
8
Containers, Iterators, and Algorithms

We hav eseen the template classesvector and list , the most heavily used containers in the C++
Standard Template Library. We will examine one more, classmap, but will only glance at the others.The
STL is so consistent that once you’ve seen the three big containers, you’ve seen them all. As evidence,
look at the totally predictable classesstack (pp. 155−157),string (pp. 451−454),queue (pp.
798−799), andmultimap (pp. 802−803).

8.1 Classesmap and pair
Classmap has member functions whose arguments and return values are of typepair , so we’ll do

that little class first.

Class pair

We often need a class that does nothing but hold two public data members, possibly of different
types. Sincethe members are public, we can declare the class as astruct . A C++ struct is the same
as aclass except that the members are public by default. Inparticular, a C++ struct could have mem-
ber functions; an example is the constructor in line 7.But a struct should have no member functions
beyond a constructor that merely copies its arguments into the data members.For anything more elaborate,
we probably want aclass .

1 #include <string>
2 #include "date.h"
3 using namespace std;
4
5 s truct point {
6 double x, y;
7 point(double initial_x, double initial_y): x(initial_x), y(initial_y) {}
8 } ;
9

10 struct name {
11 string first, last;
12
13 name(const string& initial_first, const string& initial_last)
14 : first(initial_first), last(initial_last) {}
15 };
16
17 struct event {
18 string name;
19 date d;
20
21 event(const string& initial_name, const date& initial_d)

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

786 Containers,Iterators, and Algorithms Chapter 8

22 : name(initial_name), d(initial_d) {}
23 };

Instead of the above classes, the standard library has one template class namedpair . The data types
T1 andT2 must be copy constructible because line 37 calls their copy constructors. (Thisrestruction will
come up on p. 800.) The typedefs will be used in the definition of the function objectsselect1st and
select2nd on pp. 937−938.

24 //Excerpt from the header file <utility>.
25
26 //T1 and T2 must be copy constructible.
27
28 template <class T1, class T2>
29 struct pair {
30 typedef T1 first_type;
31 typedef T2 second_type;
32
33 T1 first;
34 T2 second;
35
36 pair(const T1& initial_first, const T2& initial_second)
37 : first(initial_first), second(initial_second) {}
38 };

The following program declares objects of two different pair types: apair<double, double>
in line 18, and apair<string, string> in line 21.

A helper function

There are three ways of passing apair object to a function.

(1) The following line 25 passes the pairA to the functionf .

(2) If a variable is used only once, it can be an anonymous temporary. Line 26 constructs one of type
pair<double, double> by calling the constructor for that class.

(3) An easier way to construct an anonymous pair is to call the standard library function
make_pair in line 27. It is ahelper function,like the ones on pp. 781−783.

The expression"Independence day" in line 29 is of data typeconst char[17] , including
the terminating’\0’ . Themake_pair in that line therefore constructs and returns a
pair<char[17], date> . If that is what you want, fine. But to get apair<string, date> , we
must imitate line 30. It calls the constructors for classesstring and date and then passes these two
anonymous objects tomake_pair .

To accept the diverse types of pairs passed to it in lines 10−14, the functionf must obviously be very
flexible. In fact, it is another template function, like min andmake_pair . It will accept any type of pair
to whose data members we can apply the<< operator.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/map/pair.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <utility> //for pair and make_pair
5 #include "date.h"
6 using namespace std;
7
8 / /T1 and T2 must be puttable (i.e., able to be output with <<).
9

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

10 template <class T1, class T2>
11 inline void f(const pair<T1, T2>& p)
12 {
13 cout << "(" << p.first << ", " << p.second << ")\n";
14 }
15
16 int main()
17 {
18 pair<double, double> A(3.0, 4.0);
19 cout << "Point A is (" << A.first << ", " << A.second << ").\n";
20
21 pair<string, string> signer("John", "Hancock");
22 cout << "The signer is " << signer.first << " "
23 << signer.second << ".\n";
24
25 f(A);
26 f(pair<double, double>(3.0, 4.0));
27 f(make_pair(3.0, 4.0)); //construct a pair<double, double>
28
29 f(make_pair("Independence Day" , date(date::july, 4, 1776)));
30 f(make_pair(string("Independence Day"), date(date::july, 4, 1776)));
31
32 return EXIT_SUCCESS;
33 }

Here is the definition formake_pair .

34 //Excerpt from <utility>
35
36 //T1 and T2 must be copy constructible.
37
38 template <class T1, class T2>
39 inline pair<T1, T2> make_pair(const T1& t1, const T2& t2)
40 {
41 return pair<T1, T2>(t1, t2);
42 }

Point A is (3, 4). lines 18−19
The signer is John Hancock. lines 21−23
(3, 4) line 25: the pair is apair<double, double>
(3, 4) line 26
(3, 4) line 27
(Independence Day, 7/4/1776) line 29: the pair is apair<char[17], date>
(Independence Day, 7/4/1776) line 30: the pair is apair<string, date>

A map is an array whose subscripts need not be integers.

Like an array, a map is a container whose subscripts must all be of the same type. The subscripts of
an array must be integers, and non-negative ones at that. But the subscripts of amap can be any strict
weakly comparable type, with no restrictions as to the values. Inour example, thegravity map in line
10, the subscript of each element will be astring and the value of each element will be adouble . The
<angle brackets> enclose two arguments.

Other languages have the same kind of generalized array. Awk calls it an associative array, Perl and
Ruby call it a hash, and Java calls it aMapwith an uppercaseM.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 787

788 Containers,Iterators, and Algorithms Chapter 8

The elements of amap are different from those of the other containers.Each element of avector
or a list is a single value, and an iterator for avector or list gives us one value at a time.We deref-
erence the iterator with the asterisk in line 4:

1 v ector<int> v(argument(s) for constructor);
2 v ector<int>::iterator it = v.begin();
3 i f (!v.empty()) {
4 c out << *it << "\n"; //Output one integer.
5 }

But each element of amap is apair of values, and an iterator for amap gives us apair of values at a
time. Thefirst andsecond data members of each element are called thesubscript (or key) and the
value. The header file<map> in line 5 includes the<utility> header file for classpair .

We could dereference amap iterator with the asterisks and dots in line 57. But the arrows in 58 and
59 do the job more easily.

Line 12 inserts an element into the map. The element’s subscript is"Mercury" and its value is
.27 . When we apply a subscript to an object, we are calling the object’s operator[] member function.

The elements of amap do not remain in the order in which they were inserted. By default, they are
rearranged by applying the< operator to the subscript of each new element. Specifically, we nev er hav ea
later element whose subscript is< that of an earlier element. The subscripts of ourgravity elements, for
example, arestring ’s, and the< operator applied to two string ’s checks for alphabetical order. That’s
why the loop in lines 55−60 visits the planets alphabetically. The subscripts must be strict weakly compa-
rable. To sort them in a different order, see pp. 793−794.To use a non-built-in data type as the subscript of
amap, we must first make it possible to apply the< operator to it (p. 753).

Having the elements in order allows the lookup in line 42 to be faster. Assuming a map withn ele-

ments in no particular order, we would have to loop through
n

2
of them, on the average, before finding the

one we are looking for. But since the elements are in order, we hav eto examine only log2 n of them, even
in the worst case, to find the desired one.We first examine the element in the middle, and then divide and
conquer. If there were 32 elements, for example, we would have to examine at most only five of them. For
logarithms, see p. 773.

Even faster would be amap where the elements were looked up by hashing. The official C++ Stan-
dard Library doesn’t hav eahash_map , but many vendors supply it.

A map assumes that the subscripts can be compared with the< operator, but it does not assume they
can be compared with==. Instead of checking two subscripts for equality, it only attempts to check them
for equivalence.Tw o values are said to be equivalent if neither one is less than the other (p. 778).When
searching for a subscript, either with theoperator[] in line 42 or with thefind on pp. 791−792, the
map is satisfied when it finds a subscript equivalent to the one being sought.

Line 24 checks for input failure becauseweight would be left holding garbage if the input failed.
Line 32 does the same check, becausename would be left holding the null string. Lines 33−35 also accept
an end-of-file as a legitimate way to break out of the loop.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/map/main1.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 #include <string>
5 #include <map> //for map; include <utility> for class pair
6 using namespace std;
7
8 i nt main()
9 {

10 map<string, double> gravity; //Default constructor constructs empty map.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

11
12 gravity["Mercury"] = . 27; //gravity.operator[]("Mercury") = . 27;
13 gravity["Venus"] = . 85;
14 gravity["Earth"] = 1.00;
15 gravity["Mars"] = . 38;
16 gravity["Jupiter"] = 2.33;
17 gravity["Saturn"] = . 92;
18 gravity["Uranus"] = . 85;
19 gravity["Neptune"] = 1.12;
20 gravity["Pluto"] = . 44;
21
22 cout << "How many pounds do you weigh on Earth? ";
23 double weight;
24 if (!(cin >> weight)) { //if (cin.operator>>(weight).operator!()) {
25 return EXIT_FAILURE;
26 }
27
28 for (;;) {
29 cout << "Type name of planet, or q to quit, and press RETURN: ";
30
31 string name;
32 if (!(cin >> name)) {
33 if (cin.eof()) {
34 break;
35 }
36 return EXIT_FAILURE;
37 }
38 if (name == "q") {
39 break;
40 }
41
42 const double factor = gravity[name]; //gravity.operator[](name);
43
44 if (factor == 0.0) {
45 cout << "No planet is named \"" << name << "\".\n";
46 } else {
47 cout << "You would weigh " << weight * factor
48 << " p ounds on " << name << ".\n";
49 }
50 }
51
52 cout << "\n";
53 cout << setprecision(2) << fixed; //two digits to right of decimal point
54
55 for (map<string, double>::const_iterator it = gravity.begin();
56 it != gravity.end(); ++it) {
57 //cout << (*it).first << " " << (*it).second << "\n";
58 cout << left << setw(7) << it->first << right << " "
59 << setw(4) << it->second << "\n";
60 }
61
62 return EXIT_SUCCESS;
63 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 789

790 Containers,Iterators, and Algorithms Chapter 8

How many pounds do you weigh on Earth? 150
Type name of planet, or q to quit, and press RETURN: Mars
You would weigh 57 pounds on Mars.
Type name of planet, or q to quit, and press RETURN: Mongo
No planet is named "Mongo".
Type name of planet, or q to quit, and press RETURN: q

Earth 1.00 applying the operator< to string ’s yields alphabetical order
Jupiter 2.33
Mars 0.38
Mercury 0.27
Mongo 0.00 Line 42 unintentionally insertedMongo.
Neptune 1.12
Pluto 0.44
Saturn 0.92
Uranus 0.85
Venus 0.85

Tw o typedefs that make a map easier to use

Insert lines 64 and 65 immediately before the declaration forgravity in the above line 10.

64 typedef map<string, double> map_t;
65 typedef map_t::value_type pair_t; //another name for pair<string, double>

Themap_t typedef in the above line 64 will let us simplify the above line 10 to

66 map_t gravity; //Default constructor constructs empty map.

We can also simplify the above lines 55−56 to

67 for (map_t::const_iterator it = gravity.begin(); it != gravity.end(); ++it) {

Every container in the C++ Standard Library has a public member namedvalue_type , giving the
data type of each element stored in the container. Our own containers also had thevalue_type member:

(1) classstack , pp. 153−154

(2) classnode , p. 214

(3) We assume that anyCONTAINERclass has avalue_type in line 18 oftypename.C on p. 675.

(4) classterminal , pp. 742−743, ¶ (12).

(5) Thenext version of classnode should have had avalue_type on p. 805.

(6) Thefinal version of classterminal will have avalue_type in line 20 ofterminal.h on p.
970.

A mapelement is actually a pair of values, so amap value_type is apair . In our case, it is a
pair<string, double> , for which the typedef in the above line 65 is a convenient name.I could
have written 65 as

68 typedef pair<string, double> pair_t;

but I didn’t want to repeat the arguments<string, double> in lines 64 and 65.

A faster way to insert an element into a map

The above program showed a fast and dirty way to construct a map, insert elements, and look them
up. (Fast to write, that is, but slow to execute.) We can improve all three operations.

We would expect that the member functionoperator[] in the above line 12 would create an ele-
ment for Mercury and initialize its value to.27 . Unfortunately, this is not what happens. It creates an

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

element whose value is initialized to0.0 , and then assigns.27 to the value. Wheredid the momentary
0.0 come from? This is amap that holdsdouble ’s, so theoperator[] called the default constructor
for typedouble . See the default constructors for the built-in types on p. 660.

Our values are merelydouble ’s, so the initialization and reassignment don’t take long. For other
data types, however, it would be faster to initialize to the correct value once and for all.To do this, change
the above line 12 to the call to theinsert member function in lines 69−78.

In the following line 69, the argument ofinsert is apair_t consisting of a subscript and a value:
a pair<string, double> . The expressionpair_t("Mercury", .27) constructs an anony-
mous object of this type, which is then passed toinsert . Note that line 69 could not have said
make_pair("Mercury", .27) , because that would have constructed a
pair<char[8], double> .

The return value ofinsert is apair of a different type, consisting of amap_t::iterator and
a bool . The bool will be true if the insertion was successful. If so, the iterator will refer to the newly-
inserted pair containing"Mercury" and.27 :

69 pair<map_t::iterator, bool> p = gravity.insert(pair_t("Mercury", .27));
70
71 if (p.second) { //p.second is a bool
72 map_t::iterator it = p.first; //p.first is a map_t::iterator
73 string s = i t->first; //subscript
74 double d = i t->second; //value
75 cout << "Inserted the pair \"" << s << "\", " << d << ".\n";
76 } else {
77 cerr << "Not inserted. \"Mercury\" must have already been in the map.\n";
78 }

The above lines 72−74 stored the iterator, subscript, and value into the variablesit , s , and d. We
can also use them directly in lines 83−84.

79 pair<map_t::iterator, bool> p = gravity.insert(pair_t("Mercury", .27));
80
81 if (p.second) {
82 cout << "Inserted the pair \""
83 << p.first->first << "\", "
84 << p.first->second << ".\n";
85 } else {
86 cerr << "Not inserted. \"Mercury\" must have already been in the map.\n";
87 }

Find an element without contaminating the map

We’re lucky that no planet has zero gravity. The above line 44 is unable to distinguish between an
unsuccessful lookup and a planet whose gravity is0.0 . Even worse, if the user types a nonexistent name
such asMongo, line 42 will create an element forMongo and initialize its value to0.0 . (As before, the
initial value comes from the default constructor for typedouble .) In a future example, it may be benefi-
cial for operator[] to construct a new element and initialize it to the default value (p. 796). But for the
present, we want to look up a string without inadvertently creating a new element.

To do this, change the above lines 42−49 to

88 map_t::const_iterator it = gravity.find(name);
89
90 if (it == gravity.end()) {
91 cout << "No planet is named \"" << name << "\".\n";
92 } else {
93 //it->first is the subscript (a string),

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 791

792 Containers,Iterators, and Algorithms Chapter 8

94 //it->second is the value (a double).
95 cout << "You would weigh " << weight * it->second
96 << " p ounds on " << name << ".\n";
97 }

A faster way to construct a map

The default constructor in the above line 10 constructed an empty map, which was then populated by
the calls tooperator[] in lines 12−20. But the two-argument constructor in the following line 25 is a
faster way to make a map: it will be born with the nine elements already in it. (Older versions of Microsoft
did not have the two-argument constructor for classmap.)

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/map/main2.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 #include <string>
5 #include <map> //includes <utility>
6 using namespace std;
7
8 i nt main()
9 {

10 typedef map<string, double> map_t;
11 typedef map_t::value_type pair_t; //another name for pair<string,double>
12
13 const pair_t a[] = {
14 pair_t("Mercury", .27),
15 pair_t("Venus", .85),
16 pair_t("Earth", 1.00),
17 pair_t("Mars", .38),
18 pair_t("Jupiter", 2.33),
19 pair_t("Saturn", .92),
20 pair_t("Uranus", .85),
21 pair_t("Neptune", 1.12),
22 pair_t("Pluto", .44)
23 };
24 const size_t n = sizeof a / sizeof a[0];
25 const map_t gravity(a, a + n);
26
27 cout << "How many pounds do you weigh on Earth? ";
28 double weight;
29 if (!(cin >> weight)) {
30 return EXIT_FAILURE;
31 }
32
33 for (;;) {
34 cout << "Type name of planet, or q to quit, and press RETURN: ";
35
36 string name;
37 if (!(cin >> name)) {
38 if (cin.eof()) {
39 break;
40 }
41 return EXIT_FAILURE;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

42 }
43 if (name == "q") {
44 break;
45 }
46
47 const map_t::const_iterator it = gravity.find(name);
48 if (it == gravity.end()) {
49 cout << "No planet is named \"" << name << "\".\n";
50 } else {
51 cout << "You would weigh " << weight * it->second
52 << " p ounds on " << name << ".\n";
53 }
54 }
55
56 cout << "\n";
57 cout << setprecision(2) << fixed;
58
59 for (map_t::const_iterator it = gravity.begin();
60 it != gravity.end(); ++it) {
61 cout << left << setw(7) << it->first << right << " "
62 << setw(4) << it->second << "\n";
63 }
64
65 return EXIT_SUCCESS;
66 }

How many pounds do you weigh on Earth? 150
Type name of planet, or q to quit, and press RETURN: Mars
You would weigh 57 pounds on Mars.
Type name of planet, or q to quit, and press RETURN: Mongo
No planet is named "Mongo".
Type name of planet, or q to quit, and press RETURN: q

Earth 1.00
Jupiter 2.33
Mars 0.38
Mercury 0.27
Neptune 1.12 find did not insertMongo.
Pluto 0.44
Saturn 0.92
Uranus 0.85
Venus 0.85

▼ Homework 8.1a: sort the subscripts in a different order

Add a third template argument,greater<string> , to the data type of thegravity map. Note
that the argument is the name of a data type; we saw it on pp. 769−770.Given this template argument, the
third function argument of the constructor will default togreater<string>() .

1 #include <string>
2 #include <map>
3 #include <functional> //for class greater
4 using namespace std;
5
6 map<string, double, greater<string> > gravity(a, a + n);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 793

794 Containers,Iterators, and Algorithms Chapter 8

Instead of applying the< operator to the subscripts, the map will now apply theoperator() mem-
ber function of an object of classgreater<string> to the subscripts. In what order does thefor loop
visit the elements now?
▲

▼ Homework 8.1b: why doesn’t this map compile?

Line 18 constructs an empty map. Line 19 looks for an element whose subscript iskey(10) . There
is no such element, so line 19 should create one just as the above main1.C created an element forMongo.

What do we have to do to make the program compile? Hint: we don’t need theoperator== .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/map/comparable.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <map>
4 using namespace std;
5
6 c lass key {
7 i nt i;
8 public:
9 k ey(int initial_i): i(initial_i) {}

10
11 friend bool operator==(const key& key1, const key& key2) {
12 return key1.i == key2.i;
13 }
14 };
15
16 int main()
17 {
18 map<key, int> m;
19 cout << m[key(10)] << "\n";
20 return EXIT_SUCCESS;
21 }

▲

▼ Homework 8.1c:
Version 4.4 of the Rabbit Game: a map instead of a searching loop

Remove the array of structures frommanual::decide . Replace it by a map takes achar and
gives us back a pair of integers.

1 map<char, pair<int, int> > keypad;

manual::decide will no longer need the searching loop in lines 36−55 ofwolf.C on pp. 198−199.
manual.C will have to include the header file<map> and sayusing namespace std; if it does not
already.

The above line 1 shows how natural it is for templates to nest.If this freaks you out, however, we can
build the data type of themapwith the typedefs in lines 4 and 6.Each pair ofdx , dy offsets will be stored
in thepair<int, int> in line 4. Each element of themap in line 6 will be thepair in line 7.

2 / /Excerpt from manual.C, showing part of manual::decide.
3
4 t ypedef pair<int, int> step_t;
5
6 t ypedef map<char, step_t> map_t;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

7 t ypedef map_t::value_type pair_t; //another name for pair<char, step_t>
8 / /which is another name for
9 / /pair<char, pair<int, int> >

10
11 static const pair_t a[] = {
12 pair_t(’h’, step_t(-1, 0)), //left,
13 pair_t(’j’, step_t(0, 1)), //down,
14 //etc.
15 };
16 static const size_t n = //etc.
17 static const map_t keypad(a, a + n);
18
19 if (const char k = get the keystroke, if any) {
20 const map_t::const_iterator it = keypad.find(k);
21 if (we found k) {
22 put the two offsets into *dx and *dy
23 (hint: it->second.first is the horizontal offset);
24 return;
25 }
26
27 punish(); //Punish user who pressed an illegal key.
28 }
29
30 //Arrive here if user pressed no key, or pressed an illegal key.
31 *dx = * dy = 0;
32 }

The typedef step_t in the above line 4 is only temporary. In the world to come, a variable that
holds adx , dy offset will eventually be of data typeterminal_t::difference_type (p. 967).
This will also be the return type of the functionswabbit::decide , difference , andstep .
▲

▼ Homework 8.1d:
Version 4.5 of the Rabbit Game: a map instead of a counting loop

To make the program faster, letgame::count be a map.

1 map<char, int> count;

Its member functionoperator[] will take achar representing a species (’r’ for rabbit) and return
the number of objects of this species that currently exist in the game. We will call only operator[] , not
find ; see below.

First, however, note that the above declaration has been simplified.Our game is no longer hardwired
to run on a terminal that holds onlychar ’s. And we should not assume that anint is big enough to hold
the maximum number of animals on the master list.A professional would therefore declare the map as

2 map<terminal_t::value_type, master_t::size_type> count;

employing four typedefs:

(1) terminal_t in line 112 on p. 744;

(2) value_type on p. 790;

(3) master_t on p. 465;

(4) size_type on pp. 433−434 and 434.

See how natural it is to have data types with standardized names (value_type , size_type) for each
container?

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 795

796 Containers,Iterators, and Algorithms Chapter 8

count will be a private, non-static data member of classgame. Construct it after the master list: it
would make no sense to count the animals on the list before there was a list. The constructor for class
game will pass no arguments to the constructor forcount , just as it passes no arguments to the construc-
tor for master . Since no array is passed to the constructor forcount , don’t bother to create thepair_t
typedef for it. And since we will not be not iterating throughcount , don’t bother to create themap_t
typedef for it either.

Every constructor for classwabbit will say

3 ++g->count[c]; //++g->count.operator[](c);

immediately after inserting the address of the newborn wabbit into the master list.(We currently have
only one constructor for classwabbit ; the copy constructor is undefined.) Note that the++ does not
incrementg. It incrementsg->count[c] .

++ g -> count [c]

The first time that the member functionoperator[] is called with a given character, it will create an ele-
ment for that character and initialize its value to 0. In fact, a naïve implementation of theoperator[]
function for classmap<char, int> would be

4 i nt& map<char, int>::operator[](char c)
5 {
6 c onst map<char, int>::iterator it = find(c);
7 i f (it != end()) {
8 / /it->first is the char, it->second is the int.
9 r eturn it->second;

10 }
11
12 const pair<map<char, int>::iterator, bool> p =
13 insert(pair<char, int>(c, int()));
14
15 if (p.second) { //The insertion was successful.
16 //p.first->first is the char, p.first->second is the int.
17 return p.first->second;
18 }
19
20 //Let’s hope we never get here.
21 }

Back on pp. 791−792,operator[] contaminated the map when it constructed a new element
(‘‘Mongo’’). Here,though, it is exactly what we want. Thefirst call to the constructor forrabbit_t will
pass an’r’ to the constructor for classwabbit , which will pass the’r’ to theoperator[] member
function of the game’scount , which will create an element for’r’ and initialize it to 0.The ++ will
then increment it to 1.Subsequent calls to the constructor forrabbit_t will not perform the initializa-
tion to 0, but they will perform the increment.

The destructor for classwabbit will say

22 --g->count[c]; //--g->operator.operator[](c);

immediately before removing the address of the dyingwabbit from the master list.

Remove the member functiongame::count . The code that recognizes when the game is over
(lines 19−27 ofgame.C on p. 570) will now saycount[’r’] instead ofcount(’r’) .
▲

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 8.1e:
Version 4.6 of the Rabbit Game: a map instead of the big switch

The animals of different species were constructed with a bigswitch statement; see lines 21−41 of
game.C on p. 569. But aswitch should be used only when eachcase contains different code. Our
case ’s were almost identical.

With a map, the bigswitch can be reduced to the statements in lines 23−29 below. Even better,
these statements will not have to change when a new species is added.

(1) Our map will take a character and return a pointer to a function that constructs an animal of the
corresponding species.I wish the function could be the constructor for each species. But although there
are pointers to other member functions, there is no such thing as a pointer to a constructor or destructor.

Define the following template function in thegrandchild.h header file, inspired by the
make_pair function in pp. 786−787. It is not a member function or friend of any class.

1 t emplate <class MOTION, class RANK, char C>
2 i nline void make_grandchild(game *initial_g,
3 unsigned initial_x, unsigned initial_y) {
4
5 new grandchild<MOTION, RANK, C>(initial_g, initial_x, initial_y);
6 }

There will be one instantiation of this function for each species of animal.To point to an instantia-
tion, we can use a plain old pointer to a function: mercifully, there is no such thing as a ‘‘pointer to an
instantiation of a template function’’. Here is the declaration for a pointerp that can point to the instantia-
tion of make_grandchild for any species:

7 / /p is a pointer to function.
8 v oid (*p)(game *, unsigned, unsigned);

To get the name of the data type of this pointer, we remove the semicolon and the name of the pointer.

9 v oid (*)(game *, unsigned, unsigned)

This is the data type plugged into line 10.

(2) Define the following map at the start ofgame::game , before the rectangular array of characters.
It takes achar and returns a pointer to the instantiation ofmake_grandchild for the corresponding
species.

Themap_t andpair_t in lines 10 and 11 are the two typedefs from p. 790. The first’W’ in line
14 is the character in the rectangular array ingame::game ; the second is the character that the user sees
on the screen.

10 typedef map<char, void (*)(game *, unsigned, unsigned)> map_t;
11 typedef map_t::value_type pair_t;
12
13 static const pair_t species[] = {
14 pair_t(’W’, make_grandchild<manual, predator_t, ’W’>), //wolf
15 pair_t(’r’, make_grandchild<brownian, victim_t, ’r’>), //rabbit
16 //etc.
17 };
18 static const size_t n = sizeof species / sizeof species[0];
19 static const map_t m(species, species + n);

(3) Change the nested loops in lines 18−44 ofgame.C on p. 569 to

20 for (size_t y = 0; y < ymax; ++y) {
21 for (size_t x = 0; x < xmax; ++x) {
22 if (term.in_range(x, y) && a[y][x] != ’.’) {
23 const map_t::const_iterator it = m.find(a[y][x]);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 797

798 Containers,Iterators, and Algorithms Chapter 8

24 if (we didn’t find the character a[y][x]) {
25 construct and throw an exception;
26 }
27
28 //Call the make_grandchild function for this species.
29 it->second(this, x, y); //or (*it->second)(this, x, y);
30 }
31 }
32 }

Classgame curently ‘‘knows about’’ every class derived from classwabbit . The file game.C
includes the headers for the derived classes, and has to be recompiled whenever they change. Butwe are
now in a position to eliminate these dependencies. The rectangular array of characters and themapcan be
passed as arguments to the constructor for classgame. Think about this but don’t do it.
▲

Class queue

Thus far, our game has been limited to at most onemanual animal. We will now permit more than
one, allowing us to have more than one human player. To do this, we will need a container called aqueue.
A stack is ‘‘last hired, first fired’’; a queue is ‘‘first hired, first fired’’.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/queue.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <stack>
4 #include <queue>
5 using namespace std;
6
7 i nt main()
8 {
9 s tack<int> s; //Construct an empty stack.

10
11 s.push(10);
12 s.push(20);
13 s.push(30);
14
15 cout << s.top() << "\n";
16 s.pop();
17
18 cout << s.top() << "\n";
19 s.pop();
20
21 cout << s.top() << "\n";
22 s.pop();
23
24 cout << "\n";
25
26 queue<int> q; //Construct an empty queue.
27
28 q.push(10);
29 q.push(20);
30 q.push(30);
31
32 cout << q.front() << "\n";

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

33 q.pop();
34
35 cout << q.front() << "\n";
36 q.pop();
37
38 cout << q.front() << "\n";
39 q.pop();
40
41 cout << "\n" << q.empty() << "\n";
42
43 return EXIT_SUCCESS;
44 }

30 stack is LIFO: last in, first out
20
10

10 queue is FIFO: first in, first out
20
30

1 line 41: abool is output as a1 or 0.

▼ Homework 8.1f: use a map to allow more than one animal to be manual

Eachmanual animal will have to respond to a different set of keystrokes. For example, one might
respond to

h left
j down
k up
l right

Another might respond to eight of the keys on the numeric keypad:

1 lower left
2 down
3 lower right
4 left
6 right
7 upper left
8 up
9 upper right

But now we hav ea new problem. Supposethe user typed the keystroke8 when it was the turn of the
h-j-k-l manual to move. What should that manual do with the keystroke? How could theh-j-k-l
manual deliver the keystroke to the1-2-3-4-6-7-8-9 manual ? And how could theh-j-k-l
manual beep if there were nomanual authorized to receive this keystroke?

There will have to be a central clearinghouse for all incoming keystrokes; the place to put it is in the
game object. Thegame will dispatch each keystroke to the appropriatemanual , issuing a beep if there is
none.

(1) Give classgame the following four private members.As on p. 794, a ‘‘step’’ w ill be a pair of
numbers describing the direction in which amanual should go in response to a keystroke.

1 t ypedef pair<int, int> step_t;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 799

800 Containers,Iterators, and Algorithms Chapter 8

A ‘‘dispatch’’ is a marching order. It tells one particularmanual to take a step in a certain direction.The
dispatch can contain only an address, not themanual itself, because amanual is not copy constructible
(p. 786).

2 t ypedef pair<manual *, step_t> dispatch_t;

game.h will need a forward declaration for the wordmanual , just like the one for the wordwabbit .

A ‘ ‘dispatcher’’ i ssues a dispatch in response to a character from the keyboard.

3 t ypedef map<char, dispatch_t> dispatcher_t;

Thegame should have one dispatcher.

4 dispatcher_t dispatcher; //non-static private data member of class game

game.h will have to include the header file<map>. The constructor forgame should pass no arguments
to the constructor for the dispatcher.

(2) The rectangular array of characters ingame::game gives us thex , y coördinates of each animal
we construct, including themanual animals. Butthere is no pleasing way for this array to also contain
eachmanual ’s list of keystrokes and the corresponding steps.We will have to put this information into a
separate data structure.

And there’s another problem.An object must be ready to assume its responsibilities by the time its
constructor has completed. This means that eachmanual object must its list of keystrokes and steps
before this happens.We could pass the list as an extra argument to the constructor formanual , but it
would be simpler if the number of constructor arguments for every species of animal remained the same.
The constructor formanual will have to claim its keystrokes and steps by calling a function, rather than by
receiving an extra argument.

Add the following private, non-static, non-inline member function to classgame.

5 v oid claim(manual *m, unsigned x, unsigned y);

The constructor for classmanual will call claim , passing it the argumentsthis , initial_x ,
initial_y . Since the function is private, classmanual , like classwabbit , will have to be a friend of
classgame.

The functiongame::claim will contain arrays such as the following.

6 t ypedef pair<char, step_t> keystroke_t;
7
8 s tatic const keystroke_t wolf1[] = {
9 k eystroke_t(’h’, step_t(-1, 0)), //left

10 keystroke_t(’j’, step_t(0, 1)), //down
11 //etc.
12 };
13
14 static const keystroke_t wolf2[] = {
15 keystroke_t(’1’, step_t(-1, 1)), //lower left
16 keystroke_t(’2’, step_t(0, 1)), //down
17 //etc.
18 };
19
20 //etc.
21
22 struct animal {
23 size_t x; //subscripts of the manual in char array in game::game
24 size_t y;
25 const keystroke_t *begin;
26 const keystroke_t *end;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

27 };
28
29 static const animal a[] = {
30 {10, 10, wolf1, wolf1 + sizeof wolf1 / sizeof wolf1[0]},
31 {15, 15, wolf2, wolf2 + sizeof wolf2 / sizeof wolf2[0]},
32 //etc.
33 };
34 static const size_t n = sizeof a / sizeof a[0];

game::claim will load the above values into the dispatcher. Lines 47−48 construct and insert a pair
whose first member is achar and whose second is adispatch_t . We then check the return value’s
second member, which is abool .

35 for (const animal *p = a; p < a + n; ++p) {
36 if (p->x == x && p->y == y) {
37 for (const keystroke_t *q = p->begin; q < p->end; ++q) {
38 const dispatcher_t::const_iterator it =
39 dispatcher.find(q->first);
40
41 if (it != dispatcher.end()) {
42 construct and throw an exception:
43 there’s already a manual
44 that responds to the character q->first;
45 }
46
47 if (!dispatcher.insert(make_pair(q->first,
48 dispatch_t(m, q->second))).second) {
49 construct and throw an exception:
50 the insert failed for some other reason;
51 }
52 }
53 return;
54 }
55 }
56
57 construct and throw an exception:
58 there should be no manual at coördinates x, y;
59 }

(3) Give classmanual the following two private members.manual.h will have to include the
header file<queue> , and sayusing namespace std; . manual::push can mention the private
membergame::step_t because classmanual is a friend of classgame.

60 queue<game::step_t> q;
61 void push(const game::step_t& step) {q.push(step);}

(4) Just before giving every animal a chance to move, let game::play distribute all the outstanding
keystrokes to the manuals.

62 for (;; term.wait(250) {
63
64 while (const char c = term.key()) {
65
66 const dispatcher_t::const_iterator it =
67 dispatcher.find(c);
68
69 if (it == dispatcher.end()) {

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.1 Classesmap and pair 801

802 Containers,Iterators, and Algorithms Chapter 8

70 term.beep(); //No manual responds to this key.
71 } else {
72 //it->first is the character c
73 //it->second is a dispatch_t
74 //it->second.first is a pointer to a manual
75 //it->second.second is a step_t
76 const dispatch_t& dispatch = it->second;
77 dispatch.first->push(dispatch.second);
78 }
79 }
80
81 for (master_t::const_iterator it = master.begin(); //etc.

You can insert code at the above line 65 to make thegame::play function return if the user has pressed
q for ‘‘quit’ ’. The dispatch reference in the above line 76 is merely a notational convenience. Without
it, line 77 would have to be written as follows.

82 it->second.first->push(it->second.second);

Declaregame::play to be a friend of classmanual , with a comment saying that it is to allow
game::play to callmanual::push .

(5) Finally, manual::decide will contain only the following. Thestep in line 86 can be a refer-
ence as long as we do not attempt to use it after thepop in 89. See pp. 156−157.

83 if (q.empty()) {
84 *dx = * dy = 0;
85 } else {
86 const game::step_t& step = q.front();
87 *dx = step.first;
88 *dy = step.second;
89 q.pop();
90 }

(6) Thewabbit::key function is no longer used, so you can remove it.

One last problem.Thepop in the above line 89 changes theq data member of classmanual . This
will not compile, sincedecide is aconst member function of that class. One choice would be to let the
decide member function of classwabbit and all of its descendants be non-const . The alternative
would be to declareq to be amutabledata member of classmanual :

91 mutable queue<game::step_t> q;

This permits the value of the data memberq to be changed by aconst member function of class
manual . Anothermutable data member will be on p. 751.
▲

▼ Homework 8.1g: fly in formation

If two or more manual ’s responded to the same keystroke, they would fly in formation. To realize
this vision, change thedispatcher from amap to amultimap . A multimap is like amap, except
that it can contain two or more pairs with the samefirst data member.

All of these pairs will be stored consecutively in the multimap , since the elements of a
multimap , like those of amap, are ordered (by default) by applying the< operator to the subscripts.

The insert member function of amultimap returns an iterator referring to the newly-inserted
element. Ignorethe return value. Justassume that the insertion was successful.

Instead of calling thefind member function of amap dispatcher, call theequal_range member
function of amultimap dispatcher. It will return a pair of iterators referring to the beginning and end of
the range of elements that have the desired subscript.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Include the header file<map> for classmultimap .

1 / /Excerpt from game::play
2
3 c onst pair<dispatcher_t::const_iterator, dispatcher_t::const_iterator>
4 r ange = dispatcher.equal_range(c);
5
6 i f (range.first == range.second) { //The range is empty.
7 t erm.beep(); //No manual responds to this key.
8 } else {
9 f or (dispatcher_t::const_iterator it = range.first;

10 it != range.second; ++it) {
11
12 //as in the above lines 76-77,
13 const dispatch_t dispatch = it->second;
14 dispatch.first->push(dispatch.second);
15 }
16 }

▲

8.2 Endow a Data Structure with an Iterator
A data structure is any source of or destination for data, consisting of a series of values all of the

same data type. An array or linked list in memory, an input or output file on the disk, or a TCP/IP connec-
tion to another host are all examples of data structures. The data structure may be read-only, write-only, or
read/write; sequential access or random access. The values read from or written to the data structure are
called theelements.

The Standard Template Library (STL) contains a wealth of functions, includingsort , copy , find ,
and my own favorite, random_shuffle . They can read and write the elements in any data structure that
complies with the library’s requirements. Thesemay be stated simply: the data structure must have a type
of iterator that can loop through it.Classesvector , list , and mapall have iterators. Even the humble
array has an iterator, for a pointer is a perfectly legitimate iterator.

A data structure endowed with an iterator is called acontainer.Each type of container requires a dif-
ferent type of iterator. A template function which will accept iterators of many types is called analgo-
rithm. The functions in the STL are algorithms. Note that the arguments passed to an algorithm are not the
containers themselves, but iterators that refer to elements in the containers.

We will turn three data structures into STL-compliant containers by endowing them with iterators.
The ideal to which we aspire is to take an iterator looping through a container, and dress it up with the oper-
ators!= , * , and++ to make it look like a pointer looping through an array.

1 i nt a[] = {10, 20, 30};
2 c onst size_t n = sizeof a / sizeof a[0];
3
4 f or (int *p = a; p != a + n; ++p) {
5 c out << *p << "\n";
6 }

Having a uniform notation for all containers is desirable in itself. It will also make their content accessible
to the algorithms.

The three data structures were chosen to show different approximations to our ideal. Our purpose is
show that each data structure can be turned into a container by means of a few superficial additions, without
disturbing any existing code.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 803

804 Containers,Iterators, and Algorithms Chapter 8

8.2.1 ASingly-Linked List
Consider the following circa-1985 linked list.The nodes are defined in lines 6−8 and 24 ofnode.h

on p. 806, and the list of them is created and destroyed in lines 10−18 and 58−62 ofmain.C on pp.
807−808. Thewhole thing could have been a C programming exercise from a generation ago.

Our purpose is to make it STL-compliant with the least possible modification.We will resist the
temptation to rewrite the data structure in C++.As a concession to contemporary expectations of comfort,
we provide only two amenities: the constructor in lines 10−11 ofnode.h , and the calls tonew instead of
malloc in lines 11−13 ofmain .

The loop in lines 15−17 ofmain.C is the traditional way to access this data structure. The imple-
mentation of the linked list lies naked to our gaze: the pointerp to a structure, the arrows that dereference
the pointer, the names of the fields, and the comparison to zero. The loop demands specialized expertise
with structure and pointers thereto, and thenode structure in particular.

To make the data structure STL-compliant, we create theiterator class in lines 13−29 of
node.h . We giv e it the last namenode by nesting it inside of classnode , just as classbill was nested
inside of classclinton on p. 420.The iterator class has the following five trimmings. Someare mem-
bers, some are friends, and some are neither. The first four are used in our first exhibit, the loop in lines
24−26 ofmain.C . The last one will be used by our second exibit, the calls to the algorithms in lines
33−56.

(1) Thebegin iterator refers to the first element of the container. Theend element refers to the slot in
this container where the non-existent ‘‘element’’ after the last element would be if there was one
(which of course there isn’t). Seelines 20−21 ofmain.C . If the container holds no elements,
begin has the same value asend .

(2) The== and!= operators compare two iterators (lines 20−22 and 33−36 ofnode.h).

(3) The* operator returns a read/write reference to thevalue in the node to which the iterator refers
(line 17 ofnode.h). Donot apply the* to theend iterator.

(4) Theprefix and postfix++ operators move the iterator forward one element (lines 18 and 26−31 of
node.h). Donot apply the++ to theend iterator.

(5) We also write a specialization of the template classiterator_traits for this type of iterator,
containing five public typedefs (lines 38−47 ofnode.h).

With these trimmings, we can write the loop in lines 24−26 ofmain.C . The comments in 23 and 25
show what these lines are actually doing. The pointerp that lay exposed in lines 15−17 is still there, but is
now discretly hidden as the private data memberp in line 14 of node.h . The code that bristled with
arrows is still there, but is now packaged in the bodies of the functions (member functions, friends, and nei-
ther) in lines 16−36 ofnode.h . We are left with a loop that is totally generic. The loop would still work,
completely unchanged, if the name of any other container were inserted in front of the double colon in line
24:vector<int> , list<date> , etc.

We can do more with the expression*it than just print it in line 25 ofmain.C . We can assign to it
in line 31, because theoperator* member function in line 17 ofnode.h returns a read/write reference.
Incidentally, lines 30−31 ofmain.C can be combined to

1 * ++it = 20; //it.operator++().operator*() = 20;

But lines 29−30 cannot be combined to

2 node::iterator it = begin + 1; //operator+(begin, 1)

since we have not written anoperator+ .

Tw o ++ operators for classnode::iterator are implemented in lines 18 and 26−31 ofnode.h .
As usual, the postfix++ calls the prefix++ to do most of its work (line 29). Similarly,operator!= calls
operator== to do most ofits work (line 35).

Our iterators give us access to thevalue member of eachnode , but not to the address of each node.
The loop in lines 58−62 ofmain.C must therefore be written in terms of pointers, not iterators.We take
care to avoid the increment of death (pp. 444−445).

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

A specialization of class iterator_traits

When we create a new class of iterator, we must also, at least for now, create a specialization of class
iterator_traits for it. The<iterator> header file in line 3 ofnode.h contains the general tem-
plate for classiterator_traits . Lines 39−46 ofnode.h create the specialization
iterator_traits<node::iterator> .

Like cin andcout , the general template belongs to namespacestd (p. 20). A specialization must
belong to the same namespace as its general template, so we enclose it in lines 38 and 47.See the name-
space declarations on p. 1021.

Classiterator_traits should be usedonly by an algorithm. It gives the algorithm five vital
facts about the data type of an iterator that the algorithm receives as an argument.

(1) To find out if iterators of this type can be decremented, the algorithm can check the
iterator_category member in line 41 ofnode.h . In our example, the answer is no. The ‘‘iterator
categories’’ and their ‘‘tags’’ w ill be explained later in this chapter.

(2) An algorithm can use its iterator argument to access an element in a container. The algorithm can
store a copy of the element, a pointer to the element, or a reference to the element, in variables of the types
given by the membersvalue_type , pointer , and reference in lines 42, 44, and 45 ofnode.h .
For an example, see thevalue_type in line 6 of the algorithmiter_swap on p. 764.

(3) Our linked list inmain.C contained three elements, originally holding the values10 , 15 , 30 .
The directed distance from the first to the last was +2 elements; from the last to the first was −2 elements.
Thus, a signed integral value must be used to hold the distance between the elements to which two iterators
refer. Should the value beint , long , or something more exotic? Thedifference_type member in
line 43 ofnode.h gives the data type that should be used. This type will be large enough to hold the long-
est possible distance, but no larger than necessary. I decided that ourdifference_type would be a
typedef forptrdiff_t , the data type of the distance between two pointers in C or C++.ptrdiff_t in
turn is a typedef in the header file<cstddef> , which is included by the header file<iterator> in line
3 of node.h . Examples are the variable in line 64, and the function return value in line 61, in the algo-
rithms on p. 810.A difference_type can also used to count the number of elements.Examples are
the variable in line 77, and the function return value in line 74, on p. 810.

The five members ofiterator_traits will correspond to the five arguments of the template
classiterator on p. 813. Three of these arguments—the ones corresponding to our members
difference_type , pointer , and reference —will have default values, so they must be declared
last. Themembers ofiterator_traits could have been declared in any order, but for consistency we
order them in agreement with the arguments ofiterator .

Resist the temptation to rewrite everything!

The data type of the payload (int) was mentioned in lines 7, 10, 17, 42, and 44−45 ofnode.h . We
should have written it only once, in a typedef namedvalue_type at line 6½. Better yet, anode should
have been anode<int> so we could have nodes for other data types.

Furthermore, we could have avoided the litany of

head =
head =
head =

when lines 11−13 ofmain.C created the list.We should have giv en classnode a constructor that inserts
the newborn node at the head of the list. The variablehead should have been a static data member of class
node , updated by the constructor.

Even better, we should change the scheme to let us have more than (or less than) one list.We should
have made a new class,singly_linked_list . head should have been a non-static, private data
member of this class; andbegin andend should have been non-static, public member functions, like the
begin andend of classesvector , list , and map. Classesiterator andnode should have been
members ofsingly_linked_list .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 805

806 Containers,Iterators, and Algorithms Chapter 8

But we don’t want to rewrite the whole program in contemporary C++.We just want to slap on an
iterator to make the content of the list accessible to the STL algorithms.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/node_container/node.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iterator> //for iterator_traits and forward_iterator_tag
4 using namespace std;
5
6 s truct node {
7 i nt value;
8 node *next;
9

10 node(int initial_value, node *initial_next)
11 : value(initial_value), next(initial_next) {}
12
13 class iterator {
14 node *p;
15 public:
16 iterator(node *initial_p = 0): p(initial_p) {}
17 int& operator*() const {return p->value;}
18 iterator& operator++() {p = p->next; return *this;} //prefix
19
20 friend bool operator==(const iterator& it1, const iterator& it2) {
21 return it1.p == it2.p;
22 }
23 };
24 };
25
26 inline const node::iterator operator++(node::iterator& it, int)//postfix
27 {
28 const node::iterator old = it;
29 ++it; //it.operator++();
30 return old;
31 }
32
33 inline bool operator!=(const node::iterator& it1, const node::iterator& it2)
34 {
35 return !(it1 == it2); //return !operator==(it1, it2);
36 }
37
38 namespace std {
39 template <>
40 struct iterator_traits<node::iterator> {
41 typedef forward_iterator_tag iterator_category;
42 typedef int value_type;
43 typedef ptrdiff_t difference_type;
44 typedef int *pointer;
45 typedef int& reference;
46 }; //semicolon at end of class
47 } //no semicolon at end of namespace
48 #endif

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Pass the content of a container to an algorithm

Now that our data structure is an STL-compliant container, we can pass its content to (most of) the
algorithms in the STL. Lines 33−56 are a preview. The tasks commonly done with simple loops andif
statements—sorting, searching, counting, comparing—have all been written once and for all in the STL.
We will never hav eto write these loops again.

Why do we hav eto provide the zero for theaccumulate in line 43? Why isn’t zero the default
starting point?Well, we don’t always want to start at zero.For multiplication, we would want to start at 1.
Observe that the template classmultiplies in lines 55−58 of the excerpts on p. 810 is just like the tem-
plate classgreater on p. 770. The expressionmultiplies<int>() in line 46 ofmain.C constructs
an anonymous object of this class. The object is then passed toaccumulate , which calls the object’s
operator() member function in line 49 of the excerpts. For another way to accumulate, see line 30 of
valarray.C on p. 899.

Themin_element algorithm in line 50 returns an iterator, so we must apply a* to dereference it.
Of course, line 49 must first check that the iterator refers to an element.Line 53−54 show that we can store
a returned iterator in a variable for later dereferencing.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/node_container/main.C

1 #include <iostream>
2 #include <cstdlib> //for abs
3 #include <algorithm> //for find, distance, count, min_element, max_element
4 #include <numeric> //for accumulate
5 #include "node.h"
6 using namespace std;
7
8 i nt main()
9 {

10 //Construct a l ist containing 10, 15, 30.
11 node *head = new node(30, 0);
12 head = new node(15, head); //Insert 15 ahead of 30.
13 head = new node(10, head); //Insert 10 ahead of 15.
14
15 for (const node *p = head; p != 0; p = p->next) {
16 cout<< p->value << "\n";
17 }
18 cout << "\n";
19
20 const node::iterator begin(head);
21 const node::iterator end;
22
23 //for (node::iterator it = begin; operator!=(it, end); it.operator++()) {
24 for (node::iterator it = begin; it != end; ++it) {
25 cout << *it << "\n"; //cout << it.operator*() << "\n";
26 }
27 cout<< "\n";
28
29 node::iterator it = begin;
30 ++it; //it.operator++();
31 *it = 20; //it.operator*() = 20; overwrite the 15.
32
33 const node::iterator found = find(begin, end, 20);
34
35 if (found == end) { //if (operator==(found, end)) {
36 cout << "20 was not found.\n";

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 807

808 Containers,Iterators, and Algorithms Chapter 8

37 } else {
38 cout << "20 is at position " << distance(begin, found) << ".\n";
39 }
40
41 cout << "Value 20 occurs " << count(begin, end, 20) << " times.\n"
42 << "There are " << distance(begin, end) << " values.\n"
43 << "Sum of the values is " << accumulate(begin, end, 0) << ".\n"
44
45 << "Product of the values is "
46 << accumulate(begin, end, 1, multiplies<int>())
47 << ".\n";
48
49 if (begin != end) {
50 cout << "Smallest value is " << *min_element(begin, end)
51 <<".\n";
52
53 const node::iterator biggest = max_element(begin, end);
54 cout << "Biggest value is " << *biggest << ", at position "
55 << distance(begin, biggest) << ".\n";
56 }
57
58 for (const node *p = head; p != 0;) {
59 const node *const prev = p;
60 p = p->next;
61 delete prev; //can do this even though prev is a const *
62 }
63
64 return EXIT_SUCCESS;
65 }

10 lines 15−17
15
30

10 lines 24−26
15
30

20 is at position 1. lines 33−39
Value 20 occurs 1 times. line 40
There are 3 values. line 42
Sum of the values is 60. line 43
Product of the values is 6000. lines 45−47
Smallest value is 10. lines 49−51
Biggest value is 30, at position 2. lines 53−54

Simple definitions for the algorithms

The algorithms are template functions.Most of them take a pair of iterators, conventionally named
first andlast .

If these iterators are equal, the algorithm will process no elements at all. Otherwise, the algorithms
assume thatlast is accessiblefrom first , i.e., that we can get fromfirst to last with a finite num-
ber of increments. It is the programmer’s responsibility to make sure thatfirst and last refer to ele-
ments in thesamecontainer, and thatlast comes afterfirst . Failure to do so may result in an infinite

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

loop or program crash.

find and min_element return an iterator of the type that was passed to them.accumulate
returns aT. distance andcount return adifference_type for the type of iterator that was passed
to them. It would make more sense forcount to return an unsigned result, since its return value will never
be negative. And we could do it ifiterator_traits had a typedef giving this unsigned type
(size_type would be a good name). But you go to war with theiterator_traits you have, not the
iterator_traits you might want or wish to have.

The STL always assumes that an iterator is fast enough to pass and return by value (line 6). This cre-
ates a local copy of the iterator, which we can then increment without disturbing the original (line 8).Simi-
larly, lines 61 and 74 assume that adifference_type can be passed and returned by value. (61is the
return type of the function in 62; I’m sorry they wouldn’t fit on the same line.)

A T, on the other hand, is passed and returned by reference whenever possible (lines 6, 75). The tem-
plate function doesn’t know what T is; it could be a type that is expensive (read: slow) or impossible to
copy. The anonymousT constructed in line 57 must be returned by value, since it is an automatic variable.
We want to pass theT in line 36 by value, since we have to create and return a new T anyway. Also, the
numericalgorithms such asaccumulate assume that aT is a type such as such asfloat , double , or
complex<double> , which are fast enough to pass by value. Seepp. 962−964 for the numeric algo-
rithms.

Look for these definitions in the header files<algorithm> , <numeric> , <functional> .
Unofficially, they may be in other headers included by these ones.

1 / /Excerpts from <algorithm>, <numeric> (accumulate), <functional> (multiplies)
2
3 #include <iterator> //for iterator_traits
4
5 t emplate <class IT, class T>
6 IT f ind(IT first, IT last, const T& t)
7 {
8 f or (; first != last; ++first) {
9 i f (*first == t) {

10 break;
11 }
12 }
13
14 return first;
15 }
16
17 template <class IT>
18 IT min_element(IT first, IT last)
19 {
20 if (first == last) {
21 return last;
22 }
23
24 IT it = first;
25
26 while (++first != last) {
27 if (*first < *it) {
28 it = f irst;
29 }
30 }
31
32 return it;
33 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 809

810 Containers,Iterators, and Algorithms Chapter 8

34
35 template <class IT, class T>
36 T accumulate(IT first, IT last, T t)
37 {
38 for (; first != last; ++first) {
39 t += *first;
40 }
41
42 return t;
43 }
44
45 template <class IT, class T, class OPERATION>
46 T accumulate(IT first, IT last, T t, OPERATION op)
47 {
48 for (; first != last; ++first) {
49 t = op(t, *first);
50 }
51
52 return t;
53 }
54
55 template <class T>
56 struct multiplies: public binary_function<T, T, T> {
57 T operator()(const T& a, const T& b) const {return a * b;}
58 };
59
60 template <class IT>
61 typename iterator_traits<IT>::difference_type
62 distance(IT first, IT last)
63 {
64 typename iterator_traits<IT>::difference_type d = 0;
65
66 for (; first != last; ++first) {
67 ++d;
68 }
69
70 return d;
71 }
72
73 template <class IT, class T>
74 typename iterator_traits<IT>::difference_type
75 count(IT first, IT last, const T& t)
76 {
77 typename iterator_traits<IT>::difference_type n = 0;
78
79 for (; first != last; ++first) {
80 if (*first == t) {
81 ++n;
82 }
83 }
84
85 return n;
86 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

If the op in the above line 46 is a pointer to a function, line 49 will call the function. If theop is an
object, line 49 will call theoperator() member function of the object. It will behave as if we had writ-
ten

87 t = op.operator()(t, *first);

Will min_element still work if we give it a range of elements that are not sorted? What will
min_element return if we give it a range containing two or more elements tied for being the smallest?
What will min_element return when line 96 gives it an empty range?

88 #include <vector>
89 #include <algorithm>
90 using namespace std;
91
92 int a[] = {10, 20, 10};
93 const size_t n = sizeof a / sizeof a[0];
94 vector<int> v(a, a + n);
95 vector<int>::iterator it1 = min_element(v.begin(), v.end());
96 vector<int>::iterator it2 = min_element(v.begin(), v.begin());

A simpler way to create an iterator_traits for class node::iterator

There is a simpler way to create classiterator_traits<node::iterator> . If the five
typedefs are public members of classnode::iterator (lines 16−20), we will no longer have to define a
specialization of classiterator_traits .

The word int in line 23 could now be written asvalue_type . In fact, the entireint& could be
written asreference if you think the code would be clearer (it wouldn’t, at least not at this stage).But
these five typedefs are not primarily intended for use in classnode::iterator .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/node_container/node2.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iterator> //for forward_iterator_tag
4 using namespace std;
5
6 s truct node {
7 i nt value;
8 node *next;
9

10 node(int initial_value, node *initial_next)
11 : value(initial_value), next(initial_next) {}
12
13 class iterator {
14 node *p;
15 public:
16 typedef forward_iterator_tag iterator_category;
17 typedef int value_type;
18 typedef ptrdiff_t difference_type;
19 typedef int *pointer;
20 typedef int& reference;
21
22 iterator(node *initial_p = 0): p(initial_p) {}
23 int& operator*() const {return p->value;}
24 iterator& operator++() {p = p->next; return *this;} //prefix
25

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 811

812 Containers,Iterators, and Algorithms Chapter 8

26 friend bool operator==(const iterator& it1, const iterator& it2) {
27 return it1.p == it2.p;
28 }
29 };
30 };
31
32 inline const node::iterator operator++(node::iterator& it, int)//postfix
33 {
34 const node::iterator old = it;
35 ++it;
36 return old;
37 }
38
39 inline bool operator!=(const node::iterator& it1, const node::iterator& it2)
40 {
41 return !(it1 == it2); //return !operator==(it1, it2);
42 }
43 #endif

The general template for classiterator_traits , in the following lines 7−14, will now suffice
for classnode::iterator . Line 10 mentions the data typetypename IT::value_type . The
template argumentIT must therefore stand for a class with a member namedvalue_type that is the
name of a data type. Our new classnode::iterator has the required member in the above line 17.
The following line 10 creates anothervalue_type , this one a member of class
iterator_traits<IT> . It is a typedef that stands for the same data type astypename
IT::value_type . One by one, the five typedef members of classIT are replicated as members of the
general template.A specialization for classnode::iterator is no longer needed.

Are there any types of iterator that would still need a specialization?Well, a pointer is a completely
legitimate iterator. But a pointer does not have the five typedef members (only objects have members), so a
pointer data type would not be a legal template argumentIT for the generaliterator_traits . The
library therefore has specializations for iterators that are pointers, in lines 16 and 25.As we saw on p. 643,
separate specializations are needed for read/write pointers and read-only pointers.

1 / /Excerpts from <iterator>.
2 #include <cstddef> //for ptrdiff_t
3
4 / /IT must be a class that has five public members that are data types,
5 / /named iterator_category, value_type, difference_type, pointer, reference.
6
7 t emplate <class IT>
8 s truct iterator_traits {
9 t ypedef typename IT::iterator_category iterator_category;

10 typedef typename IT::value_type value_type;
11 typedef typename IT::difference_type difference_type;
12 typedef typename IT::pointer pointer;
13 typedef typename IT::reference reference;
14 };
15
16 template <class T>
17 struct iterator_traits<T *> {
18 typedef random_access_iterator_tag iterator_category;
19 typedef T value_type;
20 typedef ptrdiff_t difference_type;
21 typedef T * pointer;
22 typedef T& reference;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

23 };
24
25 template <class T>
26 struct iterator_traits<const T *> {
27 typedef random_access_iterator_tag iterator_category;
28 typedef T value_type; //read/write
29 typedef ptrdiff_t difference_type;
30 typedef const T *pointer; //read-only pointer
31 typedef const T& reference; //read-only reference
32 };

It would seem that thevalue_type in the above line 28 should be aconst T ; after all, the mem-
bers in 30 and 31 areconst . But even if the iterator is read-only, a value that has been copied out of a
container does not have to be held in a read-only variable (line 36). On the other hand, the pointerp in line
37 points to a value that is still in the container; it must be a read-only pointer. Similarly for the reference
in line 38.

In line 37, the* and& are built-in operators.They cancel each other out and can be removed. But
for iterators that are not pointers, the* would stand for a call to the iterator’s operator* function. In
that case, the& and* would both have to be written.

33 int a[] = {10, 20, 30};
34 const int *it = a;
35
36 int i = * it; //No need to make i a const int,
37 const int *p = &*it; //but p must be a const int *
38 const int& r = *it; //and r must be a const int&.

An even simpler way to create an iterator_traits for class node::iterator

Instead of writing the five typedefs in lines 16−20 of the above node2.h , there is an easier way to
give these members to classnode::iterator . We can simply derive this class from a base class that
already has the members.The base class is the following template class.We first saw this technique on pp.
769−770, where the base class was an instantiation of the template classbinary_function .

1 / /Another excerpt from <iterator>.
2 #include <cstddef> //for ptrdiff_t
3
4 t emplate <
5 c lass CATEGORY,
6 c lass T,
7 c lass DIFFERENCE = ptrdiff_t,
8 c lass POINTER = T *,
9 c lass REFERENCE = T&

10 >
11 struct iterator {
12 typedef CATEGORY iterator_category;
13 typedef T value_type;
14 typedef DIFFERENCE difference_type;
15 typedef POINTER pointer;
16 typedef REFERENCE reference;
17 };

Any class that is publicly derived from class

iterator<forward_iterator_tag, int, ptrdiff_t, int *, int&>

would inherit these five typedefs:

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 813

814 Containers,Iterators, and Algorithms Chapter 8

18 typedef forward_iterator_tag iterator_category;
19 typedef int value_type;
20 typedef ptrdiff_t difference_type;
21 typedef int *pointer;
22 typedef int& reference;

We derive our iterator from this base class in line 13, without bothering to write values for the last three
template arguments.

Thanks to theusing namespace std in line 4, we would normally not need to mentionstd in
line 13. But we have two classes with the same first name, ournode::iterator and the standard
library std::iterator . Without thestd:: , the rightmostiterator in line 13 would be the local
classiterator (classnode::iterator), triggering a chain of disasters. First off, this class is not a
template class; the angle brackets in of line 13 would not compile.And let’s not even think about deriving
a class from itself.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/node_container/node3.h

1 #ifndef NODEH
2 #define NODEH
3 #include <iterator> //for std::iterator and forward_iterator_tag
4 using namespace std;
5
6 s truct node {
7 i nt value;
8 node *next;
9

10 node(int initial_value, node *initial_next)
11 : value(initial_value), next(initial_next) {}
12
13 class iterator: public std::iterator<forward_iterator_tag, int> {
14 node *p;
15 public:
16 iterator(node *initial_p = 0): p(initial_p) {}
17 int& operator*() const {return p->value;}
18 iterator& operator++() {p = p->next; return *this;} //prefix
19
20 friend bool operator==(const iterator& it1, const iterator& it2) {
21 return it1.p == it2.p;
22 }
23 };
24 };
25
26 inline const node::iterator operator++(node::iterator& it, int)//postfix
27 {
28 const node::iterator old = it;
29 ++it;
30 return old;
31 }
32
33 inline bool operator!=(const node::iterator& it1, const node::iterator& it2)
34 {
35 return !(it1 == it2); //return !operator==(it1, it2);
36 }
37 #endif

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

How closely have we approached our ideal?

Can our iterator now read values from a linked list with the same notation as a pointer reading values
from an array? Pretty much so. The operators!= , * , and ++ can be applied to the iterator. But the--
operator, prefix and postfix, is conspicuously absent.A -- is impractical (read: too slow) because the list is
singly-linked. Itwould have been like a salmon fighting its way upstream.

Also absent is anoperator< to compare two iterators. Itwould have to determine the relative
positions on the list of the two elements to which the iterators refer. But the only way to do this would be
to start at the left iterator’s element, and loop along the list until we encounter either the right iterator’s ele-
ment or the end of the list, whichever comes first. This would not be aconstant timeoperation; the time
would depend on how many elements have to be visited.

For the same reason, we did not write anoperator- to measure the distance between two iterators.
The only way to do this would be to walk from one to the other, counting the elements as we go.Similarly,
operators such as+= and [] , which we regularly apply to pointers, would be too slow for our linked list.
Executing the expressionit += 20 would take twice as long asit += 10 .

To sum up, we can apply the following binary operators to a pointer but not to our iterator.

-- + - += -= < <= > >= []

Because of these limitations, will see that ournode::iterator will qualify as only a ‘‘forward’’ i tera-
tor (pp. 839−840), not a ‘‘bidirectional’’ one (pp. 840−841). This was the meaning of the
forward_iterator_tag we saw in line 40 ofnode.h on p. 806.

A singly-linked list, classslist , has already been written.It’s not officially in the STL, but many
vendors supply it anyway. Include the header file<slist> and don’t decrement the iterators.

▼ Homework 8.2.1a: create class node::const_iterator

We saw aconst_iterator for classvector in line 14 ofconst_iterator.C on p. 436.
Create aconst_iterator for classnode . Do not remove the existing classiterator .

Give it the last namenode , like our classiterator . For the reason in the ¶ (4) below, we must
defineconst_iterator beforeiterator . Both definitions will be inside the{ curly braces} of class
node .

Classnode::const_iterator will be exactly like the existing classnode::iterator (don’t
forget the postfix increment), but with the following changes.

(1) The data memberp will be a read-only pointer.

1 c onst node *p;

The argument of the constructor fornode::const_iterator will also be a read-only pointer.

(2) The whole point of aconst_iterator is to prevent the assignment in line 4 from compiling.

2 node::const_iterator it = begin;
3 i f (it != end) { //if there is a node,
4 * it = 20; //won’t compile
5 }

Theoperator* member function ofnode::const_iterator will therefore return a read-only refer-
ence. (Areturn by value would prevent the following line 11 from compiling.)

6 c onst int& operator*() const {return p->value;}

Similarly, if classconst_iterator had anoperator-> member function (which it doesn’t),
the pointer that it returns would have to be read-only. There will be anoperator-> in our next example.

(3) As in the above line 4, aconst_iterator cannot change the value of anint in a container.
But we are free to change the value of anint that has been copied out of the container (lines 9−10 below).
The value_type member of classiterator_traits<node::const_iterator> can therefore
remainint . But the pointer in line 11 and the reference in line 12 must beconst to point and refer to a

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.1 A Singly-Linked List 815

816 Containers,Iterators, and Algorithms Chapter 8

value still in the container.

7 node::const_iterator it = begin;
8 i f (it != end) {
9 i nt i = *it;

10 ++i;
11 const int *p = &*it; //const int *p = &it.operator*();
12 const int& r = *it;
13 }

Classconst_iterator will therefore be derived from class

14 std::iterator<forward_iterator_tag, int, ptrdiff_t,
15 const int *, const int&>

(4) Do not make it possible to convert a node::const_iterator to a node::iterator .
That would be a breach of security.

16 node *head = new node(30, 0);
17 head = new node(20, head);
18 head = new node(10, head);
19
20 node::const_iterator it = head;
21
22 //Try to change the 10 to 15. Do not allow this to compile.
23 *static_cast<node::iterator>(it) = 15;

But conversion in the other direction, fromnode::iterator to node::const_iterator , would be
harmless and convenient. For example, anoperator== andoperator!= that take two
node::const_iterator ’s would be able to handle all of our comparisons between
node::iterator ’s, node::const_iterator ’s, and any combinatin thereof.

Add the following public member function to classnode::iterator

24 operator const_iterator() const {return p;}

Define anoperator== andoperator!= for two node::const_iterator ’s, and remove the
operator== andoperator!= for two node::iterator ’s. An expression that compares a
node::iterator and anode::const_iterator

it == cit

will now behave as if we had swritten the following, calling theoperator== that compares two
node::const_iterator ’s.

25 operator==(it.operator node::const_iterator(), cit)

▲

8.2.2 AnInput File
The second data structure we turn into a container will be anistream such as a sequential input file

(not a random access input file). The following is a text file namedinfile . It contains dates so we can
demonstrate anoperator-> member function as well as anoperator* for the iterator.

7/4/1776
10/29/1929
12/7/1941

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

The loop in lines 15−17 is the traditional way to access this data structure. The constructor for class
ifstream opens the file in lines 9−13, the destructor closes the file in line 19, theoperator! and
operator void * member functions tell us if the file is healthy, and, if so, the>> operator reads from
the file. The latter is theoperator>> friend of classdate that we wrote in lines 7−65 ofdate.C on
pp. 338−339. If we break out of the loop because of end-of-file, line 19 returnsEXIT_SUCCESS. For any
other reason, we returnEXIT_FAILURE .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/ifstream.C

1 #include <iostream> //for cout and cerr
2 #include <fstream> //for ifstream
3 #include <cstdlib>
4 #include "date.h"
5 using namespace std;
6
7 i nt main(int argc, char **argv)
8 {
9 i fstream ifs("infile");

10 if (!ifs) { //if (ifs.operator!()) {
11 cerr << argv[0] << ": couldn’t open infile\n";
12 return EXIT_FAILURE;
13 }
14
15 for (date d; ifs >> d;) { //operator>>(ifs, d).operator void *();
16 cout << d << "\n"; //operator<<(operator<<(cout, d), "\n");
17 }
18
19 return ifs.eof() ? EXIT_SUCCESS : EXIT_FAILURE;
20 }

7/4/1776
10/29/1929
12/7/1941

Read from the file with an iterator

All of the above notation was specific to data structures that are input files.Let’s create an iterator
that can read dates from an input file, or from anotheristream , with the same notation as a pointer read-
ing dates from an array. We will return to the details later. For now, we hurry ahead and admire the follow-
ing main1.C andmain2.C .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/istream_iterator_date.h

1 #ifndef ISTREAM_ITERATOR_DATEH
2 #define ISTREAM_ITERATOR_DATEH
3 #include <iostream>
4 #include <iterator>
5 #include "date.h"
6 using namespace std;
7
8 c lass istream_iterator_date:
9 public iterator<input_iterator_tag, date, ptrdiff_t,

10 const date *, const date&> {
11
12 istream *ist;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.2 An Input File 817

818 Containers,Iterators, and Algorithms Chapter 8

13 bool ok; //true if this iterator has a healthy istream
14 date d; //the date read most recently from the file
15
16 void read() {
17 if (ok) {
18 ok = * ist >> d; //ok=operator>>(*ist,d).operator void *();
19 }
20 }
21 public:
22 istream_iterator_date(istream& initial_is)
23 : ist(&initial_is), ok(true) {read();}
24 istream_iterator_date(): ist(0), ok(false) {}
25
26 const date& operator*() const {return d;}
27 const date *operator->() const {return &**this;}
28
29 istream_iterator_date& operator++() {read(); return *this;}
30
31 friend bool operator==(const istream_iterator_date& it1,
32 const istream_iterator_date& it2) {
33 return it1.ok == it2.ok && (!it1.ok || it1.ist == it2.ist);
34 }
35 };
36
37 inline const istream_iterator_date operator++(istream_iterator_date& it, int)
38 {
39 const istream_iterator_date old = it;
40 ++it;
41 return old;
42 }
43
44 inline bool operator!=(const istream_iterator_date& it1,
45 const istream_iterator_date& it2) {
46 return !(it1 == it2);
47 }
48 #endif

With our new iterator, the loop in lines 18−20 is totally generic, like the one in lines 24−26 of
main.C on p. 807. The iterator whose constructor takes no argument (line 16) refers to the slot in the con-
tainer where the non-existent ‘‘element’’ after the last element would be. It represents the end of this input
file. In fact, it will represent the end ofany input file, just as a’\0’ represents the end of any array of
characters.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/main1.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include "date.h"
5 #include "istream_iterator_date.h"
6 using namespace std;
7
8 i nt main(int argc, char **argv)
9 {

10 ifstream ifs("infile");

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

11 if (!ifs) {
12 cerr << argv[0] << ": couldn’t open infile\n";
13 return EXIT_FAILURE;
14 }
15
16 const istream_iterator_date end;
17
18 for (istream_iterator_date it(ifs); it != end; ++it) {
19 cout << *it << "\n";
20 }
21
22 return EXIT_SUCCESS;
23 }

7/4/1776
10/29/1929
12/7/1941

Call a member function of each object in the container

The operator* member function of the iterator returns the value of thedate object being read
from the container. The above line 19 behaves as if we had written the following.

24 cout << it.operator*() << "\n";

To call theprint member function of eachdate , we can change line 19 to

25 (*it).print();
26 cout << "\n";

It will behave as if we had written the following.

27 it.operator*().print();
28 cout << "\n";

Since ourprint does the same thing asoperator<< , the output will be the same.

7/4/1776
10/29/1929
12/7/1941

But there’s a simpler way to call theprint member function of each object.We can change line 19
to

29 it->print();
30 cout << "\n";

It will behave as if we had written the following, calling theoperator-> member function of the iterator.

31 it.operator->()->print();
32 cout << "\n";

We expect that theoperator-> function would take two arguments, because the-> operator takes
two operands. Afterall, theoperator== function takes two arguments because the== operator takes
two operands. Butoperator-> takes no arguments at all.It simply returns the address of thedate
object to which the iterator refers.The address and the following member name (theprint in line 29
above) are then used as operands of an extra -> , supplied by the computer, which is the rightmost-> in
line 31 above. This is the ‘‘pointer to structure’’ operator built into C and C++.Once again, the output is
the same.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.2 An Input File 819

820 Containers,Iterators, and Algorithms Chapter 8

7/4/1776
10/29/1929
12/7/1941

Pass the data in the container to an algorithm.

We can now pass our data to an algorithm (line 21).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/main2.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include <algorithm>
5 #include "date.h"
6 #include "istream_iterator_date.h"
7 using namespace std;
8
9 i nt main(int argc, char **argv)

10 {
11 ifstream ifs("infile");
12 if (!ifs) {
13 cerr << argv[0] << ": couldn’t open infile\n";
14 return EXIT_FAILURE;
15 }
16
17 const istream_iterator_date end;
18 const date crash(date::october, 29, 1929); //stock market
19
20 const istream_iterator_date it =
21 find(istream_iterator_date(ifs), end, crash);
22
23 if (it == end) {
24 cout << "The file does not contain " << crash << ".\n";
25 } else {
26 cout << "The file contains " << crash << ".\n";
27 }
28
29 return EXIT_SUCCESS;
30 }

The file contains 10/29/1929.

Detect end-of-file

We might expect that each element in a range will be read by theoperator++ member function of
an iterator. But there are two reasons why operator++ cannot do all the reading.Consider first an itera-
tor that refers to the first element of a non-empty range. The first call to the iterator’s operator* must
return the first value in the range, even if there was no previous call tooperator++ .

Next consider an iterator that refers to the first ‘‘element’’ of an empty range. (It actually refers to no
element at all; its value is merely equal to that of thelast iterator.) Thefirst call to!= last must return
false, even if there was no previous call tooperator++ . In fact, any call to != last must be able to
detect in advance if the next application of the* operator would attempt to access the non-existent ‘‘ele-
ment’’ beyond the end of the range. In the loop inmain1.C on p. 819, for example, the comparison to

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

end in line 18 must be able to detect if the following * in line 19 would access the non-existent element.
And in thefind algorithm on p. 809, the comparison tolast in line 8 must be able to detect if the next *
in line 9 would access the non-existent element.

These two requirements are critical for every STL algorithm that reads from a range, and will compli-
cate the design of the iterator. The problem is that anifstream or otheristream does not detect end-
of-file until it has attempted to read beyond the end of the file.

Let’s demonstrate this by trying to read from an empty file.We will use the/dev/null file: on my
platform (Unix), it is always present but always empty. The attempted read in line 19 will fail, making no
change tod. But theifstream cannot detect this in advance (line 17).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/eof1.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include "date.h"
5 using namespace std;
6
7 i nt main(int argc, char **argv)
8 {
9 i fstream ifs("/dev/null");

10 if (!ifs) {
11 cerr << argv[0] << ": couldn’t open /dev/null\n";
12 return EXIT_FAILURE;
13 }
14
15 cout << boolalpha;
16
17 cout << ifs.eof() << "\n";
18 date d;
19 ifs >> d; //reads nothing because it reaches end-of-file
20 cout << ifs.eof() << "\n";
21
22 return EXIT_SUCCESS;
23 }

false line 17 does not detect eof yet, even though there are no dates to be read
true line 20

But an iterator is expected to detect end-of-containerbefore the * which attempts to access the non-
existent ‘‘element’’. The iterator must compare equal to theend iterator in line 17.

Thedate that line 22 copies intod was nev er not read from the file. It is the dummydate that was
created when the constructor for the iterator passed no arguments to the constructor for classdate .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/eof2.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include "istream_iterator_date.h"
5 #include "date.h"
6 using namespace std;
7
8 i nt main(int argc, char **argv)

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.2 An Input File 821

822 Containers,Iterators, and Algorithms Chapter 8

9 {
10 ifstream ifs("/dev/null");
11 if (!ifs) {
12 cerr << argv[0] << ": couldn’t open /dev/null\n";
13 return EXIT_FAILURE;
14 }
15
16 istream_iterator_date it(ifs);
17 const istream_iterator_date end;
18
19 cout << boolalpha;
20
21 cout << (it == end) << "\n";
22 date d = * it;
23 cout << (it == end) << "\n";
24
25 return EXIT_SUCCESS;
26 }

true line 21 detects eof even before the attempted read in line 22
true line 23

Now we can explain the convoluted design of the iterator inistream_iterator_date.h on pp.
817−818. Itwould seem natural for theoperator* to read each date from the file.But if we did that,
there would be no way for a previous!= operator to detect end-of-file.

Our solution is to have the constructor attempt to read the first date from the file (line 23 in the.h
file), storing it in a data memberd (line 14). Theoperator++ member function also attempts to read a
date, storing it in the same data member (line 29).When the!= operator is called, the read has therefore
already been attempted. If the!= finds that the read was successful, the algorithm callsoperator* ,
which returns the data member (line 26).

The boolean data memberok in line 13 is true if the iterator has anistream , and if theistream
has not yet encountered end-of-file or other errors. The value of the expression

*ist >> d

in line 18 is*ist , which is converted to abool when stored inok . Thebool will be true if the>> was
successful.

Of course, not every iterator has anistream ; the end iterator in lines 16−18 ofmain1.C on p.
819 did not have one. This,incidentally, explains why the ist data member in line 12 of
istream_iterator_date.h has to be a pointer, not a reference.It had to be one or the other since
we are not allowed to copy a stream (pp. 324−326).Now a pointer can easily point to no variable, but we
should never hav ea reference that refers to no variable. Sincean istream is not always present,ist has
to be a pointer.

What about the forbidding logical expression in line 39 ofistream_iterator_date.h ? Two
iterators are considered equal if they are both at the end-of-file, or if they are both reading from the same
input stream. Let’s consider these two cases separately.

The date returned byoperator* is read in a previous call to the iterator’s constructor or
operator++ . If that read encountered end-of-file, line 18 set theok data member to false. Meanwhile,
an end iterator always has itsok set to false (line 24).The operator== in line 37 considers any two
iterators to be equal if theirok ’s are both false. Thismeans that theend iterator marks the end not only of
our input stream, but of any input stream. It’s like the character’\0’ , which marks the end of any string.

operator== also considers any two iterators reading from the same stream to be equal, provided
that neither has encountered end-of-file yet.A comparison of two iterators reading from the same input

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

stream is therefore not very illuminating.operator== andoperator!= should be used only to com-
pare an iterator that is reading and moving (theit in line 18 ofmain1.C on p. 819) with a stationaryend
iterator.

As usual, many functions call other functions to do their work. Theoperator!= in line 44 calls
theoperator== in line 31; the postfixoperator++ in 37 calls the prefix one in 29.

A new example is theoperator-> in line 27, which returns the address of the most recently read
date. Theoperator* in line 26 returns the value of this date, so 27 simply returns the address of this
value. Theexpressionthis in line 27 is the address of the iterator;*this is the value of the iterator;
this is the value returned by theoperator* member function of the iterator; and&this is the
address of the value returned by theoperator* member function of the iterator. We can take this address
because the return value ofoperator* is a reference.

operator-> could have been defined as follows, but I wanted it to be free of code specific to class
istream_iterator_date .

27 const date *operator->() const {return &d;}

How closely have we approached our ideal?

Ideally, we would like to read from a container with an iterator with the same notation used to read
from an array with a pointer. We accept that ouristream_iterator_date suffers from the same lim-
itations that plagued thenode::iterator , starting with the absence of a-- operator. But
istream_iterator_date will turn out to be even more delicate.

The following line 17 shows that we can make a copy of this iterator, allowing us to pass it by value
to a function.But we must never increment one copy and compare or dereference the other. The following
program shows what goes wrong if we try this.The first date in the file is read by the constructor in line 16
and stored in the iterator. The second date is read in line 20.The loop in lines 23−25 misses the second
date in the file, which has been siphoned off by the increment in line 20.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/interfere.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include "istream_iterator_date.h"
5 using namespace std;
6
7 i nt main(int argc, char **argv)
8 {
9 i fstream ifs("infile");

10 if (!ifs) {
11 cerr << argv[0] << ": couldn’t open infile\n";
12 return EXIT_FAILURE;
13 }
14
15 const istream_iterator_date end;
16 istream_iterator_date it1(ifs);
17 istream_iterator_date it2 = it1;
18
19 if (it2 != end) {
20 date d = * ++it2;
21 }
22
23 for (; it1 != end; ++it1) {
24 cout << *it1 << "\n";

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.2 An Input File 823

824 Containers,Iterators, and Algorithms Chapter 8

25 }
26
27 return EXIT_SUCCESS;
28 }

7/4/1776 first date in the file
12/7/1941 third date in the file

A practical consequence is that the following program fails. Line17 constructs the iteratorbegin .
Line 20 passes the iterator by value, constructing a copy of it. Theloop in thedistance algorithm incre-
ments the copy until it reaches end-of-file. So far, all is well. But at line 23,begin has already been
exhausted when we copy it again. Thiscopy is born prematurely aged: the underlying input file is already
at end-of-file, and the loop in thefind algorithm is never entered.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/main3.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include <algorithm>
5 #include "date.h"
6 #include "istream_iterator_date.h"
7 using namespace std;
8
9 i nt main(int argc, char **argv)

10 {
11 ifstream ifs("infile");
12 if (!ifs) {
13 cerr << argv[0] << ": couldn’t open infile\n";
14 return EXIT_FAILURE;
15 }
16
17 const istream_iterator_date begin(ifs);
18 const istream_iterator_date end;
19
20 cout << "The file contains " << distance(begin, end) << " dates,\n";
21
22 const date crash(date::october, 29, 1929); //stock market
23 const istream_iterator_date it = find(begin, end, crash);
24
25 if (it == end) {
26 cout << "not including " << crash << ".\n";
27 } else {
28 cout << "including " << c rash << ".\n";
29 }
30
31 return EXIT_SUCCESS;
32 }

The file contains 3 dates, Line 20 correctly counted the elements,
not including 10/29/1929. but line 23 did not search through them.

To rejuvinatebegin , we would have to mess around with its private members.A better way to fix
the program is to rewind the underlyingifstream back to the start of the file (lines 22−28) and create a

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

fresh iterator at line 33.I wish we could rewind by callingseekg (p. 382), but we cannot ‘‘seek’’ a file
that has already been driven to end-of-file. We hav eto rewind the file by closing and reopening it.Before
line 23 can close the file successfully, line 22 must turn off the file’s failbit . This bit was turned on
when line 20 encountered end-of-file.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/main4.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 #include <algorithm>
5 #include "date.h"
6 #include "istream_iterator_date.h"
7 using namespace std;
8
9 i nt main(int argc, char **argv)

10 {
11 ifstream ifs("infile");
12 if (!ifs) {
13 cerr << argv[0] << ": couldn’t open infile\n";
14 return EXIT_FAILURE;
15 }
16
17 const istream_iterator_date end;
18
19 cout << "The file contains "
20 << distance(istream_iterator_date(ifs), end) << " dates,\n";
21
22 ifs.clear(ifs.rdstate() & ˜ ios_base::failbit);
23 ifs.close();
24 if (!ifs) {
25 cerr << argv[0] << ": couldn’t close infile\n";
26 return EXIT_FAILURE;
27 }
28 ifs.open("infile");
29 if (!ifs) {
30 cerr << argv[0] << ": couldn’t reopen infile\n";
31 return EXIT_FAILURE;
32 }
33
34 const date crash(date::october, 29, 1929); //stock market
35
36 const istream_iterator_date it =
37 find(istream_iterator_date(ifs), end, crash);
38
39 if (it == end) {
40 cout << "not including " << crash << ".\n";
41 } else {
42 cout << "including " << c rash << ".\n";
43 }
44
45 return EXIT_SUCCESS;
46 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.2 An Input File 825

826 Containers,Iterators, and Algorithms Chapter 8

The file contains 3 dates,
including 10/29/1929.

Unfortunately, the call tofind in the above lines 31−32 does not tell us all we wish to know. We
have discovered that a certain date is in the file, but we don’t know where in the file it is. The problem is
that anistream_iterator_date , the return value of this call tofind , is good at getting dates from a
file, but does not mark a location in a file.We will have to write a new algorithm with a different return
type; see p. 837.

More surprises happen when we compare two copies of anistream_iterator_date . First,
look at the paradoxical output of line 17.The== operator believes that any two iterators are equal if they
are reading from the same stream, provided that they hav enot reached end-of-input.Incidentally, if you
change line 17 to

1 c out << (*it1 == *++it1) << "\n"; //now we’re comparing two dates

it will become false, at least on platforms that evaluate the*it1 before the*++it1 .

Next, observe that the iterators in line 20 are equal.Indeed,it2 was newly minted by the copy con-
structor in the previous line. But the expressions in line 21 are unequal.Apparently, our iterators lack the
substitution property, basic to Western Thought. How can this be?

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/infile/paradox.C

1 #include <fstream>
2 #include <cstdlib>
3 #include "istream_iterator_date.h"
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 i fstream ifs("infile");
9 i f (!ifs) {

10 cerr << argv[0] << ": couldn’t open infile\n";
11 return EXIT_FAILURE;
12 }
13
14 cout << boolalpha;
15
16 istream_iterator_date it1(ifs);
17 cout << (it1 == ++it1) << "\n";
18
19 istream_iterator_date it2 = it1;
20 cout << (it1 == it2) << "\n";
21 cout << (++it1 == ++it2) << "\n";
22
23 return EXIT_SUCCESS;
24 }

true line 17
true line 20
false line 21

The explanation is simple. The constructor in the above line 16 read the first date from the file; the
++ in line 17 read the second.Whichever iterator is incremented first in line 21 will read the third date, and
its ok data member will remain true. The other iterator will encounter end-of-file, and itsok will be set to
false. (Thereis no way to predict which++ will execute first in line 21: precedence and associativity give

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

us no decision since the increments are not adjacent. See pp. 14−16.)

The moral is that while anistream_iterator_date can be copied, but only one copy should
be used. There is an elegant way to enforce this.We hav eoften passed a function argument as an anony-
mous temporary, letting us avoid the bother of inventing a name for it. Our most recent example was the
first argument offind in line 21 ofmain2.C on p. 820.Now we hav eanother reason to make the tempo-
rary anonymous. Ifan istream_iterator_date is passed by value, there are two copies. Butif the
original is a anonymous, there is no way it can be used or even mentioned by the caller after it has been
passed to an algorithm.

Because of these limitations—no decrement, use only one copy—we will see that our
istream_iterator_date will qualify as only an ‘‘input iterator’’ (pp. 834−837). The STL already
has an iterator like istream_iterator_date , but it is better because it is a template. Simply include
the header file<iterator> and construct anistream_iterator<date> . See pp. 850−855.

8.2.3 AnOutput File
The Moving Finger writes; and, having writ,
Moves on: nor all thy Piety nor Wit

Shall lure it back to cancel half a Line,
Nor all thy Tears wash out a Word of it.

—Rubáiyát of Omar Khayyám, quatrain 51

The third data structure we turn into a container will be a sequential output file or otherostream .
We will write three integers to a text file namedoutfile .

The traditional way to access this data structure is with the loop in lines 17−22.The constructor for
classofstream opens the file in lines 8−12, the destructor closes the file in lines 20 or 24, the
operator! member function tells us if the file is healthy in lines 9 and 19, and the<< operator in line 19
writes anint to to the file. If all the integers and newlines were successfully written, line 24 returns
EXIT_SUCCESS.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/outfile/ofstream.C

1 #include <iostream>
2 #include <fstream>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 ofstream ofs("outfile");
9 i f (!ofs) {

10 cerr << argv[0] << ": couldn’t open outfile\n";
11 return EXIT_FAILURE;
12 }
13
14 const int a[] = {10, 20, 30};
15 const size_t n = sizeof a / sizeof a[0];
16
17 for (const int *p = a; p < a + n; ++p) {
18 //if (operator<<(ofs.operator<<(*p), "\n").operator!()) {
19 if (!(ofs << *p << "\n")) {
20 return EXIT_FAILURE;
21 }
22 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.3 An Output File 827

828 Containers,Iterators, and Algorithms Chapter 8

23
24 return EXIT_SUCCESS;
25 }

The program creates an output file,outfile , containing the three integers.

10
20
30

Write to the file with an iterator

All of the above notation was specific to data structures that are output files.Let’s create an iterator
that can write integers to an output file, or to anotherostream , with the same notation as a pointer writing
integers to an array. The end result will be the loop in the following lines 18−20.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/outfile/main.C

1 #include <fstream>
2 #include <cstdlib>
3 #include "ostream_iterator_int.h"
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 ofstream ofs("outfile");
9 i f (!ofs) {

10 cerr << argv[0] << ": couldn’t open outfile\n";
11 return EXIT_FAILURE;
12 }
13 ostream_iterator_int it(ofs);
14
15 const int a[] = {10, 20, 30};
16 const size_t n = sizeof a / sizeof a[0];
17
18 for (const int *p = a; p < a + n; ++p, ++it) {
19 *it = * p; //it.operator*().operator=(*p);
20 }
21
22 return EXIT_SUCCESS;
23 }

The output file is

10
20
30

A proxy object

When we apply the* operator to an object, we are really calling theoperator* member function
of that object.For example, the above line 19 calls theoperator* of it . We would expect this function
to write an integer to the output file.

Here’s why it can’t. Theabove line 19 behaves as if we has said the following.

1 i t.operator*() = *p;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

The operator* is a member function ofit , so it has access to theostream * data member thereof.
But theoperator* receives no arguments. Inparticular, it nev er receives the integer value*p . To write
the value to a file, a function must have access to theostream * in the iterator and to the value.

It would be nice if the* and the= could call a single member function ofit , taking the*p as its
argument. Theabove line 19 would then do the following, and the function would have access to the
ostream * and to the integer value.

2 i t.single(*p); //I wish *it = *p; could do this.

But this is wishful thinking. The two operators* and= will not turn into a single function call, at
least not in this language. Is there any way the same effect could be obtained with the machinery at our dis-
posal?

Let’s brainstorm. Theoperator* member function ofit will construct and return an anonymous
object that contains a copy of all the data init . Then the= in the above line 19 will call theoperator=
member function of the anonymous object, as in the comment in that line.The operator= will have
access to theostream * and to the integer value*p .

The anonymous object will be of the data typeproxy in lines 11−16 of the following
ostream_iterator_int.h . For convenience, we give it the last nameostream_iterator_int .
When an iterator’soperator* constructs and returns aproxy , the proxy will hold a copy of the
ostream * that was in the iterator. The actual write to the file will take place in theproxy ’s
operator= .

The definition of classproxy (lines 11−16 inostream_iterator_int.h) had to come before
the definition ofoperator* (line 20). After all, operator* can’t create aproxy unless it knows what
aproxy is.

The ost data member of the ostream_iterator_int in line 9 of
ostream_iterator_int.h is not*const , allowing us to assign one iterator to another:

1 i t1 = it2; //it1.operator=(it2);

But theost data member of theproxy object in line 12 is*const , because we never want to assign one
proxy to another. The following expression*it2 cannot be used as the right operand of an assignment.

2 / /won’t compile: it1.operator*().operator=(it2.operator*());
3 * it1 = *it2;

In fact, the only thing itcan be used as is the left operand of an assignment whose right operand is anint
or convertible thereto. Classproxy has no other member functions.

For another proxy object, see p. 968.

Machinery not needed by an output iterator

Some of the machinery of classistream_iterator_date becomes irrelevant in our new class
ostream_iterator_int . An input file can be exhausted, but we boldly assume that an output file can
absorb any amount of data.We nev er need to compare anostream_iterator_int to an end-of-file
iterator, so there are nooperator== or operator!= functions. We can never use a pair of
ostream_iterator_int ’s to delimit a range of elements passed to an algorithm.(For an algorithm
that will accept a singleostream_iterator_int , see thecopy on p. 844.)

For the same reason, theiterator_traits for classostream_iterator_int has no
difference_type . The output file is infinite, so we would need an infinitely large variable to count
how many writes we have performed. Ifwe do need to count the number of writes, we can usually use the
difference_type of some other container. In the above main.C , for example, the number of integers
to write was determined by the number of integers in the containera in line 15. Since this container is an
array, we could tally this number with a variable of data typesize_t .

An ostream_iterator_int does not let us use the values written to the container. Once the
value is written, it’s gone. Theiterator_traits therefore has novalue_type , pointer , or

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.3 An Output File 829

830 Containers,Iterators, and Algorithms Chapter 8

reference . And if the value were an object, rather than anint , an ostream_iterator_ would not
let us use any member of the object. It therefore has nooperator-> member function either.

The four unnecessary typedef members ofitarator_traits are still present, but all of them are
void and should never be used (line 8 of theostream_iterator_int.h).

The prefixoperator++ , in line 21 ofostream_iterator_int.h , has no work to do.We
define it anyway, because our iterator will be passed to algorithms that apply a++ to the iterator. The
operator++ is non-const , even though it changes no data members, because people would be puzzled
if they found that they could increment aconst iterator. The postfixoperator++ , in line 24 of
ostream_iterator_int.h , is even more superfluous.I gav e it the customary definition only from
habit. Itcould just as well have been defined as

1 c onst ostream_iterator_int& operator++(int) {return *this;}

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/outfile/proxy/ostream_iterator_int.h

1 #ifndef OSTREAM_ITERATOR_INTH
2 #define OSTREAM_ITERATOR_INTH
3 #include <iostream>
4 #include <iterator>
5 using namespace std;
6
7 c lass ostream_iterator_int:
8 public iterator<output_iterator_tag, void, void, void, void> {
9 ostream *ost;

10
11 class proxy {
12 ostream *const ost;
13 public:
14 proxy(ostream *initial_ost): ost(initial_ost) {}
15 void operator=(int i) const {*ost << i << "\n";}
16 };
17
18 public:
19 ostream_iterator_int(ostream& initial_ost): ost(&initial_ost) {}
20 const proxy operator*() const {return ost;} //means return proxy(ost);
21 ostream_iterator_int& operator++() {return *this;}
22 };
23
24 inline const ostream_iterator_int operator++(ostream_iterator_int& it, int)
25 {
26 const ostream_iterator_int old = it;
27 ++it;
28 return old;
29 }
30 #endif

▼ Homework 8.2.3a: make sure there are no unauthorized proxies

An ostream_iterator_int::proxy should be constructed only by the function
ostream_iterator_int::operator* . Enforce this by making the constructor for classproxy
private. To call the constructor,operator* will now hav eto be a friend of classproxy .

(1) Let the constructor for classproxy be private. And,of course, classproxy should remain a pri-
vate member of classostream_iterator_int .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

(2) To allow operator* to construct aproxy , add the following declaration to the definition of
classproxy .

1 f riend const proxy ostream_iterator_int::operator*() const;

(3) Line 20 of the above ostream_iterator_int.h on p. 830 was both a declaration and defi-
nition for the functionoperator* . It will have to be split in two. Thedefinition of classproxy now
mentionsoperator* , so thedeclarationof this function will have to come before the definition of class
proxy . And operator* creates aproxy , so thedefinition of this function will have to come after the
definition of classproxy .

The declaration ofoperator* and the definition ofproxy can remain within the{ curly braces}
of the definition of classostream_iterator_int . The declaration ofoperator* will look lik e this:

2 c onst proxy operator*() const;

But the definition ofoperator* will have to be moved to a point after the braces. It will look like this:

3 i nline const ostream_iterator_int::proxy ostream_iterator_int::operator*() const
4 {
5 r eturn ost; //means return proxy(ost);
6 }

The above line 5 could callproxy by its first name, since it is inside the body of a member function of
classostream_iterator_int . But the above line 3 has to callproxy by its full name
ostream_iterator_int::proxy , since it is outside the body of a member function of class
ostream_iterator_int .

(4) The declaration foroperator* now mentionsproxy before the computer has seen the defini-
tion for this class.You will have to write a forward declaration forproxy (pp. 465−466), in theprivate
section of the definition of classostream_iterator_int , but before the declaration foroperator* .

Was it worth it?
▲

Eliminate the proxy class

We could avoid the separateproxy class by lettingostream_iterator_int be its own proxy:

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/outfile/noproxy/ostream_iterator_int.h

1 #ifndef OSTREAM_ITERATOR_INTH
2 #define OSTREAM_ITERATOR_INTH
3 #include <iostream>
4 #include <iterator>
5 using namespace std;
6
7 c lass ostream_iterator_int:
8 public iterator<output_iterator_tag, void, void, void, void> {
9 ostream *ost;

10 public:
11 ostream_iterator_int(ostream& initial_ost): ost(&initial_ost) {}
12 const ostream_iterator_int& operator*() const {return *this;}
13 void operator=(int i) const {*ost << i << "\n";}
14 ostream_iterator_int& operator++() {return *this;}
15 };
16
17 inline const ostream_iterator_int operator++(ostream_iterator_int& it, int)
18 {
19 const ostream_iterator_int old = it;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.3 An Output File 831

832 Containers,Iterators, and Algorithms Chapter 8

20 ++it;
21 return old;
22 }
23 #endif

With the samemain.C , we get the same output file.

10
20
30

Unfortunately, this way is less secure.With a separate proxy class, theit in line 19 ofmain.C on
p. 828 must have exactly one asterisk.Without the proxy class, theit could be written with any number of
asterisks, or even with none at all. But we don’t want to allow that freedom. Line 19 might be transplanted
into an algorithm someday, causing a bug when the algorithm is passed an iterator of a type that requires
exactly one asterisk. (Let’s hope that no one forgets the++ in line 18.)

How closely have we approached our ideal?

Ideally, we would like to write to a container with an iterator with the same notation used to write to
an array with a pointer. Like istream_iterator_date our ostream_iterator_int is missing
the following operators:

-- + - += -= < <= > >= []

Similarly, we can copy an ostream_iterator_int but we cannot use both copies. Furthermore, the
result of applying an* to an ostream_iterator_int can be used only as the left operand of an
assignment.

For these reasons, ourostream_iterator_int will qualify only as an ‘‘output iterator’’ (pp.
837−839). TheSTL already has an iterator like ostream_iterator_int , but it is better because it is a
template. Simplyinclude the header file<iterator> and construct anostream_iterator<int> .
See pp. 850−855.

Different induction variables for different data structures

The variable whose value changes during each iteration of a loop is called theinduction variable.
Below are four data structures with four loops. The loops have different types of induction variables: the
integeri in line 4 vs. the pointer to a structurep in line 14 vs. the pair ofunsigned ’s in line 21 vs. the
streamcin in line 32. Each loop applies different code to the induction variable to access an element of a
container: the[square brackets] in line 5 vs. the-> line in 15 vs. theterm_put in line 22 vs. the.get
in line 32. Each loop has different code to update the induction variable, underlined in each example. Each
loop has different code to test the induction variable: the< n in line 4 vs. the!= 0 in line 14 vs. theif
statement in lines 24−27 vs. the.get in line 32.

(1) This loop accesses each element by applying[square brackets] to the induction variablei , and
updatesi by applying++:

1 i nt a[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
2 c onst size_t n = sizeof a / sizeof a[0];
3
4 f or (size_t i = 0; i < n; ++i) {
5 c out << a[i] << "\n";
6 }

(2) This loop accesses each element by applying->value to the induction variablep, and updates
p by applying= p->next :

7 s truct {
8 i nt value;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

9 node *next;
10 } node;
11
12 node *head = 0;
13
14 for (node *p = head; p != 0; p = p->next) {
15 cout << p->value << "\n";
16 }

(3) This loop calls the C functions on pp. 85−89, and therefore has two induction variablesx andy .
It accesses each element by passing them to the functionterm_get . The code to update them is too com-
plicated to fit at the end of line 21, so I moved it to lines 24−28:

17 extern "C" {
18 #include "term.h"
19 }
20
21 for (unsigned x = 0, y = 0; y < term_height();) {
22 cout << term_get(x, y);
23
24 if (++x >= term_width()) {
25 x = 0;
26 ++y;
27 cout << "\n";
28 }
29 }

(4) This loop copies the standard input to the standard output, one character at a time. It accesses
each element by calling the.get member function ofcin . Although it is not obvious, the induction vari-
able of this loop iscin since its internal state is changing as we read each character.

30 #include <iostream>
31 using namespace std;
32
33 for (char c; cin.get(c) ;) {//for (char c; cin.get(c).operator*();) {
34 cout.put(c);
35 }

The equivalent loop in C must have ac that is wider than achar , because achar is not big enough to
hold every possible return value ofgetchar .

36 #include <stdio.h>
37
38 int c;
39
40 while ((c = getchar()) != E OF) {
41 putchar(c);
42 }

But once the induction variable—or variables—has been hidden as a private data member of an itera-
tor, our loops will be identical except for the names of the data types:

43 for (my_container::const_iterator it = c.begin(); it != c.end(); ++it) {
44 cout << *it << "\n";
45 }
46
47 for (your_container::const_iterator it = c.begin(); it != c.end(); ++it){
48 cout << *it << "\n";

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.2.3 An Output File 833

834 Containers,Iterators, and Algorithms Chapter 8

49 }

We can then write them once and for all as a template.

50 template <class CONTAINER>
51 void print_loop(const CONTAINER& c)
52 {
53 for (typename CONTAINER::const_iterator it = c.begin(); it != c.end();
54 ++it) {
55 cout << *it << "\n";
56 }
57 }

8.3 Iterator Categories
An algorithm is a template function that receives an iterator. But it has no idea what the iterator’s

data type is. All it has to work with is the opaque wordIT :

1 t emplate <class IT>
2 v oid myalgorithm(IT it)
3 {

What can the algorithm do with the iterator? If the algorithm applies the-- operator to an iterator of
type ‘‘ IT ’’ , will it compile? The risk is real: we have seen three iterators cannot be decremented, starting
with our node::iterator on p. 806.How can an algorithm find out what an iterator of typeIT can,
and can not, do?

The iterator data types are divided into five categories, depending on the operators that can be
applied to the iterator and how much time they take. A category is not a data type; it is an infinite set of
data types.

Input iterator

For a data typeIT to qualify as aninput iterator, it must be able to do the following.

(1) An iterator must be copy constructible and assignable.We must be able to compare two iterators
with == and!= , dereference an iterator with* , and increment an iterator with++ (prefix and postfix).

When we dereference the iterator, we must get a value. If the iterator is a pointer, it cannot be a
pointer tovoid . If the iterator is an object, itsoperator* cannot returnvoid .

For example,

1 t emplate <class IT>
2 v oid my_algorithm(IT first, IT last) //pass by value
3 {
4 f or (; first != last; ++first) {
5 c out << *first << "\n"; //use value of *first, e.g., output it
6 }

There is no requirement that we be able to compare iterators with the four other comparison opera-
tors <, <=, >, or >=. There is no requirement that we be able to dereference an iterator with the other
dereferencing operator[] , or decrement it with-- (prefix or postfix). There is no requirement that any-
thing sane will happen if we dereference or increment an iterator that is equal to a container’s end iterator.
‘‘ No requirement’’ means that anything can happen without disqualifying the iterator from being an input
iterator. ‘‘A nything’’ i ncludes, but is not limited to, failure to compile, crashing the program, undefined
behavior, and working as naïvely expected.

(2) Theoperator++ in our classistream_iterator_date had a side effect: it discarded the
previousdate and input the next one.Theoperator* had no side effect. Butfor other classes of input

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

iterators, it might be theoperator* that has a (possibly destructive) side effect. Consequently, there is
no requirement that we be able to dereference an input iterator more than once. Each element can be read
from the container only once. It’s like reading a byte from a Unix pipe: the read is destructive.

1 t emplate <class IT>
2 v oid my_algorithm(IT first, IT last)
3 {
4 f or (; first != last; ++first) {
5 c out << *first << "\n";
6 c out << *first << "\n"; //no guarantee that this will work
7 }

To use the value of an element more than once, we could copy it. iterator_traits<IT> must
have avalue_type member:

8 t emplate <class IT>
9 v oid my_algorithm(IT first, IT last)

10 {
11 for (; first != last; ++first) {
12 typename iterator_traits<IT>::value_type t = *it;
13 cout << t << "\n";
14 cout << t << "\n";
15 }

Or we could make a pointer to the value read from the container, and dereference the pointer more than
once. iterator_traits<IT> must have a pointer member or areference member. Just be
careful to apply the* operator to the iterator onlyonce.

16 template <class IT>
17 void my_algorithm(IT first, IT last)
18 {
19 for (; first != last; ++first) {
20 typename iterator_traits<IT>::pointer p = &*first;
21 cout << *p << "\n";
22 cout << *p << "\n"; //this will work
23 }

There is no requirement, however, that the pointer will still point to the same element after the iterator has
been incremented. (And anything might happen if we attempt to increment or dereference an iterator that is
equal tolast .)

24 template <class IT>
25 void my_algorithm(IT first, IT last)
26 {
27 while (first != last) {
28 typename iterator_traits<IT>::pointer p = &*first;
29
30 //this *p will work
31 cout << *p << "\n";
32
33 ++first;
34
35 //no guarantee that this *p will still work
36 cout << *p << "\n";
37 }
38
39 cout << *first << "\n"; //unpredictable behavior
40 ++first; //unpredictable behavior

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.3 Iterator Categories 835

836 Containers,Iterators, and Algorithms Chapter 8

(3) We must have a reference data type

iterator_traits<IT>::reference

that can refer to each element of the container, subject to the same caveat as thepointer .

41 template <class IT>
42 void my_algorithm(IT first, IT last)
43 {
44 for (; first != last; ++first) {
45 typename iterator_traits<IT>::reference r = *first;
46 cout << r << "\n";
47 }

(4) We must have a data type

iterator_traits<IT>::value_type

that can hold the values in the container. If this type is assignable, we can say

48 template <class IT>
49 void my_algorithm(IT first, IT last)
50 {
51 for (; first != last; ++first) {
52 typename iterator_traits<IT>::value_type t = *first;
53 cout << t << "\n";
54 }

(5) The data type

iterator_traits<IT>::difference_type

must be a signed integral data type (p. 61) that can hold the distance in elements between any two iterators
referring to elements in the same container, even the largest possible container. For example, a variable of
type difference_type must be big enough—but no bigger than necessary—to count the number of
elements read from any container.

55 template <class IT>
56 void my_algorithm(IT first, IT last)
57 {
58 typename iterator_traits<IT>::difference_type n = 0;
59 for (; first != last; ++first) {
60 ++n;
61 }

(6) The expression*it++ must perform the dereferencebefore the increment, despite the higher
precedence of the postfix++ operator. The expression

62 x = * it++;

must behave as if we had said

63 temp = * it;
64 ++it;
65 x = t emp;

To get the desired effect, the postfixoperator++ would perform no increment.It would return a
proxy object (pp. 828−829) containg a pointer or reference to the iterator. The proxy’s operator* would
then dereference the iterator; the proxy’s destructor would increment the iterator. Disaster would result
from our normal procedure of copying the iterator, incrementing the original, and then dereferencing the
copy:

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

66 //Can’t increment one copy and dereference the other copy.
67 temp = i t;
68 ++it;
69 x = * temp;

(7) The data type

iterator_traits<IT>::iterator_category

must be a typedef for the data typeinput_iterator_tag .

If we copy an input iterator, there is no requirement that we be able to use both copies.(‘‘Use’’
means test, dereference, and increment.) There is no requirement that

it1 == it2

must imply

++it == ++it2

Our class istream_date_iterator was an input iterator; the template class
istream_iterator will be another example. Aswe shall see, these classes will not qualify as iterators
of any other category.

Our classesnode::iterator and node::const_iterator also qualify as input iterators.
So will list<int>::iterator , vector<int>::iterator , and the data typeint * . These
types will qualify as iterators of other categories as well. But the data typeint *const is not an input
iterator. We cannot apply the++ operator to it, so it is merely atrivial iterator.

▼ Homework 8.3a: write an algorithm that will accept input iterators

We found a date in an input file by calling thefind algorithm in lines 32−39 ofmain4.C on p.
825. Butwe did not find where in the file the date was located. The problem is that the return value of this
call to find was merely an input iterator. This category of iterator can read values from a container, but
does not mark a position in the container.

Write another algorithm,find_distance , that will give us this information. It will be a template
function like thefind on p. 809, accepting the same three arguments. Thereturn type of
find_distance should be thedifference_type for the type of iterators passed to
find_distance . You have already seen how to do this: the return type of thedistance algorithm on
p. 810 was thedifference_type for the type of iterators passed todistance . find_distance
will return the position of the desired value in the container, or −1 if the value is not found. (The position
numbers should start at zero.)

Be sure thatfind_distance will work correctly if its first two arguments are merely input itera-
tors. For example, do not try to copy an iterator and then use both copies. Do not try to read the same
value more than once.
▲

Output iterator

For a data typeIT to qualify as anoutput iterator, we must be able to do the following with iterators
of that type.

(1) An iterator must be copy constructible and assignable.We must be able to use*it as the left op-
erand of an assignment (only=, not += or the other assignment operators).Finally, we must be able to
incrementit with ++ (prefix and postfix).For example,

1 t emplate <class IT>
2 v oid my_algorithm(IT it) //pass by value
3 {
4 f or (; as long as we want to loop; + +it) {
5 * it = some value, maybe a different one each time;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.3 Iterator Categories 837

838 Containers,Iterators, and Algorithms Chapter 8

6 }

There is no requirement that we be able to compare two iterators. Thereis no requirement that we be
able to use the expression*it when it isnot the left operand of an assignment. There is no requirement
that we be able to assign more than once to the same element:

1 t emplate <class IT>
2 v oid my_algorithm(IT it)
3 {
4 f or (; as long as we want to loop; + +it) {
5 * it = some value;
6 * it = some value; / /no guarantee that this will still work
7 }

There is no requirement that we can have two consecutive increments without an intervening assign-
ment:

1 t emplate <class IT>
2 v oid my_algorithm(IT it)
3 {
4 f or (; as long as we want to loop; + +it) {
5 * it = some value;
6 ++it; //no guarantee that we can skip an element
7 }

Similarly, there is no requirement that we can skip the first element.

1 t emplate <class IT>
2 v oid my_algorithm(IT it)
3 {
4 / /no guarantee that we can skip the first element
5 f or (++it; as long as we want to loop; + +it) {
6 * it = some value;
7 }

An input iterator, on the other hand, can definitely skip over an element that it doesn’t want to read.

(2) The expression*it++ = t must behave as if we has said

1 * it = t;
2 ++it;

In other words, the dereference and assignment must be performedbefore the increment.

In some cases this would be awkward to implement, because the expression*it++ always executes
the ++ before the* . (The postfix++ has higher precedence than the* .) To get the desired effect, we
would have to let the postfix++ perform no increment at all, and let it return a proxy object (pp. 828−829).
The operator* of the proxy will then return another proxy object.The operator= of the second
proxy object will increment the iterator, dereference it, and perform the assignment.Fortunately, howev er,
none of this was necessary for our classostream_iterator_int . For unrelated reasons, the
operator++ functions of that class did nothing, so it didn’t matter whether they execute before or after
the dereference and assignment.

(3) The data type

iterator_traits<IT>::iterator_category

must be a typedef for the data typeoutput_iterator_tag . There is no requirement that
iterator_traits<IT> have any other members.

Our class ostream_iterator_int was an output iterator; the template class
ostream_iterator will be another example. Aswe shall see, these classes will not qualify as iterators

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

of any other category.

Our class node::iterator also qualifies as an output iterator. So will
list<int>::iterator , vector<int>::iterator , and the data typeint * . These types will
qualify as iterators of other categories as well. But theconst_iterator classes are not output iterators.
Neither is the data typeconst int * .

Forward Iterator

For a data typeIT to qualify as aforward iterator, we must be able to do the following with iterators
of that type.

(1) A forward iterator must be able to do everything that an input iterator or an output iterator can do.
It must thereforebe an input iterator and an output iterator. (There is one exception; see below.) For exam-
ple,

1 t emplate <class IT>
2 v oid my_algorithm(IT first, IT last) //pass by value
3 {
4 f or (; first != last; ++first) { //compare
5 t ypename iterator_traits<IT>::value_type t = *first; //read
6 * first = typename iterator_traits<IT>::value_type(); //write
7
8 i f (++first == last) { //skip
9 break;

10 }
11 }

(2) A forward iterator cannot exhibit the abnormal behaviors that would be tolerated in an input or
output iterator. To start with,

it1 == it2

must imply

++it == ++it2

If we copy a forward iterator, we can use both copies without them interfering with each other. Finally, we
can read or write the same element more than once, in any order. We can therefore use two or more for-
ward iterators to loop through the same container at the same time. An example is the pair of iterators
first andprevious in the following homework.

There is one exception to the requirement that a forward iterator be able to do all the work of an out-
put iterator. A forward iterator can be read-only and still qualify as being forward. A read/write forward
iterator is said to bemutable; a read-only one isimmutable. (These terms will also apply to ‘‘bidirec-
tional’’ and ‘‘random access’’ i terators.) Anexample of an immutable forward iterator was our
node::const_iterator back on pp. 815−816. But even if it is immutable, a forward iterator can still
do many things that a mere input iterator cannot. It can read the same value twice.

12 for (node::const_iterator it = begin; it != end; ++it) {
13 cout << *it << "\n"
14 << *it << "\n";
15 }

(3) The data type

iterator_traits<IT>::iterator_category

must be a typedef for the data typeforward_iterator_tag . Since a forward iterator is an input itera-
tor, its iterator_traits must also gav ethe membersvalue_type , difference_type ,
pointer , and reference .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.3 Iterator Categories 839

840 Containers,Iterators, and Algorithms Chapter 8

Our classesnode::iterator andnode::const_iterator were input iterators and forward
iterators. Thesame is true ofslist<int>::iterator , which some vendors supply as part of the
STL. Aswe shall see, these classes will not qualify as iterators of any other category.

Classeslist<int>::iterator , vector<int>::iterator , and the data typeint * are
also input and forward iterators. These types will qualify as iterators of other categories too. But
istream_iterator_date and ostream_iterator_int are not forward iterators.We cannot
copy them and use both copies.

▼ Homework 8.3b: adjacent find

Theadjacent_find algorithm in the standard library takes a pair of forward iterators referring to
a range of elements. It searches for the first occurence of two adjacent equal values. Althoughthe iterators
do not write into the container, they must be forward, not merely input. This is because they are copied
(previous = first in line 9), and then one copy is dereferenced (*previous in line 10) after the
other copy has been incremented (++first in line 9).

Our input iteratoristream_iterator_date just happens to work as an argument to
adjacent_find , but only because we were lucky. istream_iterator_date reads from the input
stream inoperator++ . Its operator* does nothing, so there is no harm in copying an iterator and
calling theoperator* of both copies. But there may be other input iterators whoseoperator* per-
forms detectable work. In this case, we could not access the same element twice by callingoperator*
twice.

1 / /Excerpt from <algorithm>
2 / /IT must be a forward iterator, and
3 / /typename iterator_traits<IT>::value_type must be equality comparable.
4
5 t emplate <class IT>
6 IT a djacent_find(IT first, IT last)
7 {
8 i f (first != last) { //if there are elements,
9 f or (IT previous = first; ++first != last; previous = first) {

10 if (*first == *previous) {
11 return previous;
12 }
13 }
14 }
15
16 return last;
17 }

To make the algorithm applicable to many more types of iterators, rewrite it to accept iterators that
are merely input iterators. Instead of saving a copy of the previous iterator, sav ea copy of the previous
value that was read from the container. The price you will pay is that the data type
iterator_traits<IT>::value_type will now hav eto be copy constructible and assignable.List
these requirements in the comment.To avoid conflict, give the algorithm a different name.
▲

Bidirectional Iterator

A bidirectional iterator meets all the qualifications of a forward iterator; every bidirectional iterator
is a forward iterator. In addition, a bidirectional iterator must also accept the operator-- , both prefix and
postfix. Thedata type

iterator_traits<IT>::iterator_category

must be a typedef for the data typebidirectional_iterator_tag .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Classeslist<int>::iterator , vector<int>::iterator , and the data typeint * are
input, forward, and bidirectional iterators. The last two types will qualify as iterators of another category as
well. Butnode::iterator was not bidirectional.

Random Access Iterator

A random access iterator meets all the qualifications of a bidirectional iterator; every random
access iteratoris a bidirectional iterator. In addition, we must be able to apply three groups of additional
operators to the iterator.

(1) We must be able to make the iterator jump.We must be able to say

it + d
it - d

it += d
it -= d

whered is an expression of typeiterator_traits<IT>::difference_type .

(2) We must be able to find the relative position and distance between two iterators that refer to ele-
ments in the same container. We must be able to compare iterators with all six relational operators:

== < >
!= >= <=

An algorithm must also be able to find the distance in elements between two iterators by subtracting them
(it1 - it2), yielding a result of typeiterator_traits<IT>::difference_type .

(3) We must be able to apply the[] operator to the iterator. Any iterator can access the element to
which it refers:*it . A random access iterator must also be able to access other elements:it[0] ,
it[10] , it[-10] .

To qualify as random access, however, the iterator must be able to do still more.For any valuen of
type iterator_traits<IT>::difference_type , we must be able to execute it += n just as
fast as++it . We can certainly do this if the iterator is a pointer to an array element, for example. Infact,
a pointer is the classic example of a random access iterator. But for an iterator that refers to an element in a
linked list, it += n has to be slower than++it . We cannot travel f rom one element to another without
visiting every intervening element. As the distances become greater, the travel time increases. The stan-
dard library list<int>::iterator is therefore merely a bidirectional iterator. The map iterator is
also merely bidirectional because its underlying data structure is a tree.Again, we cannot go from one ele-
ment to another without visiting every intervening one.

All the other operators must work in constant time. Cor example, the operators<, <=, >, >=, and the
− that measures the distance between two iterators, must be as fast as== and!= . It must be possible to tell
which of two iterators is first without visiting all the intervening elements.And it[10] must be as fast as
it[0] and*it .

▼ Homework 8.3c: a sort that accepts bidirectional iterators

The sorter template function insorter.h on p. 762 accepted only random access iterators,
since it applied the operators< and[] to them. Observe the error messages you get when passing it a pair
of bidirectional iterators such aslist<int>::iterator ’s.

Rewrite the algorithm to accept iterators that are merely bidirectional.The < in line 17 of
sorter.h can stay, but the ones in line 15 and 16 will have to go. Theit[0] in line 17 can be changed
to *it . How would you get rid of the[1] in it[1] ?

Test the algorithm by passing it a pair of bidirectional iterators such as
list<int>::iterator ’s.
▲

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.3 Iterator Categories 841

842 Containers,Iterators, and Algorithms Chapter 8

▼ Homework 8.3d: a sort that accepts forward iterators

Now rewrite thesorter template function to accept iterators that are merely forward. You will no
longer be able to apply the operator-- (prefix or postfix) to the iterators. Hint: create a variable of the iter-
ator’sdifference_type to count how many times your loops have iterated.
▲

The hierarchy of iterator categories

Each iterator category is an infinite set of data types. The five sets are overlapping and nested.For
legibility, the set of output iterators is dashed

int * const int *

vector<int>::iterator vector<int>::const_iterator

random access

bidirectional

list<int>::iterator list<int>::const_iterator

map<int, int>::iterator map<int, int>::const_iterator

forward

node::iterator node::const_iterator

input

istream_iterator_date

istream_iterator<int>

output

ostream_iterator_int

ostream_iterator<int>

insert_iterator<int>

mutable immutable

An iterator is allowed to be overqualified for its job. For example, a read/write pointer and a standard
library vector<int>::iterator are random access iterators. But they are also completely legitimate
bidirectional iterators. In fact, they belong to all five categories. We say that they aremodelsof all five.

The standard library has definitions for five tag classes,one for each iterator category. Even though
they hav eno members, each tag class is a different data type and can be used for function name overload-
ing. For example, we could have two functions with the same name if one took an argument of class
random_access_iterator_tag and the other an argument of class
bidirectional_iterator_tag . The tags will be used for no other purpose.

The inheritance relationships between the tag classes correspond to the inclusion relationships
between the iterator categories. For example, every random_access_iterator_tag object is also a
bidirectional_iterator_tag object, and every random access iterator is also a bidirectional itera-
tor. (Although every forward iterator is both an input iterator and an output iterator, class

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

forward_iterator_tag is derived only from classinput_iterator_tag . No one remembers
why it was not also derived from classoutput_iterator_tag .)

input_iterator_tag output_iterator_tag

forward_iterator_tag

bidirectional_iterator_tag

random_access_iterator_tag

1 / /Excerpt from <iterator>
2
3 s truct input_iterator_tag {};
4 s truct output_iterator_tag {};
5 s truct forward_iterator_tag: public input_iterator_tag {};
6 s truct bidirectional_iterator_tag: public forward_iterator_tag {};
7 s truct random_access_iterator_tag: public bidirectional_iterator_tag {};

The iterator_category member of an iterator’s iterator_traits must be a typedef for
one of the five tag classes.For example, classiterator_traits<node::iterator> originally had
the following member (line 40 ofnode.h on p. 806).

8 t ypedef forward_iterator_tag iterator_category;

A simpler way to accomplish the same result is to derive the iterator from a base class (line 13 ofnode3.h
on p. 814).

9 c lass iterator: public std::iterator<forward_iterator_tag, int> {

▼ Homework 8.3e: define a category tester

Define a class that acts as an input iterator, with a specialization ofiterator_traits to go with
it. Theclass must output an error message or fail to compile if the user tries to make it do anything that an
input iterator does not need to do. This includes dereferencing the iterator before checking for end-of-
range; reading the same value more than once; copying the iterator and then dereferencing and/or incre-
menting both copies. Do the same for the other four categories.
▲

8.4 Algorithms in the Standard Template Library

8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators
The algorithms are template functions.The ones in the standard library are defined in the header files

<algorithm> and<numeric> . Here is a simple definition forcopy ; compare the other algorithms on
pp. 808−811.

The template argumentINPUT represents a data type that is at least an input iterator. The other con-
ventional names areOUTPUT, FORWARD, BIDIRECTIONAL , and RANDOM. It’s okay if INPUT is more
than just an input iterator. It could also be forward, bidirectional, or random access.Similarly, OUTPUT

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 843

844 Containers,Iterators, and Algorithms Chapter 8

could be more than just an output iterator as long as it is mutable (line 5).

INPUT andOUTPUTdo not have to refer to values of exactly the same type. But we must be able to
assign a value of typetypename iterator_traits<INPUT>::value_type to the expression
*result . For example,INPUT andOUTPUTcould beshort * andint * , or
vector<short>::const_iterator andint * . But if they werewabbit * andint * , the call
to thecopy function would not compile.

An algorithm always assumes that an iterator is small enough to pass and return by value (line 2.)
We also assume that an iterator is incrementable (line 4), which is why our class
output_iterator_int had to have an operator++ ev en though it did nothing (p. 830).

1 t emplate <class INPUT, class OUTPUT>
2 OUTPUT copy(INPUT first, INPUT last, OUTPUT result)
3 {
4 f or (; first != last; ++first, ++result) {
5 * result = *first;
6 }
7
8 r eturn result;
9 }

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/copy/copy.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>
5 #include <algorithm> //for copy
6 using namespace std;
7
8 i nt main()
9 {

10 int a[] = {10, 20, 30};
11 const size_t n = sizeof a / sizeof a[0];
12
13 vector<int> v(3); //born containing 0, 0, 0
14 copy(a, a + n, v .begin()); //Can copy an array into a vector.
15 for (vector<int>::const_iterator it = v.begin(); it != v.end(); ++it) {
16 cout << *it << "\n";
17 }
18 cout << "\n";
19
20 list<int> li(3); //born containing 0, 0, 0
21 copy(v.begin(), v.end(), li.begin()); //Can copy a vector into a list.
22 for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
23 cout << *it << "\n";
24 }
25 cout << "\n";
26
27 vector<int> big(5); //Can copy part of a container into another.
28 copy(v.begin(), v.begin() + 2, big.begin() + 3);
29 for (vector<int>::const_iterator it=big.begin(); it != big.end(); ++it){
30 cout << *it << "\n";
31 }
32 cout << "\n";

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

33
34 //copy(big.begin(), big.end(), v.begin()); //may crash the program
35 return EXIT_SUCCESS;
36 }

10
20
30

10
20
30

0
0
0
10
20

▼ Homework 8.4.1a: call the copy algorithm

(1) When we put a pointer data memberp into classstack , we had to write a copy constructor (p.
153) and anoperator= (p. 311) for that class. These member functions have for loops to copy the data
membera. Replace each loop with a call to thecopy algorithm.

(2) Thenext member function of classlife has nestedfor loops copy to one array into another
(pp. 144−147). Replace the two loops with a single call to thecopy algorithm.

The first argument ofcopy should be the address of the first element of the array. Since the array is
two-dimenstional, the first element has two subscripts. Thestatic data membersymax andxmax were cre-
ated on pp. 239 and 423−424.

1 c opy(&newmatrix[0][0], &newmatrix[ymax][0], &matrix[0][0]);

As in C, a leading& and a trailing[0] will cancel each other out.

2 c opy(newmatrix[0], newmatrix[ymax], matrix[0]);

The copy algorithm should also be called by thelife constructor that takes an array as an argu-
ment.
▲

Overwrite with an iterator

The common ground on which he had at last brought both sides together was not
ground he had discovered, but ground he had created.

—Robert A. Caro,The Years of Lyndon Johnson: Master of the Senate, p. 1005

We will use the copy algorithm to introduce three new kinds of iterators: inserters, stream iterators,
and reverse iterators.

Let’s recall what the normal kind of iterator does.Thev.begin() in line 13 returns an anonymous
iterator referring to the first element of the vector. We can apply a+ to this iterator because a vector iterator
is random access. The sum is another anonymous iterator, referring to the second element of the vector.

When line 14 writes into a container using this iterator, the element21 to which the iterator refers is
overwritten. Thishas no effect on the vector’s size or capacity.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 845

846 Containers,Iterators, and Algorithms Chapter 8

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inserter/overwrite.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 c onst int a[] = {10, 21, 30};
9 c onst size_t n = sizeof a / sizeof a[0];

10 vector<int> v(a, a + n);
11
12 cout << "size == " << v.size() << ", capacity == " << v.capacity() << "\n";
13 vector<int>::iterator it = v.begin() + 1; //Refer to the 21.
14 *it = 20; //Overwrite the 21.
15 cout << "size == " << v.size() << ", capacity == " << v.capacity() << "\n";
16
17 for (it = v.begin(); it != v.end(); ++it) {
18 cout << *it << "\n";
19 }
20
21 return EXIT_SUCCESS;
22 }

size == 3, capacity == 3
size == 3, capacity == 3
10
20
30

The new kind of iterator is called aninserter; its data type has the formidable name in line 14.An
easier way to approach it is through the values that its constructor puts into it: a reference to the vectorv
and the iteratorv.begin() + 1 which we saw in the above line 13. The inserter refers to the element
30 .

When line 15 writes into a container with an inserter, the element to which the inserter refers is not
overwritten. Instead,a new element is inserted in front of it and the container becomes larger. After the
insertion, the iterator continues to refer to the 30.

Performing the insertion in front of the inserter allows us to insert the new element anywhere in the
container. For example, we can insert a new element at the end of a container by using an inserter that
refers to theend ‘‘ element’’. An inserter that inserted the new element after the inserter would not be able
to insert the new element at the beginning of a container.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inserter/inserter.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator> //for insert_iterator
5 using namespace std;
6
7 i nt main()
8 {

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

9 c onst int a[] = {10, 30, 40};
10 const size_t n = sizeof a / sizeof a[0];
11 vector<int> v(a, a + n);
12
13 cout << "size == " << v.size() << ", capacity == " << v.capacity() << "\n";
14 insert_iterator<vector<int> > i n(v, v.begin() + 1); //Refer to the 30.
15 *in = 20; //Insert 20 in front of the 30.
16 cout << "size == " << v.size() << ", capacity == " << v.capacity() << "\n";
17
18 for (vector<int>::const_iterator it = v.begin(); it != v.end(); ++it) {
19 cout << *it << "\n";
20 }
21
22 return EXIT_SUCCESS;
23 }

size == 3, capacity == 3
size == 4, capacity == 6
10
20
30
40

Three types of inserters

There are three types of inserter:

(1) theplain oldinserter in lines 14−20, for inserting anywhere in a container;

(2) thefront inserterin lines 21−24, for inserting new elements at the front of a container;

(3) theback inserter in lines 26−28, for inserting new elements at the end of a container.

There is no such thing as a front inserter for avector , so this time we’ll have to demonstrate with a
list . Bear in mind that alist iterator is not random access, so the+ in the above line 13 will no longer
compile. We’ll have to use the++ in the following line 14.

Note that the constructor for a plain old inserter takes two arguments (line 14), while the ones for the
other types take one argument each (lines 22 and 26).

An inserter is an output iterator. Code that receives an inserter will therefore increment it after each
dereference. Thisis harmless because incrementing an inserter does nothing (line 19).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inserter/inserters.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 #include <iterator> //insert_iterator, front_insert_iterator, back_insert_iterator
5 using namespace std;
6
7 i nt main()
8 {
9 c onst int a[] = {30, 70, 80};

10 const size_t n = sizeof a / sizeof a[0];
11 list<int> li(a, a + n);
12 list<int>::iterator it = li.begin();
13
14 insert_iterator<list<int> > i n(li, ++it); //Refer to the 70.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 847

848 Containers,Iterators, and Algorithms Chapter 8

15 *in = 40; //Insert 40 immediately in front of the 70.
16 //At this point, in still refers to the 70.
17 *in = 50; //Insert 50 immediately in front of the 70.
18 //At this point, in still refers to the 70.
19 ++in; //++ does nothing to an inserter: in still refers to the 70.
20 *in = 60; //Insert 60 immediately in front of the 70.
21
22 front_insert_iterator<list<int> > f i(li);
23 *fi = 20; //Insert 20 at the front of the list.
24 *fi = 10; //Insert 10 at the front of the list.
25
26 back_insert_iterator<list<int> > bi(li);
27 *bi = 90; //Insert 90 at the end of the list.
28 *bi = 100; //Insert 100 at the end of the list.
29
30 for (it = li.begin(); it != li.end(); ++it) {
31 cout << *it << " ";
32 }
33 cout << "\n";
34
35 return EXIT_SUCCESS;
36 }

10 20 30 40 50 60 70 80 90 100

Construct an anonymous inserter and pass it to a function

We can always give a name to a variable. For example, lines 8−10 declare three inserters, which we
then pass to an algorithm.

1 #include <list>
2 #include <iterator> //for inserter, front_inserter, back_inserter
3 using namespace std;
4
5 l ist<int> li(a, a + n);
6 l ist<int>::iterator it = li.begin();
7
8 i nsert_iterator<list<int> > in(li, ++it);
9 f ront_insert_iterator<list<int> > fi(li);

10 back_insert_iterator<list<int> > bi(li);
11
12 my_algorithm(in);
13 my_algorithm(fi);
14 my_algorithm(bi);

But if an inserter is used only once, there’s no reason to declare a name for it.We can simply call its
constructor, which returns an anonymous inserter to us.We then pass the newborn inserter tof :

15 my_algorithm(insert_iterator<list<int> >(li, ++it));
16 my_algorithm(front_insert_iterator<list<int> >(li));
17 my_algorithm(back_insert_iterator<list<int> >(li));

Here is an even easier way to do the same thing. The following functions construct and return the
same three kinds of inserters.They are template functions, like min andmake_pair , whose arguments
tell them what type of return value we want. For example, the argumentli of data typelist<int> in
line 19 tellsfront_inserter to construct and return an anonymous

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

front_insert_iterator<list<int> > .

18 my_algorithm(inserter(li, ++it)); //construct insert_iterator<list<int> >
19 my_algorithm(front_inserter(li)); //construct front_insert_iterator<list<int> >
20 my_algorithm(back_inserter(li)); //construct back_insert_iterator<list<int> >

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inserter/copy.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator> //for inserter and back_inserter
5 #include <algorithm> //for copy
6 using namespace std;
7
8 i nt main()
9 {

10 const int a[] = {10, 21, 31, 41, 50, 90};
11 const size_t na = sizeof a / sizeof a[0];
12 vector<int> v(a, a + na);
13
14 //Overwrite the 21, 31, 41 with 20, 30, 40.
15 //The third argument in line 18 refers to the 21.
16 const int b[] = {20, 30, 40};
17 const size_t nb = sizeof b / sizeof b[0];
18 copy(b, b + nb, v.begin() + 1);
19
20 //Insert 60, 70, 80 in front of the 90.
21 //The third argument in line 24 refers to the 90.
22 const int c[] = {60, 70, 80};
23 const size_t nc = sizeof c / sizeof c[0];
24 copy(c, c + n c, inserter(v, v.begin() + 5));
25
26 //Insert 100, 110, 120 at the end of the vector.
27 const short d[] = {100, 110, 120};
28 const size_t nd = sizeof d / sizeof d[0];
29 copy(d, d + nd, back_inserter(v));
30
31 for (vector<int>::const_iterator it = v.begin(); it != v.end(); ++it) {
32 cout << *it << " ";
33 }
34 cout << "\n";
35 return EXIT_SUCCESS;
36 }

10 20 30 40 50 60 70 80 90 100 110 120

When not to use an inserter

If all you want to do is insert a value into a container, it’s faster to call the container’s insert mem-
ber function.We saw classlist ’s on p. 444; classvector has one too (line 12). In fact, there is also an
insert function that can do many insertions at once (line 16).This is much faster than applying a* to an
inserter over and over again.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 849

850 Containers,Iterators, and Algorithms Chapter 8

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inserter/insert.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 c onst int a[] = {10, 60};
9 c onst size_t n = sizeof a / sizeof a[0];

10 vector<int> v(a, a + n);
11
12 v.insert(v.begin() + 1, 2 0);
13
14 const int b[] = {30, 40, 50};
15 const size_t nb = sizeof b / sizeof b[0];
16 v.insert(v.begin() + 2, b, b + n b);
17
18 for (vector<int>::const_iterator it = v.begin(); it != v.end(); ++it) {
19 cout << *it << " ";
20 }
21 cout << "\n";
22
23 return EXIT_SUCCESS;
24 }

10 20 30 40 50 60

An inserter should be used only as an argument of an algorithm that must be capable of either over-
writing or inserting. We pass a normal iterator to the algorithm when we want to overwrite one or more
elements; we pass an inserter when we want to insert new ones. Ourexample will be thecopy algorithm.

Stream iterators

An ostream_iterator is a conduit leading to an output stream:cout , cerr , clog , or to an
output file. An istream_iterator is a conduit leading in from an input stream:cin or an input file.
We wrote our own stream iterators on pp. 816−832, but the ones in the standard libary are better because
they are templates.They can read and write any data type. Of course, any giv en ostream_iterator
can write values of only one data type to the output stream.For example, the
ostream_iterator<int> in line 9 can output onlyint ’s. (See pp. 1047−1048 for the rarely-used
second argument of the template.)

The constructor for classostream_iterator takes two arguments. Thefirst is the output stream;
the optional second argument is a string to be output after each item.

On some platforms, the++ in line 12 is required between every pair of assignments to*it . (Fortu-
nately,copy always applies a++ to its third argument.) Onother platforms, the++ may do nothing.For
portability, the++ should always be written.

Line 19 will not compile because anostream_iterator is not an input iterator. This means that
anostream_iterator can be used as the third argument ofcopy , but not as the first or second.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/stream_iterator/ostream_iterator1.C

1 #include <iostream>
2 #include <fstream> //for ofstream

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

3 #include <cstdlib>
4 #include <iterator> //for ostream_iterator
5 using namespace std;
6
7 i nt main()
8 {
9 ostream_iterator<int> it(cout, " bottles of beer on the wall\n");

10
11 *it = 100;
12 ++it;
13 *it = 99;
14 ++it;
15 *it = 98;
16 ++it;
17
18 //--it; //won’t compile: this class has no operator-- function
19 //int i = * it; //won’t compile: an ostream_iterator is not an input iterator
20
21 ofstream of("outfile");
22 ostream_iterator<int> os(of, "\n");
23 *os = 100;
24 ++os;
25 *os = 99;
26 ++os;
27 *os = 98;
28 ++os;
29
30 return EXIT_SUCCESS;
31 }

The above lines 11−12 may be combined to

32 *it++ = 100;

Instead of declaring theostream objectof in the above line 21 and using it only in 22, we should
make it an anonymous temporary. Change lines 21−22 to

33 ostream_iterator<int> os(ofstream("outfile"), "\n");

The standard output produced by lines 9−16 is

100 bottles of beer on the wall
99 bottles of beer on the wall
98 bottles of beer on the wall

Theoutfile produced by lines 21−28 is

100
99
98

Pass a stream iterator to an algorithm

The above output could be done faster by writing directly to the output with<<. A stream iterator,
like an inserter, is intended only for use by an algorithm.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 851

852 Containers,Iterators, and Algorithms Chapter 8

The following call to thecopy algorithm will process the vector ofdate ’s in line 19. The normal
way to output the contents of a container is with thefor loop andcout in lines 21−23.

To output the same data with a stream iterator, the type we will need is the
ostream_iterator<date> in line 26. We could then loop through the container in 27−29. But these
lines are for demo purposes only. Since we know that we’re writing to the standard output, it’s faster to use
thecout loop in lines 21−23. An output stream iterator should be used only as an argument of a template
function that must be capable of writing either to a container or to an output stream.We pass a normal iter-
ator to the function when we want to write to a container; we pass an output stream iterator when we want
to write to an output stream.

For example, the call to thecopy algorithm in line 32, with the output stream iteratoros in line 26,
does all the work of the loop in 27−29.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/stream_iterator/ostream_iterator2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <algorithm> //for copy and fill_n
5 #include <iterator> //for ostream_iterator
6 #include "date.h"
7 using namespace std;
8
9 i nt main()

10 {
11 const date a[] = {
12 date(date::july, 4, 1776),
13 date(date::october, 29, 1929),
14 date(date::december, 7, 1941),
15 date(date::july, 20, 1969),
16 date(date::september, 11, 2001)
17 };
18 const size_t n = sizeof a / sizeof a[0];
19 vector<date> v(a, a + n);
20
21 for (vector<date>::const_iterator it = v.begin(); it != v.end(); ++it) {
22 cout << *it << "\n";
23 }
24 cout << "\n";
25
26 ostream_iterator<date> os(cout, "\n");
27 for (vector<date>::const_iterator it = v.begin(); it != v.end(); ++it, ++os) {
28 *os = * it;
29 }
30 cout << "\n";
31
32 copy(v.begin(), v.end(), os);
33 cout << "\n";
34
35 fill_n(ostream_iterator<char>(cout), 80, ’*’);
36 cout << "\n";
37
38 return EXIT_SUCCESS;
39 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

7/4/1776 lines 21−23
10/29/1929
12/7/1941
7/20/1969
9/11/2001

7/4/1776 lines 26−29
10/29/1929
12/7/1941
7/20/1969
9/11/2001

7/4/1776 line 32
10/29/1929
12/7/1941
7/20/1969
9/11/2001

**

Here is a simple definition for thefill_n algorithm. Usuallythe first two arguments of an algo-
rithm are a pair of iterators,first andlast . But since we require nothing more ofIT than that it be an
output iterator, there would be no guarantee that a comparison offirst and last would even compile.
We therefore pass a countn, of any type that can be compared and decremented with>. We assume thatn
is integral and therefore fast enough to pass by value. Seep. 881 for another_n algorithm.

1 / /Excerpt from <algorithm>
2
3 t emplate <class IT, class N, class T>
4 IT f ill_n(IT it, N n, const T& t)
5 {
6 f or (; n > 0; --n) {
7 * it = t;
8 ++it;
9 }

10
11 return it;
12 }

The following program copies its standard input directly to the standard output, integer by integer.
Along the way, it condenses all the whitespace between successive input integers into a single newline.
Since each iterator is mentioned only once, it can be an anonymous temporary.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/stream_iterator/copy.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <algorithm>
5 using namespace std;
6
7 i nt main()
8 {
9 c opy(

10 istream_iterator<int>(cin),
11 istream_iterator<int>(),

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 853

854 Containers,Iterators, and Algorithms Chapter 8

12 ostream_iterator<int>(cout, "\n")
13);
14 return EXIT_SUCCESS;
15 }

Warning. Theistream_iterator<int> in the above line 10 delivers only the integers read
from input. It discards the whitespace between them.This is because the iterator calls anoperator>> ,
which discards whitespace.

For integers, this is probably what we want. For characters, we will probably be dismayed when the
whitespace eliminated.

16 copy(
17 istream_iterator<char>(cin),
18 istream_iterator<char>(),
19 ostream_iterator<char>(cout)
20);

To read every character, whitespace or not, do the following before callingcopy . See p. 359.

21 cin >> noskipws;

Another way to copy every character was in p. 329.

Pass a stream iterator to a constructor

I’d like to read integers from the standard input and store them into a vectorv , stopping when the
input is exhausted. Itshould ‘‘slurp’’ the entire input like the following statement in the language Perl.

#Perl example.
#The expression @v provides an "array context" for the expression <STDIN>.
@v = <STDIN>;

The two arguments of the vector’s constructor are the beginning and end of the standard input.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/stream_iterator/constructor.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 i nt main()
9 {

10 vector<int> v(istream_iterator<int>(cin), istream_iterator<int>());
11 sort(v.begin(), v.end());
12 copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));
13
14 return EXIT_SUCCESS;
15 }

Unfortunately, the syntax in the above line 10 did not define avector namedv . It declared a func-
tion namedv . Then line 11 complained because a function has no members.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

constructor.C: In function ’int main()’:
constructor.C:11:9: error: request for member ’begin’ in ’v’, which is of
non-class type ’std::vector<int>(std::istream_iterator<int>,
std::istream_iterator<int> (*)())’
constructor.C:11:20: error: request for member ’end’ in ’v’, which is of

Why did line 10 thinkv was a function? Thefollowing is a simpler example of the same problem.
The first four declarations declare the same functionf , returning avector<int> . Its first argument is an
integer; the second is a pointer to a function that takes no arguments and returnsint .

The declaration in line 5 omits the asterisk.Now that it’s gone, the surrounding parentheses are no
longer needed. The declaration in line 6 omits the name ofp. The one in line 7 adds unnecessary but per-
missible parentheses around the name ofi (p. 671). This is exactly the syntax we have in the above line
10. It declares a function. It does not call the constructor for a vector. Giv en a statement with two possible
interpretations, declaration or function call, the language always treats it as a declaration. See pp. 671 and
807−808 for simpler examples.

An obscure rule of grammar lets us fix this.We cannot have parentheses around an argument in a
declaration for a function.But we can have parentheses around an actual argument when the function is
called. Inparticular, when calling a constructor, we can have parentheses around an argument of the con-
structor. In this example, we have three choices. Line 8 has parentheses around the entire first argument,
int (i) . Line 9 has parentheses around the second argument,int () . Line 10 has parentheses around
both. Lines8−10 are definitions for an object namedf . The object’s constructor takes two arguments,
which in this case are the anonymous temporaries returned by the one- and zero-argument constructors for
the data typeint . We saw the one-argument constructor on p. 134 and the zero-argument one on p. 660.

1 #include <vector>
2 using namespace std;
3
4 v ector<int> f(int i , i nt (*p)()); //Declare a function named f.
5 v ector<int> f(int i , i nt p ()); //Declare a function named f.
6 v ector<int> f(int i , i nt ()); //Declare a f unction named f.
7 v ector<int> f(int (i) , int ()); //Declare a f unction named f.

8 v ector<int> f((int (i)), int ()); //Define an object named f.
9 v ector<int> f(int (i) , (int ())); //Define an object named f.

10 vector<int> f((int (i)), (int ())); //Define an object named f.

To fix line 10 of the aboveconstructor.C , parentheses around the first argument would be fine.

11 vector<int> v((istream_iterator<int>(cin)), istream_iterator<int>());

I love anonymous temporaries as much as the next man. But we can avoid the whole issue by giving names
to the iterators.

12 const istream_iterator<int> begin(cin);
13 const istream_iterator<int> end;
14
15 vector<int> v(begin, end);

Although the above lines 11 and 15 now compile, they cannot know how many elements are in the
vector until the input has been exhausted. Onlythen can they allocate a block of memory of the correct
size. Thevalues may have to be copied through a series of blocks of geometrically increasing sizes until
they reach their final resting place. If the values are objects, this will be done by calling their copy con-
structor.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 855

856 Containers,Iterators, and Algorithms Chapter 8

Reverse iterators

When you apply the operator++ to are verse iterator, it goes backward. Whenyou apply-- , it goes
forward. Areverse iterator has to be bidirectional.

The rbegin member function of a container returns a reverse iterator that refers to the last element
of the container. The rend function returns a reverse iterator that refers to the empty slot where the ele-
ment before the first element would be.If the container is empty, rbegin would return the same iterator
asrend , just asbegin would return the same iterator asend .

Classesvector , list , map, and string have a reverse_iterator member (line 14).
Classesstack andqueue have no iterators at all, reverse or otherwise. There’s also a
reverse_iterator template class (lines 23−25) for creating a reverse iterator out of a pointer or any
other bidirectional iterator.

The loop in line 14 is for demonstration purposes only. A reverse_iterator is intended for use
only as the argument of an algorithm.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reverse_iterator/reverse_iterator.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator> //for ostream_iterator and reverse_iterator template
5 #include <algorithm>
6 using namespace std;
7
8 i nt main()
9 {

10 const int a[] = {10, 20, 30};
11 const size_t n = sizeof a / sizeof a[0];
12 vector<int> v(a, a + n);
13
14 for (vector<int>::reverse_iterator it = v.rbegin();
15 it != v.rend(); ++it) {
16 cout << *it << "\n";
17 }
18 cout << "\n";
19
20 copy(v.rbegin(), v.rend(), ostream_iterator<int>(cout, "\n"));
21 cout << "\n";
22
23 copy(reverse_iterator<const int *>(a + n),
24 reverse_iterator<const int *>(a),
25 ostream_iterator<int>(cout, "\n"));
26
27 return EXIT_SUCCESS;
28 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

30
20
10

30
20
10

30
20
10

▼ Homework 8.4.1b: const_rev erse_iterator

A reverse_iterator , like a plain old iterator , also comes in aconst_ flavor. But when
we try to use it, something goes wrong on some compilers.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reverse_iterator-
/const_reverse_iterator.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 c onst int a[] = {10, 20, 30};
9 c onst size_t n = sizeof a / sizeof a[0];

10 vector<int> v(a, a + n);
11
12 for (vector<int>::const_reverse_iterator it = v.rbegin();
13 it != v.rend(); ++it) {
14 cout << *it << "\n";
15 }
16
17 return EXIT_SUCCESS;
18 }

30
20
10

The rend member function of aconst container returns aconst_reverse_iterator . But
our vectorv in the above line 12 is notconst . Its rend function returns a plain old
reverse_iterator . See p. 314 for a previous example of aconst and non-const objects having
different member functions.

There is nooperator!= that will compare avector<int>::const_reverse_iterator
with avector<int>::reverse_iterator . Apply one of the first three fixes.

(1) Cast thev in the above line 13 to aconst vector and then call itsrend function. We actually
cast it to a reference to aconst vector, to avoid making a copy; see p. 81.

19 it != static_cast<const vector<int>&>(v).rend();

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.1 copy, Inserters, Stream Iterators, and Reverse Iterators 857

858 Containers,Iterators, and Algorithms Chapter 8

(2) Cast thev.rend() in line 13 to avector<int>::const_reverse_iterator . We
assume that an iterator is fast to copy, so we don’t bother casting it to a reference.

20 it != static_cast<vector<int>::const_reverse_iterator>(v.rend());

(3) The cleanest solution is to leave line 13 the way it is, and define anoperator!= function that
compares the two types of iterators. It packages the cast in the above ¶ (2).

21 inline bool operator!=(vector<int>::const_reverse_iterator it1,
22 vector<int>:: reverse_iterator it2) {
23 return it1 != static_cast<vector<int>::const_reverse_iterator>(it2);
24 }

(4) Ideallyoperator!= should be a template function, a superficial change to the above ¶ (3),

25 template <class T>
26 inline bool operator!=(typename vector<T>::const_reverse_iterator it1,
27 typename vector<T>:: reverse_iterator it2) {
28 return it1 !=
29 static_cast<typename vector<T>::const_reverse_iterator>(it2);
30 }

But we can’t do it. See‘‘ template argument deduction’’ in pp. 977−979.
▲

▼ Homework 8.4.1c: other copies

(1) What goes wrong if the source and destination ranges ofcopy overlap?

1 i nt a[] = {10, 20, 30, 40, 50, 60};
2 c onst size_t n = sizeof a / sizeof a[0];
3
4 / /Want to move the 10 to where the 30 is, etc.
5 c opy(a, a + 4, a + 2);

Fix it by calling copy_backward with the same three arguments ascopy . This time, the arguments
must be bidirectional iterators.

(2) What happens if you pass the arguments of copy to reverse_copy or unique_copy ? (The
first two arguments ofreverse_copy must be bidirectional iterators.)

6 c onst string a[] = {"hello", "hello", "hello", "goodbye", "goodbye"};
7 c onst size_t n = sizeof a / sizeof a[0];
8 unique_copy(a, a + n, ostream_iterator<string>(cout, "\n"));

(3) remove_copy takes four arguments.

9 c onst string a[] = {"hello", "", "", "goodbye", ""};
10 const size_t n = sizeof a / sizeof a[0];
11 //Skip the empty lines.
12 remove_copy(a, a + n, o stream_iterator<string>(cout, "\n"), "");

(4) replace_copy gives us instant Cockney.

13 char a[] = "Henry Higgins\n";
14 const size_t n = sizeof a / sizeof a[0] - 1;
15 replace_copy(a, a + n, o stream_iterator<char>(cout), ’H’, ’\’’);

(5) rotate_copy cuts the deck.

16 char a[] = "housedog";
17 const size_t n = sizeof a / sizeof a[0] - 1;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

18 rotate_copy(a, a + 5, a + n, o stream_iterator<char>(cout));
19 cout << "\n";

▲

8.4.2 find, find_if, and Function Objects
Thefind algorithm searches for a value in a container.

1 t emplate <class INPUT, class T>
2 I NPUT find(INPUT first, INPUT last, const T& t)
3 {
4 f or (; first != last; ++first) {
5 i f (*first == t) {
6 break;
7 }
8 }
9

10 return first;
11 }

The argumentt does not necessarily have to be of the same data type as the elements in the container: we
can search for adouble value in a container ofint ’s. Had the algorithm been defined as follows, any
third argument we supply would be forcibly converted to the element type.We would then receive a warn-
ing as thedouble was truncated toint .

12 //Not the definition in the standard library.
13
14 template <class INPUT>
15 INPUT find(INPUT first, INPUT last,
16 const typename iterator_traits<INPUT>::value_type& t)
17 {
18 for (; first != last; ++first) {
19 if (*first == t) {
20 break;
21 }
22 }
23
24 return first;
25 }

find repeatedly uses the== operator in the above line 5 to find what it’s looking for. For example,
the following line 13 uses== to compare the integer 30 with the integers in the arraya, and line 32 uses==
to compare the date of the moon landing with the dates in the vectorv . To compile line 32, we must make
classdate equality comparable.We could write anoperator== that takes twodate ’s, or an
operator int that converts adate to an integer. An == operator applied to two dates would then be
the built-in== that compares two integers.

The third argument offind in line 32 is the objectmoon constructed in line 31.But moon is men-
tioned nowhere else, so there is no need to give it a name. Itcould have been an an anonymous object like
the date in line 41.

If our iterators were forward iterators and our container was already sorted, we could perform a
binary search.This is faster than thefind algorithm. For example, the elements of amap are sorted by
subscript, and the map’sfind member function will perform a binary search.For containers that have no
find member function, you could call thebinary_search algorithm. Thefind algorithm should be
used only when the iterators are not forward or the container is not sorted.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 859

860 Containers,Iterators, and Algorithms Chapter 8

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/find.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <algorithm>
5 #include "date.h"
6 using namespace std;
7
8 i nt main()
9 {

10 const int a[] = {10, 50, 30, 40, 20}; //need not be sorted for find
11 const size_t n = sizeof a / sizeof a[0];
12
13 const int *const p = find(a, a + n, 30);
14
15 if (p == a + n) {
16 cout << "Didn’t find 30.\n";
17 } else {
18 cout << "Found 30 at position " << p - a << ".\n";
19 }
20
21 const date d[] = {
22 date(date::october, 29, 1929),
23 date(date::july, 4, 1776),
24 date(date::july, 20, 1969),
25 date(date::september, 11, 2001),
26 date(date::december, 7, 1941)
27 };
28 const size_t n1 = sizeof d / sizeof d[0];
29 vector<date> v(d, d + n1);
30
31 const date moon(date::july, 20, 1969);
32 const vector<date>::const_iterator it1 = find(v.begin(), v.end(), moon);
33
34 if (it1 == v.end()) {
35 cout << "Didn’t find " << moon << ".\n";
36 } else {
37 cout << "Found " << moon << " at position " << it1 - v.begin() << ".\n";
38 }
39
40 const vector<date>::const_iterator it2 =
41 find(v.begin(), v.end(), date(date::july, 4, 1776));
42
43 if (it2 == v.end()) {
44 cout << "Didn’t find it.\n";
45 } else {
46 cout << "Found it at position " << it2 - v.begin() << ".\n";
47 }
48
49 return EXIT_SUCCESS;
50 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Found 30 at position 2. lines 13−19
Found 7/20/1969 at position 2. lines 31−38
Found it at position 1. lines 40−46

▼ Homework 8.4.2a: let cookie::operator new call find

Let theoperator new member function of classcookie call thefind algorithm to find the first
false in the array ofbool ’s. See p. 419.
▲

▼ Homework 8.4.2b: let class life’soperator- call find

On pp. 441−442 we wrote aoperator- function to measure the distance between two life
objects. Itcontains afor loop that searches for alife in a vector<life> by callingoperator== .
Perform the search by callingfind .
▲

▼ Homework 8.4.2c: let thefind member function call thefind algorithm

Our rudimentary versions of classesset andmap had afind member function on pp. 696−702.
Let this member function do its work by calling thefind algorithm.
▲

▼ Homework 8.4.2d: an operator< for the template class set

Implement theoperator< in pp. 777 and 778 that takes two of the standard libraryset objects,a
andb, and returns true ifa is a proper subset ofb. Your operator< should be a template function whose
two arguments are read-only references toset<T> .
▲

Binders

For more complicated searching tasks, we will need function objects and combinations thereof.We
saw the function objectgreater on pp. 769−770. It inherits three typedef members named
first_argument_type , second_argument_type , and result_type from its base class.

1 / /Excerpt from <functional>
2
3 t emplate <class T>
4 s truct greater: public binary_function<T, T, bool> {
5 bool operator()(const T& a, const T& b) const {return a > b;}
6 } ;

An object of this class, such as theg in the following line 18, can do only one thing for us: it takes two
arguments and tells us if the first is greater than the second.As is usual when an object has only one signif-
icant member function, not counting whatever constructor or destructor it might have, the member function
is namedoperator() . It is called in line 20. It takes two double arguments and returnstrue if the
first argument is greater than the second.

Of course, this kind of object is intended for use only within an algorithm.Line 20 is just a demon-
stration. Ifall we want to do is compare100 and98.6 , we can simply the line 20 to

7 i f (100.0 > 98.6) {

If 98.6 is the most common second argument, it would be convenient if we didn’t hav eto write it all
the time. I wish we had an object just like g, except that it would be hardwired to use98.6 as the second
argument of itsoperator() member function.

That’s what the object namedfever is in line 26. It has a public member function named
operator() , called in line 28, which takes onedouble argument and returnstrue if the argument is
greater than98.6 .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 861

862 Containers,Iterators, and Algorithms Chapter 8

The easiest way to understandfever is to look at its two data members.We can’t see them
directly—they’re private—but we can see the two arguments passed to its constructor in line 26.fever
has a copy of g and a98.6 stored permanently inside it. In line 28, theoperator() member function
of fever passes its argument100.0 , and the98.6 data member offever , to theoperator() mem-
ber function of theg data member offever . Theoperator() member function offever then returns
the return value of theoperator() member function ofg.

Line 34 passes thefever object to a functionf . But there is no need to give a name to the
binder2nd object. Anobject that is used only once should be an anonymous temporary. Line 35 con-
structs one and passes it tof .

The helper functionbind2nd in line 36 is an easier way to construct abinder2nd object. Its
return type is dictated by the data type of its arguments, just like the functionsmake_pair , inserter ,
front_inserter , and back_inserter . (In fact, the same was true of our very first template func-
tion, min .) For example, the two arguments in line 36 make it construct and return a
binder2nd<greater<double> > , which is then passed tof .

Line 37 is just like line 36, except it doesn’t use thegreater<double> objectg. In its place, it
constructs an anonymousgreater<double> object by calling the constructor with no arguments for
this class.

The functionf in lines 6−14 is very forgiving. It will acceptany predicate to which we can apply a
double in parentheses and from which we can get a result that isbool or convertable thereto (line 9).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/find_if/bind.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <functional> //for greater, binder2nd, and bind2nd
4 using namespace std;
5
6 t emplate <class PREDICATE>
7 v oid f(const PREDICATE& predicate)
8 {
9 i f (predicate(100.0)) {

10 cout << "100.0 passes the test.\n";
11 } else {
12 cout << "100.0 fails the test.\n";
13 }
14 }
15
16 int main()
17 {
18 greater<double> g;
19
20 if (g(100.0, 98.6)) { //if (g.operator()(100.0, 98.6)) {
21 cout << "You have a fever.\n";
22 } else {
23 cout << "Your temperature is normal.\n";
24 }
25
26 binder2nd<greater<double> > f ever(g, 98.6);
27
28 if (fever(100.0)) { //if (fever.operator()(100.0)) {
29 cout << "You have a fever.\n";
30 } else {
31 cout << "Your temperature is normal.\n";

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

32 }
33
34 f(fever);
35 f(binder2nd<greater<double> >(g, 98.6));
36 f(bind2nd(g, 98.6));
37 f(bind2nd(greater<double>(), 98.6));
38
39 return EXIT_SUCCESS;
40 }

You have a fever. lines 18−24
You have a fever. lines 26−32
100.0 passes the test. line 34
100.0 passes the test. line 35
100.0 passes the test. line 36
100.0 passes the test. line 37

Here are definitions for classbinder2nd and the functionbind2nd ; line 56 is thepunchline.The
‘‘ smaller’’ f unction object is of classF; its operator() takes two arguments. The‘‘ larger’’ f unction
object is of classbinder2nd ; its operator() takes one argument.

Now at last we can see one use for the typedef membersfirst_argument_type ,
second_argument_type , and result_type of classgreater on pp. 769−770. The
second_argument_type of the smaller function object becomes the type of the data memberx2 of
the larger function object (line 48).We can also see why thesecond_argument_type cannot be a ref-
erence. Theinitial_x2 in line 51 is a reference to thesecond_argument_type , and there is no
such thing as a reference to a reference.

41 //Excerpt from <functional>
42
43 template <class F>
44 class binder2nd: public unary_function<typename F::first_argument_type,
45 typename F::result_type> {
46 protected:
47 F f;
48 typename F::second_argument_type x2;
49 public:
50 binder2nd(const F& initial_f,
51 const typename F::second_argument_type& initial_x2)
52 : f(initial_f), x2(initial_x2) {}
53
54 typename F::result_type
55 operator()(const typename F::first_argument_type& x1) const {
56 return f(x1, x2);
57 }
58 };
59
60 template <class F, class X2>
61 inline binder2nd<F> bind2nd(const F& f, const X2& x2)
62 {
63 return binder2nd<F>(f, typename F::second_argument_type(x2));
64 }

The bigger function object also has two typedefs of its own, argument_type and
result_type , which it inherits from its base classunary_function . This would allow the bigger
function object be part of an even bigger one.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 863

864 Containers,Iterators, and Algorithms Chapter 8

65 //Excerpt from <functional>
66
67 template <class T1, class T2>
68 struct unary_function {
69 typedef T1 argument_type;
70 typedef T2 result_type;
71 };

▼ Homework 8.4.2e: define class binder1st and a function bind1st

Define a template classbinder1st similar to binder2nd . Like binder2nd , it will make a
larger function object (with one argument) out of a smaller one (with two arguments). Thistime, it will be
the smaller function object’sfirst argument that is hardwired in. Also make abind1st helper function.

The standard library already has abinder1st andbind1st belonging to namespacestd , so use
a double colon to specify that yours belong to no namespace. When you test them, remember to change
greater to less .

1 f (bind2nd(greater<double>(), 98.6));
2 f (::bind1st(less<double>(), 98.6)); //should do the same thing

▲

Search an array with find_if

If we know the exact value we’re looking for, we call find . If we’re looking for any value that satis-
fies a predicate, i.e., that makes anif true, we callfind_if .

Here is a simple definition forfind_if in the header file<algorithm> . The first two arguments
must be input iterators, like the first two arguments offind . The third must be a predicate that can take
one argument of the type (or convertible to the type) read by the input iterators.For example, the input iter-
ators can be pointers toint , and the predicate can be a pointer to a function that takes anint and returns
abool .

1 t emplate <class INPUT, class PREDICATE>
2 I NPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
3 {
4 f or (; first != last; ++first) {
5 i f (predicate(*first)) {
6 break;
7 }
8 }
9

10 return first;
11 }

We can search a container ofint ’s either by callingfind with a third argument that is anint , or
by callingfind_if with a third argument that is a predicate accepting anint .

One example of a predicate would be the functiongreater_than_30 in line 8. To search a con-
tainer for the first number greater than 30, give the address ofgreater_than_30 to the find_if in
line 15.

The functiongreater_than_30 has the threshold 30 hardwired in. But we don’t hav eto write a
separate function for each threshold.As in the previous program, thebind2nd function in line 22 will
construct and return an anonymous object that can act as a predicate.Its operator() member function
will do exactly the same thing as the functiongreater_than_30 . It’s the same kind of anonymous
predicate as the one in the above line 37.

The compose2 function in lines 30−34 builds a big function object out of three smaller ones.The
big object’s operator() member function takes oneint argument and returnstrue if the argument

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

lies between 35 and 45.This operator() does its work by passing its argument to theoperator() ’s
of the ‘‘greater than 35’’ object and the ‘‘less than 45’’ object; the results are passed to theoperator()
of the ‘‘and’’ object. Inthe diagram, the binary operators are solid, the unary operators are dashed, and the
values that are not function objects are dotted.We had to usecompose2 becauselogical_and is a
binary operator. It has nothing to do with the fact thatgreater andless are binary operators.

> 35

bind2nd

&& < 45

bind2nd
compose2

compose2 is not part of the Standard Template Library, so line 5 had to include
<ext/functional> and line 30 had to mention the namespace__gnu_cxx (with a double underscore
before theg).

Since there are so many ways to compose functions, I think a better name forcompose2 would
have beencompose_fg1x_g2x after the mathematical expression

f (g1(x), g2(x))

See the punchline (line 23) of the fragment after the following program; compare with line 56 above and
the f (g1(x1), g2(x2)) on p. 909. In our case,g1 andg2 would be the ‘‘greater than 35’’ and ‘‘less than 45’’
functions, andf would be the ‘‘logical and’’ f unction.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/find_if/find_if1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <algorithm>
4 #include <functional> //for greater, less, logical_and, bind2nd
5 #include <ext/functional> //for compose2
6 using namespace std;
7
8 i nline bool greater_than_30(int i) {return i > 30;}
9

10 int main()
11 {
12 const int a[] = {10, 30, 20, 40, 50}; //need not be sorted for find_if
13 const size_t n = sizeof a / sizeof a[0];
14
15 const int *p = find_if(a, a + n, greater_than_30);
16 if (p == a + n) {
17 cout << "Found no int greater than 30.\n";
18 } else {
19 cout << "Found " << *p << " at position " << p - a << ".\n";
20 }
21
22 p = f ind_if(a, a + n, bind2nd(greater<int>(), 30));
23 if (p == a + n) {
24 cout << "Found no int greater than 30.\n";
25 } else {
26 cout << "Found " << *p << " at position " << p - a << ".\n";
27 }
28
29 p = f ind_if(a, a + n,
30 __gnu_cxx::compose2(

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 865

866 Containers,Iterators, and Algorithms Chapter 8

31 logical_and<bool>(),
32 bind2nd(greater<int>(), 35),
33 bind2nd(less<int>(), 45)
34)
35);
36
37 if (p == a + n) {
38 cout << "Found no int in the range 35 to 45 exclusive.\n";
39 } else {
40 cout << "Found " << *p << " at position " << p - a << ".\n";
41 }
42
43 return EXIT_SUCCESS;
44 }

Found 40 at position 3. lines 15−20
Found 40 at position 3. lines 22−27
Found 40 at position 3. lines 29−41

Here is a definition for classlogical_and ; it’s analogous to classgreater (pp. 769−770).We
could not have named itand because this is a C++ keyword, a synonym for the&&operator.

1 / /Excerpt from <functional>
2
3 t emplate <class T>
4 s truct logical_and: public binary_function<T, T, bool> {
5 bool operator()(const T& x, const T& y) const {return x && y;}
6 } ;

Here is a definition for classbinary_compose . It is called ‘‘binary’’ because thef in line 23
takes two arguments. Thisline is the punchline.I think a better name for this class would have been
composer_fg1x_g2x .

7 / /Excerpt from <ext/functional>
8 / /Compose three functions f, g1, and g2 like this: f(g1(x), g2(x))
9

10 template <class F, class G1, class G2>
11 class binary_compose: public
12 unary_function<typename G1::argument_type, typename F::result_type> {
13 F f;
14 G1 g1;
15 G2 g2;
16 public:
17 binary_compose(const F& initial_f,
18 const G1& initial_g1, const G2& initial_g2)
19 : f(initial_f), g1(initial_g1), g2(initial_g2) {}
20
21 typename F::result_type
22 operator()(const typename G1::argument_type& x) const {
23 return f(g1(x), g2(x));
24 }
25 };

compose2 is like the functionsmake_pair , inserter , and bind2nd : it constructs and returns
an anonymousbinary_compose object whose data type depends on the three arguments we gav eto
compose2 .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

26 template <class F, class G1, class G2>
27 inline binary_compose<F, G1, G2>
28 compose2(const F& f, const G1& g1, const G2& g2)
29 {
30 return binary_compose<F, G1, G2>(f, g1, g2);
31 }

An ideal language

The function body in line 8 of the above find_f1.C is simple, but is far from its point of use in
line 15. The anonymous object in lines 30−34 is used on the spot*−but the notation is dreadful.To get the
best of both worlds, use the newer version of C++ called C++0x. The empty pair square brackets indicates
that the anonymous function (a ‘‘lambda function’’) does not use any variables from the surrounding func-
tion, in this casemain .

1 p = f ind_if(a, a + n, [] (int x) -> int {return x > 35 && x < 45;});

Search a container of objects with find_if

Before we can compilefox , we must make class date ‘‘greater than or equal’’ comparable. We
could define anoperator>= function or anoperator int function.

But as in the last program, we don’t hav eto bother writingfox . Thebind2nd function in line 35
will construct and return an anonymous predicate whoseoperator() member function will do the same
thing asfox . We saw an analogous object in line 22 of the previous program.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/find_if/find_if2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <algorithm>
5 #include <functional> //for greater, less, logical_and, bind2nd
6 #include <ext/functional> //for compose2
7 #include "date.h"
8 using namespace std;
9

10 inline bool fox(const date& d) {
11 static const date turn_of_the_century(date::january, 1, 1901);
12 return d >= t urn_of_the_century; //return operator>=(d, turn_of_the_century);
13 }
14
15 int main()
16 {
17 date d[] = {
18 date(date::july, 4, 1776),
19 date(date::october, 29, 1929),
20 date(date::july, 20, 1969),
21 date(date::december, 7, 1941),
22 date(date::september, 11, 2001)
23 };
24 const size_t n = sizeof d / sizeof d[0];
25 vector<date> v(d, d + n);
26
27 vector<date>::const_iterator it = find_if(v.begin(), v.end(), fox);
28 if (it == v.end()) {

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 867

868 Containers,Iterators, and Algorithms Chapter 8

29 cout << "Found no date greater than or equal to January 1, 1901.\n";
30 } else {
31 cout << "Found " << *it << " at position " << it - v.begin() << ".\n";
32 }
33
34 it = f ind_if(v.begin(), v.end(),
35 bind2nd(greater_equal<date>(), date(date::january, 1, 1901)));
36
37 if (it == v.end()) {
38 cout << "Found no date greater than or equal to January 1, 1901.\n";
39 } else {
40 cout << "Found " << *it << " at position " << it - v.begin() << ".\n";
41 }
42
43 it = f ind_if(v.begin(), v.end(),
44 __gnu_cxx::compose2(
45 logical_and<bool>(),
46 bind2nd(greater_equal<date>(), date(date::january, 1, 1901)),
47 bind2nd(less<date>(), date(date::january, 1, 2001))
48)
49);
50
51 if (it == v.end()) {
52 cout << "Found no twentieth century date.\n";
53 } else {
54 cout << "Found " << *it << " at position " << it - v.begin() << ".\n";
55 }
56
57 return EXIT_SUCCESS;
58 }

Found 10/29/1929 at position 1. lines 27−32
Found 10/29/1929 at position 1. lines 34−41
Found 10/29/1929 at position 1. lines 43−55

▼ Homework 8.4.2f: should game::get call find_if?

game::get could perform its search by callingfind_if if we passed an object of the following
classat_location to find_if . To let us mention theoperator() member of class
at_location in line 17, we must define classat_location before classwabbit . To let us mention
thex andy members of classwabbit in line 21, we must define the function
at_location::operator() after classwabbit .

1 / /Excerpt from wabbit.h
2
3 c lass wabbit; //Forward declaration lets line 12 mention wabbit.
4
5 c lass at_location {
6 c onst unsigned x;
7 c onst unsigned y;
8 public:
9 at_location(unsigned initial_x, unsigned initial_y)

10 : x(initial_x), y(initial_y) {}
11
12 bool operator()(const wabbit *p) const;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

13 };
14
15 class wabbit {
16 //etc.;
17 friend bool at_location::operator()(const wabbit *p) const;
18 };
19
20 inline bool at_location::operator()(const wabbit *p) const {
21 return x == p ->x && y == p->y;
22 }

The first two arguments passed to find_if will be of type
game::master_t::const_iterator , causing the return value offind_if to be of the same type.
The return value ofgame::get , howev er, will continue to be agame::master_t::value_type .

The Homework does not ask you to make game::get call find_if . It asks you to decide if it’s
worth it.

Is there an easier way to call an algorithm to do the work ofwabbit::get ? Let’s brainstorm.
Suppose we made it possible to compare (with a==) awabbit * and apair<unsigned,
unsigned> . Then we could pass thepair to find . Instead of havingx andy data members in a
wabbit , should classwabbit be derived from classpair<unsigned, unsigned> ?
▲

Build a function object out of a pointer to a function

The third argument offind_if is usually a predicate that returns abool . But it could also be the
strlen in line 14: it returns asize_t , which is convertible to bool . This line searches for a string
whose length is not zero.

Line 23 will search for a string whose length is 7.To do this, we will build a bigger function object
out of the two smaller ones in lines 25 and 26.Something will go wrong, however, if we try to build the
bigger object directly out ofstrlen .

The second argument of the functioncompose1 in line 24 must be an object with a public member
namedargument_type . We hav ealready seen that the functioncompose2 had similar requirements:
its second and third arguments had to have the same member. We saw what theargument_type was
used for, in line 21 of the definition for classbinary_compose on p. 866.

But suppose we want to use a plain old pointer tostrlen , not a function object, as an argument of
compose1 or compose2 ? A pointer has noargument_type member; in fact, it has no members at
all. Only objects have members. To supply the necessary members, we can wrap the pointer in the follow-
ing function object.

X is the data type of each object in the container. p is a pointer to a function whose argument is aX
and whose return value is aY. Classpointer_to_unary_function is derived from class
unary_function , which gives it the typedefsargument_type andresult_type .

Thex in line 7 is passed by value to theoperator() to ensure that the function*p cannot change
the objects in the container.

1 t emplate <class X, class Y>
2 c lass pointer_to_unary_function: public unary_function<X, Y> {
3 protected:
4 Y (*p)(X);
5 public:
6 explicit pointer_to_unary_function(Y (*initial_p)(X)): p(initial_p) {}
7 Y operator()(X x) const {return (*p)(x);}
8 } ;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 869

870 Containers,Iterators, and Algorithms Chapter 8

The functionptr_fun constructs and returns apointer_to_unary_function , just as
make_pair (pp. 786−787) constructs and returns apair .

9 t emplate <class X, class Y>
10 inline pointer_to_unary_function<X, Y> ptr_fun(Y (*p)(X)) {
11 return pointer_to_unary_function<X, Y>(p);
12 }

Because of theexplicit in the above line 6, the above line 11 cannot be changed to

13 return p;

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/find_if/ptr_fun.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for strlen
4 #include <algorithm> //for find_if
5 #include <functional> //for bind2nd, ptr_fun
6 #include <ext/functional> //for compose1
7 using namespace std;
8
9 i nt main()

10 {
11 const char *const a[] = {"", "hello", "goodbye"};
12 const size_t n = sizeof a / sizeof a[0];
13
14 const char *const *p = find_if(a, a + n, strlen);
15
16 if (p == a + n) {
17 cout << "Every string was of length 0.\n";
18 } else {
19 cout << "The first non-empty string was a["
20 << p - a << "] == \ "" << *p << "\".\n";
21 }
22
23 p = f ind_if(a, a + n,
24 __gnu_cxx::compose1(
25 bind2nd(equal_to<size_t>(), 7),
26 ptr_fun(strlen)
27)
28);
29
30 if (p == a + n) {
31 cout << "No string was of length 7.\n";
32 } else {
33 cout << "The first string of length 7 was a["
34 << p - a << "] == \ "" << *p << "\".\n";
35 }
36
37 return EXIT_SUCCESS;
38 }

In the above line 14, thesize_t return value ofstrlen is implicitly converted tobool by theif
inside thefind_if algorithm. If your compiler complains about this, use the code in lines 23−28 with
the7 changed to0.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

The first non-empty string was a[1] == "hello". lines 14−21
The first string of length 7 was a[2] == "goodbye". lines 23−35

▼ Homework 8.4.2g: define unary_compose and compose1

The helper functioncompose1 constructs and returns an object of classunary_compose , just as
the helper functioncompose2 constructs and returns an object of classbinary_compose .

Define classunary_compose and the functioncompose1 . Class unary_compose will be
derived from the template classunary_function , just like classbinary_compose . Class
unary_compose will have two data membersf andg. Hint: the punchline (i.e., the body of the
operator() member function of classunary_compose) will be

1 r eturn f(g(x));

The class is called ‘‘unary’’ because thef takes one argument. Betternames forunary_compose and
compose1 might have beencomposer_fgx andcompose_fgx , after the mathematical expression

f (g(x))

▲

Call a member function of each object in a container of objects

In the above container ofchar * ’s, each element was passed to thestrlen function. Butit would
be more realistic to have a container ofstring objects, where each element has itssize member func-
tion called.

Our originalfind_if passed each element to the predicate (line 5).

1 t emplate <class INPUT, class PREDICATE>
2 I NPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
3 {
4 f or (; first != last; ++first) {
5 i f (predicate(*first)) {
6 break;
7 }
8 }
9

10 return first;
11 }

It looks like we will need another version offind_if whose third argument is a predicate that is a pointer
to a member function (line 19). Each element will have the pointed-to member function called.

12 //PREDICATE must be a pointer to a member function of
13 //typename iterator_traits<INPUT>::value_type.
14
15 template <class INPUT, class PREDICATE>
16 INPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
17 {
18 for (; first != last; ++first) {
19 if ((*first.*predicate)()) {
20 break;
21 }
22 }
23
24 return first;
25 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 871

872 Containers,Iterators, and Algorithms Chapter 8

But a clever function object lets us do the job with the original definition offind_if . T is the data
type of each object in the container. p is a pointer to aconst member function of classT. Y is the data
type of the return value of the member function to whichp points. It’s called a ‘‘ ref_ ’’ because thet is
passed by reference in line 10. This line is the punchline.

1 / /Excerpt from <functional>.
2
3 t emplate <class Y, class T>
4 c lass const_mem_fun_ref_t: public unary_function<T, Y> {
5 Y (T::*p)() const;
6 public:
7 explicit const_mem_fun_ref_t(Y (T::*initial_p)() const)
8 : p(initial_p) {}
9

10 Y operator()(const T& t) const {return (t.*p)();}
11 };

The helper functionmem_fun_ref constructs and returns aconst_mem_fun_ref_t , just as the
functionptr_fun constructs and returns apointer_to_unary_function .

12 template <class Y, class T>
13 inline const_mem_fun_ref_t<Y, T> mem_fun_ref(Y (T::*p)() const) {
14 return const_mem_fun_ref_t<Y, T>(p);
15 }

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/find_if/mem_fun_ref.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string> //for class string
4 #include <algorithm> //for find_if
5 #include <functional> //for bind2nd, mem_fun_ref
6 #include <ext/functional> //for compose1
7 using namespace std;
8
9 i nt main()

10 {
11 const string a[] = {"", "hello", "goodbye"};
12 const size_t n = sizeof a / sizeof a[0];
13
14 const string *p = find_if(a, a + n, mem_fun_ref(&string::size));
15
16 if (p == a + n) {
17 cout << "Every string was of length 0.\n";
18 } else {
19 cout << "The first non-empty string was a["
20 << p - a << "] == \ "" << *p << "\".\n";
21 }
22
23 p = f ind_if(a, a + n,
24 __gnu_cxx::compose1(
25 bind2nd(equal_to<string::size_type>(), 7),
26 mem_fun_ref(&string::size)
27)
28);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

29
30 if (p == a + n) {
31 cout << "No string was of length 7.\n";
32 } else {
33 cout << "The first string of length 7 was a["
34 << p - a << "] == \ "" << *p << "\".\n";
35 }
36
37 return EXIT_SUCCESS;
38 }

The first non-empty string was a[1] == "hello". lines 14−21
The first string of length 7 was a[2] == "goodbye". lines 23−35

▼ Homework 8.4.2h: define class mem_fun_ref_t

Define a classmem_fun_ref_t . It will be the same as classconst_mem_fun_ref_t , except
that it will hold a pointer to a non-const member function. Define anothermem_fun_ref function to
construct and return an object of classmem_fun_ref_t .
▲

Call a member function of each object in a container of pointers to objects

Instead of the above container of objects, it would be even more realistic to have a container of point-
ers to objects. It looks like we will need another version offind_if , this time with the->* operator in
line 5.

1 t emplate <class INPUT, class PREDICATE>
2 I NPUT find_if(INPUT first, INPUT last, PREDICATE predicate)
3 {
4 f or (; first != end; ++first) {
5 i f ((*first->*predicate)()) {
6 break;
7 }
8 }
9

10 return first;
11 }

But another clever function object lets the original definition offind_if do the job. As before,T is
the data type of each object in the container. p is a pointer to aconst member function of classT. Y is
the data type of the return value of the member function to whichp points. Line10 is the punchline.

1 / /Excerpt from <functional>
2
3 t emplate <class Y, class T>
4 c lass const_mem_fun_t: public unary_function<const T *, Y> {
5 Y (T::*p)() const;
6 public:
7 explicit const_mem_fun_t(Y (Y::*initial_p)() const)
8 : p(initial_p) {}
9

10 Y operator()(const T *pt) const {return (pt->*p)();}
11 };

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 873

874 Containers,Iterators, and Algorithms Chapter 8

The functionmem_fun constructs and returns aconst_mem_fun_t , just as the function
mem_fun_ref constructs and returns aconst_mem_fun_ref_t .

12 template <class Y, class T>
13 inline const_mem_fun_t<Y, T> mem_fun(Y (T::*p)() const) {
14 return const_mem_fun_t<Y, T>(p);
15 }

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/find_if/mem_fun.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string> //for class string
4 #include <algorithm> //for find_if
5 #include <functional> //for bind2nd, mem_fun
6 #include <ext/functional> //for compose1
7 using namespace std;
8
9 i nt main()

10 {
11 const string *a[] = {
12 new string(""),
13 new string("hello"),
14 new string("goodbye")
15 };
16 const size_t n = sizeof a / sizeof a[0];
17
18 const string *const *p = find_if(a, a + n, mem_fun(&string::size));
19
20 if (p == a + n) {
21 cout << "Every string was of length 0.\n";
22 } else {
23 cout << "The first non-empty string was a["
24 << p - a << "] == \ "" << **p << "\".\n";
25 }
26
27 p = f ind_if(a, a + n,
28 __gnu_cxx::compose1(
29 bind2nd(equal_to<string::size_type>(), 7),
30 mem_fun(&string::size)
31)
32);
33
34 if (p == a + n) {
35 cout << "No string was of length 7.\n";
36 } else {
37 cout << "The first string of length 7 was a["
38 << p - a << "] == \ "" << **p << "\".\n";
39 }
40
41 for (const string *const *p = a + n - 1; p >= a; --p) {
42 delete *p;
43 }
44 return EXIT_SUCCESS;
45 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

The first non-empty string was a[1] == "hello". lines 18−25
The first string of length 7 was a[2] == "goodbye". lines 27−39

▼ Homework 8.4.2i: define class mem_fun_t

Define a classmem_fun_t . It will be the same as classconst_mem_fun_t , except that it will
hold a pointer to a non-const member function. Define anothermem_fun function to construct and
return an object of classmem_fun_t .
▲

Find all of them, not just the first one

How do we findevery element of a container that satisfies a predicate, not just the first one?We hav e
to call remove_copy_if , which copies all the items for which the predicate isfalse. It’s similar to the
remove_copy we saw on p. 858.

The contents of the source container (the arraya in line 11) remain unchanged.The destinationv is
an empty container that will be expanded (line 14), so the third argument ofremove_copy_if must be
an inserter (line 15).A non-inserter iterator such asv.begin() would overwrite memory beyond the end
of the container, causing the program to blow up (if we are lucky). Insteadof inserting the output into a
vector, we can write it directly to the standard output (line 21).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/remove_copy_if/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator> //for back_inserter and ostream_iterator
5 #include <functional> //for not1
6 #include <algorithm> //for remove_copy_if
7 using namespace std;
8
9 i nt main()

10 {
11 const int a[] = {10, 30, 40, 20, 50}; //need not be sorted for remove_copy_if
12 const size_t n = sizeof a / sizeof a[0];
13
14 vector<int> v;
15 remove_copy_if(a, a + n, b ack_inserter(v), bind2nd(greater<int>(), 30));
16 copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));
17 cout << "\n";
18
19 remove_copy_if(
20 a, a + n,
21 ostream_iterator<int>(cout, "\n"),
22 bind2nd(greater<int>(), 30)
23);
24
25 return EXIT_SUCCESS;
26 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 875

876 Containers,Iterators, and Algorithms Chapter 8

10 lines 14−17
30
20

10 lines 19−21
30
20

It’s annoying to have to write the opposite of the desired predicate in the above line 22. To search for
the first value less than or equal to 30, I wish we could write the more natural predicate
bind2nd(less_equal<int>(), 30) . We can do this with the one-argument functionnot1 . It
takes a predicate and constructs and returns one that yield the opposite result. The following line12 is the
punchine.

1 / /Excerpts from <functional>.
2
3 t emplate <class F>
4 c lass unary_negate: public unary_function<typename F::argument_type, bool>
5 {
6 protected:
7 F f;
8 public:
9 explicit unary_negate(const F& initial_f): f(initial_f) {}

10
11 bool operator()(const typename F::argument_type& x) const {
12 return !f(x);
13 }
14 };

15 template <class F>
16 inline unary_negate<F> not1(const F& f) {
17 return unary_negate<F>(f);
18 }

We can now change the above lines 19−23 to the following.

19 remove_copy_if(
20 a, a + n,
21 ostream_iterator<int>(cout, "\n"),
22 not1(bind2nd(less_equal<int>(), 30))
23);

Even better, write your own copy_if algorithm and forget aboutremove_copy_if and the
not1 .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/remove_copy_if/copy_if.h

1 #ifndef COPY_IFH
2 #define COPY_IFH
3
4 t emplate <class INPUT, class OUTPUT, class PREDICATE>
5 OUTPUT copy_if(INPUT first, INPUT last, OUTPUT result, PREDICATE predicate)
6 {
7 f or (; first != last; ++first) {
8 i f (predicate(*first)) {
9 * result = *first;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

10 ++result;
11 }
12 }
13
14 return result;
15 }
16 #endif

17 #include "copy_if.h"
18
19 copy_if(
20 a, a + n,
21 ostream_iterator<int>(cout, "\n"),
22 bind2nd(less_equal<int>(), 30)
23);

Let’s print the printable characters in astring s . We must convert each character tounsigned
char before passing it toisprint . To see what would go wrong otherwise, see line 15 of
static_cast.C on p. 65.

Recall that a built-in type has a one-argument constructor; our first example was in line 37 ofduo.C
on p. 136.With the template arguments in the following line 29, theDEST(source) in line 9 will call
the constructor for typeunsigned char . We must sayDEST(source) instead of an unadorned
source because the constructor for theDESTtype might beexplicit .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/remove_copy_if/convert.h

1 #ifndef CONVERTH
2 #define CONVERTH
3 #include <functional> //for unary_function
4 using namespace std;
5
6 t emplate <class SOURCE, class DEST>
7 c lass convert: public unary_function<SOURCE, DEST> {
8 public:
9 DEST operator()(const SOURCE& source) const {return DEST(source);}

10 };
11
12 #endif

13 #include <iostream>
14 #include <cctype> //for isprint
15 #include <string>
16 #include <iterator> //for ostream_iterator
17 #include <functional> //for ptr_fun
18 #include <ext/functional> //for compose1
19 #include "convert.h"
20 #include "copy_if.h"
21 using namespace std;
22
23 copy_if(
24 s.begin(),
25 s.end(),
26 ostream_iterator<char>(cout),
27 __gnu_cxx::compose1(
28 ptr_fun(static_cast<int (*)(int)>(isprint)),

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.2 find, find_if, and Function Objects 877

878 Containers,Iterators, and Algorithms Chapter 8

29 convert<char, unsigned char>()
30)
31);

isprint returns anint , so the compose1 in the above lines 22−25 constructs an anonymous
object whoseoperator() returns anint . If l ine 8 ofcopy_if.h on page p. 876 complains about
converting thisint to abool , you can define acompose_fghx and change the above lines 22−25 to

32 compose_fghx(
33 convert<int, bool>(),
34 static_cast<int (*)(int)>(isprint),
35 convert<char, unsigned char>()
36);

8.4.3 Algorithmsthat call Functions, and Additional Function Objects
The five algorithms in this section call a user-supplied functionf during each iteration of a loop.

This keeps the body of the loop separate from the control structure that governs it. The body is written as
the functionf ; the control structure is written in the algorithm.Any body can be plugged into any control
structure.

The name of the algorithm acts as documentation. Instead of writing the keyword ‘‘ for ’’ at the head
of every loop, we can writefor_each for a loop that reads,generate for a loop that writes, and
transform for a loop that does both. The following diagram shows what happens during each iteration.

assign
to an element

use
an element

transform one container
*it2 = f(*it1);

transform two containers
*it3 = f(*it1, *it2);

copy
*it2 = *it1

for_each
f(*it);

generate
*it = f();

generate_n
*it = f();

fill
*it = t

for_each

The for_each algorithm passes each value in a container to a function.As usual, thef in line 2
could be a pointer to a function of one argument, or it could be a function object whoseoperator()
takes one argument.

1 t emplate <class INPUT, class FUNCTION>
2 FUNCTION for_each(INPUT first, INPUT last, FUNCTION f)
3 {

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

4 f or (; first != last; ++first) {
5 f (*first); //ignore the return value of f, if any
6 }
7
8 r eturn f;
9 }

Let’s print the elements in a container, numbering each one. The container is in lines 18−24; its ele-
ments arestring objects.

Line 26 constructs an anonymous function object of the classline_numberer<string, int> ,
inserting the value6 into it. We pass the container and the function object tofor_each , which passes
each element of the container to theoperator() member function of the object.When for_each is
finished, it passes the function object back to us in the above line 8. Our function object has the member
functionoperator int in the following line 12. Line 18 calls this function to convert the object into an
int .

The default initial value of the data memberi should be0 if COUNTERis int , 0L if COUNTERis
long , date() if COUNTERis date , etc. But there is no need to write a specialization for each data
type. Line10 simply calls the default constructor for data typeCOUNTER. See p. 660.

To print the elements of only one container, it would have been easier to write a traditionalfor loop.
For many containers, each with elements of different types, it’s easier to pass a function object to
for_each .

Do not callfor_each if the library has a more specific algorithm.To copy, find, count, or accumu-
late, it is easier to callcopy , find , count , or accumulate .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/line_numberer.h

1 #ifndef LINE_NUMBERERH
2 #define LINE_NUMBERERH
3 #include <iostream>
4 using namespace std;
5
6 t emplate <class DATA, class COUNTER = int>
7 c lass line_numberer {
8 COUNTER i;
9 public:

10 line_numberer(COUNTER initial_i = COUNTER()): i(initial_i) {}
11 void operator()(const DATA& data) {cout << i++ << " " << data << "\n";}
12 operator COUNTER() const {return i;}
13 };
14 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/for_each.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <algorithm>
5 #include "line_numberer.h"
6 using namespace std;
7
8 i nt main()
9 {

10 const string a[] = { //Macbeth IV i

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 879

880 Containers,Iterators, and Algorithms Chapter 8

11 "Toad, that under cold stone",
12 "Days and nights has thirty one",
13 "Swelt’red venom, sleeping got,",
14 "Boil thou first i’ th’ charmed pot."
15 };
16 const size_t n = sizeof a / sizeof a[0];
17
18 const int i = for_each(a, a + n, line_numberer<string>(6));
19 cout << "\nThe next line number will be " << i << ".\n\n";
20
21 const char c = for_each(a, a + n, line_numberer<string, char>(’A’));
22 cout << "\nThe next line number will be " << c << ".\n\n";
23 return EXIT_SUCCESS;
24 }

6 Toad, that under cold stone
7 Days and nights has thirty one
8 Swelt’red venom, sleeping got,
9 Boil thou first i’ th’ charmed pot.

The next line number will be 10.

A Toad, that under cold stone
B Days and nights has thirty one
C Swelt’red venom, sleeping got,
D Boil thou first i’ th’ charmed pot.

The next line number will be E.

for_each can do more than read the elements.The call in line 11 of the following hal.h can
modify them. Thestring::value_type is just a hypercorrect way of sayingchar .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/decrement.h

1 #ifndef DECREMENTH
2 #define DECREMENTH
3 #include <functional> //for unary_function
4 using namespace std;
5
6 t emplate <class T>
7 c lass decrement: public unary_function<T, void> {
8 public:
9 v oid operator()(T& t) const {--t;} //read/write reference

10 };
11 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/hal.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <algorithm>
5 #include "decrement.h"

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

6 using namespace std;
7
8 i nt main() //HAL-9000 computer in "2001: a Space Odyssey"
9 {

10 string s = " IBM";
11 for_each(s.begin(), s.end(), decrement<string::value_type>());
12 cout << s << "\n";
13 return EXIT_SUCCESS;
14 }

HAL

Examples offor_each modifying the elements of a container with an STL function object are in
lines 28−29 ofmem_fun.C on p. 942. Those elements will be objects and pointers thereto.

generate

Thegenerate algorithm writes into a container, so its iterators must be output iterators. But it also
compares the iterators, so they must also be input iterators.Together, they must be forward iterators.

15 template <class FORWARD, class FUNCTION>
16 void generate(FORWARD first, FORWARD last, FUNCTION f)
17 {
18 for (; first != last; ++first) {
19 *first = f ();
20 }
21 }

If your iterators are merely output, not forward, callgenerate_n . As with thefill_n algorithm,Ncan
be any data type that can be decremented and compared with>.

1 t emplate <class OUTPUT, class N, class FUNCTION>
2 v oid generate_n(OUTPUT first, N n, FUNCTION f)
3 {
4 f or (; n > 0; --n, ++first)
5 * first = f();
6 }
7 }

To demonstrate generation, let’s overwrite a range with random integers. Thethird argument of the
generate in line 21 is a plain old pointer to a function, not a function object.

8 #include <cstdlib> //for rand
9 #include <vector>

10 #include <algorithm>
11 using namespace std;
12
13 vector<int> v(argument(s) for constructor);
14 generate(v.begin(), v.end(), rand);

▼ Homework 8.4.3a: class pointer_to_generator

To overwrite a container with the negatives of random integers, I wish we could say the following.

1 #include <cstdlib> //for rand
2 #include <vector>
3 #include <functional> //for negate
4 #include <ext/functional> //for compose1

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 881

882 Containers,Iterators, and Algorithms Chapter 8

5 #include <algorithm>
6 using namespace std;
7
8 v ector<int> v(argument(s) for constructor);
9

10 generate(
11 v.begin(),
12 v.end(),
13 __gnu_cxx::compose1(
14 negate<int>(),
15 ptr_fun(rand)
16)
17);

The two ptr_fun ’s in the standard library take a pointer to a function of one or two arguments. But
rand is a function with no arguments. Afunction taking no arguments, or a function object whose
operator() takes no arguments, is called agenerator. Examples are the standard library functionrand
in the above line 15 and an object of the following classconsecutive .

To get the above code to compile, we will have to define the following classes and functions.

(1) Define a template class namedgenerator . It will be just like the template classes
unary_function andbinary_function on pp. 863−864 and 769−770, except that it will have only
one template argument, and its only member will beresult_type .

(2) Derive a template class namedpointer_to_generator . It will be just like class
pointer_to_unary_function on pp. 869−870, except that it will be derived from your class
generator , contain a pointer to a generator, and have an operator() that takes no arguments. Class
pointer_to_generator will need only one template argument.

(3) Define another helper function namedptr_fun . It will be just like the one on pp. 869−870,
except that its argument will be a pointer to a function that is a generator, and its return value will be an
object of classgenerator . Thisptr_fun will need only one template argument.

(4) Define a template class namedcomposer_fg . It will be just like classunary_compose on
p. 871, except that it will be derived from classgenerator andg will be a generator. Class
composer_fg will need only one template argument.

(5) Define a helper function namedcompose_fg . It will be just like the helper function
compose1 on p. 871, except that its second argument will be a generator. The compose_fg function
will need only one template argument.

In place of the above lines 10−17, we can now say the following,

18 generate(
19 v.begin(),
20 v.end(),
21 compose_fg(
22 negate<int>(),
23 ptr_fun(rand)
24)
25);

▲

An iterator instead of a generator

Whenever we need to generate a series of consecutive values, we write afor loop with a counter
and an increment.The counter and the increment can be written once and for all in the following template
classconsecutive . A stride or increment can easily be added.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/consecutive/consecutive.h

1 #ifndef CONSECUTIVEH
2 #define CONSECUTIVEH
3
4 / /T must be copy constructable and incrementable.
5
6 t emplate <class T = int>
7 c lass consecutive {
8 T t;
9 public:

10 consecutive(const T& initial_t = T()): t(initial_t) {}
11 T operator()() {return t++;}
12 };
13 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/consecutive/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <algorithm>
5 #include "date.h"
6 #include "consecutive.h"
7 using namespace std;
8
9 i nt main()

10 {
11 const size_t n = 10;
12 int a[n];
13
14 generate(a, a + n, c onsecutive<int>());
15 copy(a, a + n, o stream_iterator<int>(cout, " "));
16 cout << "\n";
17
18 generate_n(ostream_iterator<char>(cout), 26, consecutive<char>(’A’));
19 cout << "\n";
20
21 generate_n(ostream_iterator<date>(cout, "\n"), 3, consecutive<date>());
22
23 //Output the address of each array element.
24 generate_n(ostream_iterator<int *>(cout, "\n"), 3,
25 consecutive<int *>(a));
26
27 return EXIT_SUCCESS;
28 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 883

884 Containers,Iterators, and Algorithms Chapter 8

0 1 2 3 4 5 6 7 8 9 line 14:generate with a pair of forward iterators
ABCDEFGHIJKLMNOPQRSTUVWXYZline 18:generate_n with one output iterator
4/8/2014 line 21
4/9/2014
4/10/2014
0xffbff140 line 24:sizeof (int) == 4 on my machine
0xffbff144
0xffbff148

But when we do more than just generate the range of values, this approach wastes space.For exam-
ple, let’s pick out the prime numbers in a range of integers. Aprime numberis a positive integer that is
greater than 1 and whose only factors are itself and 1.

Generating the entire range in lines 15−16 is senselessly profligate, since the prime numbers are so
few and far between. Lines 33−34 commit the same sin.Finally, we hav eto hope that theint n in line 33
can fit into avector<int>::size_type .

The function object

modulus<int>()

in line 39 takes two arguments,dividend anddivisor , and returnsdividend % divisor . The big-
ger function object

bind1st(modulus<int>(), n)

takes only one argument, and returns zero if the argument is a divisor ofn. Since zero and non-zero can be
implicitly converted tofalse andtrue , this function object can be used as a predicate. The even bigger
predicate

not1(bind1st(modulus<int>(), n))

does just the opposite. It takes an argument and returnstrue if the argument is a divisor ofn. Since we
hope thatn will be a prime, we hope thatfind_if will not find what it is looking for.

The code can be made even simpler by making a typedef fort_iterator<int> .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/consecutive/prime.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator>
5 #include <functional> //not1, ptr_fun, equal_to, modulus, bind1st, bind2nd
6 #include <ext/functional> //compose1
7 #include <algorithm>
8 #include "consecutive.h"
9 using namespace std;

10
11 bool isprime(int n);
12
13 int main()
14 {
15 const size_t n = 30;
16 int a[30];
17 generate_n(a, n, consecutive<int>(1));
18
19 remove_copy_if(
20 a,
21 a + n,

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

22 ostream_iterator<int>(cout, "\n"),
23 not1(ptr_fun(isprime))
24);
25 return EXIT_SUCCESS;
26 }
27
28 bool isprime(int n)
29 {
30 if (n < 2) {
31 return false; //The smallest prime is 2.
32 }
33
34 vector<int> v(n - 2); //a vector of n - 2 zeros
35 generate(v.begin(), v.end(), consecutive<int>(2));
36
37 return find_if(
38 v.begin(),
39 v.end(),
40 __gnu_cxx::compose1(
41 bind2nd(equal_to<int>(), 0),
42 bind1st(modulus<int>(), n)
43)
44) == v.end();
45 }

2
3
5
7
11
13
17
19
23
29

We can avoid the waste of space by writing the counting variable and the increment in an iterator
instead of a generator. Pleasantly, the increment can now be prefix (line 16) instead of postfix (line 11 of
the above consecutive.h). Classt_iterator has more lines of source code thanconsecutive ,
but it is totally stereotyped.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/t_iterator/t_iterator.h

1 #ifndef T_ITERATORH
2 #define T_ITERATORH
3 #include <iterator>
4 using namespace std;
5
6 / /T must be copy constructable (line 13), incrementable (line 16),
7 / /and equality comparable (line 25).
8
9 t emplate <class T = int>

10 class t_iterator: public iterator<forward_iterator_tag, T> {
11 T t;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 885

886 Containers,Iterators, and Algorithms Chapter 8

12 public:
13 t_iterator(const T& initial_t = T()): t(initial_t) {}
14 const T& operator*() const {return t;}
15
16 t_iterator& operator++() {++t; return *this;}
17
18 const t_iterator operator++(int) {
19 const t_iterator old = *this;
20 ++*this;
21 return old;
22 }
23
24 friend bool operator==(const t_iterator& it1, const t_iterator& it2) {
25 return it1.t == it2.t;
26 }
27 };
28
29 template <class T>
30 inline bool operator!=(const t_iterator<T>& it1, const t_iterator<T>& it2) {
31 return !(it1 == it2);
32 }
33 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/t_iterator/prime.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <functional>
5 #include <ext/functional>
6 #include <algorithm>
7 #include "t_iterator.h"
8 using namespace std;
9

10 inline bool isprime(int n)
11 {
12 return n >= 2 && f ind_if(
13 t_iterator<int>(2),
14 t_iterator<int>(n),
15 __gnu_cxx::compose1(
16 bind2nd(equal_to<int>(), 0),
17 bind1st(modulus<int>(), n)
18)
19) == t_iterator<int>(n);
20 }
21
22 int main()
23 {
24 remove_copy_if(
25 t_iterator<int>(1),
26 t_iterator<int>(30),
27 ostream_iterator<int>(cout, "\n"),
28 not1(ptr_fun(isprime))
29);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

30 return EXIT_SUCCESS;
31 }

2
3
5
7
11
13
17
19
23
29

▼ Homework 8.4.3b: use t_iterator

(1) Define a function to return the factorial of an integer.

1 i nt factorial(int n);

If n is less than or equal to 1, the function will return 1.(Why will we go into an almost infinite loop with-
out this test?) Otherwise, the function will call theaccumulate algorithm (include the header file
<numeric>) and pass it a pair oft_iterator<int> ’s representing the numbers from 2 ton inclusive.
Also pass it an anonymous function object of classmultiplies<int> .

(2) A perfect numberis a positive integer that is the sum of all of its positive divisors that are smaller
than it. Perfect numbers are extremely rare. The first three examples are

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

496= 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124+ 248

Define a function

2 bool isperfect(int n);

that returnstrue if its argumentn is a perfect number. If n is less than 1, the function will returnfalse .
(Why will we go into an almost infinite loop without this test?)Otherwise, the function will create a vector
of all the positive divisors ofn that are less thann. Begin with the vector empty. Call the
remove_copy_if algorithm and pass it a pair oft_iterator<int> ’s representing the numbers from
1 to n−1 inclusive. Also pass it a back inserter to fill up the vector, and a function object for picking out the
divisors ofn. Sum up all the elements in the vector by callingaccumulate . If n is perfect, it will be
equal to this sum.

Find all the perfect numbers in the range 1 to 10,000 inclusive. Is there an odd perfect number?

Some numbers have a lot of factors. Isthere a way to test if a number is perfect without storing all
the factors simultaneously in a container? Could you make an iterator that loops through the factors ofn?
▲

▼ Homework 8.4.3c: make t_iterator random access

Upgradet_iterator to be a random access iterator, at least for the data typesT to which the+
and< operators can be applied.

Give class t_iterator an extra template argumentDIFFERENCE, which will be used for the
arguments and return value of the following member functions and friend.Like the DIFFERENCEtem-
plate argument of classiterator , let it default toptrdiff_t .

3 t emplate <class T, class DIFFERENCE = ptrdiff_t>

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 887

888 Containers,Iterators, and Algorithms Chapter 8

4 c lass t_iterator: public iterator<random_access_iterator_tag, T, DIFFERENCE>
5 {
6 / /etc.
7 c onst T& operator[](DIFFERENCE d) const {return t + d;}
8 t _iterator& operator+=(DIFFERENCE d) {t += d; return *this;}
9

10 friend DIFFERENCE operator-(t_iterator& it1, t_iterator& it2) {
11 return it1.t - it2.t;
12 }

You can then implementoperator++ by callingoperator+= , andoperator* by calling
operator[] . Don’t forget to defineoperator< , etc.
▲

▼ Homework 8.4.3d: redesign t_iterator

To loop throughevery value of a data type, the test has to go at the bottom of the loop.We don’t
want to increment achar that already contains the maximum value. Ona platform wherechar is signed,
that would result in undefined behavior.

1 #include <iostream>
2 #include <limits>
3 using namespace std;
4
5 / /Output every char.
6
7 f or (char c = numeric_limits<char>::min();; ++c) {
8 c out << c;
9 i f (c == n umeric_limits<char>::max()) {

10 break;
11 }
12 }

Unfortunately, the standard algorithms have their test at the top of the loop.

13 #include <iostream>
14 #include <limits>
15 #include <iterator>
16 #include <algorithm>
17 using namespace std;
18
19 //Doesn’t output every char.
20 //It fails to output the last one, numeric_limits<char>::max().
21
22 copy(
23 t_iterator<char>(numeric_limits<char>::min()),
24 t_iterator<char>(numeric_limits<char>::max()),
25 ostream_iterator<char>(cout)
26);

An approach to correcting this is suggested by classistream_iterator . Its default (no-argu-
ment) constructor gav eus an iterator representing the end of a range.

27 #include <iostream>
28 #include <iterator>
29 #include <algorithm>
30 using namespace std;
31

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

32 //Copy the standard input to the standard output.
33
34 copy(
35 istream_iterator<char>(cin),
36 istream_iterator<char>(), //end-of-input
37 ostream_iterator<char>(cout)
38);

Let’s create a similart_iterator representing the end of a range of values. Decidewhich of the follow-
ing designs is better.

(1) Line 49 specifies the starting value, but line 50 does not have to mention the ending value. The
loop will stop automatically when it reachesnumeric_limits<T>::max() .

39 #include <iostream>
40 #include <limits>
41 #include <iterator>
42 #include <algorithm>
43 #include "t_iterator2.h"
44 using namespace std;
45
46 //Output every char.
47
48 copy(
49 t_iterator<char>(numeric_limits<char>::min()),
50 t_iterator<char>(),
51 ostream_iterator<char>(cout)
52);

Give the iterator the extra data member in line 10. It can be borntrue in line 13, or becometrue
in line 32. Theis_specialized static member in line 31 istrue if there is a specialization of class
numeric_limits for the data typeT. If not, themax function returns no meaningful result.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/t_iterator/t_iterator2.h

1 #ifndef T_ITERATOTH
2 #define T_ITERATOTH
3 #include <cstdlib> //for exit
4 #include <iterator>
5 #include <limits>
6 using namespace std;
7
8 t emplate <class T = int, class DIFFERENCE = ptrdiff_t>
9 c lass t_iterator: public iterator<randoom_access_iterator_tag, T> {

10 bool at_end; //true if we have reached end of range
11 T t;
12 public:
13 t_iterator(): at_end(true) {}
14 t_iterator(const T& initial_t): at_end(false), t(initial_t) {}
15
16 const T& operator*() const {
17 if (at_end) {
18 cerr << "dereference exhausted t_iterator\n";
19 exit(EXIT_FAILURE);
20 }
21 return t;
22 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 889

890 Containers,Iterators, and Algorithms Chapter 8

23
24 t_iterator& operator++() {
25 if (at_end) {
26 cerr << "increment exhausted t_iterator\n";
27 exit(EXIT_FAILURE);
28 }
29
30 typedef numeric_limits<T> limits; //for convenience
31 if (limits::is_specialized && t == limits::max()) {
32 at_end = t rue;
33 } else {
34 ++t;
35 }
36 return *this;
37 }
38
39 friend bool operator==(const t_iterator<T, DIFFERENCE>& it1,
40 const t_iterator<T, DIFFERENCE>& it2) {
41 return it1.at_end == it2.at_end &&
42 (it1.at_end || it1.t == it2.t);
43 }
44
45 //etc.
46 };
47
48 //etc.
49 #endif

To use the above t_iterator to loop through every possibledate , we would have to define a
specialization of classnumeric_limits for classdate .

50 #include <limits>
51 #include "date.h"
52 using namespace std;
53
54 namespace std {
55 template <>
56 class numeric_limits<date> {
57 public:
58 static const bool is_specialized = true;
59
60 static date min() throw () {
61 static date d(date::january, 1, numeric_limits<int>::min());
62 return d;
63 }
64
65 static date max() throw () {
66 static date d(date::december, 31, numeric_limits<int>::max());
67 return d;
68 }
69 };
70 }

(2) The followingt_iterator has the two-argument constructor in line 83.

71 #include <iostream>

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

72 #include <limits>
73 #include <iterator>
74 #include <algorithm>
75 #include "t_iterator3.h"
76 using namespace std;
77
78 //Output every char.
79
80 typedef numeric_limits<char> limits;
81
82 copy(
83 t_iterator<char>(limits::min(), limits::max()),
84 t_iterator<char>(),
85 ostream_iterator<char>(cout)
86);

Line 11 has yet another data member.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/t_iterator/t_iterator3.h

1 #ifndef T_ITERATOTH
2 #define T_ITERATOTH
3 #include <cstdlib> //for exit
4 #include <iterator>
5 using namespace std;
6
7 t emplate <class T = int, class DIFFERENCE = ptrdiff_t>
8 c lass t_iterator: public iterator<random_access_iterator_tag, T> {
9 bool at_end; //true if we have reached end of range

10 T t;
11 const T end;
12 public:
13 t_iterator(): at_end(true), end() {}
14
15 t_iterator(const T& initial_t, const T& initial_end):
16 at_end(false), t(initial_t), end(initial_end) {}
17
18 operator*() and operator== as in t_iterator2.h
19
20 t_iterator& operator++() {
21 if (at_end) {
22 cerr and exit;
23 }
24
25 if (t == end) {
26 at_end = t rue;
27 } else {
28 ++t;
29 }
30 return *this;
31 }
32
33 //etc.
34 };
35

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 891

892 Containers,Iterators, and Algorithms Chapter 8

36 //etc.
37 #endif

▲

transform one input container

Like for_each , the transform algorithm reads each element of an input container. Like
generate , it writes to each element of an output container. The two containers could be the same one.
But if they are not, they must be of the same length.

1 t emplate <class INPUT, class OUTPUT, class FUNCTION>
2 OUTPUT transform(INPUT first, INPUT last, OUTPUT result, FUNCTION f)
3 {
4 f or (; first != last; ++first, ++result) {
5 * result = f(*first);
6 }
7
8 r eturn result;
9 }

Line 19 outputs a string in lowercase. Line22 converts the characters tounsigned char to pre-
vent them from sign extending when passed totolower . For theconvert template class, see p. 877.
Line 21 needs the cast because the C++ Standard Library has more than one function with this name.The
one we use here is inherited from the C Standard Library; the other takes alocale object as its second
argument (p. 1041).

Line 26 demonstrates that the same range can be used for both input and output.Line 34 outputs the
code number of each character in a string.We convert each character tounsigned char and then to
unsigned to display the codes as non-negative integers. To see what would go wrong if we went directly
to unsigned , look at line 15 ofstatic_cast.C on p. 65.

Line 17 outputs the originalstring . The template classidentity is not part of the standard
library; itsoperator() member function takes one argument and returns its unchanged.

Had we wanted to be hypercorrect, we could have written string::value_type in place of the
char in line 15.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/transform1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype> //for toupper and tolower
4 #include <string> //for string
5 #include <iterator> //for ostream_iterator
6 #include <algorithm> //for transform
7 #include <functional> //for ptr_fun
8 #include <ext/functional> //for compose1, identity
9 #include "convert.h" //for convert

10 using namespace std;
11
12 int main()
13 {
14 string s = " Hello\n";
15 ostream_iterator<char> it(cout);
16
17 transform(s.begin(), s.end(), it, __gnu_cxx::identity<char>());
18
19 transform(s.begin(), s.end(), it,

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

20 __gnu_cxx::compose1(
21 ptr_fun(static_cast<int (*)(int)>(tolower)),
22 convert<char, unsigned char>()
23)
24);
25
26 transform(s.begin(), s.end(), s.begin(),
27 __gnu_cxx::compose1(
28 ptr_fun(static_cast<int (*)(int)>(toupper)),
29 convert<char, unsigned char>()
30)
31);
32 cout << s;
33
34 transform(
35 s.begin(), s.end(),
36 ostream_iterator<unsigned>(cout, " "),
37 convert<char, unsigned char>()
38);
39 cout << "\n";
40
41 return EXIT_SUCCESS;
42 }

Hello
hello
HELLO
72 69 76 76 79 10

The call totransform in the above line 26 does the same work as

43 for (string::iterator it = s.begin(); it != s.end(); ++it) {
44 *it = t oupper(static_cast<unsigned char>(*it));
45 }

For examples oftransform where the elements are objects and pointers thereto, see lines 33−34 of
mem_fun.C on p. 942.To transform avalarray , see pp. 899−900.

transform two input containers

There is also atransform that takes two input containers of equal length.

1 t emplate <class INPUT1, class INPUT2, class OUTPUT, class FUNCTION>
2 OUTPUT transform(INPUT1 first1, INPUT1 last1, INPUT2 first2, OUTPUT result,
3 FUNCTION f)
4 {
5 f or (; first1 != last1; ++first1, ++first2, ++result) {
6 * result = f(*first1, *first2);
7 }
8
9 r eturn result;

10 }

In this case, the last argument oftransform must be a binary function.We supply the start of the
second input container in line 21.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 893

894 Containers,Iterators, and Algorithms Chapter 8

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/transform2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <iterator>
5 #include <functional> //for plus
6 #include <algorithm>
7 using namespace std;
8
9 i nt main()

10 {
11 const size_t n = 5;
12 int a1[n] = {1700, 1900, 1900, 1900, 2000};
13 int b1[n] = { 76, 29, 41, 69, 1};
14
15 vector<int> a(a1, a1 + n);
16 vector<int> b(b1, b1 + n);
17 vector<int> c;
18
19 transform(
20 a.begin(), a.end(),
21 b.begin(),
22 back_inserter(c),
23 plus<int>()
24);
25
26 copy(c.begin(), c.end(), ostream_iterator<int>(cout, "\n"));
27 return EXIT_SUCCESS;
28 }

1776
1929
1941
1969
2001

We hav ejust seen one C++ equivalent for thearray operations that are built into other languages.
(An alternative is on pp. 897−900.) In PL/I, for example, we could have done the same thing with

29 C = A + B; / * P L/I example; A, B, C are arrays. */

Here are two more examples. We can do

30 C = A ** B ; / * P L/I example: ** is exponentiation */

with

31 transform(
32 a.begin(), a.end(), //a, b, c are vectors of double now
33 b.begin(),
34 back_inserter(c),
35 static_cast<double (*)(double, double)>(pow)
36);

And we can do

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

37 C = (A + B) / 2 ; / * P L/I example: take the average */

with

38 transform(
39 a.begin(), a.end(),
40 b.begin(),
41 back_inserter(c),
42 compose_fgx1_x2(
43 bind2nd(divides<double>(), 2.0),
44 plus<double>()
45)
46);

Did I mention that we would have to write our own compose_fgx1_x2 ? f will be a unary function (in
this case, ‘‘divide by 2’’), andg will be a binary function (in this case, ‘‘add’’). In the
compose_fg1x_g2x example on p. 865,f was the binary function andg1 and g2 were unary func-
tions. Thefollowing line 61 is the punchline.

47 template <class F, class G>
48 class composer_fgx1_x2: public
49 binary_function<typename G::first_argument_type,
50 typename G::second_argument_type,
51 typename F::result_type> {
52 F f;
53 G g;
54 public:
55 composer_fgx1_x2(const F& initial_f, const G& initial_g)
56 : f(initial_f), g(initial_g) {}
57
58 typename F::result_type operator()(
59 const typename G:: first_argument_type& x1,
60 const typename G::second_argument_type& x2) const {
61 return f(g(x1, x2));
62 }
63 };
64
65 template <class F, class G>
66 inline class composer_fgx1_x2<F, G> compose_fgx1_x2(const F& f, const G& g)
67 {
68 return compose_fgx1_x2<F, G>(f, g);
69 }

Warning: there is no way to predict the order in whichtransform will process the elements of the
ranges. Thefollowing transform behaves unpredictably.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/fibonacci.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <algorithm>
5 #include <functional>
6 using namespace std;
7
8 i nt main()
9 {

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.3 Algorithms that call Functions, and Additional Function Objects 895

896 Containers,Iterators, and Algorithms Chapter 8

10 const size_t n = 10;
11 int a[n] = {0, 1}; //initialize the first two elements
12
13 transform(a, a + n - 2, a + 1, a + 2, p lus<int>());
14 copy(a, a + n, o stream_iterator<int>(cout, "\n"));
15 return EXIT_SUCCESS;
16 }

0
1
1 The Fibonacci series: from this point onwards, each number is the sum of the two previous.
2
3
5
8
13
21
34

The two input containers given to transform can have elements of different types. Often one con-
tainer holds objects; the other holds arguments for a member function of each object.In the following
example, the containers holdsstring objects and subscripts for the member functionat . Unfortunately,
classstring has more than oneat function, for the same reason that classmystring had more than
one function namedoperator[] on p. 314.To simplify line 21, lines 14−15 created a pointer namedat
to the member function namedstring::at that returns astring::const_reference , which is a
hypercorrect way of sayingconst char &.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/at.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <iterator> //for ostream_iterator
5 #include <functional> //for mem_fun_ref
6 #include <algorithm> //for transform
7 using namespace std;
8
9 i nt main()

10 {
11 const size_t n = 3;
12 string a[n] = {"abe", "ike", "jake"}; //container of objects
13 string::size_type b[n] = {1, 1, 0}; //container of subscripts
14 string::const_reference (string::*const at)(string::size_type) const =
15 &string::at;
16
17 transform(
18 a, a + n,
19 b,
20 ostream_iterator<string::value_type>(cout, "\n"),
21 mem_fun_ref(at)
22);
23
24 return EXIT_SUCCESS;
25 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

b
k
j

Without the pointer in the above lines 14−15, line 21 would have been

26 mem_fun_ref(
27 static_cast<
28 string::const_reference (string::*)(string::size_type) const>
29 (&string::at)
30)

The call tomem_fun_ref in line 21 constructs and returns an anonymous object of class

const_mem_fun1_ref_t<string::value_type, string, string::size_type>

This class is similar to the classconst_mem_fun_ref_t we saw on p. 872. OBJECTis the data type of
each object in the container. p is a pointer to aconst member function of classOBJECT. X andY are the
data types of the argument and return value of the member function to whichp points. Line36 is the
punchline.

31 //Excerpt from <functional>.
32
33 template <class Y, class OBJECT, class X>
34 class const_mem_fun1_ref_t: public binary_function<OBJECT, X, Y> {
35 private:
36 Y (OBJECT::*p)(X x) const;
37 public:
38 explicit const_mem_fun_ref_t(Y (OBJECT::*initial_p)() const)
39 : p(initial_p) {}
40
41 Y operator()(const OBJECT& object, X x) const {return (object.*p)(x);}
42 };

The helper functionmem_fun_ref constructs and returns aconst_mem_fun_ref_t , just as the
functionptr_fun constructs and returns apointer_to_unary_function .

43 template <class Y, class OBJECT, class X>
44 inline const_mem_fun1_ref_t<Y, T> mem_fun_ref(Y (OBJECT::*p)(X x) const) {
45 return const_mem_fun1_ref_t<Y, OBJECT, X>(p);
46 }

8.4.4 Array Operations with valarray
A valarray is a vector of numbers for aggressively optimized, high-speed computation. Using a

valarray , the array operation on pp. 894−895 can be done more simply with thec = a +b in the fol-
lowing line 17. In fact, any of the following statements could be written after line 17.For the math func-
tions, we would change the<int> ’s to <double> ’s.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.4 Array Operations with valarray 897

898 Containers,Iterators, and Algorithms Chapter 8

c = 1 0; assign10 to each element ofc
c += 1 0; add10 to each element ofc
c = a ; copy each element ofa into the corresponding element ofc
c += a ; add each element ofa to the corresponding element ofc
c = a + 1 0; let each element ofc be10 greater than the corresponding element ofa
c = (a + b) / 2 ; let each element ofc be the average of the corresponding elements ofa andb
c = - a;
c <<= 2; left-shift each element ofc
valarray<bool> equal = a == b;

c = s qrt(a);
c = p ow(a, b);
c = s in(a);
c = a tan(a, b);
c = c .shift(2); copyc[2] into c[0] , c[3] into c[1] , etc.

Like an array orvector , the elements of avalarray are stored consecutively in memory and can
be accessed with a subscript (line 20).For a valarray , the subscript should be of typesize_t . Like an
array, the only available iterators are plain old pointers (line 25).

Sincec is not aconst , the c[0] in line 25 is an lvalue and we can take its address. (See the fol-
lowing Homework.) But the&c[0] cannot be rewritten asc . These brackets are theoperator[] mem-
ber function, which is not guaranteed to cancel with the&. Similarly, the&c[n] cannot be rewritten as
c+n . Instead of doing pointer arithmetic, the expresisonc+n would yield a new valarray each of
whose elements isn greater than the corresponding element ofc .

Theshift andcshift member functions in lines 32 and 36 areconst . But theresize in line
40 will overwrite the old values of the elements. Its second argument defaults toT() , whereT is the data
type stored in thevalarray . In our exampleT is int , whose default constructor constructs a zero.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/valarray.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray> //for valarray
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 i nt main()
9 {

10 const size_t n = 5;
11
12 int a1[n] = {1700, 1900, 1900, 1900, 2000};
13 int b1[n] = { 76, 29, 41, 69, 1};
14
15 valarray<int> a(a1, n); //born containing 1700, 1900, 1900, 1900, 2000
16 valarray<int> b(b1, n);
17 valarray<int> c = a + b ;
18
19 for (size_t i = 0; i < c.size(); ++i) {
20 cout << c[i] << " ";
21 }
22 cout << "\n";
23
24 ostream_iterator<int> it(cout, " ");

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

25 copy(&c[0], &c[c.size()], it);
26 cout << "\n";
27
28 cout << "c.min() == " << c.min() << "\n"
29 << "c.max() == " << c.max() << "\n"
30 << "c.sum() == " << c.sum() << "\n";
31
32 c = a + b.shift(2); //left shift; negative argument for right
33 copy(&c[0], &c[c.size()], it);
34 cout << "\n";
35
36 c = a + b.cshift(2); //circular left shift; negative for right
37 copy(&c[0], &c[c.size()], it);
38 cout << "\n";
39
40 c.resize(6, 1000); //six 1000’s
41 copy(&c[0], &c[c.size()], it);
42 cout << "\n";
43 return EXIT_SUCCESS;
44 }

1776 1929 1941 1969 2001
1776 1929 1941 1969 2001
c.min() == 1776
c.max() == 2001
c.sum() == 9616
1741 1969 1901 1900 2000 left shift : zeroes enter from right end
1741 1969 1901 1976 2029
1000 1000 1000 1000 1000 1000

The following line 16 shows an equivalent for thetransform algorithm. Thestandard library con-
tains several different functions namedsqrt , so the address of thedouble sqrt function would nor-
mally have to be written as

static_cast<double (*)(double)>(sqrt)

But theapply function of avalarray<double> will accept only a function whose argument is a
double , so there is no ambiguity.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/apply.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath>
4 #include <valarray>
5 #include <iterator>
6 #include <algorithm>
7 using namespace std;
8
9 i nt main()

10 {
11 double a[] = {1, 16, 81};
12 const size_t n = sizeof a / sizeof a[0];
13 valarray<double> v(a, n);
14 ostream_iterator<double> it(cout, "\n");

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.4 Array Operations with valarray 899

900 Containers,Iterators, and Algorithms Chapter 8

15
16 v = v.apply(sqrt); //overwrite v
17 copy(&v[0], &v[n], it);
18 cout << "\n";
19
20 valarray<double> w = v.apply(sqrt); //don’t overwrite v
21 copy(&w[0], &w[n], it);
22 return EXIT_SUCCESS;
23 }

1 lines 16−17
4
9

1 lines 20−21
2
3

▼ Homework 8.4.4a: define an operator<< for valarray

Classvalarray has nooperator<< function. Defineone in a header file named
valarray_putto.h . It will not need to be a member function or a friend of any class.

As usual, the second argument in line 8 will be a read-only reference to the variable being output.

1 #ifndef VALARRAY_PUTTOH
2 #define VALARRAY_PUTTOH
3 #include <iterator>
4 #include <algorithm>
5 using namespace std;
6
7 t emplate <class T>
8 ostream& operator<<(ostream& ost, const valarray<T>& v)
9 {

10 //The &v[0] and &v[v.size()] won’t compile.
11 copy(&v[0], &v[v.size()], ostream_iterator<T>(ost, "\n"));

The operator[] member function of a non-const valarray<T> returns aT&, allowing the
return value to be used as an lvalue (pp. 12−13). The ‘‘address of’’ operator& can therefore be applied to
the return value of this function. But theoperator[] member function of aconst valarray<T>
returns aT without the&. (It returns theT by value.) Itsreturn value is merely an rvalue, so the&v[0] in
the above line 7 will not compile. Instead of callingcopy , you will have to write afor loop to output the
elements one by one. Could you call theapply member function?

See pp. 74−76 for functions that return lvalues and rvalues; p. 314 for classes with two different
operator[] functions.
▲

What is the data type of a+b?

What exactly is the data type of the expressiona+b in line 17 ofvalarray.C on p. 898?The
expression was used as if it were avalarray , but the truth is more complicated.

Theoperator+ function, or any function that returns avalarray by value, returns an object that
has the same friends and public members as aconst valarray . It might even be aconst
valarray . But there is no guarantee of this, which means that theoperator<< we just wrote may
reject the argumenta+b in the following line 10.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <iostream>
2 #include <valarray>
3 #include "valarray_putto.h" //previous homework
4 using namespace std;
5
6 v alarray<int> a(argument(s) for constructor);
7 v alarray<int> b(argument(s) for constructor);
8
9 c out << a; //will compile: a is a valarray<int>

10 cout << a + b; //may not compile: a + b may not be a valarray<int>
11 cout << valarray<int>(a + b); //will compile

A slice of a valarray

A slice is a set of elements having equally spaced subscripts in avalarray . The subscripts are
stored in an object of classslice . Line 12 constructs a slice that holds the subscripts 0, 2, 4, 6, 8.The
three arguments are the starting subscript, the number of subscripts, and the stride.

Watch what happens when line 15 uses theslice object as the subscript of avalarray .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/slice.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray>
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 i nt main()
9 {

10 const size_t n = 10;
11 valarray<int> v(n); //born containing n int()’s, i.e., n zeroes
12 slice s(0, 5, 2); //every other subscript, starting with 0
13
14 v[1] = 10; //subscript is a size_t
15 v[s] = 20; //subscript is a slice object
16
17 copy(&v[0], &v[n], ostream_iterator<int>(cout, "\n"));
18 return EXIT_SUCCESS;
19 }

20
10
20
0
20
0
20
0
20
0

Let’s use slices to build a Sieve of Eratosthenes for finding prime numbers.We start with a list of the
integers from 0 ton−1 inclusive. Disregard the 0 and 1.Keep the 2, but remove its larger multiples: 4, 6,

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.4 Array Operations with valarray 901

902 Containers,Iterators, and Algorithms Chapter 8

8, etc. Keep the 3, but remove its larger multiples: 6, 9, 12, etc. The integer 4 has already been removed.
Keep the 5, but remove its larger multiples: 10, 15, 20, etc. In each step, line 12 setsp to the next surviving
integer. Line 13 keeps this integer, but removes its larger multiples.We leave it as an exercise for the
reader to change thefor loop andif in lines 16−22 into a call to a standard library algorithm.

Warning: if v were avector , the two arguments in line 10 would be in the opposite order. See line
10 ofvector.C on p. 430.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/sieve.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray>
4 #include <algorithm>
5 using namespace std;
6
7 i nt main()
8 {
9 c onst size_t n = 30;

10 valarray<bool> v(true, n); //born containing n true’s
11
12 for (size_t p = 2; 2*p < n; p = find(&v[p+1], &v[n], true) - &v[0]) {
13 v[slice(2 * p, n /p - 1, p)] = false; //remove the multiples of p
14 }
15
16 //Print the subscripts of the true elements.
17
18 for (size_t i = 2; i < n; ++i) {
19 if (v[i]) {
20 cout << i << "\n";
21 }
22 }
23
24 return EXIT_SUCCESS;
25 }

2
3
5
7
11
13
17
19
23
29

What is the data type of v[s]?

What exactly is the data type of the expressionv[s] in line 15 ofslice.C on p. 901? It depends
on the data type ofv . Classvalarray has twooperator[] member functions, oneconst and one
non-const , returning different types. Sincec is notconst , thev[s] is an anonymous object of class
slice_array<int> . This type of object acts as a reference to the selected elements of thevalarray .

The constructors forslice_array are private. We can create one only by calling the
operator[] member function of classvalarray , which is a friend ofslice_array . We hav edone

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

this several times; the following line 24 does it again.

Only two groups of operators can be applied to aslice_array .

(1) We can assign a scalar to each element of the slice (line 24). Be warned that the assignments can
happen in any order, depending on the hardware.

(2) We can assign the elements of avalarray<int> to each element of the slice (lines 27−30).
Again, the assignments can happen in any order.

To do anything else with the elements to which aslice_array refers, they must first be copied
into avalarray . This can be done by initialization (line 21) or by assignment (line 22). If the
valarray is to be used only once, it can be an anonymous temporary (lines 10 and 32).

Here are three examples.

(1) There is aoperator+= to add avalarray to aslice_array (line 28), but none to add a
scalar to aslice_array (line 25). To get this line to compile, we had to define our own operator+=
that copies theslice_array into avalarray (line 10).

Our operator+= would normally be a member function (p. 283). But classslice_array has
already been written, and we don’t want to modify a Standard Library class.To our relief, we find that our
operator+= does not need to be a member function or a friend.

The assignment in line 10 assigns new values to the elements of thevalarray to whichs refers.
But it does not changes itself, which merely acts as a reference to the members. This allowss to be
const in line 9. In fact, it has to beconst because the expressionv[s] in line 25 is an anonymous tem-
porary.

(2) There is also nooperator[] for a slice_array . We don’t want to define one, either,
because anoperator[] must always be a member function (p. 287).To apply the subscript[0] to the
v[s] , line 32 first had to construct avalarray from thev[s] .

(3) There is nooperator= that assigns oneslice_array to another. Line 33 constructs an
anonymousvalarray and then calls theoperator= we saw in line 27.

From these restrictions we conclude that aslice_array is intended to be only an intermediate
result. Thefinal result should reside in avalarray .

The assignment operators returnvoid , forcing us to execute them in separate statements. Lines 29
and 33 cannot be combined to the following.

1 v [t] = v[s] *= w; //won’t compile: the expression v[s] *= w is void

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/slice_array.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray>
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 t emplate <class T>
9 i nline void operator+=(const slice_array<T>& s, const T& t) {

10 s = valarray<int>(s) + t;
11 }
12
13 int main()
14 {
15 int a[] = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90};
16 const size_t n = sizeof a / sizeof a[0];
17 valarray<int> v(a, n);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.4 Array Operations with valarray 903

904 Containers,Iterators, and Algorithms Chapter 8

18 slice s(0, 5, 2);
19 slice t(1, 5, 2);
20
21 valarray<int> w = v[s]; //initialization
22 w = v[s]; //assignment
23
24 v[s] = 10;
25 v[s] += 10; //call line 9
26
27 v[s] = w;
28 v[s] += w;
29 v[s] *= w;
30 //etc.
31
32 cout << valarray<int>(v[s])[0] << "\n";
33 v[t] = v [s]; //behaves as if we had said v[t] = valarray<int>(v[s]);
34
35 copy(&v[0], &v[v.size()], ostream_iterator<int>(cout, "\n"));
36 return EXIT_SUCCESS;
37 }

0 line 32
0
0
800 = (20 + 20)× 20
800
3200
3200
7200
7200
12800
12800

The v in the above line 17 is non-const . Now let us suppose thatv were const . The
operator[] member function of aconst valarray returns an object that has the same friends and
public members as aconst valarray . It might even be a const valarray . We can therefore help
ourselves to the cornucopia ofvalarray operations we saw earlier.

38 valarray<int> c = v [s] + v[t];
39 valarray<double> d = s qrt(v[s]); //if v were a valarray<double>

Remember, though, thatv is now aconst . Thev[s] is no longer an lvalue, so we cannot say

40 v[s] = sqrt(c);

And v[s] is not necessarily an object of typevalarray , which means there is no way to write a portable
operator<< for v[s] . The moral, once again, is to copy the final result into avalarray .

41 cout << v[s]; //No way to make this portable.
42 cout << valarray<int>(v[s]); //Must say this instead.

A multi-dimensional matrix

The Sieve example was intended only as a learning tool. The real purpose of slicing is to let us
access avalarray as if its elements were arranged in rows and columns. This gives us the raw material
for creating the vectors and matrices of Linear Algebra.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Sincev is const , the expressionsv[row0] andv[col0] can be multiplied together as if they
werevalarray ’s. (They might even be valarray ’s.) If v were notconst , these expressions would
be slice_array ’s. They would have to be converted tovalarray ’s before the* operator could be
applied to them. In both cases, the product would have all the friends andconst member functions as a
valarray . (It might even be avalarray .)

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/dimension.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray>
4 using namespace std;
5
6 i nt main()
7 {
8 i nt a[] = {2, 3, 5, 7};
9 c onst valarray<int> v(a, sizeof a / sizeof a[0]);

10
11 /*
12 Treat the valarray as if it were the following 2 by 2 matrix.
13 This interpretation, called "row-major order", is used in C and C++.
14 2 3
15 5 7
16 */
17 slice row0(0, 2, 1); //row vector containing 2 and 3
18 slice col0(0, 2, 2); //column vector containing 2 and 5
19 cout << (v[row0] * v[col0]).sum() << "\n";
20
21 /*
22 Treat the valarray as if it were the following 2 by 2 matrix.
23 This interpretation, called "column-major order", is used in Fortran.
24 2 5
25 3 7
26 */
27 slice fortran_row0(0, 2, 2); //row vector containing 2 and 5
28 slice fortran_col0(0, 2, 1); //column vector containing 2 and 3
29 cout << (v[fortran_row0] * v[fortran_col0]).sum() << "\n";
30 return EXIT_SUCCESS;
31 }

19 = 2 × 2 + 3× 5 (dot product)
19 = 2 × 2 + 5× 3

A multi-dimensional slice

Consider the matrix

0 1 2 3 4
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34

and its two-dimensional submatrix

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.4 Array Operations with valarray 905

906 Containers,Iterators, and Algorithms Chapter 8

11 12 13
21 22 23

The top row of the submatrix is

11 12 13

This row can be described byslice(6, 3, 1) . The left column of the submatrix is

11
21

This column can be described byslice(6, 2, 5) . Together, these two slices span the two-dimen-
sional submatrix. Both start with the element whose value is 11 and whose subscript is 6.This subscript is
the first argument in line 23. The two columns in lines 17−18 hold the remaining arguments of the con-
structors of the slices. There are two columns because the submatrix has two dimensions.

Theg in line 23 is ageneralized slice, which may have more or less than two dimensions. Thealter-
natives for the data type of thev[g] in line 24 are similar to those for thev[s] in line 15 ofslice.C on
p. 901. Sincev is const , v[g] has all the friends and public members of aconst valarray , includ-
ing thesum in line 24. If v were notconst , v[s] would be of typegslice_array<int> and we
would have to change line 24 to

1 c out << valarray<int>(v[g]).sum() << "\n";

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/gslice.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray>
4 using namespace std;
5
6 i nt main()
7 {
8 i nt a[] = {
9 0, 1, 2, 3, 4 ,

10 10, 11, 12, 13, 14,
11 20, 21, 22, 23, 24,
12 30, 31, 32, 33, 34
13 };
14 const valarray<int> v(a, sizeof a / sizeof a[0]);
15
16 const size_t n = 2; //number of dimensions of submatrix
17 size_t length1[n] = {3, 2};
18 size_t stride1[n] = {1, 5};
19
20 valarray<size_t> length(length1, n);
21 valarray<size_t> stride(stride1, n);
22
23 gslice g(6, length, stride);
24 cout << v[g].sum() << "\n";
25 return EXIT_SUCCESS;
26 }

102 = 11 + 12 + 13 + 21 + 22 + 23

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

mask_array and indirect_array

The subscript in line 18 is avalarray<bool> . The one in line 19 is avalarray<size_t> .
The resultingv[s] and v[t] have data types similar to thev[s] in line 15 ofslice.C on p. 901.
Sincev is notconst , they cannot be subscripted.To print them, we must copy the referenced elements
into avalarray and then print it.

See p. 958 for another way to permute the elements of a container.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/valarray/mask.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <valarray>
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 i nt main()
9 {

10 int v1[] = {0, 10, 20, 30, 40, 50};
11 bool s1[] = {false, true, false, true, true, false};
12 size_t t1[] = {3, 4, 1};
13
14 valarray<int> v(v1, sizeof v1 / sizeof v1[0]);
15 valarray<bool> s(s1, sizeof s1 / sizeof s1[0]);
16 valarray<size_t> t(t1, sizeof t1 / sizeof t1[0]);
17
18 valarray<int> w = v[s]; //v[s] is a mask_array<int>
19 valarray<int> x = v [t]; //v[t] is an indirect_array<int>
20
21 ostream_iterator<int> it(cout, "\n");
22 copy(&w[0], &w[w.size()], it);
23 cout << "\n";
24 copy(&x[0], &x[x.size()], it);
25 return EXIT_SUCCESS;
26 }

10 elements in original order
30
40

30 elements in a permuted order
40
10

▼ Homework 8.4.4b: print the Sieve with a mask_array

Create avalarray<int> namedw, containingn zeroes. Overwrite it with the integers from 0 to
n−1 inclusive by passing a pair oft_iterator ’s to thecopy algorithm. Thencopyw[v] into another
valarray<int> and print it, wherev is thevalarray<bool> holding the Sieve of Eratosthenes (pp.
901−902).
▲

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.4 Array Operations with valarray 907

908 Containers,Iterators, and Algorithms Chapter 8

▼ Homework 8.4.4c: play the game of life on a valarray

Let the matrix data member of classlife , and the newmatrix variable in
life::operator++ , be of typevalarray<bool> . Do not change the type oflife::matrix_t .

For convenience, give classlife the following private, static member function. It returns the sub-
script in thematrix of the element that the user sees at columnx , row y . Insert error checking if desired.

1 s tatic size_t xy(size_t x, size_t y) {return y * (xmax + 2) + x;}

The constructor will make the matrix big enough to hold thexmax columns andymax rows that
the user sees, plus the border. Thefalse in line 3 is unnecessary, since it defaults tobool() . The
initial_matrix[y-1] in line 7 is a pointer to abool .

2 l ife::life(const matrix_t initial_matrix)
3 : g(0), matrix(false, (life_ymax + 2) * (life_xmax + 2))
4 {
5 f or (size_t y = 1; y <= life_ymax; ++y) {
6 matrix[slice(xy(1, y), life_xmax, 1)]
7 = valarray<bool>(initial_matrix[y - 1], life_xmax);
8 }
9 }

For each x , y that the user sees,life::operator++ should subscript thematrix with a
gslice describing the 3× 3 submatrix centered atx , y . The result of this subscripting will be a
valarray<bool> of nine elements.Pass it to thecount algorithm to count how many of the elements
are true . (Since life::operator++ already has a local variable namedcount , you will have to
refer to the algorithm asstd::count .) At the end oflife::operator++ , thenewmatrix may be
copied intomatrix simply by saying

10 matrix = newmatrix;

Don’t bother to allow the user to specify thefilled andempty characters. Justcopy thebool ’s
to the output stream with anostream_iterator<bool> .

Another game that can be implemented with avalarray is Sudoku. It is played on a 9× 9 matrix
of integers. Theelements are accessed one row at atime, one column at a time, or one 3× 3 submatrix at a
time.
▲

8.4.5 Themin_element Algorithm and an Application
Themin_element algorithm returns an iterator referring to the smallest element in a range of terri-

tory. If the range is empty, min_element returns its second argument. With two arguments (lines 26 and
30 of the following min_element.C), it compares the elements by applying the< operator to them.If
you’re not satisfied with<, a third argument can supply a different kind of comparison (lines 33, 36, 39).
The third argument must be a predicate taking two arguments, returningtrue if its first argument is less
than its second by your definition of ‘‘less than’’.

The iterators passed tomin_element must do more than those passed tofind_if . Line 10
copies an iterator and line 13 dereferences both copies.This means they cannot be merely input iterators.
They must be at least forward iterators.They must also be forward iterators because each value is read
more than once. Note thatmin_element , like our other forward iterator algorithmadjacent_find
(p. 840), is careful not to copy any value of typeT.

The predicate passed tomin_element is more complicated that the one passed tofind_if . The
former is a predicate of two arguments; the latter, of one argument. Asusual, the data type of the elements
in the range must be the same as (or convertible to) the data type of the arguments of the predicate.Other-
wise, the call tomin_element will not compile.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

1 / /Excerpt from <algorithm>
2
3 t emplate <class FORWARD>
4 FORWARD min_element(FORWARD first, FORWARD last)
5 {
6 i f (first == last) {
7 r eturn last; //range is empty
8 }
9

10 FORWARDit = first;
11
12 while (++first != last) {
13 if (*first < *it) {
14 it = f irst;
15 }
16 }
17
18 return it;
19 }
20
21 template <class FORWARD, class COMPARE>
22 FORWARD min_element(FORWARD first, FORWARD last, COMPARE compare)
23 {
24 if (first == last) {
25 return last;
26 }
27
28 FORWARDit = first;
29
30 while (++first != last) {
31 if (compare(*first, *it)) {
32 it = f irst;
33 }
34 }
35
36 return it;
37 }

The following class and function are named after the mathematical expression

f (g(x1), g(x2))

Line 21 is the punchline. Compare thef (g1(x), g2(x)) on p. 865.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/min_element/composer_fgx1_gx2.h

1 #ifndef COMPOSER_FGX1_GX2
2 #define COMPOSER_FGX1_GX2
3 #include <functional> //for binary_function
4 using namespace std;
5
6 / /Compose the functions f(g(x1), g(x2)).
7
8 t emplate <class F, class G>
9 c lass composer_fgx1_gx2: public binary_function<typename G::argument_type,

10 typename G::argument_type,

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.5 Themin_element Algorithm and an Application 909

910 Containers,Iterators, and Algorithms Chapter 8

11 typename F::result_type> {
12 F f;
13 G g;
14 public:
15 composer_fgx1_gx2(const F& initial_f, const G& initial_g)
16 : f(initial_f), g(initial_g) {}
17
18 typename F::result_type operator()(
19 const typename G::argument_type& x1,
20 const typename G::argument_type& x2) {
21 return f(g(x1), g(x2));
22 }
23 };
24
25 template <class F, class G>
26 inline composer_fgx1_gx2<F, G> compose_fgx1_gx2(
27 const F& initial_f,
28 const G& initial_g)
29 {
30 return composer_fgx1_gx2<F, G>(initial_f, initial_g);
31 }
32 #endif

The expressionnearer_to_32_func in line 33 is a straightforward predicate; it’s the address of
the free function in lines 10−11.Unfortunately, this function has the value32 hardwired into it, so we’d
have to write a different function to search for a different number. It’s also called via a pointer, so it’s slow.

A more convenient way to make predicates is by constructing objects of classnearer_to in lines
13−19. Insteadof hardwiring the32 into an object of this class, line 36 can pass the32 as an argument to
the object’s constructor. The 32 is then used by the object’s operator() function in line 18. Line 36
can just as easily put a different number into a different object of this class. Furthermore, the
operator() is inline.

The header file<cstdlib> declares several functions namedabs .

1 i nt abs(int);
2 l ong abs(long);

(There are alsofloat , double , and long double versions, in<cmath> .) Hadthere been only one,
we would not have needed the explicit template arguments<int, int> for the ptr_fun function in
line 43.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/min_element/min_element.C

1 #include <iostream>
2 #include <cstdlib> //for abs and EXIT_SUCCESS
3 #include <vector>
4 #include <algorithm> //for min_element
5 #include <functional> //for ptr_fun
6 #include <ext/functional> //for compose1
7 #include "composer_fgx1_gx2.h"
8 using namespace std;
9

10 //Return true if the first argument is nearer to 32 than the second argument is.
11 inline bool nearer_to_32_func(int a, int b) {return abs(a - 32) < abs(b - 32);}
12
13 //Return true if the first argument is nearer to 32 than the second argument is.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

14 class nearer_to {
15 const int n;
16 public:
17 nearer_to(int initial_n): n(initial_n) {}
18 bool operator()(int a, int b) const {return abs(a - n) < abs(b - n);}
19 };
20
21 int main()
22 {
23 const int a[] = {50, 10, 30, 35, 40};
24 const size_t n = sizeof a / sizeof a[0];
25
26 const int *const p = min_element(a, a + n);
27 cout << "The smallest number in the array is " << *p << ".\n";
28
29 const vector<int> v(a, a + n);
30 vector<int>::const_iterator it = min_element(v.begin(), v.end());
31 cout << "The smallest number in the vector is " << *it << ".\n";
32
33 it = min_element(v.begin(), v.end(), nearer_to_32_func);
34 cout << "The number that’s nearest to 32 is " << *it << ".\n";
35
36 it = min_element(v.begin(), v.end(), nearer_to(32));
37 cout << "The number that’s nearest to 32 is " << *it << ".\n";
38
39 it = min_element(v.begin(), v.end(),
40 compose_fgx1_gx2(
41 less<int>(),
42 __gnu_cxx::compose1(
43 ptr_fun<int, int>(abs),
44 bind2nd(minus<int>(), 32))
45)
46);
47 cout << "The number that’s nearest to 32 is " << *it << ".\n";
48
49 return EXIT_SUCCESS;
50 }

The smallest number in the array is 10. lines 26−27
The smallest number in the vector is 10. lines 29−31
The number that’s nearest to 32 is 30. lines 33−34
The number that’s nearest to 32 is 30. lines 36−37
The number that’s nearest to 32 is 30. lines 39−47

▼ Homework 8.4.5a: flee from the nearest enemy

Thevisionary::decide on pp. 574−580 runs from the first enemy it finds.Let’s make it smart
enough to run from thenearestenemy, or from one of the nearest enemies if two or more are equally near
to thevisionary .

The predicates in lines 9, 32, and 36 have one argument; they can be passed tofind_if . The predi-
cate in line 21 has two arguments; it can be passed tomin_element .

A random access container (one whose iterators are random access) is used in line 48 so it can be
passed to thesort in line 52. Thebegin andend in line 49 are the member functions of classwabbit
that returnwabbit::const_iterator ’s. We created them on p. 578.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.5 Themin_element Algorithm and an Application 911

912 Containers,Iterators, and Algorithms Chapter 8

1 / /Excerpt from visionary.C.
2
3 / *
4 Return true if the other wabbit is near enough to w to be visible, and is not w
5 i tself. (No wabbit should be afraid of itself or should contemplate eating its
6 own flesh.)
7 * /
8
9 c lass near_to: public unary_function<const wabbit *, bool> {

10 const wabbit *const w;
11 public:
12 near_to(const wabbit *initial_w): w(initial_w) {}
13
14 bool operator()(const wabbit *other) const {
15 return other != w && dist(w, other) <= 3;
16 }
17 };
18
19 //Return true if w1 is nearer to w than w2 is.
20
21 class nearer_to: public binary_function<const wabbit *, const wabbit *, bool> {
22 const wabbit *const w;
23 public:
24 nearer_to(const wabbit *initial_w): w(initial_w) {}
25
26 bool operator()(const wabbit *w1, const wabbit* w2) const {
27 //Imitate the nearer_to in lines 13-19 of above min_element.C,
28 //but instead of abs, use the dist function on pp. 577−578
29 }
30 };
31
32 class can_eat: public unary_function ...
33 //Left as an exercise: see how it’s used in line 55.
34 };
35
36 class can_be_eaten_by: ... {
37 //Left as an exercise; see how it’s used in line 62.
38 };
39
40 //Move one step away from the nearest enemy in visual range.
41 //If there are none, move one step toward the nearest food in visual range.
42
43 void visionary::decide(int *dx, int *dy) const
44 {
45 //Make a v ector of all the wabbits that are near enough to be
46 //visible to this one, not counting this one.
47
48 vector<wabbit *> visibles;
49 remove_copy_if(begin(), end(), back_inserter(visibles),
50 not1(near_to(this)));
51
52 sort(visibles.begin(), visibles.end(), nearer_to(this));
53
54 vector<wabbit *>::const_iterator it =

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

55 find_if(visibles.begin(), visibles.end(), can_eat(this));
56
57 if (it != visibles.end()) {
58 step(*it, this, dx, dy); //Move one step away from the other wabbit.
59 return;
60 }
61
62 it = f ind_if(visibles.begin(), visibles.end(), can_be_eaten_by(this));
63
64 if (it != visibles.end()) {
65 step(this, *it, dx, dy); //Move one step toward the other wabbit.
66 return;
67 }
68
69 *dx = * dy = 0; //lethargic in the absence of stimulation
70 }

To verify that thedeer now flees from the nearest enemy, put more than oneblack_hole in
visual range. Compare these diagrams with the ones on p. 575.

B
0

B
1

d 1

B
0

B
1

d

1

This deer has four enemies in visual range. It will be driven around and around the numbered path.

B
0

B
1

B
2

B
3

d1

2 3

Unfortunately, this deer will step away from oneblack_hole right into the other.

B
0

B
1

d

And thisalien will bump its head against theboulder .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.4.5 Themin_element Algorithm and an Application 913

914 Containers,Iterators, and Algorithms Chapter 8

A b s

▲

8.5 TheRudiments of Dispatching
Each algorithm in the Standard Template Library requires a certain minimum category of iterator.

copy requires its first two arguments to be at least input iterators;min_element requires forward itera-
tors;reverse_copy requires bidirectional; andsort requiresrandom_access .

The iterators passed to an algorithm may exceed the minimum requirements.copy , for example,
will happily accept iterators that are forward, bidirectional, or random access. In fact, it will run faster with
random access iterators.

We can write several implementations for each algorithm, and let the computer select the one that
best exploits the category of iterator passed as an argument. To perform the selection at compile time, we
will make sophisticated use of an elementary topic that has lain dormant since Chapter 1: function name
overloading.

8.5.1 Dispatchthe advance algorithm
Let’s start with a simple algorithm. The library has one namedadvance that advances an input iter-

ator by adding an integer to it. Here is a pseudo-code definition showing that each category of iterator has
its own strengths and weaknesses.

(1) We hope that the iterator argumentit is random access. If so, it can be advanced or retracted in
a single bound (lines 6−8). Note thatd could be negative.

(2) If the iterator is merely bidirectional, the+= operator cannot be applied to it.We can still get the
job done, but more slowly (lines 10−18). Once again,d could be negative.

(3) If the iterator is merely a forward or input iterator, d must be non-negative. Now we hav eto do
error checking (lines 20−29).

(4) If the argument is none of the above—merely an output iterator, or not an iterator at all—we
should issue a compilation error (lines 31−33).

1 / /Pseudo-code excerpt from <iterator>
2
3 t emplate <class ITERATOR, class DIFFERENCE_TYPE>
4 v oid advance(ITERATOR& it, DIFFERENCE_TYPE d) //read/write reference
5 {
6 i f (it is a random access iterator) {
7 i t += d ;
8 }
9

10 else if (it is a bidirectional iterator) {
11 for (; d > 0; --d) {
12 ++it;
13 }
14
15 for (; d < 0; ++d) {
16 --it;
17 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

18 }
19
20 else if (it is a forward or input iterator) {
21 if (d < 0) {
22 cerr << "Can’t move a non-bidir iterator backwards.\n";
23 exit(EXIT_FAILURE);
24 }
25
26 for (; d > 0; --d) {
27 ++it;
28 }
29 }
30
31 else {
32 compilation error: output iterator would need* before each++
33 }
34 }

The advance algorithm is not needed if we already know the iterator’s category. In this case, we
know enough to advance the iterator in the fastest way: line 49 for a random access iterator, lines 54−55 for
a bidirectional. advance is needed only inside another algorithm.At line 40, for example, all we have is
the opaque nameITERATOR. We don’t know the category ofit , and advance must be called to select
the best code.

35 template <class ITERATOR>
36 void tiny_algorithm(ITERATOR it)
37 {
38 //Need to call advance here: the category of it may be different
39 //each time the tiny_algorithm is called.
40 advance(it, 2);
41 }
42
43 int main()
44 {
45 const int a[] = {10, 20, 30, 40, 50};
46 const size_t n = sizeof a / sizeof a[0];
47
48 int *it1 = a;
49 it1 += 2; //No need to call advance here--we know it1 is random access.
50 tiny_algorithm(it1);
51
52 list<int> li(a, a + n)
53 list<int>::iterator it2 = li.begin();
54 ++it2; //No need to call advance here--we know it2 is bidirectional.
55 ++it2;
56 tiny_algorithm(it2);

Now let’s make the pseudo-code compile.To avoid conflict with the standard library algorithm
advance , we will name our functionmy_advance , in line 50 of the followingadvance.C .

For most applications, the best code is the fastest code. Selecting the best code for each possible cat-
egory of iterator is calleddispatching,performed at compile time by function name overloading. Instead
of writing the pseudocodeif-else with three clauses, we will give the same name to three functions.
The functions will have to differ in the number or data type of their arguments.

Recall that we have five iterator category tag classes (p. 842). Although they are empty, they still
count as different data types. Most of them are related by inheritance.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.1 Dispatch theadvance algorithm 915

916 Containers,Iterators, and Algorithms Chapter 8

57 //Excerpt from <iterator>
58
59 struct input_iterator_tag {};
60 struct output_iterator_tag {};
61 struct forward_iterator_tag: public input_iterator_tag {};
62 struct bidirectional_iterator_tag: public forward_iterator_tag {};
63 struct random_access_iterator_tag: public bidirectional_iterator_tag {};

input_iterator_tag output_iterator_tag

forward_iterator_tag

bidirectional_iterator_tag

random_access_iterator_tag

The iterator_category member of any iterator_traits class is a typedef (an alternative
name) for one of the above five classes. Theones we will need for the following program are

iterator_traits<vector<int>::iterator>::iterator_category

which is a typedef forrandom_access_iterator_tag ;

iterator_traits<list<int>::iterator>::iterator_category

which is a typedef forbidirectional_iterator_tag ; and

iterator_traits<node::iterator>::iterator_category

which we made a typedef forforward_iterator_tag (p. 806).

When 63 passes avector<int>::iterator to the template functionmy_advance in line 50,
the computer behaves as if we had called a copy of this function with every occurrence of the nameINPUT
changed tovector<int>::iterator . For example, the data type

typename iterator_traits<INPUT >::iterator_category

in line 53 is changed to

typename iterator_traits<vector<int>::iterator >::iterator_category

As we remarked, this data type is a typedef for classrandom_access_iterator_tag . Line 53
therefore constructs an anonymous object of this class.Its constructor takes no arguments, which is why
the parentheses are empty. (Classrandom_access_iterator_tag actually has no constructor at all,
but we hav eto write the parentheses anyway to create an object of this class.) The anonymous object is
passed to one of the__my_advance functions. Like an iterator and adifference_type , a tag object
is small enough to be passed by value.

To show that the__my_advance functions should not be called directly by the user, their names
start with a double underscore. There are several of them, in lines 10, 18, and 33, so their arguments must
differ. Since line 63 calledmy_advance with a vector<int>::iterator argument, lines 52−53
call the __my_advance whose third argument is anrandom_access_iterator_tag (line 10).
Line 10 doesn’t even bother to declare a name for the third argument because its value is never used. In

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

fact, it has no value at all—it’s an empty object. Only the data type of the argument is used, to navigate us
from lines 52−53 to line 10.For other arguments whose value is not used, see pp. 585−587.

All the work of advancing the iterator is done in the__my_advance at line 10. The function in
line 50 was merely adispatching function: a trick to make the call that originates in line 63 end up at line
10. A dispatching function is an inline call-through.Even better, the decision to go from lines 52−53 to
line 10 is made at compile time, not at runtime, since that is when the computer decides which function
with an overloaded name to call.

If lines 9−15 were deleted, lines 52−53 would be happy to call the __my_advance in line 18
because arandom_access_iterator_tag is also abidirectional_iterator_tag . But
given a choice between the__my_advance ’s in lines 10 and 18, lines 52−53 prefer line 10 because func-
tion name overloading selects the closest match.

Line 68 passes alist<int>::iterator to the dispatching function in line 50.This time, line
53 will construct an anonymous object of classbidirectional_iterator_tag and pass it to the
__my_advance in line 18.

Lastly, line 78 passes anode::iterator to the dispatching function, and line 53 constructs an
anonymous object of classforward_iterator_tag . If there were a__my_advance whose third
argument was of typeforward_iterator_tag , lines 52−53 would call it. There isn’t, but 52−53 are
happy to call the__my_advance in 33 because anforward_iterator_tag is also an
input_iterator_tag . (The forward_iterator_tag will be sliced when it is received at line 33
[pp. 490−491]. But it has no value, so no one cares.)

Every forward iterator is an output iterator as well as an input iterator, so why wasn’t class
forward_iterator_tag derived from classoutput_iterator as well as from
input_iterator ? Well, it should have been, and no one remembers why it wasn’t. Fortunately, there
is no algorithm that requires at minimum an output iterator, but that can run faster with a forward, bidirec-
tional, or random access.

If we passed an iterator that was not an input iterator to the dispatching function in line 50, lines
52−53 would have no suitable__my_advance to call and the program would not compile.And if we
passed an argument that was not an iterator at all (i.e, that had noiterator_traits), line 53 itself
would not compile.

All of the above machinery is hidden from the user. He or she simply callsmy_advance in lines
63, 68, and 78, and automatically gets the fastest code.As with any template, there is always a price to pay.
A separate instantiation of each function is created for each type of argument passed to it, and these instan-
tiations take up space. Butwe don’t care—we want the maximum speed.

The diagram shows the line number of each function definition. The dispatching function is dashed.

my_advance 50
accepts

any input iterator

__my_advance 10
receives random
access iterator

__my_advance 18
receives bidirectional

iterator that is not
random access

__my_advance 33
receives input

iterator that is not
bidirectional

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/dispatch/advance.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.1 Dispatch theadvance algorithm 917

918 Containers,Iterators, and Algorithms Chapter 8

4 #include <list>
5 #include <iterator> //for iterator_traits
6 #include "node.h"
7 using namespace std;
8
9 t emplate <class RANDOM, class DIFFERENCE_TYPE>

10 inline void __my_advance(RANDOM& it, DIFFERENCE_TYPE d,
11 random_access_iterator_tag)
12 {
13 cout << "random access iterator __my_advance\n";
14 it += d;
15 }
16
17 template <class BIDIRECTIONAL, class DIFFERENCE_TYPE>
18 void __my_advance(BIDIRECTIONAL& it, DIFFERENCE_TYPE d,
19 bidirectional_iterator_tag)
20 {
21 cout << "bidirectional iterator __my_advance\n";
22
23 for (; d > 0; --d) {
24 ++it;
25 }
26
27 for (; d < 0; ++d) {
28 --it;
29 }
30 }
31
32 template <class INPUT, class DIFFERENCE_TYPE>
33 void __my_advance(INPUT& it, DIFFERENCE_TYPE d, input_iterator_tag)
34 {
35 cout << "input iterator __my_advance\n";
36
37 if (d < 0) {
38 cerr << "Can’t move a non-bidirectional iterator backwards.\n";
39 exit(EXIT_FAILURE);
40 }
41
42 for (; d > 0; --d) {
43 ++it;
44 }
45 }
46
47 //The dispatching function is always inline.
48
49 template <class INPUT, class DIFFERENCE_TYPE>
50 inline void my_advance(INPUT& it, DIFFERENCE_TYPE d)
51 {
52 __my_advance(it, d,
53 typename iterator_traits<INPUT>::iterator_category());
54 }
55
56 int main()
57 {

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

58 const int a[] = {10, 20, 30, 40, 50};
59 const size_t n = sizeof a / sizeof a[0];
60
61 vector<int> v(a, a + n);
62 vector<int>::iterator it1 = v.begin();
63 my_advance(it1, 4);
64 cout << *it1 << "\n";
65
66 list<int> li(a, a + n);
67 list<int>::iterator it2 = li.begin();
68 my_advance(it2, 4);
69 cout << *it2 << "\n";
70
71 node *begin = new node(50, 0);
72 begin = new node(40, begin);
73 begin = new node(30, begin);
74 begin = new node(20, begin);
75 begin = new node(10, begin);
76
77 node::iterator it3 = begin;
78 my_advance(it3, 4);
79 cout << *it3 << "\n";
80
81 return EXIT_SUCCESS;
82 }

The function call in the above lines 52−53 can be split into separate statements in lines 83−84.

83 typedef typename iterator_traits<ITERATOR>::iterator_category category;
84 __my_advance(it, d, category());

random access iterator __my_advance lines 61−64
50
bidirectional iterator __my_advance lines 66−69
50
input iterator __my_advance lines 71−79
50

8.5.2 Dispatchthe copy algorithm
Perhaps the most heavily used algorithm iscopy . Here is the simplest possible definition, accepting

any type of input iterator as its first two arguments.

1 t emplate <class INPUT, class OUTPUT>
2 OUTPUT copy(INPUT first, INPUT last, OUTPUT result)
3 {
4 f or (; first != last; ++first, ++result) {
5 * result = *first;
6 }
7
8 r eturn result;
9 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 919

920 Containers,Iterators, and Algorithms Chapter 8

A separate implementation for random access iterators

To avoid conflict with the standard library algorithmcopy , we will name oursmy_copy . The dis-
patching function in the following line 39 is just like the one in line 50 of the above advance.C . Based
on the category of the first and second arguments, it will call line 9 for random access iterators, line 26 for
other categories of input iterators, and give a compilation error for arguments that are none of the above.

Suppose the first two iterators passed tomy_copy were of a random access type, represented by the
RANDOMin line 9. If we were so inclined we could then compute their difference in line 16, yielding the
number of times to iterate.To hold this result, we would need a variable of data type

typename iterator_traits<RANDOM>::difference_type

Lines 13−14 create a handy, one-word name for this type, which is just another name forint , long , etc.
We saw this use of typedef in the above lines 83−86.

Why are we doing this? See ‘‘unrolling’’, below.

my_copy 39
accepts

any input iterators

__my_copy 9
receives random
access iterators

__my_copy 26
receives input iterators

that are not random access

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/dispatch/copy1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 t emplate <class RANDOM, class OUTPUT>
9 OUTPUT __my_copy(RANDOM first, RANDOM last, OUTPUT result,

10 random_access_iterator_tag)
11 {
12 cout << "random access iterators\n";
13 typedef typename iterator_traits<RANDOM>::difference_type
14 difference_type;
15
16 for (difference_type i = last - first; i > 0; --i) {
17 *result = * first;
18 ++first;
19 ++result;
20 }
21
22 return result;
23 }
24
25 template <class INPUT, class OUTPUT>
26 OUTPUT __my_copy(INPUT first, INPUT last, OUTPUT result,
27 input_iterator_tag)
28 {

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

29 cout << "input iterators that are not random access\n";
30
31 for (; first != last; ++first, ++result) {
32 *result = * first;
33 }
34
35 return result;
36 }
37
38 template <class INPUT, class OUTPUT>
39 inline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)
40 {
41 typedef typename iterator_traits<INPUT>::iterator_category
42 iterator_category;
43
44 return __my_copy(first, last, result, iterator_category());
45 }
46
47 int main()
48 {
49 const int a[] = {10, 20, 30};
50 const size_t n = sizeof a / sizeof a[0];
51
52 //First two arguments of my_copy are random access iterators.
53 my_copy(a, a + n, o stream_iterator<int>(cout, "\n"));
54 cout << "\n";
55
56 //1st 2 args of my_copy are input iterators that are not random access.
57 list<int> li(a, a + n);
58 my_copy(li.begin(), li.end(), ostream_iterator<int>(cout, "\n"));
59
60 return EXIT_SUCCESS;
61 }

Unroll the loop

Introducing the extra variablei in the random access version of__my_copy gives us abig advan-
tage. Aloop that iterates until an integer counts down to zero (i > 0 in the above line 16) can run faster
than one that compares two arbitrary variables (first != last in the above line 31). This is not because
the expressioni > 0 can be evaluated faster thanfirst != last (although it can be). It is because a
loop that compares two iterators must perform the comparison during every iteration. But a loop that
counts down to zero can be rewritten by a smart compiler to avoid the decrement and comparison during
most iterations.The above lines 8−23 will be translated as if we had written the following function.The
program is bigger but faster.

62 template <class RANDOM, class OUTPUT>
63 OUTPUT my_copy(RANDOM first, RANDOM last, OUTPUT result)
64 {
65 typedef typename iterator_traits<RANDOM>::difference_type
66 difference_type;
67
68 for (difference_type i = (last - first) / 8; i > 0; --i) {
69 *result = * first; ++first; ++result;
70 *result = * first; ++first; ++result;
71 *result = * first; ++first; ++result;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 921

922 Containers,Iterators, and Algorithms Chapter 8

72 *result = * first; ++first; ++result;
73 *result = * first; ++first; ++result;
74 *result = * first; ++first; ++result;
75 *result = * first; ++first; ++result;
76 *result = * first; ++first; ++result;
77 }
78
79 switch (last - first) {
80 case 7: *result = *first; ++first; ++result;
81 case 6: *result = *first; ++first; ++result;
82 case 5: *result = *first; ++first; ++result;
83 case 4: *result = *first; ++first; ++result;
84 case 3: *result = *first; ++first; ++result;
85 case 2: *result = *first; ++first; ++result;
86 case 1: *result = *first; ++result;
87 case 0: break;
88
89 default: cerr << "last - first == " << last - first << " in copy\n";
90 break;
91 }
92
93 return result;
94 }

random access iterators lines 52−54
10
20
30

input iterators that are not random access lines 56−58
10
20
30

Another way to dispatch copy:
Separate implementations for pointers to memmovable objects

There is one case in whichmy_copy can be even faster. The memcpy and memmovefunctions
from the C Standard Library make a literal copy of a block of memory, bit by bit. (This is called abitwise
copy.) They use specialized machine language instructions to squeeze the maximum speed out of the hard-
ware.

The first two arguments are pointers; the third argument, asize_t , is the number of bytes to copy.

1 #include <cstring> //for memcpy, memmove, size_t
2 using namespace std;
3
4 c onst int source[] = {10, 20, 30};
5 c onst size_t n = sizeof source / sizeof source[0];
6 i nt dest[n];
7
8 memcpy (dest, source, sizeof source);
9 memmove(dest, source, sizeof source);

memcpy is faster, but we’ll usememmovebecause it works even when the source and destination overlap.
We will temporarily remove the dispatching in the previous program.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Our my_copy can do its work by callingmemmovewhenever two conditions are met. First, the
three arguments ofmy_copy must be pointers.memmoveis a C function; it knows no other type of itera-
tor.

Second, there are certain types of object that cannot be copied bymemmove. The simplest example
would be the following classintrospect , whose only purpose is to demonstrate what can go wrong
when an object is copied bymemmoveor memcpy. In this class, we require that thep data member of
each object point to the object itself; that’s why it’s called introspect .

Paradoxically,memmovewill disrupt this invariant preciselybecauseit makes a bitwise copy of the
object. Thep data member of each copied object will be left with an exact copy of its original value—but
this is the address of the original object, not the address of the copy. These objects can be copied, but only
by their copy constructor oroperator= , not by memmoveor memcpy. At the end of each object’s life,
its destructor makes sure that it is still healthy (p. 164).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/introspect/introspect.h

1 #ifndef INTROSPECTH
2 #define INTROSPECTH
3 #include <iostream>
4 using namespace std;
5
6 c lass introspect {
7 c onst introspect *const p;
8 public:
9 i ntrospect(): p(this) {}

10 introspect(const introspect&): p(this) {}
11 introspect& operator=(const introspect&) {return *this;}
12
13 friend ostream& operator<<(ostream& ost, const introspect& i) {
14 return ost << "introspect at address " << &i
15 << " c ontains " << i.p;
16 }
17
18 ˜introspect() {
19 if (p != this) {
20 cerr << "Invariant disrupted: " << *this << "\n";
21 }
22 }
23 };
24 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/introspect/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for memmove
4 #include "introspect.h"
5 using namespace std;
6
7 i nt main()
8 {
9 c onst size_t n = 3;

10 const introspect source[n];
11 introspect dest[n];
12

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 923

924 Containers,Iterators, and Algorithms Chapter 8

13 memmove(dest, source, sizeof source);
14 cout << "address of dest == " << dest << "\n";
15 return EXIT_SUCCESS;
16 }

address of dest == 0xffbff18c
Invariant disrupted: introspect at address 0xffbff194 contains 0xffbff1a0
Invariant disrupted: introspect at address 0xffbff190 contains 0xffbff19c
Invariant disrupted: introspect at address 0xffbff18c contains 0xffbff198

It’s up to us to tell the computer which types of objects can, and cannot, be copied bymemmove. To
do this, we first define the family of empty classes in lines 11−14.They will serve the same purpose as the
family of empty iterator tag classes.

__either

__true __false

We then define the template class__copy_traits in lines 16−44. This is an altruistic class, like
numeric_limits and iterator_traits , whose only purpose is to give us information about
another data typeT. It currently delivers only one fact. Thememberis_memmovable in line 24 is a
typedef for __true if objects of typeT can be copied bymemmove; __false otherwise.

The general template in lines 22−25 errs on the side of safety: it assumes that no data typeT can be
copied bymemmove. It is followed by a specialization for each data type that can be so copied.Any type
of pointer can be; it is only a minor inconvenience that read/write and read-only pointers must be listed sep-
arately in lines 27−35. The built-in types can also be copied bymemmove. To sav epaper, lines 37−41
defined specializations for only a few of them. Finally, line 43 indicates that classdate can be copied by
memmove.

Line 64 needs the parentheses in order to compile.Without them, we would be adding the pointers
result andlast .

my_copy 77
accepts

any input iterators

__my_copy 59
receives read/write pointers

to memmovable values

__my_copy 68
receives read-only pointers

to memmovable values

__my_copy 47
receives all other

input iterators

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/dispatch/copy2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for memmove
4 #include <vector>
5 #include <iterator>
6 #include <algorithm>
7 #include "introspect.h"
8 #include "date.h"
9 using namespace std;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

10
11 //The is_memmovable member of class __copy_traits is a typedef for __true or __false.
12 struct __either {};
13 struct __true : public __either {};
14 struct __false: public __either {};
15
16 /*
17 struct __copy_traits takes a data type T and tells us if a variable of that type
18 can be copied with memmove. If so, the is_memmovable member of __copy_traits<T>
19 will be a typedef for __true; otherwise it will be a typedef for __false.
20 */
21
22 template <class T>
23 struct __copy_traits {
24 typedef __false is_memmovable;
25 };
26
27 template <class T>
28 struct __copy_traits<T *> { //partial specialization
29 typedef __true is_memmovable;
30 };
31
32 template <class T>
33 struct __copy_traits<const T *> { //same as above, but with const
34 typedef __true is_memmovable;
35 };
36
37 template <> struct __copy_traits<bool > { typedef __true is_memmovable;};
38 template <> struct __copy_traits<char > { typedef __true is_memmovable;};
39 //etc.
40 template <> struct __copy_traits<double > { typedef __true is_memmovable;};
41 template <> struct __copy_traits<long double> {typedef __true is_memmovable;};
42
43 template <> struct __copy_traits<date> {typedef __true is_memmovable;};
44 //Etc.: define a specialization for each type T that can be copied with memmove.
45
46 template <class INPUT, class OUTPUT>
47 OUTPUT __my_copy(INPUT first, INPUT last, OUTPUT result, __either)
48 {
49 cout << "can’t use memmove\n";
50
51 for (; first != last; ++first, ++result) {
52 *result = * first;
53 }
54
55 return result;
56 }
57
58 template <class T>
59 T *__my_copy(T *first, T *last, T* result, __true)
60 {
61 cout << "memmove with read/write source\n";
62
63 memmove(result, first, (last - first) * sizeof (T));

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 925

926 Containers,Iterators, and Algorithms Chapter 8

64 return result + (last - first);
65 }
66
67 template <class T> //same as above, but with const’s
68 T *__my_copy(const T *first, const T *last, T* result, __true)
69 {
70 cout << "memmove with read-only source\n";
71
72 memmove(result, first, (last - first) * sizeof (T));
73 return result + (last - first);
74 }
75
76 template <class INPUT, class OUTPUT>
77 inline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)
78 {
79 typedef typename iterator_traits<INPUT>::value_type value_type;
80 typedef typename __copy_traits<value_type>::is_memmovable is_memmovable;
81
82 return __my_copy(first, last, result, is_memmovable());
83 }
84
85 int main()
86 {
87 const date source1[] = {
88 date(date::july, 4, 1776),
89 date(date::october, 29, 1929),
90 date(date::december, 7, 1941)
91 };
92 const size_t n1 = sizeof source1 / sizeof source1[0];
93 vector<date> v(source1, source1 + n1);
94 my_copy(v.begin(), v.end(), ostream_iterator<date>(cout, "\n"));
95 cout << "\n";
96
97 const size_t n2 = 3;
98 const introspect source2[n2];
99 introspect dest2[n2];

100 my_copy(source2, source2 + n2, dest2);
101 copy(dest2, dest2 + n2, ostream_iterator<introspect>(cout, "\n"));
102 cout << "\n";
103
104 const size_t n3 = n1;
105 date dest3[n3];
106 my_copy(source1, source1 + n3, dest3);
107 copy(dest3, dest3 + n3, ostream_iterator<date>(cout, "\n"));
108 cout << "\n";
109
110 date source4[] = {
111 date(date::july, 20, 1969),
112 date(date::september, 11, 2001),
113 date()
114 };
115 const size_t n4 = sizeof source4 / sizeof source4[0];
116 date dest4[n4];
117 my_copy(source4, source4 + n4, dest4);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

118 copy(dest4, dest4 + n4, ostream_iterator<date>(cout, "\n"));
119
120 return EXIT_SUCCESS;
121 }

The arguments in the above line 94 are not pointers, so we can’t call memmove. The ones in 100 are
pointers, but they point to objects that cannot be copied bymemmove. The conditions formemmoveare
fulfilled only in lines 106 and 117.

can’t use memmove lines 87−95
7/4/1776
10/29/1929
12/7/1941

can’t use memmove lines 97−102
introspect at address 0xffbff0b8 contains 0xffbff0b8
introspect at address 0xffbff0bc contains 0xffbff0bc
introspect at address 0xffbff0c0 contains 0xffbff0c0

memmove with read-only source lines 104−108
7/4/1776
10/29/1929
12/7/1941

memmove with read/write source lines 110−118
7/20/1969
9/11/2001
4/8/2014

Combine the two above examples

When the following line 117 calls themy_copy in line 103, the nameINPUT in line 103 will stand
for the data typeconst int * . Thevalue_type in line 105 will be atypedef for int , and the
is_memmovable in line 106 will be a typedef for__true thanks to lines 30−33. The expression
is_memmovable() in line 108 therefore calls the constructor for class__true , passing it no arguments
and constructing an anonymous object of this class.The anonymous object, and the three other arguments
in line 108, are then passed to one of the functions named__my_copy .

There are five functions with this name, in lines 45, 63, 76, 85, and 94. The one we just called from
line 108 will be the one in line 94, because its fourth argument is__true . my_copy calls the
__my_copy in line 94 only when the arguments are pointers to objects that can be copied bymemmove.

On the other hand, when line 127 calls themy_copy in line 103, the nameINPUT in line 103 will
stand for the data typelist<int>::iterator . Once again, thevalue_type in line 105 will be
int , and theis_memmovable in line 106 will be__true . But this time, line 108 will call the
__my_copy in line 76 rather than 85 or 94 because the first pair of arguments are not pointers.

The iterator_category in lines 78−79 will bebidirectional_iterator_tag , so line
81 will construct an anonymous object of this class. The line will then pass the anonymous object, and
three other arguments, to the__my_copy in line 63, because its fourth argument is an
input_iterator_tag . (Classbidirectional_iterator_tag is derived from class
input_iterator_tag .) This__my_copy is the best we can do with a pair of
list<int>::iterator ’s, because they are input iterators that are not pointers or other random access
iterators.

Finally when line 133 calls themy_copy in line 103, the nameINPUT in line 103 will stand for the
data typeconst introspect * . Thevalue_type in line 105 will beintrospect , and the
is_memmovable in line 106 will be__false . The latter forces line 108 to call the__my_copy in

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 927

928 Containers,Iterators, and Algorithms Chapter 8

line 76: the ones in lines 85 and 94 could be called only with a fourth argument of data typetrue .

This time, the iterator_category in lines 78−79 will be
random_access_iterator_tag , so line 81 will construct an anonymous object of this class.The
line will then pass the anonymous object, and three other arguments, to the__my_copy in line 45,
because its fourth argument is arandom_access_iterator_tag . This function takes advantage of
our ability to subtract twoconst introspect * ’s.

my_copy 103
accepts

any input iterators

__my_copy 85
receives read/write pointers

to memmovable values

__my_copy 94
receives read-only pointers

to memmovable values

__my_copy 76
receives all other

input iterators

__my_copy 45
receives random
access iterators

__my_copy 63
receives input iterators

that are not random access

memmove

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/dispatch/copy3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for memmove
4 #include <list>
5 #include "introspect.h"
6 #include "date.h"
7 using namespace std;
8
9 / /The is_memmovable member of class __copy_traits is a typedef for __true or __false.

10 struct __either {};
11 struct __true : public __either {};
12 struct __false: public __either {};
13
14 /*
15 struct __copy_traits takes a data type T and tells us if a variable of that type
16 can be copied with memmove. If so, the is_memmovable member of __copy_traits<T>
17 will be a typedef for __true; otherwise it will be a typedef for __false.
18 */
19
20 template <class T>
21 struct __copy_traits {
22 typedef __false is_memmovable;
23 };
24
25 template <class T>
26 struct __copy_traits<T *> {
27 typedef __true is_memmovable;
28 };
29
30 template <class T>
31 struct __copy_traits<const T *> { //same as above, but with const

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

32 typedef __true is_memmovable;
33 };
34
35 template <> struct __copy_traits<char > { typedef __true is_memmovable;};
36 template <> struct __copy_traits<int > { typedef __true is_memmovable;};
37 //etc.
38 template <> struct __copy_traits<double > { typedef __true is_memmovable;};
39 template <> struct __copy_traits<long double> {typedef __true is_memmovable;};
40
41 template <> struct __copy_traits<date> {typedef __true is_memmovable;};
42 //Etc.: define a specialization for each type T that can be copied with memmove.
43
44 template <class RANDOM, class OUTPUT>
45 OUTPUT __my_copy(RANDOM first, RANDOM last, OUTPUT result,
46 random_access_iterator_tag)
47 {
48 cout << "random access iterators\n";
49
50 typedef typename
51 iterator_traits<RANDOM>::difference_type difference_type;
52
53 for (difference_type n = last - first; n > 0; --n) {
54 *result = * first; //(*result).operator=(*first);
55 ++first;
56 ++result;
57 }
58
59 return result;
60 }
61
62 template <class INPUT, class OUTPUT>
63 OUTPUT __my_copy(INPUT first, INPUT last, OUTPUT result,
64 input_iterator_tag)
65 {
66 cout << "input iterators that are not random access\n";
67
68 for (; first != last; ++first, ++result) {
69 *result = * first; //(*result).operator=(*first);
70 }
71
72 return result;
73 }
74
75 template <class INPUT, class OUTPUT>
76 inline OUTPUT __my_copy(INPUT first, INPUT last, OUTPUT result, __either)
77 {
78 typedef typename iterator_traits<INPUT>::iterator_category
79 iterator_category;
80
81 return __my_copy(first, last, result, iterator_category());
82 }
83
84 template <class T>
85 T *__my_copy(T *first, T *last, T* result, __true)

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 929

930 Containers,Iterators, and Algorithms Chapter 8

86 {
87 cout << "memmove with read/write source\n";
88
89 memmove(result, first, (last - first) * sizeof (T));
90 return result + (last - first);
91 }
92
93 template <class T> //same as above, but with const’s
94 T *__my_copy(const T *first, const T *last, T* result, __true)
95 {
96 cout << "memmove with read-only source\n";
97
98 memmove(result, first, (last - first) * sizeof (T));
99 return result + (last - first);

100 }
101
102 template <class INPUT, class OUTPUT>
103 inline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)
104 {
105 typedef typename iterator_traits<INPUT>::value_type value_type;
106 typedef typename __copy_traits<value_type>::is_memmovable is_memmovable;
107
108 return __my_copy(first, last, result, is_memmovable());
109 }
110
111 int main()
112 {
113 //Can be copied with memmove.
114 const int source1[] = {10, 20, 30};
115 const size_t n = sizeof source1 / sizeof source1[0];
116 int dest1[n];
117 my_copy(source1, source1 + n, dest1); //Line 108 calls 94.
118
119 //Can be copied with memmove.
120 date source2[n];
121 date dest2[n];
122 my_copy(source2, source2 + n, dest2); //Line 108 calls 85.
123
124 //Can’t be copied with memmove:
125 //the int’s are memovable, but list iterators are not pointers.
126 const list<int> li(source1, source1 + n);
127 my_copy(li.begin(), li.end(), dest1); //Line 108 calls 76; 81 calls 63.
128
129 //Can’t be copied with memmove:
130 //the iterators are pointers, but introspect’s are not memmovable.
131 const introspect source4[n];
132 introspect dest4[n];
133 my_copy(source4, source4 + n, dest4); //Line 108 calls 76; 81 calls 45.
134
135 //Any type of pointer can be copied with memmove.
136 const introspect *const source5[] = {source4, source4 + 1, source4 + 2};
137 const introspect *dest5[n];
138 my_copy(source5, source5 + n, dest5); //Line 108 calls 94.
139

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

140 return EXIT_SUCCESS;
141 }

memmove with read-only source lines 113−117
memmove with read/write source lines 119−122
input iterators that are not random access lines 124−127
random access iterators lines 129−133
memmove with read-only source lines 135−138

▲

▼ Homework 8.5.2a: can we do it with only one dispatching function?

Does the above programcopy3.C really need two dispatching functions, in lines 102 and 75?Can
we do it all with a single dispatching function?

my_copy
accepts

any input iterators

__my_copy
receives read/write pointers

to memmovable values

__my_copy
receives read-only pointers

to memmovable values

__my_copy
receives any other

random access iterators

__my_copy
receives any other

input iterators

memmove

1 t emplate <class INPUT, class OUTPUT>
2 i nline OUTPUT my_copy(INPUT first, INPUT last, OUTPUT result)
3 {
4 t ypedef typename iterator_traits<INPUT>::iterator_category
5 i terator_category;
6
7 t ypedef typename iterator_traits<INPUT>::value_type value_type;
8
9 t ypedef typename __copy_traits<value_type>::is_memmovable is_memmovable;

10
11 return __my_copy(first, last, result,
12 iterator_category(), //one of the iterator tag classes
13 is_memmovable()); //__true or __false
14 }

Hint. Which__my_copy would be called by the ‘‘intersection of sets’’ algorithm on pp. 93−94 if the iter-
ators werevector<int>::iterator ’s?

The reality is even more complicated.On my platform, the elements of a vector are stored consecu-
tively in memory, and a vector iterator is an object whose only data member is a pointer to an element.An
vector should therefore be copied bymemmove. But the iterators in line 19 are objects, not pointers, so
my_copy doesn’t recognize the opportunity to callmemmove.

15 int source[] = {10, 20, 30};

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.5.2 Dispatch thecopy algorithm 931

932 Containers,Iterators, and Algorithms Chapter 8

16 const size_t n = sizeof source / sizeof source[0];
17 vector<int> v(a, a + n);
18 int dest[n];
19 my_copy(v.begin(), v.end(), dest);

How could we make my_copy smart enough so that the above line 19 will call memmove? Note
that the existingmy_copy will call memmoveif we change line 19 to

20 my_copy(&*v.begin(), &*v.end(), dest);

but we don’t want to do that.
▲

▼ Homework 8.5.2b: dispatch the find algorithm

Dispatch thefind algorithm. If the first and second arguments are pointers (read-only or
read/write) tochar , unsigned char , or signed char , hav ethe find algorithm call the C Standard
Library functionmemchr. If the arguments are another type of random access iterator, hav efind count a
difference_type down to zero. Otherwise, compare two iterators during each iteration.

It will be simpler thancopy because you won’t hav eto worry about__copy_traits .
▲

▼ Homework 8.5.2c: dispatch the find_distance algorithm

The find_distance algorithm we wrote on p. 837 will accept any input iterators. It then incre-
ments a counter of type

typename iterator_traits<IT>::difference_type

during each iteration of a loop.

If the iterators are input iterators that are not random access, keep the existing code. But if the itera-
tors are random access, we can get rid of the counter and do the job faster. After finding the desired ele-
ment, we can find the answer by a single subtraction of two iterators. Infact, we can do the whole job sim-
ply by calling thefind algorithm and thedistance algorithm.
▲

8.6 StandardTemplate Library Summary
We hav estudied some of the STL components in depth: the containersvector , list , andmap; the

iterators for input streams, output streams, and the inserters; and the algorithmssort , copy , find ,
find_if , and min_element . The remaining components can be sketched in outline because the design
of the STL is so consistent. Full documentation is online at

http://www.sgi.com/tech/stl/

This summary covers a few components that are not officially part of the STL, but provided by many
vendors. TheSTL is the brainchild of Alexander Stepanov.

8.6.1 STLContainers
The following containers are not officially part of the STL.

slist
hash_set
hash_multiset
hash_map
hash_multimap

Classstring does not belong to the STL, but we list it here because it is STL-compliant. Classes

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

bitset andvalarray are present because they hav eanoperator[] .

re- iterator has other member functions
name of class header file ordered category [] for accessing elements

vector <vector> no random yes at , front , back
string <string> no random yes at , find , substr
deque <deque> no random yes see below
list <list> no bidirectional no see below
slist <slist> no forward no front , previous
bitset <bitset> no none yes set , reset , test
valarray <valarray> no none yes [] takesslice ’s

map <map> sorted bidirectional yes find
multimap <map> sorted bidirectional no equal_range
set <set> sorted bidirectional no lower_bound
multiset <set> sorted bidirectional no upper_bound

hash_map <hash_map> hashed forward yes
hash_multimap <hash_map> hashed forward no find
hash_set <hash_set> hashed forward no equal_range
hash_multiset <hash_set> hashed forward no

stack <stack> no none no push , top , pop
queue <queue> no none no push , front , pop

priority <priority heap none no push , top , pop
_queue _queue>

Topology

Every STL container is one-dimensional. The only hint of a non-linear data structure in the library is
the binary tree in the ‘‘heap’’ algorithms on pp. 961−962.In Chapter 9, we will impose a two-dimensional
shape on a one-dimensional container.

A container with input iterators can have an end; in fact, it can even be empty. A container whose
iterators are merely output iterators is endless.

Sequences vs. associative containers

Classesvector , string , deque , list , and slist are calledsequences.Think of each of their
elements as having a non-negative integer subscript.Classlist is doubly-linked, classslist is singly-
linked. Even the humble array is a sequence, albeit one with no member functions or member types.

A deque is a double-ended queue.Classesdeque andlist have the following member functions.

get push pop
element element element

front front push_front pop_front

back back push_back pop_back

Classesmap, set , and theirmulti - and hash_ variants are calledassociative containers. Think
of each element as having a subscript (thekey) that can be any data type.The elements of the variousmap
containers arepair objects, whose first data member is the subscript. The elements of the variousset
containers are just the subscripts themselves.

We look up a subscript by passing it to a member function of the container. The member function
find returns an iterator referring to the element with the desired subscript.Themulti - containers might
have more than one element with a given subscript. equal_range constructs and returns apair of iter-
ators delimiting the range of elements with the desired subscript, or the empty range where they would have
been had they existed. lower_bound andupper_bound return the first or second iterator in this pair,
when we need to know only where the range begins or ends.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.1 STL Containers 933

934 Containers,Iterators, and Algorithms Chapter 8

The data type of the elements of a container

The elements of a given container must all be of the same data type.The data type must be assigna-
ble. Thisdisqualifies stream objects (pp. 324−326),type_info ’s (p. 1017),facet ’s (p. 1036), and, for
that matter,rabbit ’s (pp. 200 and 311−312). Apair is assignable if its two data members are.

A reference is not assignable, but a pointer is. Containers usually hold pointers to objects, not the
objects themselves, so we can insert and access the objects without making unwanted copies of them (pp.
440−441). Oftena container holds pointers to objects of a family of data types, allowing us to call their vir-
tual functions (pp. 487−489). But even in this case, the pointers themselves are all of the same data type.
They are pointers to the common base class of all the objects.

Sorted containers

The elements of asorted container are always stored in increasing order of their subscripts.If
inserted in the wrong order, they are automatically rearranged.We saw the planets rearranged to alphabeti-
cal order on p. 788.

Increasing order is defined negatively: we never hav ea later subscript that is less than an earlier one.
Not surprisingly, ‘‘less than’’ means< by default. The< operator is applied to the subscript of each ele-
ment in the container.

Tw o subscripts are said to beequivalentif neither one is less than the other. A set or mapwill not
accept two or more elements with equivalent subscripts. Theirmulti - variants will.

In each sorted container, the choice of< for ‘‘less than’’ can be overridden (line 5). Beware: the
greater<int> in the<angle brackets> of themap is the name of a data type; thegreater<int>()
in the(parentheses) of thesort in line 14 on p. 936 is an anonymous object.

1 #include <map>
2 #include <functional> //for greater
3 using namespace std;
4
5 map<int, double> m1; //sorted in order of <
6 map<int, double, greater<int> > m2; //sorted in order of >

A priority_queue is implemented with the heap algorithms on pp. 961−962. Its elements are
ordered in a heap, not a sequence; the biggest one is always at thetop .

Hashed containers

The elements of ahashedcontainer are stored in a hash table.The hashing function accepts an ele-
ment of the hashed container and returns asize_t . By default, the hashing function is theoperator()
member function of classhash<T> , whereT is the data type of the subscript.

A hash_set or hash_map will not accept two or more elements with equal subscripts.Their
multi - variants will. Not surprisingly, ‘‘equal’’ means== by default.

In each hashed container, the choice of hashing function and the choice of== for ‘‘equals’’ can be
overridden. myhash<int> must be a class whoseoperator() takes anint and returns asize_t ;
myequality<int> must be a class whoseoperator() takes twoint ’s and returns abool .

7 #include <hash_map>
8 using namespace std;
9

10 hash_map<int, double> m1;
11 hash_map<int, double, myhash<int>, myequality<int> > m2;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Container adaptors

Classesstack , queue , and priority_queue are merelycontainer adaptors, interfaces that
allow access to part of the functionality of an underlying container. We will build one ourselves on pp.
986−988.

By default,stack andqueue are adaptors for classdeque ; priority_queue is an adaptor for
classvector . In each container, the choice of underlying container can be overridden (line 16).

12 #include <stack>
13 #include <list>
14 using namespace std;
15
16 stack<int> s1; //adaptor for deque<int>
17 stack<int, list<int> > s2; //adaptor for list<int>

Relatives of containers

We hav e listed classesstring and bitset here, even though they do not belong to the STL.
Classstring could hold any type of values (see the typedef on p. 688), but it is fastest for characters.
Classbitset has anoperator[] member function, but no iterators or other container features.

Classespair andcomplex contain two data members each. They hav eno iterators.

8.6.2 STLFunction Objects
By definition, each function object has a public, non-staticoperator() member function, prefer-

ably inline. When we say that a function object takes certain arguments and returns a value, we mean that
its operator() function does these things.

A unary function objecttakes one argumentx , does something with it, and returns the result.These
classes are derived from the template classunary_function , from which they inherit the two typedef
membersargument_type andresult_type .

A binary function objecttakes two argumentsx1 andx2 , does something with them, and returns
the result. These classes are derived from the template classbinary_function , from which they
inherit the three typedef membersfirst_argument_type , second_argument_type , and
result_type .

A generator takes no arguments and returns a result.These classes are derived from the template
classgenerator , from which they inherit the typedef memberresult_type . This template class is
not in the library, but we wrote it ourselves on p. 882.

In addition to providing the typedefs, the names of the base classesgenerator ,
unary_function , andbinary_function act as documentation.

Our first example of a function object was classgreater (p. 769). In the following line 9, the first
argument of itsoperator() is of typeconst T& . But the first template argument of its base class
binary_function in line 7 is an unadornedT, and the template argument in line 14 is an unadorned
int . The intent of the template argument is to show the data type of a variable that can be passed to the
operator() , not the mechanism by which the variable is passed.

Function objects are intended only to be passed as arguments to an algorithm.They will probably be
anonymous temporaries. Line 14 is an example.

1 #include <vector>
2 #include <functional> //for greater
3 #include <algorithm>
4 using namespace std;
5
6 t emplate <class T>
7 s truct greater: public binary_function<T, T, bool>

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.2 STL Function Objects 935

936 Containers,Iterators, and Algorithms Chapter 8

8 {
9 bool operator()(const T& x1, const T& x2) const {return x1 > x2;}

10 };
11
12 vector<int> v(argument(s) for constructor);
13 sort(v.begin(), v.end()); //increasing order (<) by default
14 sort(v.begin(), v.end(), greater<int>()); //decreasing order (>)

For each class of function object that contains data members, there is ahelper functionthat con-
structs and returns an object of that class. The classes and helper functions in §8.6.2 are declared in the
header file<functional> .

8.6.2.1 Functionobjects containing no data members

The following function objects are identical to the above greater , except for the operation per-
formed. We sawgreater on p. 769,multiplies on 810.

argument(s) of return value of
name of class operator() operator()

equal_to x1, x2 x1 == x2
not_equal_to x1, x2 x1 != x2
less x1, x2 x1 < x2
greater x1, x2 x1 > x2
less_equal x1, x2 x1 <= x2
greater_equal x1, x2 x1 >= x2

plus x1, x2 x1 + x2
minus x1, x2 x1 - x 2
multiplies x1, x2 x1 * x 2
divides x1, x2 x1 / x 2
modulus x1, x2 x1 % x2
negate x -x

logical_and x1, x2 x1 && x2
logical_or x1, x2 x1 || x2
logical_not x !x

The following group of function objects is not officially part of the STL. The ‘‘operation’’ they per-
form is merely to return an argument, or merely a data member of an argument. Theargument of each
select function is apair object, whose data members are namedfirst andsecond .

argument(s) of return value of
name of class operator() operator()

identity x x

project1st x1, x2 x1

project2nd x1, x2 x2

select1st x x.first

select2nd x x.second

Here’s an example ofidentity .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/identity.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

4 #include <functional> //for not_equal_to and bind2nd
5 #include <ext/functional> //for identity
6 #include <algorithm>
7 using namespace std;
8
9 i nt main()

10 {
11 int a[] = {0, 0, 10, 20, 30};
12 const size_t n = sizeof a / sizeof a[0];
13 vector<int> v(a, a + n);
14
15 vector<int>::iterator it =
16 //Pedantic way to find the first non-zero element.
17 //find_if(v.begin(), v.end(), bind2nd(not_equal_to<int>(), 0));
18
19 //Simpler way to find the first non-zero element.
20 find_if(v.begin(), v.end(), __gnu_cxx::identity<int>());
21
22 cout << "Subscript of first non-zero element is "
23 << distance(v.begin(), it) << ".\n";
24
25 return EXIT_SUCCESS;
26 }

Subscript of first non-zero element is 2.

Strangly, the projection objects return by value, while the others return by reference. If they hav eany
use, it lies with thetransform algorithm that takes two input containers.

The selection objects are useful for a container ofpair ’s, such as themap in line 21.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/select1st.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <map>
5 #include <iterator> //for ostream_iterator
6 #include <ext/functional> //for select1st and select2nd
7 #include <algorithm> //for transform
8 using namespace std;
9

10 int main()
11 {
12 typedef map<string, double> map_t;
13 typedef map_t::value_type pair_t;
14
15 const pair_t a[] = {
16 pair_t("Mercury", .27),
17 pair_t("Venus", .85),
18 pair_t("Earth", 1.00)
19 };
20 const size_t n = sizeof a / sizeof a[0];
21 map_t m(a, a + n);
22

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.2.1 Function objects containing no data members 937

938 Containers,Iterators, and Algorithms Chapter 8

23 //Output the subscripts. map_t::key_type is a typedef for string.
24 transform(
25 m.begin(), m.end(),
26 ostream_iterator<map_t::key_type>(cout, " "),
27 __gnu_cxx::select1st<pair_t>()
28);
29 cout << "\n";
30
31 //Output the values. map_t::mapped_type is a typedef for double.
32 transform(
33 m.begin(), m.end(),
34 ostream_iterator<map_t::mapped_type>(cout, " "),
35 __gnu_cxx::select2nd<pair_t>()
36);
37 cout << "\n";
38
39 return EXIT_SUCCESS;
40 }

Earth Mercury Venus lines 23−29: subscripts (in alphabetical order)
1 0.27 0.85 lines 31−37: the corresponding values

8.6.2.2 Functionobjects containing a pointer to a free function

A pointer_to_unary_function<ARG, RETURN> is a function object that contains a
pointer to a free (i.e., non-member) functionp whose argument and return value are of typesARGand
RETURN. The function object takes one argumentx and returns(*p)(x) .

A pointer_to_binary_function<ARG1, ARG2, RETURN> is a function object that con-
tains a pointer to a functionp whose arguments and return value are of typesARG1, ARG2, and RETURN.
The function object takes two arguments,x1 andx2 , and returns(*p)(x1, x2) . See pp. 944−945 for a
specialization you might have to write.

Instead of mentioning the template arguments in the<angle brackets>, it’s simpler to call the tem-
plate functionptr_fun . It will construct and return apointer_to_unary_function or
pointer_to_binary_function of the correct type.

data argument(s) of return value of helper
name of class member operator() operator() function

pointer_to_unary_function p x (*p)(x) ptr_fun

pointer_to_binary_function p x1, x2 (*p)(x1, x2) ptr_fun

A pointer to a function can be passed directly to an algorithm. Line 24 passesabs directly to
transform .

A pointer to a function can be inserted into a function object, such as the one constructed by the
compose1 in line 32, only if the pointer to a function is first encased in a function object constructed by
ptr_fun . Lines 33−34 do this to two of them:sqrt andabs .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/ptr_fun.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath> //for the double sqrt and abs
4 #include <iterator> //for ostream_iterator
5 #include <functional> //for ptr_fun

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

6 #include <ext/functional> //for compose1
7 #include <algorithm>
8 using namespace std;
9

10 int main()
11 {
12 double a[] = {9, -4, 2};
13 const size_t n = sizeof a / sizeof a[0];
14 ostream_iterator<double> it(cout, " ");
15
16 //Copy each number.
17 copy(a, a + n, i t);
18 cout << "\n";
19
20 //Output the absolute value of each number.
21 transform(
22 a, a + n,
23 it,
24 static_cast<double (*)(double)>(abs)
25);
26 cout << "\n";
27
28 //Output the square root of the absolute value of each number.
29 transform(
30 a, a + n,
31 it,
32 __gnu_cxx::compose1(
33 ptr_fun(static_cast<double (*)(double)>(sqrt)),
34 ptr_fun(static_cast<double (*)(double)>(abs))
35)
36);
37 cout << "\n";
38
39 return EXIT_SUCCESS;
40 }

9 -4 2 lines 16−18
9 4 2 lines 20−26
3 2 1 .41421 lines 28−37

The above lines 24 and 34 need the cast because the library has more than one function namedabs ;
we want the one that takes and returns adouble . Instead of repeating this every time we mentionabs ,
line 15 could declare a pointerabs to the one we want.

41 double (*const abs)(double) = std::abs;

(Without thestd:: , our pointer would be initialized to itself.) Then in lines 24 and 34, we could change
the

static_cast<double (*)(double)>(abs)

to abs .

The standard library has nopointer_to_function ’s that take more than no arguments or more
than two arguments. Therand function, for example, takes no arguments. To fill a container with the
square roots of random numbers, you will have to write your own pointer_to_zeroary_function
class, and anotherptr_fun to construct apointer_to_zeroary_function .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.2.2 Function objects containing a pointer to a free function 939

940 Containers,Iterators, and Algorithms Chapter 8

42 transform(
43 a, a + n,
44 it,
45 __gnu_cxx::compose1(
46 ptr_fun(static_cast<double (*)(double)>(sqrt)),
47 ptr_fun(rand)
48)
49);

See pp. 944−945 for anotherpointer_to_function class you might have to write.

8.6.2.3 Functionobjects containing a pointer to a member function

A mem_fun_ref_t<RETURN, OBJECT> is a function object that contains a pointerp to a mem-
ber function of classOBJECT. The member function taks no arguments and returns aRETURN. The func-
tion object takes one argumentobj (an object of classOBJECTpassed as a read/write reference, hence the
nameref_) and returns(obj.*p)() .

A mem_fun_t<RETURN, OBJECT> is a function object that contains a pointerp to a member
function of classOBJECT. The member function taks no arguments and returns aRETURN. The function
object takes one argumentq (a read/write pointer to an object of classOBJECT) and returns(q->*p)() .

A mem_fun1_ref_t<RETURN, OBJECT, ARG> is a function object that contains a pointerp
to a member function of classOBJECT. The argument and the return value of the member function are of
types ARGand RETURN. The function object takes two arguments,obj (an object of classOBJECT
passed as a read/write reference) andx (of classARG), and returns(obj.*p)(x) .

A mem_fun1_t<RETURN, OBJECT, ARG> is a function object that contains a pointerp to a
member function of classOBJECT. The argument and the return value of the member function are of types
ARGandRETURN. The function object takes two arguments,q (a read/write pointer to an object of class
OBJECT) andx (of classARG), and returns(q->*p)(x) .

There are alsoconst_ variants, in which the member function is aconst member function.In
this case, the object of classOBJECTis passed to the function object as a read-only reference or read-only
pointer.

data argument of return value of
name of class member operator() operator() helper function

mem_fun_ref_t
const_mem_fun_ref_t

p obj (obj.*p)() mem_fun_ref

mem_fun_t
const_mem_fun_t

p q (q->*p)() mem_fun

data arguments of return value of
name of class member operator() operator() helper function

mem_fun1_ref_t
const_mem_fun1_ref_t

p obj, x (obj.*p)(x) mem_fun_ref

mem_fun1_t
const_mem_fun1_t

p q, x (q->*p)(x) mem_fun

Here are examples ofmem_fun_ref andmem_fun.

(1) Theclear in line 28 is a non-const member function of classstring , taking no arguments
and returningvoid . The mem_fun_ref in that line therefore constructs and returns an anonymous
object of type

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

mem_fun_ref_t<void, string>

and themem_fun in line 29 constructs and returns an anonymous object of type

mem_fun_t<void, string>

(2) Thesize in line 33 is aconst member function of classstring , taking no arguments and
returningstring::size_type . Themem_fun_ref in that line constructs and returns an anonymous
object of type

const_mem_fun_ref_t<string::size_type, string>

and themem_fun in line 34 constructs and returns an anonymous object of type

const_mem_fun_t<string::size_type, string>

Theat in line 22 is aconst member function of classstring , because we’re storing it’s address
into a pointer to that type in line 21. (There is anotherat function that is a non-const member function
of classstring , so we specify once and for all which one we want.) Ittakes an argument of type
string::size_type and returns astring::value_type , which is just a hypercorrect way of say-
ing char . Themem_fun_ref in line 24 constructs and returns an anonymous object of type

const_mem_fun1_ref_t<string::value_type, string, string::size_type>

and themem_fun in line 25 constructs and returns an anonymous object of type

const_mem_fun1_t<string::size_type, string, string::size_type>

Lines 28−29 call thefor_each algorithm becausestring::clear has no argument or return
value. Lines33−34 call thetransform with one source range becausestring::size has a return
value but no argument. Thestream iterator in line 32 prints thestream::size_type returned by the
calls tosize . Lines 24−25 call thetransform with two source ranges becausestring::at has an
argument and a return value. Thestream iterator in line 23 prints thestream::size_type returned by
the calls tosize .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/mem_fun.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <iterator>
5 #include <functional>
6 #include <algorithm>
7 using namespace std;
8
9 i nt main()

10 {
11 const size_t n = 3;
12 string a[n] = {"abe", "ike", "jake"}; //container of objects
13 string *b[n] = { //container of pointers to objects
14 new string("abe"),
15 new string("ike"),
16 new string("jake")
17 };
18 string::size_type c[n] = {1, 2, 3}; //container of subscripts
19
20 //Call the at member function of each object, print the return values.
21 string::const_reference (string::*const at)(string::size_type) const =
22 &string::at;

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.2.3 Function objects containing a pointer to a member function 941

942 Containers,Iterators, and Algorithms Chapter 8

23 ostream_iterator<string::value_type> it1(cout, " ");
24 transform(a, a + n, c, i t1, mem_fun_ref(at)); cout << "\n";
25 transform(b, b + n, c, i t1, mem_fun (at)); cout << "\n";
26
27 //Call the clear member function of each object. It returns no value.
28 for_each(a, a + n, m em_fun_ref(&string::clear));
29 for_each(b, b + n, m em_fun (&string::clear));
30
31 //Call the size member function of each object, print the return values.
32 ostream_iterator<string::size_type> it2(cout, " ");
33 transform(a, a + n, i t2, mem_fun_ref(&string::size)); cout << "\n";
34 transform(b, b + n, i t2, mem_fun (&string::size)); cout << "\n";
35
36 for (size_t i = 0; i < n; ++i) {
37 delete b[i];
38 }
39 return EXIT_SUCCESS;
40 }

b e e line 24
b e e line 25
0 0 0 line 33
0 0 0 line 34

8.6.2.4 Functionobjects containing one, two, or three other function objects

compose1 andcompose2 are not officially part of the STL. The other functions in this group are
ones we wrote ourselves. Aunary_compose<F, G> contains two unary function objects,f andg, of
typesF andG. Theunary_compose takes one argumentx of typeG::argument_type and returns
f(g(x)) .

A binary_compose<F, G1, G2> contains one binary function objectf , and two unary func-
tion objects,g1 and g2 , of typesF, G1, and G2. The binary_compose takes one argumentx and
returnsf(g1(x), g2(x)) . The argumentx must be convertible toG1::argument_type and
G2::argument_type .

A composer_fg<F, G> (p. 882) contains one unary function objectf and generator objectg, of
typesF andG. Thecomposer_fg takes no arguments and returnsf(g()) .

A composer_fgx1_x2<F, G> (pp. 894−895) contains one unary function objectf and binary
unary function objectg, of typesF andG. Thecomposer_fgx1_x2 takes two argumentsx1 andx2 , of
typeG::first_argument_type andG::second_argument_type , and returns
f(g(x1, x2)) .

A composer_fgx1_gx2<F, G> (p. 909) contains one binary function objectf and one unary
function objectg, of typesF andG. Thecomposer_fgx1_gx2 takes two argumentsx1 andx2 , of type
G::argument_type , and returnsf(g(x1), g(x2)) .

A unary_negate<G> contains a unary function objectg of typeG. The unary_negate takes
one argumentx of type G::argument_type and returns!g(x) . Class unary_negate is just a
shorthand. Ifit did not exist, we could construct an object that does the same thing asnot1(g) by saying

compose1(logical_not<G::result_type>(), g)

A binary_negate<G> contains a binary function objectg of type G. The binary_negate
takes two arguments,x1 andx2 , of typesG::first_argument_type and
G::second_argument_type , and returns !g(x1, x2) . Class binary_negate is just a

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

shorthand. Ifit did not exist, we could construct an object that does the same thing asnot2(g) by saying

compose_fgx1_x2(logical_not<G::result_type>(), g)

data argument(s) of return value of
name of class member(s) operator() operator() helper function

composer_fg f, g none f(g()) compose_fg
unary_compose f, g x f (g(x)) compose1
composer_fgx1_x2 f, g x 1, x2 f(g(x1, x2)) compose_fgx1_x2

composer_fgx1_gx2 f, g x 1, x2 f(g(x1), g(x2)) compose_fgx1_gx2
binary_compose f, g1, g2 x f (g1(x), g2(x)) compose2

unary_negate g x ! g(x) not1
binary_negate g x1, x2 !g(x1, x2) not2

To construct an anonymous function object whoseoperator() takes an argumentx and returns
f(g(h(x))) , say either of the following. They do the same thing; a mathematician would say that
‘‘ function composition is associative.’’

1 c ompose1(f, compose1(g, h))
2 c ompose1(compose1(f, g), h)

In fact, you could easily define the following helper function.

3 #include <ext/functional>
4 using namespace std;
5
6 t emplate <class F, class G, class H>
7 i nline __gnu_cxx::unary_compose<F, __gnu_cxx::unary_compose<G, H> >
8 c ompose_fghx(const F& f, const G& g, const H& h)
9 {

10 return __gnu_cxx::compose1(f, __gnu_cxx::compose1(g, h));
11 }

and then say

12 compose_fghx(f, g, h)

8.6.2.5 Functionobjects containing a function object and an argument for it

A binder1st<F> contains a binary function objectf of typeF and a valuex1 of type
F::first_argument_type . Thebinder1st takes an argumentx2 of type
F::second_argument_type and returnsf(x1, x2) .

A binder2nd<F> contains a binary function objectf of typeF and a valuex2 of type
F::second_argument_type . Thebinder2nd takes an argumentx1 of type
F::first_argument_type and returnsf(x1, x2) .

Binders appeared on pp. 861−864.

name data argument of return value of helper
of class members operator() operator() function

binder1st f, x1 x2 f(x1, x2) bind1st
binder2nd f, x2 x1 f(x1, x2) bind2nd

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.2.5 Function objects containing a function object and an argument for it 943

944 Containers,Iterators, and Algorithms Chapter 8

▼ Homework 8.6.2.5a: a pointer_to_function specialization

The following code adds 10 to each integer in the vector. The calls tobind2nd are successful in
lines 14 and 17. But why won’t the one in line 20 compile?

1 #include <iostream>
2 #include <vector>
3 #include <iterator> //for ostream_iterator
4 #include <functional> //for ptr_fun, bind2nd, plus
5 #include <algorithm> //for transform
6 using namespace std;
7
8 i nline int sum(int i, int j) {return i + j;}
9 i nline int crsum(const int& i, const int& j) {return i + j;}

10
11 vector<int> v(argument(s) for constructor);
12
13 transform(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"),
14 bind2nd(ptr_fun(sum), 10));
15
16 transform(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"),
17 bind2nd(plus<int>(), 10));
18
19 transform(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"),
20 bind2nd(ptr_fun(crsum), 10));

Thecrsum in the above line 20 is a pointer to a function. The pointer is of the following data type.
We underline the part that will eventually get us into trouble.

int (*)(const int&, const int&)

The data type of this pointer causes theptr_fun to construct and return a
pointer_to_binary_function object whose membersecond_argument_type is a typedef for
const int& . This typedef causes thebind2nd to construct and return abinder2nd object whose sec-
ond data member is of typeconst int& . (We saw the data member on line 48 of the definition for class
binder2nd on p. 863.) Not surprisingly, this data member is initialized by the second argument passed
to thebinder2nd ’s constructor (the10 in the above line 20). The argument is passed by reference; as
usual, it is a reference to the data type of the data member. But the data member is already a reference, and
there is no such thing as a reference to a reference. The program does not compile.

Fix it by specializing thepointer_to_binary_function template class as follows. If its con-
structor receives a pointer to a function whose second argument is a reference to aconst data type, the
constructor will construct apointer_to_binary_function object whose member
second_argument_type is a typedef for the same data type, but without the ‘‘reference to’’ (line 24).
In othr words, the data typeX2& in line 23 is stripped down to plain oldX2 in line 24.

To get it to compile withg++, I had to strip theconst out of the data type as well. Theg++
binder2nd has twooperator() member functions, taking arguments of type
first_argument_type& andconst first_argument_type& . These types will be distinct only
if first_argument_type is notconst .

21 namespace std {
22 template <class X1, class X2, class Y>
23 class pointer_to_binary_function<const X1&, const X2&, Y>:
24 public binary_function<X1, X2, Y> {
25 protected:
26 Y (*p)(const X1&, const X2&);
27 public:

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

28 explicit pointer_to_binary_function(Y (*initial_p)(const X1&, const X2&))
29 : p(initial_p) {}
30
31 Y operator()(const X1& x1, const X2& x2) const {return (*p)(x1, x2);}
32 };
33 }

▲

8.6.3 STLAlgorithms

A r ange of elements

Let first and last be a pair of iterators referring to elements in the same container, or to the
empty slot after the last element where the next element would be. Then the notation

[first, last)

represents the range of elements fromfirst to last , including the element to whichfirst refers but
not including the one to whichlast refers. If first and last are equal, the range is empty. Other-
wise,first must refer to an element that is earlier thanlast .

These conventions allow us to use the notation[first, last) for all ranges, even empty ones.
And, of course, the ‘‘container’’ need not be a container at all. The two iterators might be stream iterators
referring to the standard input, an input file, or a TCP/IP socket.

Note, however, that a range cannot be delimited by iterators that are merely output iterators.There is
no guarantee that output iterators can be compared, so our definition of when the range is empty or non-
empty becomes meaningless.To define an output range, we specify one output iterator and an integer
count. Examplesare the_n algorithms:generate_n , fill_n , uninitialized_fill_n ,
random_sample_n (but notsearch_n).

Algorithms that search for an element in a range[first, last) do not return the element.They
return an iterator that refers to the element, orlast if the element is not found. The iterator gives us
access to the element, and, if the iterator is not merely an input iterator (p. 837), tells us where in the con-
tainer the element was located.

The data type of the elements

Let T be the data type of each element in the range whose iterators are passed to an algorithm.The
‘‘ numeric’’ algorithms (pp. 962−964) assume thatT is a type such asfloat , double , or
complex<double> : one that can be copied quickly and with no side effects. Thesealgorithms pass and
return aT by value. Theother algorithms make no such assumption andalways pass and return aT by ref-
erence.

Other arguments and return values—iterators, predicates and other function objects, and miscella-
neous integers—are passed and returned by value. AT passed to or returned by a function object is passed
by reference, except for the projection function objects.

The numeric algorithms are defined in the header file<numeric> . The other algorithms in §8.6.3
are defined in<algorithm> .

Shorthand declarations for the algorithms

The algorithms are template functions, so each ‘‘declaration’’ should be preceded by a template pre-
amble.

1 t emplate <class FOR> FOR adjacent_find(FOR first, FOR last);

We omit the preamble to save space.

2 FOR adjacent_find(FOR first, FOR last);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3 STL Algorithms 945

946 Containers,Iterators, and Algorithms Chapter 8

The following conventional names are used for template arguments that stand for data types.

IN is an input iterator. IN2 is another type of input iterator, not necessarily the same asIN . OUTis
an output iterator. FORis a forward iterator. FOR2is another type of forward iterator, not necessarily the
same asFOR.

UPREDis a unary predicate: a function or function object that will take one of the elements and
return abool or a value convertible thereto.BPREDis a binary predicate.FUNC2is a binary function.
GENERATORis a function of no arguments.UNARYis a unary function;BINARY is a binary function.

DIFFERENCEis thedifference_type of the iterators passed in.N is an integer. RNGis a ran-
dom number generator (an object such as asubtractive_rng with anoperator(n) member func-
tion that returns a random number greater than or equal to zero and less thann).

8.6.3.1 Read-onlyAlgorithms

A read-only algorithm does not, by itself, assign a value to an element in a range.An assignment
might performed, however, by a function or function object passed to the algorithm, and applied by the
algorithm to each element in the range.We did this with the function objects passed tofor_each on pp.
880−881. Infact, nothing prevents us from defining anoperator== that assigns a new value to its oper-
ands, and having a read-only algorithm apply thisoperator== to the elements. Nothing, that is, except a
decent respect for the opinions of mankind.

8.6.3.1.1 Apply no predicate to the elements

Algorithms that do not access the values of the elements at all

1 t emplate <class INPUT, class DIFFERENCE_TYPE d>
2 v oid advance(INPUT& it, DIFFERENCE_TYPE d); //read/write reference
3
4 t emplate <class INPUT>
5 t ypename iterator_traits<INPUT>::difference_type
6 v oid distance(INPUT first, INPUT last);

The advance algorithm moves the iterator forwards or backwards by the specified number of ele-
ments. d can be negative only if the iterator is at least bidirectional as well as forward. Beware: the first
argument is passed as a read/write reference (pp. 73−74).

Thedistance algorithm returns the number of elements in a range. Its return type is the
difference_type for the given type of iterator. For example,int * iterators will yield a
ptrdiff_t ; vector<int>::iterator ’s will yield a vector<int>::difference_type .
Other algorithms that return thedifference_type arecount , count_if , and the
find_distance we wrote on p. 837.

advance anddistance were given word names, rather than the names ‘‘operator+= ’’ and
‘‘ operator- ’’ , to remind the user of the cost of calling them.They are fast for random access iterators,
but slower for other categories.

Algorithms that call a function during each iteration of a loop

1 t emplate <class INPUT, class FUNCTION>
2 FUNCTION for_each(INPUT first, INPUT last, FUNCTION f);
3
4 t emplate <class FORWARD, class FUNCTION>
5 v oid generate(FORWARD first, FORWARD last, FUNCTION f);
6
7 t emplate <class OUTPUT, class N, class FUNCTION>
8 OUTPUT generate_n(OUTPUT first, N n, FUNCTION f);
9

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

10 template <class INPUT, class OUTPUT, class FUNCTION>
11 OUTPUT transform(INPUT first, INPUT last, OUTPUT result, FUNCTION f);
12
13 template <class INPUT1, class INPUT2, class OUTPUT, class FUNCTION>
14 OUTPUT transform(INPUT1 first1, INPUT1 last1,
15 INPUT2 first2, OUTPUT result, FUNCTION f);

See the diagram on p. 878 for a summary of these algorithms.The f passed tofor_each and the
one-input-rangetransform must accept an element of the input range as its argument. Thef passed to
the two-inpyt-rangetransform must accept an element of each range as its two arguments. Thef
passed togenerate , generate_n , and transform must return a value that can be stored into each
element of the output range.

To transform avalarray , see pp. 899−900.

8.6.3.1.2 Checkthe elements one at a time

1 t emplate <class INPUT, class T>
2 I NPUT find(INPUT first, INPUT last, const T& t);
3
4 t emplate <class INPUT, class T>
5 t ypename iterator_traits<INPUT>::difference_type
6 c ount(INPUT first, INPUT last, const T& t);
7
8 t emplate <class INPUT, class T, CLASS UNARY_PREDICATE>
9 I NPUT find_if(INPUT first, INPUT last, UNARY_PREDICATE unary_predicate);

10
11 template <class INPUT, class T, CLASS UNARY_PREDICATE>
12 typename iterator_traits<INPUT>::difference_type
13 count_if(INPUT first, INPUT last, UNARY_PREDICATE unary_predicate);

find andcount compare their third argument to each element of the range. By default, the com-
parison is performed with the== operator. To substitute an alternative comparison, pass a unary predicate
to find_if andcount_if .

find and find_if return last if nothing is found; otherwise they return an iterator referring to
the first element that satisfied them.find has a simple definition on p. 859.The C functionstrchr does
the same job for a range of characters; the member functionfind does the same job for astring object.
(A well-implementedfind would be dispatched to call these functions when possible.)find_if has a
simple definition on on p. 864.

count has a simple definition on p. 810. There is no need forcount andcount_if to return a
signed type, because they will never giv e us a negative value. Unfortunately, classiterator_traits
has no unsignedsize_type member corresponding to the signeddifference_type .

Classbitset has a member function that counts how many bits are1.

1 #include <iostream>
2 #include <bitset>
3 using namespace std;
4
5 bitset<32> b = 0x00000000;
6 c out << b.count() << "\n"; //print 0
7 b.flip(); //flip all 32 bits
8 c out << b.count() << "\n"; //print 32

find and find_if had to have different names. Otherwise there would be no way to know
whether the third argument was the value to search for, or the unary predicate to which each value in the
range should be passed. Ditto forcount andcount_if .

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.1.3 Check pairs of elements for equality 947

948 Containers,Iterators, and Algorithms Chapter 8

8.6.3.1.3 Checkpairs of elements for equality

1 / /There is another declaration for each of these algorithms; see below.
2
3 t emplace <class FORWARD>
4 FORWARD adjacent_find(FORWARD first, FORWARD last);
5
6 t emplace <class FORWARD, class SIZE_TYPE, class T>
7 FORWARD search_n(FORWARD first, FORWARD last, SIZE_TYPE n, const T& t);
8
9 t emplate <class INPUT, class FORWARD>

10 INPUT find_first_of(INPUT first1, INPUT last1, FORWARD first2, FORWARD last2);
11
12 template <class FORWARD1, class FORWARD2>
13 FORWARD1
14 search(FORWARD1 first1, FORWARD1 last1, FORWARD2 first2, FORWARD2 last2);
15
16 template <class FORWARD1, class FORWARD2>
17 FORWARD1
18 find_end(FORWARD1 first1, FORWARD1 last1, FORWARD2 first2, FORWARD2 last2);
19
20 template <class INPUT1, class INPUT2>
21 bool equal(INPUT1 first1, INPUT1 last1, INPUT2 first2);
22
23 template <class INPUT1, class INPUT2>
24 pair<IN, IN2> mismatch(INPUT1 first1, INPUT1 last1, INPUT2 first2);

By default, the algorithms in §8.6.3.1.3 apply the operator== to pairs of elements in the range.In
each case, an optional final argument lets us substitute a different binary predicate.For example, there are
two adjacent_find ’s:

25 templace <class FORWARD>
26 FORWARD adjacent_find(FORWARD first, FORWARD last);
27
28 templace <class FORWARD>
29 FORWARD
30 adjacent_find(FORWARD first, FORWARD last, BINARY_PREDICATE binary_predicate);

adjacent_find finds the first occurrence in[first, last) of any two consecutive equal val-
ues, returning an iterator referring to the first value. If it doesn’t find what it’s looking for, it returnslast .
See the simple algorithm on p. 840.

search_n finds the first occurrence in[first, last) of n consecutive copies oft , returning an
iterator referring to the first copy. If it doesn’t find what it’s looking for, it returnslast . See the poker
example in line 26 ofadjacent_difference.C on p. 962.

find_first_of finds the first occurrence in[first1, last1) of any of the values in
[first2, last2) . The C functionstrpbrk does the same job for a range of characters. The member
functionsfind_first_of andfind_last_of do the same job for astring object.

search finds the first occurrence in[first1, last1) of the entire range[first2, last2),
i.e., it finds a substring in a string, returning an iterator that refers to the first element in the substring.The
C function strstr does the same job for a range of characters. The member functionfind does the
same job for astring object.

find_end finds the last occurrence in[first1, last1) of the entire range[first2,
last2) . It should have been namedsearch_end . The member functionrfind does the same job for
astring object.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

equal returnstrue if the range[first1, last1) and the range of the same length starting at
first2 have the same elements. In other words, it compares two strings for equality. The C function
strcmp does the same job for two ranges of characters, returning zero if they are equal. The member
function compare does the same job for two string ’s. To compare entire objects, not just subse-
quences, use the== operator. Call theequal algorithm only when comparing subsequences of objects, or
when comparing two arrays.

31 vector<int> v1(argument(s) for constructor);
32 vector<int> v2(argument(s) for constructor);
33
34 //if the entire vectors are equal,
35 if (v1 == v2) {
36
37 //if the first five elements are equal,
38 if (equal(v1.begin(), v1.begin() + 5, v2.begin(), v2.begin() + 5)) {

Examples are line 13 ofcase_insensitive_equal_to.h on p. 951, and line 38 ofdatetime.h
on p. 953. The simplest way to implementequal is by callingmismatch .

mismatch finds the first element in[first1, last1) that is different from the corresponding
element in the range of the same length starting atfirst2 . It constructs and returns apair of two itera-
tors that refer to these elements. The Unix utilitycmp does this for two sequences of bytes.

▼ Homework 8.6.3.1.3a: let stack::operator== call mismatch

Let theoperator== friend of classstack do its work by callingmismatch .
▲

▼ Homework 8.6.3.1.3b: let cookie::operator new[] call search_n

Let theoperator new[] member function of classcookie call thesearch_n algorithm to
find the firstn consecutive false ’s in the array ofbool ’s. See p. 419.
▲

A different binary predicate in place of==

Here is a binary predicate we could use in place of the operator==. Its name echoes that of the STL
function objectequal_to . Warning: this predicate is not an ‘‘equivalence relation’’. If a is approxi-
mately equal tob, and b is approximately equal toc , it is not necessarily true thata is approximately equal
to c .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/approximately_equal_to.h

1 #ifndef APPROXIMATELY_EQUAL_TOH
2 #define APPROXIMATELY_EQUAL_TOH
3 #include <cstdlib> //for abs functions that take int and long
4 #include <cmath> //for abs functions that take float, double, long double
5 #include <functional> //for binary_function
6 using namespace std;
7
8 / /Return true if t1 and t2 are within .01 of each other.
9 / /("Close enough for government work.")

10
11 template <class T>
12 struct approximately_equal_to: public binary_function<T, T, bool> {
13 bool operator()(const T& t1, const T& t2) const {
14 return abs(t1 - t2) < .01;
15 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.1.3 Check pairs of elements for equality 949

950 Containers,Iterators, and Algorithms Chapter 8

16 };
17 #endif

We can use it as follows.

18 #include <vector>
19 #include <algorithm>
20 #include "approximately_equal_to.h"
21 using namespace std;
22
23 vector<double> v(argument(s) for constructor);
24
25 //Find the first pair of adjacent elements that are equal.
26 vector<double>::const_iterator it = adjacent_find(v.begin(), v.end());
27
28 //Find the first pair of adjacent elements that are approximately equal.
29 it = adjacent_find(v.begin(), v.end(),
30 approximately_equal_to<double>());

Or we can build a function object that does the same thing asapproximately_equal_to by using the
compose_fgx1_x2 we wrote on pp. 894−895 to compute the average.

1 #include <cmath>
2 #include <vector>
3 #include <algorithm>
4 using namespace std;
5
6 v ector<double> v(argument(s) for constructor);
7
8 / /Find the first pair of adjacent elements that are approximately equal,
9 / /but without approximately_equal_to.

10 vector<double>::const_iterator it = adjacent_find(v.begin(), v.end(),
11 compose_fgx1_x2(
12 bind2nd(less<double>(), .01),
13 compose_fgx1_x2(
14 ptr_fun(static_cast<double (*)(double)>(abs)),
15 minus<double>()
16)
17)
18);

Another binary predicate in place of==

Here is another binary predicate we could use in place of the operator==.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/case_insensitive_equal_to.h

1 #ifndef CASE_INSENSITIVE_EQUAL_TOH
2 #define CASE_INSENSITIVE_EQUAL_TOH
3 #include <cctype> //for tolower
4 #include <string> //for class string
5 #include <functional> //for binary_function, equal_to, ptr_fun
6 #include <algorithm> //for equal
7 using namespace std;
8
9 / /Return true if the strings are equal, ignoring case.

10

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

11 struct case_insensitive_equal_to: public binary_function<string, string, bool> {
12 bool operator()(const string& s1, const string& s2) const {
13 return s1.size() == s2.size() && equal(
14 s1.begin(), s1.end(),
15 s2.begin(),
16 compose_fgx1_gx2(
17 equal_to<int>(),
18 ptr_fun(static_cast<int (*)(int)>(tolower))
19)
20);
21 }
22 };
23 #endif

We can use it as follows.

24 #include <vector>
25 #include <string>
26 #include <algorithm>
27 #include "case_insensitive_equal_to.h"
28 using namespace std;
29
30 vector<string> v(argument(s) for constructor);
31
32 //Find the first pair of adjacent strings that are equal.
33 vector<string>::const_iterator it = adjacent_find(v.begin(), v.end());
34
35 //Find the first pair of adjacent strings that are equal,
36 //ignoring case.
37 it = adjacent_find(v.begin(), v.end(), case_insensitive_equal_to());

8.6.3.1.4 Checkpairs of elements for <

1 / /There is another declaration for each of these algorithms; see below.
2
3 t emplate <class INPUT1, class INPUT2>
4 bool lexicographical_compare(INPUT1 first1, INPUT1 last1,
5 I NPUT2 first2, INPUT2 last2);
6
7 t emplate <class FORWARD>
8 FORWARD min_element(FORWARD first, FORWARD last);
9

10 template <class FORWARD>
11 FORWARD max_element(FORWARD first, FORWARD last);
12
13 templace class T
14 const T& min(const T& t1, const T& t2);
15
16 templace class T
17 const T& max(const T& t1, const T& t2);

By default, the algorithms in §8.6.3.1.4 apply the operator< to the elements in the range.(They do
not attempt to apply the operator== to the elements.) In each case, an optional final argument lets us sub-
stitute a different binary predicate.For example, there are twolexicographical_compare ’s.

18 template <class INPUT1, class INPUT2>

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.1.4 Check pairs of elements for < 951

952 Containers,Iterators, and Algorithms Chapter 8

19 bool lexicographical_compare(INPUT1 first1, INPUT1 last1,
20 INPUT2 first2, INPUT2 last2);
21
22 template <class INPUT1, class INPUT2>
23 bool lexicographical_compare(INPUT1 first1, INPUT1 last1,
24 INPUT2 first2, INPUT2 last2,
25 BINARY_PREDICATE binary_predicate);

Here is a binary predicate we could use in place of the operator<.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/case_insensitive_less.h

1 #ifndef CASE_INSENSITIVE_LESSH
2 #define CASE_INSENSITIVE_LESSH
3 #include <cctype> //for tolower
4 #include <string> //for class string
5 #include <functional> //for binary_function, less, ptr_fun
6 #include <algorithm> //for lexicographic_compare
7 using namespace std;
8
9 / /Return true if s1 is less than s2 (i.e., s1 is earlier in alphabetical order),

10 //ignoring case.
11
12 struct case_insensitive_less: public binary_function<string, string, bool> {
13 bool operator()(const string& s1, const string& s2) const {
14 return lexicographic_compare(
15 s1.begin(), s1.end(),
16 s2.begin(), s2.end()
17 compose_fgx1_gx2(
18 less<int>(),
19 ptr_fun(static_cast<int (*)(int)>(tolower))
20)
21);
22 }
23 };
24 #endif

lexicographical_compare returns true if [first1, last1) is less than[first2,
last2) in lexicographical order. The following example sortsdate objects in this order to achieve
chronological order. The year of each object is the primary sort key; the month is the secondary sort key;
the day of the month is the tertiary sort key; etc. In fact, we’ve been doing lexicographical sort all along
whenever we compare two strings for alphabetical order.

To construct a ostream_iterator<datetime> (line 22 of
lexicographical_compare.C), we must first define anoperator<< for classdatetime (line 28
of datetime.h).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/datetime.h

1 #ifndef DATETIMEH
2 #define DATETIMEH
3 #include <iostream>
4 #include <iomanip>
5 #include <algorithm>
6 using namespace std;
7

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

8 c lass datetime {
9 s tatic const size_t n = 6;

10 int a[n];
11 public:
12 enum {
13 january = 1, f ebruary, march, april, may, june,
14 july, august, september, october, november, december
15 };
16
17 //error checking omitted for brevity
18 datetime(int initial_month, int initial_day, int initial_year,
19 int initial_hour, int initial_minute, int initial_second) {
20 a[0] = i nitial_year;
21 a[1] = i nitial_month;
22 a[2] = i nitial_day;
23 a[3] = i nitial_hour;
24 a[4] = i nitial_minute;
25 a[5] = i nitial_second;
26 }
27
28 friend ostream& operator<<(ostream& ost, const datetime& d) {
29 const char save = ost.fill();
30 return ost << d.a[1] << "/" << d.a[2] << "/" << d.a[0]
31 << " " << s etfill(’0’)
32 << setw(2) << d.a[3] << ":"
33 << setw(2) << d.a[4] << ":"
34 << setw(2) << d.a[5] << setfill(save);
35 }
36
37 friend bool operator==(const datetime& d1, const datetime& d2) {
38 return equal(d1.a, d1.a + datetime::n, d2.a);
39 }
40
41 friend bool operator<(const datetime& d1, const datetime& d2) {
42 return lexicographical_compare(
43 d1.a, d1.a + datetime::n,
44 d2.a, d2.a + datetime::n
45);
46 }
47 };
48
49 inline bool operator!=(const datetime& d1, const datetime& d2){return!(d1==d2);}
50 inline bool operator>=(const datetime& d1, const datetime& d2){return !(d1<d2);}
51 inline bool operator> (const datetime& d1, const datetime& d2){return d2 < d1;}
52 inline bool operator<=(const datetime& d1, const datetime& d2){return d2 >= d1;}
53 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/lexicographical_compare.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <algorithm>
5 #include "datetime.h"

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.1.4 Check pairs of elements for < 953

954 Containers,Iterators, and Algorithms Chapter 8

6 using namespace std;
7
8 i nt main()
9 {

10 datetime a[] = {
11 datetime(datetime::february, 1, 2015, 23, 0, 0),
12 datetime(datetime::february, 2, 2015, 1, 1, 1),
13 datetime(datetime::february, 2, 2015, 0, 59, 0),
14 datetime(datetime::march, 1, 2014, 0, 0, 0),
15 datetime(datetime::february, 2, 2015, 1, 0, 59),
16 datetime(datetime::february, 2, 2015, 1, 1, 0),
17 datetime(datetime::january, 3, 2015, 0, 0, 0)
18 };
19 const size_t n = sizeof a / sizeof a[0];
20
21 sort(a, a + n);
22 copy(a, a + n, o stream_iterator<datetime>(cout, "\n"));
23 return EXIT_SUCCESS;
24 }

3/1/2014 00:00:00 Sort by year. 2014 comes first.
1/3/2015 00:00:00 If years are equivalent, sort by month.January comes first.
2/1/2015 23:00:00 If months are equivalent, sort by day. The first day of the month comes first.
2/2/2015 00:59:00 If days are equivalent, sort by hour. Midnight comes first.
2/2/2015 01:00:59 If hours are equivalent, sort by minute.
2/2/2015 01:01:00 If minutes are equivalent, sort by second.
2/2/2015 01:01:01

min_element andmax_element find the first element with the maximum or minimum value in
[first, last) . They returnlast if the range is empty. See the simple definition on pp. 908−909.

min andmax take elements, not iterators that refer to elements. If neither argument is less than the
other,min andmax return their first argument. (We nev er consider the case where the arguments are equal.
The algorithms in §8.6.3.1.4 do not apply the== operator to the elements.) See the simple definition on p.
641.

8.6.3.2 Read/writealgorithms

A read/write algorithm can assign a value to an element in a range, even if no assignment is per-
formed by the function or function object passed to the algorithm.But no algorithm can resize the con-
tainer that holds the range, unless the arguments are insert iterators.Even theremove andremove_if
algorithms remove no elements. They merely take the values we want to keep and move them up to the
front of the range.

8.6.3.2.1 Apply no predicate to the elements

The algorithms in section §8.6.3.2.1 apply no predicate to the elements.

1 t emplate <class FORWARD, class T>
2 v oid fill(FORWARD first, FORWARD last, const T& t);
3
4 t emplate <class OUTPUT, class SIZE_TYPE, class T>
5 OUT fill_n(OUTPUT first, N n, const T& t);
6
7 t emplate <class OUTPUT, class INPUT>
8 OUTPUT copy(INPUT first, INPUT last, OUTPUT result);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

9
10 template <class BIDIR1, class BIDIR2>
11 BIDIR2
12 copy_backward(BIDIR1 first, BIDIR1 last, BIDIR2 result);
13
14 template <class BIDIR>
15 void reverse(BIDIRL first, BIDIR last);
16
17 template <class BIDIR, class OUTPUT>
18 OUTPUT reverse_copy(BIDIR first, BIDIR last, OUTPUT result);
19
20 template <class FORWARD>
21 void rotate(FORWARD first, FORWARD middle, FORWARD last);
22
23 template <class FORWARD, class OUTPUT>
24 OUTPUT rotate_copy(FORWARD first, FORWARD middle, FORWARD last, OUTPUT result);
25
26 template <class RANDOM>
27 void random_shuffle(RANDOM first, RANDOM last);
28
29 template <class RANDOM, class RANDOM_NUMBER_GENERATOR>
30 void random_shuffle(RANDOM first, RANDOM last, R,
31 RANDOM_NUMBER_GENERATOR&random_number_generator);
32
33 template <class INPUT, class RANDOM>
34 RANDOM random_sample(INPUT first1, INPUT last1, RANDOM first2, RANDOM last2);
35
36 template <class INPUT, class RANDOM_NUMBER_GENERATOR>
37 RANDOM random_sample(INPUT first1, INPUT last1, RANDOM first2, RANDOM last2,
38 RANDOM_NUMBER_GENERATOR&random_number_generator);
39
40 template <class FORWARD, class OUTPUT, class SIZE_TYPE>
41 RANDOM random_sample_n(FORWARD first1, FORWARD last1, OUTPUT result,
42 SIZE_TYPE n);
43
44 template <class FORWARD, class OUTPUT, class SIZE_TYPE>
45 RANDOM random_sample_n(FORWARD first1, FORWARD last1, OUTPUT result,
46 SIZE_TYPE n, RANDOM_NUMBER_GENERATOR& random_number_generator);

fill copies the value t into each element of[first, last) . fill_n copies the value t into
each element of the range of lengthn starting atfirst . See the simple definitions on pp. 966 and 853.
To fill a valarray , just assign a value to it or to a slice thereof.copy andcopy_backwards copy
the input range into the output range. If the ranges do not overlap, we can call either algorithm. If the end
of the input range overlaps with the start of the output range, callcopy . It copies the input range from
first to last , returning an iterator that refers to the element after the last element in the output range.
(If the output range is empty, the return value is the third argument.) wherethe next value would be copied,
if there were one more value. (Bycontrast, the C functionstrcpy returns the address of thestart of the
output range.) See the simple definition on p. 844 and the optimized one on pp. 919−932.

If the start of the input range overlaps with the end of the output range, callcopy_backwards . It
copies the first range fromlast to first . The third argument ofcopy_backwards refers to thelast
element in the result range; this is where the first element of the source range will be copied.
copy_backwards returns an iterator that refers to the element before the first element in the output
range. (Ifthe output range is empty, the return value is the third argument.)

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.2.1 Apply no predicate to the elements 955

956 Containers,Iterators, and Algorithms Chapter 8

Thereverse algorithm reverses the order of the values in a range, overwriting the original ones.
reverse_copy writes the values into a different destination.

rotate and rotate_copy

void rotate(FOR first, FOR middle, FOR last);
OUT rotate_copy(FOR first, FOR middle, FOR last, OUT result);

random_shuffle

void random_shuffle(RANDOM first, RANDOM last);
void random_shuffle(RANDOM first, RANDOM last, RNG& rng);

random_sample

RANDOM random_sample(IN first1, IN last1, RANDOM first2, RANDOM last2);
RANDOM random_sample(IN first1, IN last1, RANDOM first2, RANDOM last2, RNG& rng);
RANDOM random_sample_n(FOR first1, FOR last1, OUT result, N n);
RANDOM random_sample_n(FOR first1, FOR last1, OUT result, N n, RNG& rng);

Swapping algorithms

void swap(T& t1, T& t2); //read/write references
void iter_swap(FOR it1, FOR it2); //read/write iterators
FOR2 swap_ranges(FOR first1, FOR last1, FOR2 first2);

swap and iter_swap swap a pair of elements. Lines 8−10 all do the same thing; 10 is simpler
than 9 because we don’t hav eto write the asterisks.

swap_ranges swaps two ranges of equal size.

1 i nt a[] = {10, 20, 30, 40};
2 c onst size_t n = sizeof a / sizeof a[0];
3 v ector<int> v(a, a + n);
4
5 v ector<int>::iterator it1 = v.begin();
6 v ector<int>::iterator it2 = v.begin() + 1;
7
8 s wap(v[0], v[1]); //arguments are elements passed by reference
9 s wap(*it1, *it2); //arguments are elements passed by reference

10 iter_swap(it1, it2); //arguments are iterators passed by value
11
12 //Swap first two elements and last two elements.
13 //Return v.begin() + 4, which is the same as v.end().
14 swap_ranges(v.begin(), v.begin() + 2, v.begin() + 2);

Each container (except bitset and the container adaptors) has aswap member function.The
swap algorithm will call theswap member function for each container.

8.6.3.2.2 Checkthe elements one at a time

Each algorithm in §8.6.3.2.2 (except thepartition algorithms) comes in two flavors. It can
search for elements with the valuet , or it can search for elements that satisfy the unary predicate.

void replace (FOR first, FOR last, const T& t, const T& tnew);
void replace_if(FOR first, FOR last, UPRED upred, const T& tnew);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

OUT replace_copy (FOR first, FOR last, OUT result, const T& t, const T& tnew);
OUT replace_copy_if(FOR first, FOR last, OUT result, UPRED upred, const T& tnew);

FOR remove (FOR first, FOR last, const T& t);
FOR remove_if(FOR first, FOR last, UPRED upred);

OUT remove_copy (IN first, IN last, OUT result, const T& t);
OUT remove_copy_if(IN first, IN last, OUT result, UPRED upred);

BIDIR partition(BIDIR first, BIDIR last, UPRED upred);
FOR stable_partition(FOR first, BIDIR last, UPRED upred);

8.6.3.2.3 Checkpairs of elements for equality

By default, the algorithms in §8.6.3.2.3 apply the operator== to the elements in the range.An
optional final argument lets us substitute a different binary predicate.

uniq and uniq_copy

Unix programuniq ; list::uniq .

FOR unique(FOR first, FOR last);
FOR unique(FOR first, FOR last, BPRED bpred);
OUT unique_copy(IN first, IN last, OUT result);
OUT unique_copy(IN first, IN last, OUT result, BPRED bpred);

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/unique.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype> //for isspace
4 #include <string>
5 #include <functional>
6 #include <ext/functional>
7 #include <algorithm>
8 using namespace std;
9

10 struct consecutive_blanks:
11 public binary_function<string::value_type, string::value_type, bool> {
12 bool operator()(string::value_type c1, string::value_type c2) const {
13 return c1 == ’ ’ && c2 == ’ ’;
14 }
15 };
16
17 int main()
18 {
19 string s = " It was\f\n\r\t\va miracle of rare device, ";
20
21 replace_if(s.begin(), s.end(), static_cast<int (*)(int)>(isspace), ’ ’);
22 cout << "\"" << s << "\"\n";
23
24 string::iterator it = unique(s.begin(), s.end(), consecutive_blanks());
25 cout << "\"" << s.substr(0, it - s.begin()) << "\"\n";
26 cout << "\"" << s << "\"\n";
27

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.2.3 Check pairs of elements for equality 957

958 Containers,Iterators, and Algorithms Chapter 8

28 return EXIT_SUCCESS;
29 }

"It was a miracle of rare device, "
"It was a miracle of rare device, "
"It was a miracle of rare device, rare device, "

8.6.3.2.4 Checkpairs of elements for <

By default, the algorithms in §8.6.3.2.4 apply the operator< to the elements in the range.An
optional final argument lets us substitute a different binary predicate.

Permutation

bool next_permutation(BIDIR first, BIDIR last);
bool prev_permutation(BIDIR first, BIDIR last);

By default, the permutation functions apply the operator< to the elements in the range.An optional
final argument lets us substitute a different binary predicate.Since we are comparing characters in this
example, the final argument could begreater<char>() .

next_permutation returnsfalse when it has arranged the elements back into lexicographical
order. prev_permutation returnsfalse when it is given elements that are already in lexicographical
order.

To permute the elements of avalarray , see p. 907.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/permute.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include <algorithm>
5 using namespace std;
6
7 i nt main()
8 {
9 s tring s = "abc"; //"abcd" has 24 permutations; "abcde" has 120

10
11 do {
12 cout << s << "\n";
13 } while (next_permutation(s.begin(), s.end()));
14
15 cout << s << "\n";
16 return EXIT_SUCCESS;
17 }

abc lines 11−13 output 6 = 1× 2 × 3 permutations starting with and ending just beforeabc .
acb
bac
bca
cab
cba
abc line 15

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Sorting algorithms

The average-case complexity ofsort is O(N log2 N). Thismeans that if we double the number of
elements, we will more than double the time it takes to sort them. In the words of Leviticus 26:8,

And five of you shall chase a hundred,
And a hundred of you shall put ten thousand to flight.

The worst-case complexity ofsort is not specified by the C++ Standard.In older versions of C++ it was
O(N2) because it used C. A. R. Hoare’s Quicksort (1962), but now it is is O(N log2 N) because it uses
David R. Musser’s Introsort (1997).

stable_sort is guaranteed to make no unnecessary moves, leaving equivalent values in their orig-
inal order. It’s slower than plain oldsort ; worst case isON(N log2 N)2, but it will be O(N log2 N) if
enough memory is available.

Call partial_sort if you need to find only the winners for the first prize, second prize, third
prize.

void sort(RANDOM first, RANDOM last);
void stable_sort(RANDOM first, RANDOM last);
void partial_sort(RANDOM first, RANDOM middle, RANDOM last);
void partial_sort_copy(IN first1, IN last1, RANDOM first2, RANDOM last2);
void nth_element(RANDOM first, RANDOM nth, RANDOM last);
bool is_sorted(FOR first, FOR last);

list::sort

8.6.3.2.5 Assumethat < has already been applied to the elements

By default, the algorithms in §8.6.3.2.5 apply the operator< to the elements in the range.An
optional final argument lets us substitute a different binary predicate.

bool binary_search (FOR first, FOR last, const T& t);
FOR lower_bound (FOR first, FOR last, const T& t);
FOR upper_bound (FOR first, FOR last, const T& t);
pair<FOR, FOR> equal_range(FOR first, FOR last, const T& t);

OUT merge(IN first1, IN last1, IN2 first2, IN2 last2, OUT result)
void inplace_merge(BIDIR first, BIDIR middle, BIDIR last);
void inplace_merge(BIDIR first, BIDIR middle, BIDIR last, BPRED bpred);

bsearch in C Standard Library.list::merge

Set operations on a pair of ranges

These algorithms take a pair of ranges and perform a classic set operation on them: union, intersec-
tion, etc. Each range is a pair of input iterators. The container to which each pair belongs could be aset
object, but it does not have to be. Asusual, it could also be avector , list , or a plain old array.

By definition, a mathematical set contains only at most one copy of each value. Thecontent of each
range could be a mathematical set, but it does not have to be. To show that the algorithms will work cor-
rectly even if a range contains more than one copy of a value, we put two30 ’s in the containerB.

The two ranges must be sorted before they are passed to the algorithms in §8.6.3.2.5. By default, the
algorithms assume that the ranges have been sorted in order of the< operator. An optional final argument
lets us substitute a different binary predicate. Note that amultiset , like amap or aset , will automati-
cally rearrange its elements if necessary (line 13).

The algorithms in §8.6.3.2.5 assume that the elements are comparable with< or with the optional
predicate, but they do not assume that the elements are comparable with==. Instead of testing for equality,
they assume that two elements are equivalent if neither one is less than the other. Classesmap andset
compare in the same way; see p. 788.

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.2.5 Assume that < has already been applied to the elements 959

960 Containers,Iterators, and Algorithms Chapter 8

bool includes (IN first1, IN last1, IN2 first2, IN2 last2);
OUT set_union (IN first1, IN last1, IN2 first2, IN2 last2, OUT result);
OUT set_intersection (IN first1, IN last1, IN2 first2, IN2 last2, OUT result);
OUT set_difference (IN first1, IN last1, IN2 first2, IN2 last2, OUT result);
OUT set_symmetric_difference(IN first1, IN last1, IN2 first2, IN2 last2, OUT result);

A B

2010
30
30

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/set.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <set>
4 #include <iterator>
5 #include <algorithm>
6 using namespace std;
7
8 i nt main()
9 {

10 const int A[] = {10, 20};
11 const size_t nA = sizeof A / sizeof A[0];
12
13 const int b[] = {30, 20, 30};
14 const size_t nB = sizeof b / sizeof b[0];
15 const multiset<int> B(b, b + nB);
16
17 ostream_iterator<int> it(cout, " ");
18
19 cout << boolalpha << includes(A, A + nA, B.begin(), B.end()) << "\n";
20
21 cout << "union == ";
22 set_union(A, A + nA, B.begin(), B.end(), it);
23 cout << "\n";
24
25 cout << "intersection == ";
26 set_intersection(A, A + nA, B.begin(), B.end(), it);
27 cout << "\n";
28
29 cout << "difference: A - B == ";
30 set_difference(A, A + nA, B.begin(), B.end(), it);
31 cout << "\n";
32
33 cout << "difference: B - A == ";
34 set_difference(B.begin(), B.end(), A, A + nA, it);
35 cout << "\n";
36
37 cout << "symmetric difference == ";

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

38 set_symmetric_difference(A, A + nA, B.begin(), B.end(), it);
39 cout << "\n";
40
41 return EXIT_SUCCESS;
42 }

false Is it true thatA ⊇ B?
union == 10 20 30 30 A ∪ B
intersection == 20 A ∩ B
difference: A - B == 10 the elements inA but not in B
difference: B - A == 30 30 the elements inB but not in A
symmetric difference == 10 30 30 the elements in either one but not in both

Heap algorithms

void make_heap(RANDOM first, RANDOM last);
void push_heap(RANDOM first, RANDOM last);
void pop_heap(RANDOM first, RANDOM last);
void sort_heap(RANDOM first, RANDOM last);
bool is_heap(RANDOM first, RANDOM last);

Classconsecutive was on pp. 882−883.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/heap.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <algorithm>
4 #include <iterator>
5 #include "consecutive.h"
6 using namespace std;
7
8 i nt main()
9 {

10 const size_t n = 10;
11 int a[n];
12 ostream_iterator<int> it(cout, " ");
13
14 generate(a, a + n, c onsecutive<int>());
15 copy(a, a + n, i t);
16 cout << "\n";
17
18 random_shuffle(a, a + n);
19 copy(a, a + n, i t);
20 cout << "\n";
21
22 make_heap(a, a + n);
23 copy(a, a + n, i t);
24 cout << "\n";
25
26 return EXIT_SUCCESS;
27 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.2.5 Assume that < has already been applied to the elements 961

962 Containers,Iterators, and Algorithms Chapter 8

0 1 2 3 4 5 6 7 8 9
4 5 9 8 1 3 6 0 2 7
9 8 6 5 7 3 4 0 2 1

8.6.3.3 Numericalgorithms

T accumulate(IN first, IN last, T init);
T accumulate(IN first, IN last, T init, FUNC2 func2);
OUT partial_sum(IN first, IN last, OUT result);
OUT partial_sum(IN first, IN last, OUT result, FUNC2 func2);
OUT adjacent_difference(IN first, IN last, OUT result);
OUT adjacent_difference(IN first, IN last, OUT result, FUNC2 func2);

The numeric algorithms are declared in the header file<numeric> . They expectT to be a built-in
number or combination thereof (float , double , complex<double> , etc.), and therefore fast enough
to pass by value.

For accumulate , see the simple definition on p. 810.To sum the values in avalarray , see line
30 ofvalarray.C on p. 899.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/adjacent_difference.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <algorithm> //for sort, search_n
5 #include <numeric>
6 using namespace std;
7
8 i nt main()
9 {

10 //A poker hand. 11, 12, 13, 14 are J, Q, K, A.
11 int a[] = {2, 6, 3, 5, 4};
12 const size_t n = sizeof a / sizeof a[0];
13
14 ostream_iterator<int> it(cout, " ");
15 copy(a, a + n, i t);
16 cout << "\n";
17
18 sort(a, a + n);
19 copy(a, a + n, i t);
20 cout << "\n";
21
22 adjacent_difference(a, a + n, a);
23 copy(a, a + n, i t);
24 cout << "\n";
25
26 if (search_n(a + 1, a + n, n - 1, 1) == a + 1) {
27 cout << "It’s a straight.\n";
28 } else {
29 cout << "It’s not a straight.\n";
30 }
31
32 //Reconstruct the original hand.
33 partial_sum(a, a + n, a);

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

34 copy(a, a + n, i t);
35 cout << "\n";
36
37 return EXIT_SUCCESS;
38 }

2 6 3 5 4
2 3 4 5 6
2 1 1 1 1
It’s a straight.
2 3 4 5 6

▼ Homework 8.6.3.3a: let date::julian call accumulate

In the three-data member version of classdate , change the body ofdate::julian to the follow-
ing.

1 r eturn accumulate(length + 1, length + month, day);

▲

Inner product

The inner_product algorithm returns the ‘‘dot product’’ of a pair of vectors, beloved of students
of Linear Algebra. Instead of defaulting to zero as the staring value, you must supply it as the third argu-
ment. Insteadof defaulting to multiplication and addition, you can supply your own operations as the
fourth and fifth arguments.

T i nner_product(IN first1, IN last1, IN2 first2, T t);
T i nner_product(IN first1, IN last1, IN2 first2, T t, MULT mult, ADD add);

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/library/inner_product.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath> //for sqrt
4 #include <vector>
5 #include <numeric> //for inner_product
6 using namespace std;
7
8 t emplate <class T>
9 i nline T length(const vector<T>& v)

10 {
11 return sqrt(inner_product(v.begin(), v.end(), v.begin(), T()));
12 }
13
14 int main()
15 {
16 const double a1[] = {3.0, 4.0};
17 const size_t n1 = sizeof a1 / sizeof a1[0];
18 vector<double> v1(a1, a1 + n1);
19 cout << "v1: size == " << v1.size()
20 << ", length == " << length(v1) << "\n";
21
22 const double a2[] = {2.0, 3.0, 6.0};
23 const size_t n2 = sizeof a2 / sizeof a2[0];

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

Section 8.6.3.3 Numeric algorithms 963

964 Containers,Iterators, and Algorithms Chapter 8

24 vector<double> v2(a2, a2 + n2);
25 cout << "v2: size == " << v2.size()
26 << ", length == " << length(v2) << "\n";
27
28 return EXIT_SUCCESS;
29 }

v1: size == 2, length == 5
v2: size == 3, length == 7

8.6.3.4 Algorithmsfor i mplementing a new container

These algorithms were used to implement classesvector , list , map, etc. For professional use
only. Declared in the header file<memory>.

construct
destroy
uninitialized_copy
uninitialized_fill
uninitialized_fill_n
get_temporary_buffer
return_temporary_buffer

Still to do in Chapter 8:

1 i nt date::julian() const
2 {
3 r eturn accumulate(length + 1, length + month, day);
4 }

printed 4/8/14
9:06:03 AM

All rights
reserved ©2014 Mark Meretzky

