <<'vl:size ==" << vl.size()
20 << ", length ==" << length(vl) << "\n";
21
22 const double a2[] ={2.0, 3.0, 6.0};
23 const size_t n2 = sizeof a2 / sizeof a2[0];

0608 AN hesenea ©2014 Mark Meretzky

964 Containers,lterators, and Algorithms Chapter 8

24 vector<double> v2(a2, a2 + n2);

25 cout <<'"v2:size ==" << v2.size()

26 << ", length ==" << length(v2) << "\n";
27

28 return EXIT_SUCCESS;

29}

vl: size == 2, length ==
v2: size == 3, length ==

8.6.3.4 Algorithmsfor i mplementing a new container

These algorithms were used to implement classetor |, list , map, etc. For professional use
only. Declared in the header filenemory>.

construct

destroy
uninitialized_copy
uninitialized_fill
uninitialized_fill_n
get_temporary_buffer
return_temporary_buffer

Still to do in Chapter 8:

nt date::julian() const

1
2
3 r eturn accumulate(length + 1, length + month, day);
4

}

0608 AN hesenea ©2014 Mark Meretzky

