
7
Templates

Aggregation, inheritance, and templates are the three techniques for building bigger classes out of
smaller data types.Any data type can be thought of as a chunk of functionality. Templates give us a syntax
for inserting these chunks into, or withholding them from, the bigger classes that we create.

We can do the insertion whenever we find ourselves plugging different data types into the same code:

1 c lass wrapper_int {
2 i nt x;
3 i nt f();
4 } ;
5
6 c lass wrapper_date {
7 date x;
8 date f();
9 } ;

10
11 class wrapper_pointer_to_wabbit {
12 wabbit *x;
13 wabbit *f();
14 };
15
16 class wrapper_wrapper_int {
17 wrapper_int w;
18 wrapper_int f();
19 };

A ‘‘template class’’ w ill let us write the code once and for all with something like a blank.

20 class wrapper {
21 x;
22 f();
23 };

The choice of data type will be plugged into the blank at a later time, perhaps several choices at several
later times.

7.1 Template Functions
The above example plugged a data type into a ‘‘template class’’. We can also plug a data type into a

‘‘ template function’’. A summary of the differences between template functions and template classes is on
p. 757. A function is simpler than a class, but it will turn out that a template function is more complicated
than a template class.One problem is that the data type plugged into a template class is always specified

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

634 Templates Chapter7

explicitly by the user, while the type plugged into a template function usually has to be ‘‘deduced’’ by the
computer. In addition, template functions have to compensate for their lack of ‘‘partial specialization’’ (p.
702). Finally, function templates interact with function name overloading, but there is no class name over-
loading for class templates to interact with.

It will be a long road to the final apotheosis of the template paradigm in Chapters 8 and 9.We will
bite the bullet and start with template functions.

7.1.1 SimpleExamples:min, print, and swap

Operator overloading: its purpose rev ealed!

Let’s build our own version of themin function in the C++ Standard Library. The following lines
29, 34, and 39 define three functions with this name. Each function mentions a different data type, but they
are otherwise identical.To keep them identical, the objects in line 39 are passed by value. They should
have beeen passed by reference, and on p. 640 they will be.

The three functions can be overloads of the same name since their arguments are different. Thefunc-
tions belong to no namespace, while themin in the standard library belongs to namespacestd (p. 641).

We acknowledge that the comparison in line 31 seems to be backwards. Wouldn’t it be more natural
to write the code in the comment alongside? After all, the only apparent difference is that whena andb
are equal, the code returnsa and the comment returnsb. How could this be significant when the variables
are returned by value?

But the arguments and return value will soon be passed by reference (p. 640).And closer inspection
reveals that the code and the comment do not test for equality at all.What actually happens is that when
neithera norb is less than the other, the code returnsa and the comment returnsb.

Whena andb are integers, they must be equal when neither is less than the other. But for certain
exotic data types,a andb could be unequal even though neither is less than the other (p. 778). When this
happens, themin function in the library returns a reference toa (p. 641). We want ourmin to behave the
same way.

Lines 19−21 call ourmin functions with arguments of different types:int , double , date . We
assume that classdate has the default constructor in line 16, the copy constructor in line 17, and three
overloaded operators:

(1) thebinaryoperator+ in line 17;

(2) theoperator<< in line 21;

(3) theoperator< in line 41.

We also assume that themin we hard-coded for class date on p. 211 has been removed.

Thanks to theoperator< friend of classdate , the code at line 41 can be identical to that at 31
and 36. Operator overloading gives us aconvenientnotation for variables of all data types, including
objects. Butthis is only a fortunate accident. The real purpose of operator overloading is to give us the
same notation for variables of all data types.Now that the functions are identical, we will be able to
replace them with a single ‘‘template’’. (For another exmple in which templates influence our coding style,
see p. 648.)

Of course, a few exceptional data types will require different code. Line 47 needs thestrcmp func-
tion to compare strings ofchar ’s for alphabetical order. The rejected code in line 46 would merely tell us
which string begins earlier in memory.

Our min functions belong to no namespace.Anothermin , belonging to namespacestd , is declared
in the header file<algorithm> . We did not include this header directly, but it might have been included
by a header that we did include. The double colon in line 19 ensures that we will call themin that belongs
to no namespace, even if <algorithm> was included. With <algorithm> , and without theusing
namespace std; , std::min would have been the one that belongs to namespacestd , and an
unadornedmin would not have compiled.*

* Without theusing directive in line 6, an unadornedmin in line 19 would be themin that belongs to no namespace.
We would then have to prependstd:: to cout , endl , wcout , strcmp , and wcscmp. Alternatively, we could insert
printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Theendl in line 22 flushes the characters sent tocout before line 24 begins to send wide charac-
ters towcout .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/min/min1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for strcmp
4 #include <cwchar> //for wcscmp
5 #include "date.h"
6 using namespace std;
7
8 i nt min(int a, int b); //function declaration
9 double min(double a, double b);

10 date min(date a, date b);
11 const char *min(const char *a, const char *b);
12 const wchar_t *min(const wchar_t *a, const wchar_t *b);
13
14 int main()
15 {
16 date today;
17 date tomorrow = today + 1; //= operator+(today, 1);
18
19 cout << ::min(10, 20) << "\n" //calls line 29
20 << ::min(3.14, 2.71) << "\n" //calls line 34
21 << ::min(today, tomorrow) << "\n" //calls line 39
22 << ::min("hello", "goodbye") << endl; //calls line 44
23
24 wcout << ::min(L"hello", L"goodbye") << L"\n"; //calls line 50
25
26 return EXIT_SUCCESS;
27 }
28
29 int min(int a, int b) //function definition
30 {
31 return b < a ? b : a ; / /why not return a < b ? a : b;
32 }
33
34 double min(double a, double b)
35 {
36 return b < a ? b : a ;
37 }
38
39 date min(date a, date b) //should be passed and returned by reference
40 {
41 return b < a ? b : a ; / /return operator<(b, a) ? b : a;
42 }
43
44 const char *min(const char *a, const char *b)
45 {
46 //return b < a ? b : a; w ould be wrong for this data type

the declarationusing ::min; into themain function before line 19. This would let line 19 have an unadornedmin
without the need to saystd::cout .

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:min, print, and swap 635

636 Templates Chapter7

47 return strcmp(b, a) < 0 ? b : a;
48 }
49
50 const wchar_t *min(const wchar_t *a, const wchar_t *b)
51 {
52 return wcscmp(b, a) < 0 ? b : a; //wide character string compare
53 }

10 Line 19 passesint arguments to line 29.
2.71 Line 20 passesdouble arguments to line 34.
4/8/2014 Line 21 passesdate arguments to line 39.
goodbye Line 22 passesconst char * arguments to line 44.
goodbye Line 24 passesconst wchar_t * arguments to line 50.

Consolidate the repetition with a function template

Instead of writing the same function over and over, plugging in a different data type each time, we
will write a singlefunction templatenamedmin . Lines 29−34 on p. 637 are the definition ofmin ; lines
8−9 are the declaration.

Line 19 passesint arguments tomin . This causes the computer to behave as if we had pasted into
the program a copy of the function definition in lines 30−34, and the function declaration in line 9, with
eachT changed toint . The pasted-in copy is called aninstantiation of the template. An instantiation is
also called animplicit specialization,as opposed to the ‘‘explicit specialization’’ on pp. 664−669.

The computerdeducesthat T should be changed toint because the10 in line 19 is of typeint .
Lines 20 and 21 create and call other instantiations of the same template, this time with eachT changed to
double anddate . The T (for ‘‘type’’) is our conventional placeholder for the name of the data type.*
The dummy name could be longer than one character, but please keep it uppercase for visibility.

The template made the source code smaller and less repetitious, but it had no effect on the size and
speed of the executable file. So for the time being, a template is merely a shorthand for the source code.
This will begin to change on pp. 734−735.

The preamble and the arguments

The following line 29 is thetemplate preamble,which always starts with the keyword template .
The same preamble appears on the function declaration in line 9.The keyword also has an obscure sec-
ondary usage; see pp. 725−726.The<angle brackets> in a preamble and those in an#include directive
have nothing to do with each other.

Lines 29 and 30 could be written on the same line. No newline or other whitespace is required
between the non-alphanumeric token> and the following alphanumeric tokenT (p. 101). But please keep
them on separate lines for legibility.

The preamble declares thatT is a template argumentstanding for the name of a data type.Despite
the keyword class , this type does not necessarily have to be a class. Inline 19, for example,T stands for
int ; in 20, T stands fordouble . Newer versions of C++ sensibly let us use the keyword typename
instead ofclass , but we stick with the latter out of habit.

In contradistinction to theT in lines 29 and 30, thea andb in line 30 are called thefunction argu-
ments.The10 and20 in line 19 are theactual function arguments;the data typeint is theactual tem-
plate argument.

Not all template arguments stand for data types.Some will represent constant values (pp. 690−696)
or ‘‘template classes’’ (pp. 696−702).

* We assume that the data type has a name. See p. 660 for one that doesn’t.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Template functions are second-class citizens

The functions in lines 36 and 42 arenon-template functions.They are merely overloads, i.e., other
functions that happen to have the same name.

The "hello" and"goodbye" in line 22 have a choice between an exact match with the non-tem-
plate function in line 36, and an equally exact match with an instantiation of the template function in line
30 with theT changed toconst char * . But template functions are second-class citizens, so line 22
picks the non-template function. The non-template function would also win out against the template func-
tion std::min , so the double colon in lines 22 and 24 is not needed.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/min/min2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring>
4 #include <cwchar>
5 #include "date.h"
6 using namespace std;
7
8 t emplate <class T>
9 T min(T a, T b); //function declaration

10
11 const char *min(const char *a, const char *b);
12 const wchar_t *min(const wchar_t *a, const wchar_t *b);
13
14 int main()
15 {
16 date today;
17 date tomorrow = today + 1;
18
19 cout << ::min(10, 20) << "\n" //calls line 30
20 << ::min(3.14, 2.71) << "\n" //calls line 30
21 << ::min(today, tomorrow) << "\n" //calls line 30
22 << ::min("hello", "goodbye") << endl; //calls line 36
23
24 wcout << ::min(L"hello", L"goodbye") << L"\n"; //calls line 42
25
26 return EXIT_SUCCESS;
27 }
28
29 template <class T>
30 T min(T a, T b) //function definition
31 {
32 cout << "::min<T>\n"; //to see which function is called
33 return b < a ? b : a ;
34 }
35
36 const char *min(const char *a, const char *b)
37 {
38 cout << "::min(const char *)\n";
39 return strcmp(b, a) < 0 ? b : a;
40 }
41
42 const wchar_t *min(const wchar_t *a, const wchar_t *b)
43 {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:min, print, and swap 637

638 Templates Chapter7

44 cout << "::min(const wchar_t *)\n";
45 return wcscmp(b, a) < 0 ? b : a;
46 }

::min<T> Line 19 passesint arguments to line 30, changingT to int .
10
::min<T> Line 20 passesdouble arguments to line 30.
2.71
::min<T> Line 21 passesdate arguments to line 30.
4/8/2014
::min(const char *) Line 22 passesconst char * arguments to line 36.
goodbye
::min(const wchar_t *) Line 24 passesconst wchar_t * arguments to line 42.
goodbye

Combine the declaration and definition

The declaration and definition of a template function can be combined, in the following lines 8−12.
If the function is small enough, it can also be inline.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/min/min3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring>
4 #include <cwchar>
5 #include "date.h"
6 using namespace std;
7
8 t emplate <class T> //function declaration and definition
9 i nline T min(T a, T b)

10 {
11 return b < a ? b : a ;
12 }
13
14 inline const char *min(const char *a, const char *b)
15 {
16 return strcmp(b, a) < 0 ? b : a;
17 }
18
19 inline const wchar_t *min(const wchar_t *a, const wchar_t *b)
20 {
21 return wcscmp(b, a) < 0 ? b : a;
22 }
23
24 int main()
25 {
26 date today;
27 date tomorrow = today + 1;
28
29 cout << ::min(10, 20) << "\n" //calls line 9
30 << ::min(3.14, 2.71) << "\n" //calls line 9
31 << ::min(today, tomorrow) << "\n" //calls line 9
32 << ::min("hello", "goodbye") << endl; //calls line 14

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

33
34 wcout << ::min(L"hello", L"goodbye") << L"\n"; //calls line 19
35
36 return EXIT_SUCCESS;
37 }

10 Line 29 passesint arguments to line 9.
2.71 Line 30 passesdouble arguments to line 9.
4/8/2014 Line 31 passesdate arguments to line 9.
goodbye Line 32 passesconst char * arguments to line 14.
goodbye Line 34 passesconst wchar_t * arguments to line 19.

To mention themin functions in more than one.C file of a program, the above lines 8−22 could be
written in a header file. The header would also have to include lines 3, 4, and 6. Until now, only a static
function or variable (p. 99) could be defined in a header included by more than one.C file of a program; a
non-static would incur the ‘‘multiply defined’’ error message. But the definition of a template—as opposed
to an instantiation—occupies no memory. Any template function, static or not, can be defined in a header.*

In fact, defining the template function in a header file is the only portable way to mention it in more
than one.C file of a program.For example, the template functionsort , the flagship function of the C++
Standard Library, is defined in the header file<algorithm> . For nonportable attempts attempt to declare
a template function in a header and define it in a.C file, seeexport in pp. 677−678 and ‘‘explicit instan-
tiation’’ in pp. 720−721.

A ‘ ‘copy constructible’’ data type

We hav eassumed that themin in the above line 9 will accept function arguments of any data typeT,
with the exception ofchar * andwchar_t * and theirconst equivalents. Buta careful reading of the
template reveals two restrictions. Thedata typeT must becopy constructibleandless-than comparable.

The arguments and return value ofmin are passed by value, so a call to it will compile only if the
function arguments are of a data type that can be copied.T must be a built-in, a pointer, an enumeration, or
a class for which no private or protected copy constructor has been declared. Our classdate , for example,
has always been copy constructible. Classrabbit lost its copy constructibility on p. 200, regained it on
pp. 234−236, and lost it again on p. 468. The currentrabbit cannot be passed tomin , although a
rabbit * can.

A ‘ ‘less-than comparable’’ data type

Themin in the above line 9 also applies the< operator to its function arguments, so a call to it will
compile only if the function arguments can be operands of an operator< that yields abool or a data type
convertible thereto (p. 62).T could be a built-in, a pointer, an enumeration, or a class with anoperator<
that is not a private or protected member function.Classdate became less-than comparable when we
equipped it with theoperator< friend on p. 281.Classwabbit has never been less-than comparable.
Surprisingly, classobj (pp. 179−180) is less-than comparable even though it has nooperator< . The
operator int in the following line 6 implicitly converts the two obj ’s to int ’s, which are then com-
pared.

1 #include "obj.h"
2
3 obj ob1 = 10;
4 obj ob2 = 20;
5
6 i f (ob1 < ob2) { //if (ob1.operator int() < ob2.operator int()) {

* One exception: a template that is an ‘‘explicit specialization’’ w ill occupy memory. Written in a header file, it will
have to be declaredstatic or inline just like a non-template function. See pp. 664−669.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:min, print, and swap 639

640 Templates Chapter7

To qualify as less-than comparable, a data type will have to satisfy two additional requirements.See
pp. 776−777.

Concepts and comments

A concept is a set of requirements that a template argumentT must satisfy; examples are copy con-
structibility and less-than comparability. We say that classesdate andobj aremodelsof these concepts,
but rabbit is not.

To avoid nasty surprises, each template should have a comment stating the concepts of which itsT
must be a model.

1 / /Version 1 (of 3) of the comment on min.
2
3 / /Return the minimum of a and b.
4 / /Return a if neither is less than the other.
5 / /T must be copy constructible and less-than comparable.

Our min template is under no obligation to work correctly, or even compile, whenT is not a model of these
two concepts. Notethat the template does not requireequality comparability (the ability to saya == b);
the comment makes no claim about what happens whena andb are equal.

A function argument whose type is more than an unadorned T

A template has no way of telling what theT will stand for. A function argument of an unknown type
T might be expensive—or impossible—to copy. To avoid any attempted copy, the arguments and return
value ofmin should have been passed by reference. The previous version of this template was in line 9 of
min.C on p. 638; the improved version is in the following line 8. The requirements in the comment have
been relaxed.

1 / /Version 2 of the comment on min.
2
3 / /Return the minimum of a and b.
4 / /Return a if neither is less than the other.
5 / /T must be less-than comparable.
6
7 t emplate <class T>
8 i nline const T& min(const T& a, const T& b)
9 {

10 return b < a ? b : a ;
11 }

In some cases, a reasonable assumption can be made about the data type thatT stands for. The stan-
dard library assumes that pass-by-value is possible and affordable for four kinds of arguments.

(1) An iterator is always passed by value (p. 759).

(2) A function object (an object that has anoperator() member function) is always passed by value
(p. 766).

(3) A ‘‘ difference_type ’’ (an integer that counts the elements in a container) is always passed by
value (p. 809).

(4) A number is always passed by value to a ‘‘numeric algorithm’’ (p. 962).

All other function arguments of typeT are passed by reference. In particular, the values of the ele-
ments in a container are always passed by reference.

The min algorithm in the C++ Standard Library

We did not have to write our ownmin template function; one has already been defined for us in the
<algorithm> header file.An algorithm is a template function whose arguments are iterators, usually a

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

pair of iterators; our first official example will appear on p. 759.min is therefore not an algorithm, but it
had to go insomeheader file.

1 / /Excerpt from <algorithm> (or from a file included thereby).
2
3 t emplate <class T>
4 i nline const T& min(const T& a, const T& b)
5 {
6 r eturn b < a ? b : a;
7 }

Everything in the C++ Standard Library has the last namestd .* This includes objects such ascout
(p. 20), classes such asexception (p. 628), and functions such asmin . We must therefore callmin by
its full namestd::min , or say using namespace std; before mentioningmin . In some versions of
Microsoft Visual C++,min is named_cpp_min .

Change T to the simplest data type.

Ou first min program had a template function and two non-template functions sharing the same
name (p. 637). Our next program has three template functions sharing the same name, in lines 8, 11, and
20. Asusual, the name can be overloaded because the arguments are different. Butdespite their common
name, these are still three separate functions.We will not have a single template function consisting of
multiple templates until we get to ‘‘explicit specialization’’ on pp. 664−669.

The i in line 34 has no choice of whichprint to call. Of the three functions, only the one in line 8
will accept a non-pointer.

Thep in line 38 has two alternatives. It can call

(1) line8 with T changed toconst int *

(2) line11 withT changed toint

C++ picks the function that will turnT into the simpler data type, so line 38 picks theprint in line 11.
This is fortunate because line 11, knowing that its function argument is a pointer, can do more with it than
line 8 can do with its featurelesst .

Thepp in line 42 has three alternatives, of which it will pick the third. It can call

(1) line8 with T changed toconst int *const *

(2) line11 withT changed toconst int *

(3) line20 withT changed toint

The ppp in line 46 has three alternatives. noneof which is adequate for its three levels of indirec-
tion. It will pick the third. It can call

(1) line8 with T changed toconst int *const *const *

(2) line11 withT changed toconst *const int *

(3) line20 withT changed toconst int *

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/min/overload1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 / /T must be puttable (printable with <<) in the following templates.

* Except the macros:EXIT_SUCCESSin <cstdlib> , INT_MIN in <climits> , etc. A macro cannot have a last
name.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:min, print, and swap 641

642 Templates Chapter7

6
7 t emplate <class T>
8 i nline void print(const T& t) {cout << t;} //accepts any type
9

10 template <class T>
11 void print(const T *p) //accepts pointer to any non-void type
12 {
13 cout << p;
14 if (p != 0) {
15 cout << " -> " << *p;
16 }
17 }
18
19 template <class T>
20 void print(const T *const *pp) //accepts pointer to pointer to any non-void type
21 {
22 cout << pp;
23 if (pp != 0) {
24 cout << " -> " << *pp;
25 if (*pp != 0) {
26 cout << " -> " << **pp;
27 }
28 }
29 }
30
31 int main()
32 {
33 int i = 1 0;
34 print(i);
35 cout << "\n";
36
37 const int *p = &i;
38 print(p);
39 cout << "\n";
40
41 const int *const *pp = &p;
42 print(pp);
43 cout << "\n";
44
45 const int *const *const *ppp = &pp;
46 print(ppp);
47 cout << "\n";
48
49 return EXIT_SUCCESS;
50 }

The machine addresses will be different on each platform. On my platform, they are formatted in
hex.

10 Line 34 calls 8 withT → int.
0xffbff1b0 -> 10 Line 38 calls 11 withT → int.
0xffbff1ac -> 0xffbff1b0 -> 10 Line 42 calls 20 withT → int.
0xffbff1a8 -> 0xffbff1ac -> 0xffbff1b0 Line 46 calls 20 withT → const int * .

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

If we erase theconst T * function in the above lines 10−17, thep in line 38 will settle for the
const T& in line 8. The output of line 38 loses one of its levels.

10 Line 34 calls 8 withT → int.
0xffbff0d0 Line 38 calls 8 withT → const int * .
0xffbff0cc -> 0xffbff0d0 -> 10 Line 42 calls 20 withT → int.
0xffbff0c8 -> 0xffbff0cc -> 0xffbff0d0 Line 46 calls 20 withT → const int * .

If we restore lines 10−17 and erase theconst T *const * function in 19−29, thepp in line 42
and theppp in line 46 will settle for theconst T * in line 11. Their output loses one of its levels.

10 Line 34 calls 8 withT → int.
0xffbff1f0 -> 10 Line 38 calls 11 withT → int.
0xffbff1ec -> 0xffbff1f0 Line 42 calls 11 withT → const int * .
0xffbff1e8 -> 0xffbff1ec Line 46 calls 11 withT → const int *const * .

If we erase lines 10−17 and 19−29, all four calls will settle for line 8.

10 Line 34 calls 8 withT → int.
0xffbff104 Line 38 calls 8 withT → const int * .
0xffbff100 Line 42 calls 8 withT → const int *const * .
0xffbff0fc Line 46 calls 8 withT → const int *const *const * .

A const void * passed toprint will call the above line 11 withT changed tovoid . Line 15
will then fail to compile because avoid * (be itconst or non-const) cannot be dereferenced.

One instantiation can call another instantiation of the same template.

The intent of the above program was to illustrate how the computer decides which template function
to call. With that out of the way, I am disappointed that it handled only two lev els of indirection. Here is a
program that can handle any number of levels with only the two templates in lines 8 and 11.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/min/overload2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 / /T must be puttable (printable with <<) in the following templates.
6
7 t emplate <class T>
8 i nline void print(const T& t) {cout << t;}
9

10 template <class T>
11 void print(const T *p)
12 {
13 cout << p;
14 if (p != 0) {
15 cout << " -> ";
16 print(*p); //call line 11 if *p is a pointer, line 8 otherwise
17 }
18 }
19
20 int main()
21 {
22 int i = 1 0;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:min, print, and swap 643

644 Templates Chapter7

23 print(i);
24 cout << "\n";
25
26 const int *p = &i;
27 print(p);
28 cout << "\n";
29
30 const int *const *pp = &p;
31 print(pp);
32 cout << "\n";
33
34 const int *const *const *ppp = &pp;
35 print(ppp);
36 cout << "\n";
37
38 return EXIT_SUCCESS;
39 }

Line 23 calls line 8 withT changed toint .

Line 27 calls line 11 withT changed toint . Then line 16 calls 8 with theT in 8 changed toint .

Line 31 calls line 11 withT changed toconst int * . Then line 16 calls another instantiation of
11 with T changed toint (one fewer const and one fewer *). Thenthe line 16 in the second instantia-
tion calls 8 with theT in 8 changed toint .

Line 35 calls line 11 withT changed toconst int *const * . Then line 16 calls another instanti-
ation of 11 withT changed toconst int * . Then the line 16 in the second instantiation calls a third
instantiation of 11 withT changed toint . Then the line 16 in the third instantiation calls 8 with theT in 8
changed toint .

10
0xffbff190 -> 10
0xffbff18c -> 0xffbff190 -> 10
0xffbff188 -> 0xffbff18c -> 0xffbff190 -> 10 Line 35: three levels!

The top-level const

To say more precisely what data typeT changes into, we introduce the notion of thetop-level
const . It indicates that the value of the variable being declared never changes. Examplesare underlined:

1 c onst int i = 10;
2 c onst int *const p = &i;
3 c onst int *const *const pp = &p;

When a function argument is not a reference, a top-level const in the data type of the actual func-
tion argument does not become part of theT. For example, theconst int i in line 17 changes theT in
line 6 to int without the top-level const . This allows the function to change the value of its local copy
of i . Of course, the function cannot change the value ofi : it was passed by value. Seepp. 658−659 for a
way to put the deletedconst back in.

When a function argument is a reference, the entire data type of the actual function argument, includ-
ing the top-level const , is incorporated into theT. For example, theconst int i in line 21 changes the
T in line 9 toconst int , preventing the increment from compiling.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/min/toplevel.C

1 #include <iostream>
2 #include <cstdlib>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

3 using namespace std;
4
5 t emplate <class T>
6 i nline void value(T t) {cout << ++t << "\n";}
7
8 t emplate <class T>
9 i nline void reference(T& t) {cout << ++t << "\n";}

10
11 int main()
12 {
13 const int i = 10;
14 const int *const p = &i;
15 const int *const *const pp = &p;
16
17 value(i); //change T to int
18 value(p); //change T to const int *
19 value(pp); //change T to const int *const *
20
21 //reference(i); //change T to const int won’t compile
22 //reference(p); //change T to const int *const won’t compile
23 //reference(pp); //change T to const int *const *const won’t compile
24 return EXIT_SUCCESS;
25 }

11
0xffbff0c4
0xffbff0c0

Mor e than one template argument

We might want to plug more than one data type into a function:

1 i nline void print(int a, date b)
2 {
3 c out << a << " " << b << "\n";
4 }
5
6 i nline void print(char a, const char *b)
7 {
8 c out << a << " " << b << "\n";
9 }

10
11 inline void print(bool a, bool b)
12 {
13 cout << a << " " << b << "\n";
14 }

To accommodate these, we can provide more than one template argument. Rememberto write the
keywordclass (or typename) twice in line 17.

15 //T1 and T2 must be copy constructible and puttable.
16
17 template <class T1, class T2>
18 inline void print(T1 a, T2 b)
19 {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:min, print, and swap 645

646 Templates Chapter7

20 cout << a << " " << b << "\n";
21 }

The template function will accept the following arguments.

22 print(10, date(date::july, 4, 1776));
23 print(’A’, "hello");
24 print(true, false);

Better yet, pass the arguments by reference.

25 //T1 and T2 must be puttable.
26
27 template <class T1, class T2>
28 inline void print(const T1& a, const T2& b)
29 {
30 cout << a << " " << b << "\n";
31 }

A local variable of type T

The trio of functions in lines 6, 13, and 20 is another candidate for templatization. Each function
contains a local variabletemp whose type depends on that of the arguments.

The header file<algorithm> declares astd::swap . If one of the headers in lines 1−2 included
this header, the double colon in line 31 would be necessary to get the program to compile and call our
swap.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/swap/swap1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nline void swap(int *a, int *b)
7 {
8 c onst int temp = *a; //initialization
9 * a = * b; //assignment

10 *b = t emp;
11 }
12
13 inline void swap(double *a, double *b)
14 {
15 const double temp = *a;
16 *a = * b;
17 *b = t emp;
18 }
19
20 inline void swap(date *a, date *b)
21 {
22 const date temp = *a;
23 *a = * b;
24 *b = t emp;
25 }
26
27 int main()

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

28 {
29 int i = 1 0;
30 int j = 2 0;
31 ::swap(&i, &j);
32 cout << "i == " << i << ", j == " << j << "\n";
33
34 double d = 3.14;
35 double e = 2.17;
36 ::swap(&d, &e);
37 cout << "d == " << d << ", e == " << e << "\n";
38
39 date today;
40 date tomorrow = today + 1;
41 ::swap(&today, &tomorrow);
42 cout << "today == " << today << ", tomorrow == " << tomorrow << "\n";
43
44 return EXIT_SUCCESS;
45 }

i == 2 0, j == 10 lines 29−32
d == 2.17, e == 3.14 lines 34−37
today == 4/9/2014, tomorrow == 4/8/2014 lines 39−42

We consolidate the three functions into the template function in the following line 10.To call it, line
21 needs ampersands.

The template argumentT must beassignable:capable of being the left operand of the assignment
operator=. It must be a built-in, pointer, enumeration, or an object of a class that has no private or pro-
tectedoperator= member function.T must also be non-const . For example,int is assignable but
const int is not. Classdate has always been assignable.Classwabbit has never been assignable: it
always had the privateoperator= member function in line 25 ofwabbit.h on p. 536.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/swap/swap2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 / /Swap the values of a and b.
7 / /T must be copy constructable (line 12) and assignable (lines 13-14).
8
9 t emplate <class T>

10 inline void swap(T *a, T *b)
11 {
12 const T t emp = *a;
13 *a = * b;
14 *b = t emp;
15 }
16
17 int main()
18 {
19 int i = 1 0;
20 int j = 2 0;
21 ::swap(&i, &j); //change T to i nt

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.1 Simple Examples:min, print, and swap 647

648 Templates Chapter7

22 cout << "i == " << i << ", j == " << j << "\n";
23
24 double d = 3.14;
25 double e = 2.71;
26 ::swap(&d, &e);
27 cout << "d == " << d << ", e == " << e << "\n";
28
29 date today;
30 date tomorrow = today + 1;
31 ::swap(&today, &tomorrow); //change T to d ate
32 cout << "today == " << today << ", tomorrow == " << tomorrow << "\n";
33
34 const char *p = "hello";
35 const char *q = "goodbye";
36 ::swap(&p, &q); //change T to c onst char *
37 cout << "p == \"" << p << "\", q == \"" << q << "\"\n";
38
39 return EXIT_SUCCESS;
40 }

i == 2 0, j == 10 lines 19−22
d == 2.71, e == 3.14 lines 24−27
today == 4/9/2014, tomorrow == 4/8/2014 lines 29−32
p == " goodbye", q == "hello" lines 34−37

Program in the same style with all data types.

Sincetemp is a constant, the above line 12 has to initialize it in the declaration.Even if it were not a
constant, we could have done the same thing.

1 T temp = *a; //If T is a class, call the copy constructor.

We could have split the above line into two statements:

2 T temp; //If T is a c lass, call the default constructor.
3 t emp = *a; //If T is a class, call operator=.

But don’t split it. For most classes, the copy constructor is faster than the default constructor. In class
date , for example, the copy constructor merely copies an integer or two, while the default constructor gets
the current date from the operating system (pp. 142−143).To add insult to injury, the hard-won current
date is then overwritten by theoperator= in the above line 3. Please keep the original code in line 1.

Now suppose thattemp and*a were integers. Inthis case there are no constructors, so we could
split

4 i nt temp = *a;

into

5 i nt temp;
6 t emp = *a;

with no loss of speed. But don’t split it. If you program with the built-in types as if they were objects,
there will be less to change when you templatize the code. See also p. 634.

The C++ Standard Library swap

Don’t write your own swap: call the one in the C++ Standard Library. Since its arguments are refer-
ences, the following line 11 needs no ampersands.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

1 / /Excerpt from <algorithm>.
2
3 t emplate <class T>
4 i nline void swap(T& a, T& b) //non-const references
5 {
6 c onst T temp = a;
7 a = b;
8 b = t emp;
9 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/swap/swap3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <algorithm> //for swap
4 using namespace std;
5
6 i nt main()
7 {
8 i nt i = 10;
9 i nt j = 20;

10
11 swap(i, j); //Change T to i nt.
12 cout << "i == " << i << ", j == " << j << "\n";
13
14 return EXIT_SUCCESS;
15 }

i == 2 0, j == 10

7.1.2 Propaganda: Templates vs. Macros
Before template functions were invented, people faked them with macros.Let’s try it with our min

andswap functions and see what goes wrong.

min as a macro

TheMIN in the following line 5 is the textbook example of a macro gone bad. It appears that line 13
incrementsi andj , and then passes the incremented values to the macro. But that order is clearly impossi-
ble: the increments are performed at runtime, while the macro is ‘‘called’’ at compile time. In reality, what
is passed to the macro are the tokens++ and i , ++ and j , not the incremented values. Oneof the incre-
ments will be performed twice.We could predict which one, if we knew which variable was bigger.

Similarly, it appears that line 16 callsf andg, and then passes the return values to the macro.In
reality, what is passed to the macro is tokens such asf , (, and) , not the return value off . One of the
functions will be called twice.We could predict which one, if we knew which one returned a bigger value
the first time it was called.

Our min template is a function, immune to these macro vagaries. Itwill increment each variable
once and call each function once.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/propaganda/min.C

1 #include <iostream>
2 #include <cstdlib>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.2 Propaganda: Templates vs. Macros 649

650 Templates Chapter7

3 using namespace std;
4
5 #define MIN(a, b) ((b) < (a) ? (b) : (a))
6 i nt f();
7 i nline int g() {cout << "g returns 40\n"; return 40;}
8
9 i nt main()

10 {
11 int i = 1 0;
12 int j = 2 0;
13 int m = MIN(++i, ++j);
14 cout << "i == " << i << ", j == " << j << ", m == " << m << "\n";
15
16 m = MIN(f(), g());
17 cout << "The minimum return value was " << m << ".\n";
18 return EXIT_SUCCESS;
19 }
20
21 int f()
22 {
23 static int n = 10;
24 n += 20;
25 cout << "f returns " << n << "\n";
26 return n;
27 }

i == 1 2, j == 21, m == 12 i incremented twice,j once.
g r eturns 40 This line and the next might appear in the opposite order on some platforms.
f r eturns 30
f r eturns 50
The minimum return value was 50.

swap as a macro

swap is much worse. Asa macro it requires an extra argument, theint in line 11.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/propaganda/swap.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 #define SWAP(T, a, b) {const T temp = (a); (a) = (b); (b) = temp;}
6
7 i nt main()
8 {
9 i nt i = 10;

10 int j = 2 0;
11 SWAP(int, i, j); //will compile
12 cout << "i == " << i << ", j == " << j << "\n";
13
14 int temp = 30;
15 //SWAP(int, i, temp); //won’t compile
16

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

17 size_t a[] = {10, 20, 30};
18 size_t k = 2 ;
19 SWAP(size_t, k, a[k]); //undefined behavior
20 cout << "k == " << k << ", a[2] == " << a[2] << "\n";
21
22 const bool b = true;
23 int x = 1 0, y = 20, z = 30;
24 SWAP(int, b ? x : y, z); //swap x a nd z
25 cout << "x == " << x << ", y == " << y << ", z == " << z << "\n";
26
27 return EXIT_SUCCESS;
28 }

The above line 15 will be rewritten as follows. Sinceit attempts to assign to theconst temp , it
will not compile.

29 {const int temp = (i); (i) = (temp); (temp) = temp;}

The above line 19 will be rewritten as follows, attempting to store the value2 into the non-existent
array elementa[30] . If we are lucky, the program will crash.

30 {const size_t temp = (k); (k) = (a[k]); (a[k]) = temp;}

On my platform, line 19 lefta[2] unchanged.

i == 2 0, j == 10
k == 3 0, a[2] == 30 All behavior after line 19 is undefined.
x == 3 0, y == 20, z == 10

The preprocessor speaks a different language.

The following are some of the ways in which a macro conflicts with the rest of the language.

(1) Whitespace is permitted in C and C++ between any alphanumeric and nonalphanumeric token (p.
101)—except in exactly one place. There can be no whitespace in the above line 5 between the name
SWAPand the left parenthesis (p. 97).With whitespace, the macro would have no arguments.

(2) In normal code, the parentheses around thea’s and b’s in the above line 5 would be unnecessary.
But in a macro they are vital. For example, line 24 will be rewritten as the following line 31. Thanks to the
parentheses, the middle= is always executed. Whenb is true, the middle= assigns a value tox .

31 {const int temp = (b ? x : y); (b ? x : y) = (z); (z) = temp;}

b ? x : y() = z

Without the parentheses in line 5, the middle= would be executed only whenb is false. Whenit is
executed, it would assign toy .

32 {const int temp = b ? x : y; b ? x : y = z; z = temp;}

b ? x : y = z

With no parentheses in line 5, the output of lines 22−25 would change to the following.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.2 Propaganda: Templates vs. Macros 651

652 Templates Chapter7

x == 1 0, y == 20, z == 10

(3) A macro ignores the C++ scoping rules.A variable declared in a block can be mentioned only in
that block (p. 32), but a macro#define ’d in a block can be mentioned outside of it.

(4) We can take the address of a function, but not of a macro.

Macros should be used only for conditional compilation, such as the#ifndef that surrounds a
header file, and as arguments and return values of C functions, such as theEXIT_SUCCESSargument of
exit or theEOFreturned bygetchar . Every other macro should be replaced by a variable, an enumera-
tion, or an inline function.For the macrosINT_MIN , INT_MAX, and their cousins, see pp. 745−747.

7.1.3 Explicit Template Arguments
Our original min template function on p. 637 took function arguments of data typeT and T,

upgraded on p. 640 toconst T& andconst T& . In either case, the two actual arguments have to be of
the same type, like the i andj in the following line 5. If the types differ, as in line 7, the computer will be
unable to deduce whatT should change into and the call will not compile.We encountered this problem,
without explaining it, on pp. 43−44.

One workaround is to casti to double in line 9. Now that both arguments aredouble , the com-
puter can deduce thatT is double . A more elegant solution is theexplicit template argumentin line 11.
The <double> relieves the computer of the responsibility of deducingT. It specifies thatT should be
changed todouble , reg ardless of the types of the actual arguments. Whenthe instantiation is called, thei
will be implicitly cast todouble .

1 i nt i = 10;
2 i nt j = 20;
3 double d = 3.14;
4
5 c out << ::min(i, j) << "\n"; //will compile
6
7 c out << ::min(i, d) << "\n"; //won’t compile
8
9 c out << ::min(static_cast<double>(i), d) << "\n"; //brute force

10
11 cout << ::min<double>(i, d) << "\n"; //elegant

The above line 7 has a surprising implication. The following classwrapper has an
operator int in line 16. We would therefore expect that it could be used in any context that would
accept anint , for example the place where thew is in line 31. But line 31 rejects thew. We can force it to
compile with the explicit template arguments in lines 32 and 33, or by uncommenting exactly one of the
functions in lines 23−27.For another example, see pp. 751−752.

12 class wrapper {
13 int i;
14 public:
15 wrapper(int initial_i): i(initial_i) {}
16 operator int() const {return i;}
17 };
18
19 template <class T>
20 inline const T& min(const T& a, const T& b) {return b < a ? b : a;}
21
22 /*
23 inline const int& min(const int& a, const int& b) {return b < a ? b : a;}
24
25 inline const wrapper& min(const wrapper& a, const wrapper& b) {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

26 return b < a ? b : a ;
27 }
28 */
29
30 wrapper w(10);
31 cout << ::min(20, w); //won’t compile
32 cout << ::min<int>(20, w); //will compile: convert w to int
33 cout << ::min<wrapper>(20, w); //will compile: convert 20 to wrapper

No function arguments

An explicit template argument is necessary whenever the computer cannot deduceT from the actual
arguments. Inthe above lines 7 and 31, the actual arguments were contradictory. In the following line 13,
they are nonexistent.

We will computeπ with the Taylor series

π =
4

1
−

4

3
+

4

5
−

4

7
+

4

9
−

4

11
+ . . .

As more and more terms are added, the sum zigzags in towardsπ. Line 44 divides the last term in half.

2

3

4

π

4

1

8

3

52

15

304

105

1052

315

10312

3456

147916

45045

135904

45045

2490548

765765

44257352

14549535

47028692

14549535

pi_double does its arithmetic withdouble ’s. pi_float does its arithmetic withfloat ’s.
The functions need different names because they hav eno arguments. For the i/o manipulator
setprecision in line 11, see pp. 355−356.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_argument/pi1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip> //for setprecision
4 using namespace std;
5
6 f loat pi_float();
7 double pi_double();
8
9 i nt main()

10 {
11 cout << setprecision(19)
12 << "float " << pi_float() << "\n"
13 << "double " << pi_double() << "\n";
14
15 return EXIT_SUCCESS;
16 }
17
18 float pi_float()

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.3 Explicit Template Ar guments 653

654 Templates Chapter7

19 {
20 float pi = 0;
21 float sign = 1;
22 const long n = 1000000;
23
24 for (long i = 1; i < n; i += 2) {
25 pi += sign / i;
26 sign = - sign;
27 }
28
29 pi += sign / (2 * n);
30 return 4 * p i;
31 }
32
33 double pi_double()
34 {
35 double pi = 0;
36 double sign = 1;
37 const long n = 1000000;
38
39 for (long i = 1; i < n; i += 2) {
40 pi += sign / i;
41 sign = - sign;
42 }
43
44 pi += sign / (2 * n);
45 return 4 * p i;
46 }

The digits that came out correctly on my machine are underlined.The double answer has seven
more correct digits than thefloat . That’s sev en orders of magnitude, 10 million times more accurate.

float 3.14159 5840454101562 correct to 6 significant digits:π = 3.141592653589793238...
double 3.141592653589 691864 correct to 13 significant digits

We can consolidate the functions into the template function in line 7. Since it has no function argu-
ments, it must be called with the explicit template arguments in lines 25−27.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_argument/pi2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip> //for setprecision
4 using namespace std;
5
6 t emplate <class T>
7 T pi()
8 {
9 T pi_val = 0;

10 T sign = 1;
11 const long n = 1000000;
12
13 for (long i = 1; i < n; i += 2) {
14 pi_val += sign / i;
15 sign = - sign;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

16 }
17
18 pi_val += sign / (2 * n);
19 return 4 * p i_val;
20 }
21
22 int main()
23 {
24 cout << setprecision(19)
25 << "float " << pi<float>() << "\n"
26 << "double " << pi<double>() << "\n"
27 << "long double " << pi<long double>() << "\n";
28
29 return EXIT_SUCCESS;
30 }

float 3.14159 5840454101562
double 3.141592653589 691864
long double 3.1415926535897932 4 correct to 17 significant digits

Another template in which T cannot be deduced

My favorite function for peeking around in memory is in the following line 13. It displays the chunk
of memory pointed to byp in the format specified byT.

To display a series of consecutive chunks, possibly in different formats, we provide the interface in
line 23. The unusualrpv is a ‘‘reference to pointer tovoid ’’ , which will refer to thep in line 11 of
step.C below. The reference is read/write, because noconst follows the asterisk in line 23. This will
allow line 26 to userpv to change the value of thep in step.C . But thepointer is read-only, because of
the const before thevoid in line 23. This will disallow step from usingrpv to change the value of
the variabled to whichp is pointing.

The rpt in line 25 is a ‘‘reference to pointer toT’’ . It refers to thep in step.C , even though that
pointer is not a pointer toT. This type punningrequires areinterpret_cast ; an earlier example was
on p. 81.

stand andstep will become member functions on p. 727.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_argument/step.h

1 #ifndef STEPH
2 #define STEPH
3 #include <iostream>
4 using namespace std;
5
6 t emplate <class T>
7 i nline void print(const T& t) {cout << t;}
8
9 i nline void print(unsigned char c) {cout << static_cast<unsigned>(c);}

10 inline void print(const char *p) {cout << "\"" << p << "\"";}
11
12 template <class T>
13 const T& stand(const void *p)
14 {
15 cout << p << ": ";
16 const T& t = *static_cast<const T *>(p);

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.3 Explicit Template Ar guments 655

656 Templates Chapter7

17 print(t);
18 cout << "\n";
19 return t;
20 }
21
22 template <class T>
23 const T& step(const void *& rpv) //non-const reference
24 {
25 const T *& r pt = reinterpret_cast<const T *&>(rpv);
26 return stand<T>(rpt++);
27 }
28 #endif

An application of step

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_argument/step.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "step.h"
4 using namespace std;
5
6 i nt main()
7 {
8 double d = 3.14;
9 c onst void *p = &d;

10
11 step<unsigned char>(p);
12 step<unsigned char>(p);
13 step<unsigned short>(p);
14 step<unsigned long>(p);
15
16 return EXIT_SUCCESS;
17 }

On every machine, achar is by definition one byte. On my machine,short is two bytes,long is
four, anddouble is eight. On my machine, a byte is eight bits.

My machine represents adouble as a sign bit (1 for negative, 0 for non-negative), an 11-bit expo-
nent, and a 53-bit mantissa, in that order. 1022 is added to the exponent, so our exponent of 2 is stored as
1024 (binary10000000000). Themantissa of a non-zero number is always greater than or equal to ½
and less than 1, causing its first bit to always be 1. Since the first bit is always the same, it does not need to
be stored in memory. In binary, our mantissa .785 is a fraction with 20 repeating bits.

3. 14=
3. 14

4
× 4

= . 785 × 22

= . 1 1001000111101011100001 × 21024−1022

0xffbff020: 64 sign bit (0), followed by first 7 bits of exponent (1000000)
0xffbff021: 9 last 4 bits of exponent (0000), followed by 1st 4 bits of mantissa (1001)
0xffbff022: 7864 next 16 bits of mantissa (0001111010111000)
0xffbff024: 1374389535 next 32 bits of mantissa (01010001111010111000010100011111)

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

An application of stand

On my platform, each object with a virtual function begins with a pointer to element 0 of the virtual
function table (vtbl) for that class. Element −1 of the vtbl is a pointer to a second table, whose element 1 is
a pointer to the name of the class.

m

vtbl for classbase second table

"7myclass\0"

The following line 16 makes the rough-and-ready assumption that every element of the vtbl is a
pointer tovoid . The pointer at the start of the objectm is therefore a pointer to pointer tovoid , seen in
the<angle brackets> in line 16.

(1) Thecall to stand in line 16 returns the address of element 0 of the vtbl. The subtraction computes
the address of element −1 of the vtbl.

(2) Thecall in 17 returns the value of element −1 of the vtbl, which is the address of element 0 of the
second table. The addition computes the address of element 1 of the second table.

(3) Thecall in 18 prints the value of element 1 of the second table, which is address of the first character
of the class name.

(4) Thecall in 19 prints the characters being pointed to.

The name will be displayed by classtypeid on p. 1015.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_argument/stand.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "step.h"
4 using namespace std;
5
6 c lass myclass {
7 public:
8 v irtual ˜myclass() {}
9 } ;

10
11 int main()
12 {
13 myclass m;
14 const void *p = &m;
15
16 p = stand<const void *const *>(p) - 1;
17 p = stand<const void *const *>(p) + 1;
18 stand<const void *>(p);
19 stand<const char *>(p);
20
21 return EXIT_SUCCESS;
22 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.3 Explicit Template Ar guments 657

658 Templates Chapter7

The namemyclass has seven characters:

0xffbff070: 0x11480 ffbff070 is addr ofm, 11480 is addr ofvtbl[0] .
0x1147c: 0x11494 1147c is addr ofvtbl[-1] , 11494 is addr oftab2[0] .
0x11498: 0x11488 11498 is addr oftab2[1] , 11488 is addr of’7’ .
0x11498: "7myclass"

Override the deduction

An explicit template argument is also necessary whenT could be deduced, but we want to override it
ourselves. For example,

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_argument/override.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 i nline void f(const T& t) {cout << t + 1 << "\n";}
7
8 i nt main()
9 {

10 f(0); //change T to int because 0 is int
11 f<int *>(0); //change T to i nt *
12 f<double *>(0); //change T to double *
13 return EXIT_SUCCESS;
14 }

1
0x4 On my machine,sizeof (int) == 4
0x8 On my machine,sizeof (double) == 8

An explicit template argument can prevent the loss of the top-level const in p. 644. TheT().f()
in the following line 12 constructs an anonymous object of typeT and calls its member functionf. The
classflavor in line 5 has two f ’s, showing us whether or not the object they belong to isconst . For
another class withconst and non-const versions of the same member function, see p. 314.

Since the function argumentt in line 12 is not a reference, theconst flavor s in line 24 changes
T into flavor without the top-level const To changeT into const flavor , we can use need the
explicit template argument in line 28.

Since the function argumentt in line 15 is a reference, theconst flavor s in line 25 changesT
into const flavor with the top-level const intact (p. 644).

The explicit template argument in line 30 changes theT in 18 toconst flavor . This results in at
that is formally of data typeconst const flavor& , but the redundantconst is ignored.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_argument/explicit.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass flavor {
6 public:
7 v oid f() {cout << "non-const";}

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

8 v oid f() const {cout << "const";}
9 } ;

10
11 template <class T>
12 void value(T t) {t.f(); cout << "\t"; T().f(); cout << "\n";}
13
14 template <class T>
15 void reference(T& t) {t.f(); cout << "\t"; T().f(); cout << "\n";}
16
17 template <class T>
18 void const_reference(const T& t) {t.f(); cout << "\t"; T().f(); cout << "\n";}
19
20 int main()
21 {
22 const flavor s = flavor();
23
24 value(s);
25 reference(s);
26 const_reference(s);
27
28 value<const flavor>(s);
29 reference<const flavor>(s);
30 const_reference<const flavor>(s);
31
32 return EXIT_SUCCESS;
33 }

non-const non-const Line 24 calls 12 withT → flavor
const const Line 25 calls 15 withT → const flavor
const non-const Line 26 calls 18 withT → flavor
const const Line 28 calls 12 withT → const flavor
const const Line 29 calls 15 withT → const flavor
const const Line 30 calls 18 withT → const flavor

Apply an explicit template argument to an operator function

An operator function such asoperator== can be a template function. An explicit template
argument can be applied with the syntax in line 2.

1 i f (a = =<int> b) { //won’t compile
2 i f (operator==<int>(a, b) { //will compile, needs no whitespace
3
4 i f (operator< <int>(a, b) { //needs whitespace; see p. 101

The C++ cast syntax

C++ has four operators for type conversion:

static_cast
const_cast

reinterpret_cast
dynamic_cast

Their<>() syntax is borrowed from that of an explicit template argument.

1 double d = 3.14;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.3 Explicit Template Ar guments 659

660 Templates Chapter7

2
3 c out << step<unsigned char>(&d) << "\n"
4 << static_cast<int>(d) << "\n";

7.1.4 TheBuilt-ins have Constructors too
Classes are not the only data types that have constructors and destructors. The built-in types, point-

ers, and enumerations have them too. But the special syntax that calls their constructors and destructors
should be used only in a template.

Default constructor

Our swap function contained a local variable of typeT; in line 12 ofswap2.C on p. 647 we gav eit
an explicit initial value. Butev en with no explicit initialization, we usually want a local variable in a tem-
plate to be born with a sane value.

This brings us face to face with an inconsistency in the syntax of C++.For an object, a definition
with no explicit initial value will call the default constructor. See pp. 134−135.

1 date d; //d is initialized.
2 date *const pd = new date; //The anonymous object is initialized.

But for a built-in, pointer, or enumeration, the same syntax will leave the variable full of garbage. Seepp.
396−397.

3 i nt i; //i is uninitialized.
4 i nt *const pi = new int; //The anonymous int is uninitialized.

Fortunately, the latter types have a default constructor that puts a zero into the newborn variable.
This constructor can be called with the following syntax.

5 i nt i = int(); //i is initialized to 0.
6 i nt *const pi = new int(); //The int is initialized to 0.

The same syntax will call the default constructor for an object.Lines 7−8 behave the same as the above
lines 1−2, assuming that the compiler is smart enough to elide the temporary in line 7 (p. 137).

7 date d = date(); //d is initialized.
8 date *const pd = new date(); //The anonymous object is initialized.

We hav eused this syntax in lines 7, 10, and 11 below. The same constructor, at the end of 17, will create an
anonymous temporary.

But never use this syntax outside of a template. In place of the above lines 5−8, it is clearer, and just
as fast, to say

9 i nt i = 0;
10 int *const pi = new int(0);
11 date d;
12 date *const pd = new date;

Incidentally, line 33 would not compile without the namestooge in line 24. There would be no
word for T to change into.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/default_constructor/default.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

5
6 t emplate <class T>
7 v oid f(T t1 = T()) //call default constructor if actual argument missing
8 {
9 / /t1, t2, and *p will be initialized for every data type T

10 T t2 = T(); //call default constructor
11 const T * const p = new T(); //call default constructor
12
13 //t3 and *q will be uninitialized if T is built-in, pointer, enumeration
14 T t3; //might not call any constructor at all
15 const T * const q = new T; //might not call any constructor at all
16
17 cout << t1 << "\t" << t2 << "\t" << *p << "\t" << T() << "\t"
18 << t3 << "\t" << *q << "\n";
19
20 delete q;
21 delete p;
22 }
23
24 enum stooge {moe, larry, curly};
25
26 int main()
27 {
28 int i = 1 0;
29
30 f(date(date::december, 31, 2014));
31 f(i);
32 f(&i);
33 f(curly);
34
35 return EXIT_SUCCESS;
36 }

Line 30 outputs six sane values. Theother lines have garbage in their last two values.

12/31/2014 4/8/2014 4/8/2014 4/8/2014 4/8/2014 4/8/2014 l. 30: T→date
10 0 0 0 4 1 57904 31: T→int
0xffbff0e8 0 0 0 0x4 0x268d0 32: T→int *
2 0 0 0 4 1 57904 33: T→stooge

Copy constructor

The built-in types, pointers, and enumerations also have copy constructors. Onceagain, the intent is
to make them syntactically compatible with objects.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/default_constructor/copy.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 t emplate <class T>
7 v oid f(T t1) //call copy constructor
8 {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.4 The Built-ins have Constructors too 661

662 Templates Chapter7

9 T t2(t1); //call copy constructor
10 const T * const p = new T(t2); //call copy constructor
11 cout << t1 << "\t" << t2 << "\t" << *p << "\t" << T(t2) << "\n";
12 delete p;
13 }
14
15 enum stooge {moe, larry, curly};
16
17 int main()
18 {
19 int i = 1 0;
20
21 f(date(date::december, 31, 2014));
22 f(i);
23 f(&i);
24 f(curly);
25
26 return EXIT_SUCCESS;
27 }

12/31/2014 12/31/2014 12/31/2014 12/31/2014 Line 21:T → date
10 10 10 10 Line 22:T → int
0xffbff168 0xffbff168 0xffbff168 0xffbff168 Line 23:T → int *
2 2 2 2 Line 24:T → stooge

The copy constructor can be used as a shorthand for a conversion (line 4). But don’t do this: it’s hard
to search for.

1 double d = 3.14;
2
3 c out << static_cast<int>(d) << "\n" //easy to find
4 << i nt(d) << "\n" //copy constructor: hard to find
5 << (int)d << "\n"; //C-style cast: hard to find

Destructor

Finally, the built-in types, pointers, and enumerations have destructors which do nothing.On the rare
occasions when a destructor is called explicitly (line 12) we can therefore safely assume that any typeT has
a destructor. For the placement syntax in line 10 and the explicit call to the destructor in line 12, see p. 406.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/default_constructor/destructor.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 t emplate <class T>
7 v oid f(const T& t)
8 {
9 T *const p = reinterpret_cast<T *>(new char[sizeof (T)]);

10 new(p) T(t); //call the copy constructor
11 cout << *p << "\n";
12 p->˜T(); //call the destructor
13 delete[] reinterpret_cast<char *>(p);

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

14 }
15
16 enum stooge {moe, larry, curly};
17
18 int main()
19 {
20 int i = 1 0;
21
22 f(date(date::december, 31, 2014));
23 f(i);
24 f(&i);
25 f(curly);
26
27 return EXIT_SUCCESS;
28 }

12/31/2014 Line 22:T → date
10 Line 23:T → int
0xffbff090 Line 24:T → int *
2 Line 25:T → stooge

7.1.5 Explicit Specialization of a Template Function

A template function and two non-template functions

Line 7 will print a value of almost any data type.Lines 9 and 10 are alternative code for types that
require special handling. Since their arguments are different, the functions can be overloads of the same
name. Any call to a function namedprint will have to make a three-way choice.

print template function print(char) function print(const string&)
at line 7 at line 9 function at line 10

The char c in line 9 is fast enough to pass by value; the objects in 10 is not. The t in line 7 is
unknown, so we pass it by reference just in case.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_specialization/overload.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string> //for class string
4 using namespace std;
5
6 t emplate <class T>
7 i nline void print(const T& t) {cout << t << "\n";}
8
9 i nline void print(char c) {cout << "’" << c << "’\n";}

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.5 Explicit Specialization of a Template Function 663

664 Templates Chapter7

10 inline void print(const string& s) {cout << "\"" << s << "\"\n";}
11
12 int main()
13 {
14 int i = 1 0;
15 char c = ’ A’;
16 string s = " hello";
17
18 print(i);
19 print(c);
20 print(s);
21
22 return EXIT_SUCCESS;
23 }

10 Line 18 calls line 7 withT → int.
’A’ Line 19 calls line 9.
"hello" Line 20 calls line 10.

A template function consisting of three templates

Another way to invoke alternative code for an exceptional data type is with an ‘‘explicit specializa-
tion’’. Will demonstrate its quirks and then recommend that it should be used only when necessary.

The following line 7 is ageneral-purposetemplate. Lines10 and 13 areexplicit specializationsof
line 7. The<char> in line 10 says that whenever we decide to instantiate line 7 withT changed tochar ,
we should instantiate 10 instead.

An explicit specialization must always follow the definition, or at least a declaration, of the general-
purpose template. An explicit specialization has noT; its preamble (line 9) is always empty. Thus if any
template argument is explicitly specialized, they all must be. (This will come back to haunt us on p. 709.)

In this example, the<char> in line 10 is redundant and can be removed. If the const char& in
line 10 is indeed a special case of theconst T& line 7, the computer can figure out that thechar in 10
corresponds to theT in 7. We can remove the entire<char> or just the wordchar . Similarly, the
<string> in line 13 can be removed. For an example where the<char> or <string> are needed, see
p. 668.

I regret that thechar has to be passed by reference in line 10.For a small built-in data type, pass by
value would be faster because it avoids the extra fetch from memory. But line 10 will compile only if it is a
special case of line 7, and line 7 is a pass-by-reference.If we change the function argument in 10 to an
unadornedchar c , we would have to match it by changing 7 toT t and 13 tostring s .

What we really want is a general template forconst T& , as in line 7, with an explicit specialization
for char passed by value. We will be able to get this combination on pp. 779−781 when we have template
classes as well as template functions.

Template function vs. function template

A note on nomenclature.A function templateis a template that manufactures instantiations of a
function. Later, a ‘‘class template’’ w ill manufacture instantiations of a class (p. 683).

The set of all possible instantiations of the following threeprint function templates is atemplate
function. Included in this set are theprint that takes anint , instantiated from line 7; theprint that
takes adouble , also instantiated from line 7; theprint that takes achar , instantiated from line 10; and
theprint that takes astring , instantiated from line 13. The set is indefinitely large becauseT could be
any one of indefinitely many data types. Recall that a virtual function was also defined as a set of func-
tions; see p. 488.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Lines 7, 10, and 13 represent a single template function that is written with three function templates.
A template function must have exactly one general-purpose template, but it may have any number of
explicit specializations.

Our min template function was a set of functions that differed only in the data type plugged into
them. We were therefore able to instantiate that template function from one function template. But the fol-
lowing print template function is a set of functions that differ in other ways. Thistemplate function had
to be instantiated from more than one function template.

Three kinds of specialization

An implicit specialization is the imaginary source code pasted into the program when a template is
instantiated (p. 636). An explicit specialization is actual source code, as the following line 10.We will also
see ‘‘partial’’ specializations (p. 702), but only for template classes, not functions.

The code in line 7 occupies no memory: it is not an instantiation.Even without the keywords
static or inline , it could be written in a header file included by more than one.C file in the same pro-
gram. Butthe code in lines 10 and 13 does occupy memory: these lines are instantiations. In a header file
included by more than one.C file in the same program, they must bestatic or inline .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_specialization/explicit.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 using namespace std;
5
6 t emplate <class T>
7 i nline void print(const T& t) {cout << t << "\n";}
8
9 t emplate <>

10 inline void print<char>(const char& c) {cout << "’" << c << "’\n";}
11
12 template <>
13 inline void print<string>(const string& s) {cout << "\"" << s << "\"\n";}
14
15 int main()
16 {
17 int i = 1 0;
18 char c = ’ A’;
19 string s = " hello";
20
21 print(i);
22 print(c);
23 print(s);
24
25 return EXIT_SUCCESS;
26 }

10 Line 21 calls line 7 withT → int.
’A’ Line 22 calls line 10.
"hello" Line 23 calls line 13.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.5 Explicit Specialization of a Template Function 665

666 Templates Chapter7

Binding is performed in two steps.

When writing a[n explicit] specialization, be careful about its location; or to make
it compile will be such a trial as to kindle .. . self-immolation.

—The normally staidC++ Standard,§14.7.3, ¶ 7

Line 6 is a template function that will print a value of almost any data type. Lines 9 and 12 constitute
another template function that will print pointers. Since their arguments are different, the functions can be
overloads of the same name.

The<char> in 12 is redundant and can be removed. Thecast in line 9 ensures that only strings of
char , not of unsigned char or signed char , are printed as strings. If the argument in line 9 is a
pointer to a function, the cast will not compile; see line 24 ofreinterpret_cast.C on p. 67.

Line 16 must decide which function to call.We say that it mustbind the nameprint in line 16 to
the function that is actually called. This decision is performed in two steps.

Step 1 chooses the template function. In this step, the explicit specializations are ignored. When line
16 callsprint , only lines 6 and 9 are considered. Line 6 would changeT into const char * ; line 9
would changeT into an unadornedchar . Line 9 wins because it changesT into the simpler data type.

Step 2 chooses the function template within the template function.Now that we have decided to
instantiate the template function whose general-purpose template is in line 9, lines 9 and 12 are compared.
The latter is chosen.

print template function
at line 6

print template function
at line 9

print function template
at line 9

print<char> function template
at line 12

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_specialization/immolate1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 i nline void print(const T& t) {cout << t;}
7
8 t emplate <class T>
9 i nline void print(const T *p) {cout << static_cast<const void *>(p);}

10
11 template <>
12 inline void print<char>(const char *p) {cout << "\"" << p << "\"";}
13
14 int main()
15 {
16 print("hello");

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

17 cout << "\n";
18 return EXIT_SUCCESS;
19 }

"hello" Line 16 calls theprint<char>(const char *) in line 12 (good).

The following program is almost the same. It seems that the"hello" in line 16 will once again
call the explicit specialization in line 9. After all, the actual argument in 16 and the function argument in 9
are bothconst char * . But by placing the explicit specialization at line 9, we have made it an explicit
specialization of line 6. An explicit specialization always belongs to theprevious template of which it is a
special case. Lines 6 and 9 now constitute one template function; line 12 consititutes another.

When binding the nameprint in line 16, step 1 will choose theprint in line 12 over the one in
line 6. The explicit specialization in line 9 is ignored.Step 2 find that line 16 has no explicit specializa-
tions.

print template function
at line 6

print template function
at line 12

print function template
at line 6

print<const char *> function template
at line 9

Since line 12 always prevents 9 from being called, it seems anticlimactic to remark that the<const
char *> in 9 is redundant and can be removed.

The reader will have noticed that theconst T& t in line 6 of the above immolate1.C was
changed to the unadornedT t in the following line 6. We would prefer to pass the unknown T by refer-
ence. Butthe following line 9 will compile only if it is a special case of line 6. Had we continued to passt
by reference in line 6, thep in line 9 would have to be aconst char *const& p , a reference to a
pointer. Because of theconst after the* , the reference could not be used to change the value of the
pointer; because of the otherconst , the pointer could not be used to change the value of thechar .

Could we passt by reference andp by value? Canthe binding be made independent of the order in
which the templates are written?We will accomplish both on pp. 779−781, when template classes interact
with template functions.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_specialization/immolate2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 i nline void print(T t) {cout << t;}
7
8 t emplate <>
9 i nline void print<const char *>(const char *p) {cout << "\"" << p << "\"";}

10

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.5 Explicit Specialization of a Template Function 667

668 Templates Chapter7

11 template <class T>
12 inline void print(const T *p) {cout << static_cast<const void *>(p);}
13
14 int main()
15 {
16 print("hello");
17 cout << "\n";
18 return EXIT_SUCCESS;
19 }

0x10e68 Line 16 calls theprint(const T *) in line 12 (bad).

Why make an explicit specialization?

Let’s sum up the difficulties with explicit specialization.

(1) We cannot have a general-purpose template taking aconst T& followed by a specialization taking a
pass by value (p. 664).

(2) We can specialize forint * andconst int * but not for T * andconst T * . An explicit spe-
cialization never has anyT.

(3) An explicit specialization can accidentally belong to the wrong general-purpose template (pp.
667−668).

In the light of these infirmities, please use function name overloading when possible, explicit special-
ization only when necessary. The latter is necessary only when the general-purpose template has no func-
tion argument with aT in its data type. The simplest example is the template function in the following lines
6−12, which has no function arguments at all.

The<char> in line 9 is required because there is noT in the data types of the function arguments or
return value. Without the<char> , the computer could not tell which data type this is an explicit special-
ization for.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_specialization/name.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 using namespace std;
5
6 t emplate <class T>
7 s tring name(); //general-purpose template deliberately undefined
8
9 t emplate <> inline string name<char>() {return "char";}

10 template <> inline string name<int>() {return "int";}
11 template <> inline string name<double>() {return "double";}
12 //etc.
13
14 template <class T>
15 inline void print(const T& t) {
16 cout << static_cast<const void *>(&t) << ": "
17 << name<T>() << " (" << sizeof (T) << " bytes) " << t << "\n";
18 }
19
20 int main()
21 {
22 char c = ’ A’;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

23 int i = 1 0;
24 double d = 3.14;
25
26 print(c);
27 print(i);
28 print(d);
29
30 return EXIT_SUCCESS;
31 }

0xffbff187: char (1 bytes) A
0xffbff180: int (4 bytes) 10 Number of bytes is platform-dependent.
0xffbff178: double (8 bytes) 3.14

7.1.6 Pass a read/write pointer to a template function
Template functions and non-template functions follow different rules when we pass them a read/write

pointer. Our example will be the pointerp in line 31.

Lines 5 and 6 are two non-template functions namedf . The int * argument in line 5 is an exact
match for theint * argument in line 33.

Lines 9, 12, and 15 are three template functions namedg. Lines 9 or 12 are exact matches for the
int * argument in line 34. Line 12 is selected because it changesT to the simpler data type. Note that
theconst T * line 15 does not match theint * in line 34: anint is not aconst T .

Lines 18, 21, and 24 are one template function with two explicit specializations. Lines 18 or 21 are
exact matches for theint * argument in line 35.Line 21 is selected because it changesT to the simpler
data type. The<int *> and<const int *> in lines 21 and 24 are unnecessary. Note that theconst
T * line 24 does not match theint * in line 35: anint is not aconst T .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/explicit_specialization/pointer.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline void f(int *p) {cout << "f(int *) " << *p << "\n";}
6 i nline void f(const int *p) {cout << "f(const int *) " << *p << "\n";}
7
8 t emplate <class T>
9 i nline void g(const T& t) {cout << "g(const T&) " << t << "\n";}

10
11 template <class T>
12 inline void g(T *p) {cout << "g(T *) " << *p << "\n";}
13
14 template <class T>
15 inline void g(const T *p) {cout << "g(const T *) " << *p << "\n";}
16
17 template <class T>
18 inline void h(T t) {cout << "h(T t) " << t << "\n";}
19
20 template <>
21 inline void h<int *>(int *p) {cout << "h(int *) " << *p << "\n";}
22

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.6 Pass a read/write pointer to a template function 669

670 Templates Chapter7

23 template <>
24 inline void h<const int *>(const int *p) {
25 cout << "h(const int *) " << *p << "\n";
26 }
27
28 int main()
29 {
30 int i = 1 0;
31 int *p = &i;
32
33 f(p);
34 g(p);
35 h(p);
36 return EXIT_SUCCESS;
37 }

f(int *) 10 Line 33 calls thef(int *) in line 5.
g(T *) 10 Line 34 calls theg(T *) in line 12 withT → int .
h(int *) 10 Line 35 calls theh<int *>(int *) in line 21 withT → int .

How do the template functions differ from the non-template functions? If we comment out the
int * function in the above line 5, line 33 will happily settle for theconst int * function in line 6. It
has no trouble casting theint * in line 33 toconst int * .

But if we comment out theT * template function in line 12, something unexpected happens.Line
34 will not call theg(const T *) in line 15; as explained above, 15 is not a match for 34 at all. Line 34
will call the lowest common denominatorg line 9.

Similarly, if we comment out theint * explicit specialization in line 21, line 35 will not call the
h<const int *>(const int *) in line 24. Line 35 will call the general function template in line 18.

Here is the output with 5, 12, and 21 commented out.

f(const int *) 10 Line 33 now calls line 6.
g(const T&) 0xffbff0d4 Line 34 now calls line 9 withT → int * .
h(T t) 0xffbff0d4 Line 35 now calls line 18 withT → int * .

The t in the above line 18 must be passed by value to permit thep’s in lines 21 and 24 to be passed
by value. If the t in 18 were passed by reference, the pointers in 21 and 24 would also have to be passed
by reference.For example, thep in 21 would have to become the ‘‘read-only reference to a read/write
pointer to anint ’’ i n the following line 42.

38 template <class T>
39 inline void h(const T& t) {cout << "h(const T&) " << t << "\n";}
40
41 template <>
42 inline void h<int *>(int *const& p) {
43 cout << "h(int *const&) " << *p << "\n";
44 }
45
46 template <>
47 inline void h<const int *>(const int *const& p) {
48 cout << "h(const int *const&) " << *p << "\n";
49 }

What we really want is a general template forconst T& with explicit specializations for pointers
passed by value. We will be able to get this combination on pp. 779−781 when we have template classes as

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

well as template functions.

7.1.7 typename
A human never stands so tall as when stooping to help a small computer.

—Infocom poster

Although no one does it, we could write parentheses in the following declaration.

1 i nt i; //declare and define i
2 i nt (i); //does same thing; parens make no difference (see footnote*)

If we didn’t recognize that theint in the above line 2 is the name of a data type, we might think that the
int(i) was a call to a function namedint , with the argumenti .†

This problem can occur in a template, in the following line 24. Because of the preamble in line 17,
we know that T is the name of a data type. And because of thex member ofT in line 24, we know even
more:T is a data type that is a class. But what kind of member isT::x ? If T::x is the name of a data
type, like clinton::hillary_t in line 17 ofclinton.h on p. 420, we will do the comment in line
20. If T::x is not the name of a data type, we will do lines 21 or 22−23. As we saw in the above line 2,
the identity of the name in front of the parentheses can spell the difference between a declaration and a
function call.

A similar ambiguity occurs in the following lines 28 and 32. It would seem that line 28 should be a
declaration, since it would serve no purpose as a multiplication: the product would be discarded. But if
eitherT::y or p were of a user-defined type, line 28 would call anoperator* function which might do
work that is not discarded.

The ambiguity even prevents the computer from deciding if line 32 should compile.If T::z were a
static data member, we would perform a ‘‘bitwise and’’ or call an operator& function, and everything
will be fine. But if T::z were the name of a data type, we would try to declare a referencer to a variable
of that type. The reference, having no initializer, would fail to compile.

13 int i = 10;
14 int p = 20;
15 int r = 30;
16
17 template <class T>
18 void f()

* The parentheses would make a difference in the name of a compound data type. The simplest examples are the pairs
in lines 4−5 and 9−10.

3 i nline int func() {return 10;}
4 i nt *f (); //a function that returns a pointer to an int
5 i nt (*p)() = &func; //a pointer to a function that returns an int
6
7 i nt i = 10, j = 20;
8 i nt arr[2] = {10, 20};
9 i nt *a [2] = {&i, &j}; //an array of two pointers to int

10 int (*q)[2] = &arr; //a pointer to an array of two int’s

† Even if we did recognizeint as a data type, the expressionint(i) in some contexts could still be a function call.
For example, theint(i) in the following line 12 would call the copy constructor for typeint (pp. 661−662), with the
argumenti .

11 int i = 1 0;
12 int j = i nt(i); //unnecessarily complicated way to say int j = 10;

The int(i) in the above line 2, however, is a declaration. Whenever a statement could be a declaration or merely a func-
tion call (in this case, a constructor call that creates an anonymous temporary), C++ always treats it as a declaration.For a
painful example, see pp. 854−855.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.7 typename 671

672 Templates Chapter7

19 {
20 //Declare a l ocal variable named i of data type T::x,
21 //or pass the argument i to a static member function named T::x,
22 //or pass the argument i to an operator() member function of a static
23 //data member named T::x?
24 T::x (i);
25
26 //Declare a l ocal variable named p of data type "pointer to T::y",
27 //or multiply a static data member named T::y times p?
28 T::y * p ;
29
30 //Declare a l ocal variable named r of data type "reference to T::z",
31 //or "bitwise and" a static data member named T::z with r?
32 T::z & r ;
33 }

The ambiguity is a very real problem.Although most class members are not the name of a data type,
some of them are. The ones we have seen so far are listed below. hillary_t andbill appeared only
once, just to illustrate the syntax; the others occur quite frequently. In fact, every container class in the
standard library has five data type members namediterator , const_iterator , value_type ,
size_type , anddifference_type .

(1) thehillary_t member of classclinton in line 17 ofclinton.h on p. 420;

(2) thebill member of classclinton in lines 21−26 ofclinton.h on p. 420;

(3) thebill member of classgates in lines 6−13 ofgates.h on p. 421;

(4) thevalue_type member of classstack in line 3 on p. 423;

(5) the_matrix_t andmatrix_t members of classlife in lines 4 and 7 on pp. 423−424;

(6) thedifference_type member of classvector<int> in line 12 on p. 434;

(7) thesize_type member of classvector<int> in line 12 ofiterator.C on p. 434;

(8) theiterator member of classvector<int> in line 26 ofiterator.C on p. 434;

(9) theconst_iterator member of classvector<int> in line 14 of
const_iterator.C on p. 436;

(10) themaster_t member of classgame on p. 465;

(11) theconst_iterator member of classwabbit on p. 578.

One possible resolution: T::x is the name of a data type

To resolve the ambiguity, a member ofT is assumed to be the name of a data type only when it is pre-
ceded by the keyword typename . TheT::x in the following line 14, for example, is now the name of a
data type, and the line declares a variable of this type. The parentheses are unnecessary and serve only to
confuse the issue. But even without them, thetypename would still be necessary.

Another keyword that helps the computer understand a template is thetemplate on pp. 725−726.
Classobj was on pp. 179−180.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/typename/resolve1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 / /T must be a class with public members x, y, z that are names of data types.
7 / /T::x and T::z must have default constructors.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

8 / /Warning: i will be uninitialized if T::x is built-in, pointer, or enumeration.
9

10 template <class T>
11 void f()
12 {
13 //Declare a l ocal variable named i of data type T::x.
14 typename T::x(i);
15
16 //Declare a l ocal variable named p of data type "pointer to T::y".
17 typename T::y *p;
18
19 //Declare a l ocal variable named z1 of data type T::z.
20 typename T::z z1 = typename T::z();
21
22 //Declare a l ocal variable named r of data type "reference to T::z".
23 typename T::z& r = z1;
24
25 //Use the local variables i, p, r that we just defined.
26 cout << &i << " " << &p << " " << &r << "\n";
27 }
28
29 class myclass {
30 public:
31 typedef obj x;
32 typedef int y;
33 typedef int z;
34 };
35
36 int main()
37 {
38 f<myclass>();
39 return EXIT_SUCCESS;
40 }

default construct 0 Line 14 constructsi .
0xffbff140 0xffbff13c 0xffbff138
destruct 0 Line 27 destructsi .

The other resolution: T::x is not the name of a data type

Without thetypename , a member ofT is assumednot to be the name of a data type.It must there-
fore be a data member, member function, or enumeration value. TheT::x in the following line 22, for
example, is not the name of a data type. WhenT is themyclass in line 33, line 22 calls the function
myclass::x .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/typename/resolve2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass detectable {};
6 i nline void operator*(int i, detectable d) {cout << "multiply\n";}
7 i nline void operator&(int i, detectable d) {cout << "bitwise and\n";}

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.7 typename 673

674 Templates Chapter7

8
9 i nt i = 10;

10 detectable p;
11 detectable r;
12
13 //T must be a class with a static member function x, or a static data
14 //member x with an operator() member function that takes one int argument.
15 //T must also have static data members y and z that are convertible to int.
16
17 template <class T>
18 void f()
19 {
20 //Pass the argument i to a static member function named T::x, or to an
21 //operator() member function of a static data member named T::x.
22 T::x(i);
23
24 //Multiply a s tatic data member named T::y times p.
25 T::y * p ;
26
27 //"Bitwise and" a static data member named T::z with r.
28 T::z & r ;
29
30 //Did not create any local variables named i, p, r.
31 }
32
33 class myclass {
34 public:
35 static void x(int i) {cout << "myclass::x(" << i << ")\n";}
36 static const int y = 10;
37 static const int z = 20;
38 };
39
40 int main()
41 {
42 f<myclass>();
43 return EXIT_SUCCESS;
44 }

myclass::x(10) Line 22 callsmyclass::x in line 35.
multiply Line 25 callsoperator* in line 6.
bitwise and Line 28 callsoperator in line 7.

The keyword typename , used in this sense, is needed only within a template.(We saw its other use
back on p. 636.) Another member needingtypename will be thevector<T>::const_iterator in
line 15 ofset.h on p. 697 and line 60 ofwrapper.h on p. 704.

A r ealistic example of typename

The functionprint in line 13 takes a vector, list, or other container, and prints each element.To tell
line 15 thatCONTAINER::const_iterator is the name of a data type, we writetypename in front
of it. Other data type members are in lines 18, 22 and 25.

A member that is not the name of a data type is theCONTAINER::size in line 23; we write no
typename in front of it. size is a public member function.For simplicity I would have preferred a data
member, but the standard library containers have none that are public, and rightly so. Line 23 takes the
address of this member function; line 22 stores the address into a pointerp exquisitely engineered for this

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

purpose. Itis a pointer to aconst member function of classCONTAINER, taking no arguments and
returning aCONTAINER::size_type . Line 25 calls the member function indicated byp, belonging to
the objectc .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/typename/typename.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>
5 #include "date.h"
6 using namespace std;
7
8 / /Print the elements of CONTAINER c.
9 / /CONTAINER must have the members const_iterator, begin, and end.

10 //The elements must be puttable.
11
12 template <class CONTAINER>
13 void print(const CONTAINER& c)
14 {
15 for (typename CONTAINER::const_iterator it = c.begin();
16 it != c.end(); ++it) {
17
18 const typename CONTAINER::value_type x = *it;
19 cout << x << "\n";
20 }
21
22 typename CONTAINER::size_type (CONTAINER::*p)() const =
23 &CONTAINER::size;
24
25 typename CONTAINER::size_type s = (c.*p)();
26 cout << "The container has " << s << " elements.\n\n";
27 }
28
29 int main()
30 {
31 const int a[] = {10, 20, 30};
32 const size_t n = sizeof a / sizeof a[0];
33 list<int> li(a, a + n);
34 print(li);
35
36 const date d[] = {
37 date(date::july, 4, 1776),
38 date(date::october, 29, 1929),
39 date(date::december, 7, 1941),
40 date(date::july, 20, 1969),
41 date(date::september, 11, 2001)
42 };
43 const size_t dn = sizeof d / sizeof d[0];
44 vector<date> v(d, d + dn);
45 print(v);
46
47 return EXIT_SUCCESS;
48 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.7 typename 675

676 Templates Chapter7

The above lines 18−19 may be combined to

49 cout << *it << "\n";

The above lines 22−25 may be combined to

50 typename CONTAINER::size_type s = c.size();

10 Line 34 printsli .
20
30
The container has 3 elements.

7/4/1776 Line 45 printsv .
10/29/1929
12/7/1941
7/20/1969
9/11/2001
The container has 5 elements.

With notypename in the above line 15, the program will not compile. The error messages eventu-
ally get to the point.

typename.C: In function ’void print(const CONTAINER&)’:
typename.C:15:7: error: need ’typename’ before ’CONTAINER::
const_iterator’ because ’CONTAINER’ is a dependent scope
typename.C:15:33: error: expected ’;’ before ’it’
typename.C:16:3: error: ’it’ was not declared in this scope
typename.C: In function ’void print(const CONTAINER&) [with CONTAINER =
std::list<int>]’:
typename.C:34:10: instantiated from here
typename.C:15:47: error: dependent-name ’CONTAINER:: const_iterator’ is
parsed as a non-type, but instantiation yields a type

Theprint function in line 13 oftypename.C on still has two limitations.

(1) It was hardwired to print every element of the container. We might want to print only some of them.

(2) Thefunction argument ofprint had to be an object of a class satisfying the requirements in the
above line 9. For example, the array in line 31 could not have been passed toprint .

These problems will be solved on pp. 757−760 when the function arguments ofprint become a pair of
iterators.

▼ Homework 7.1.7a: consolidate the repetition with a template function

We illustrated a ‘‘thunk’’ on pp. 547−548.The main.C file there contained three identical chunks
of code differing only by a data type (lines 10−19, 22−31, 34−42).We had to write the same chunk over
and over because until now we had no way of passing a data type to a function.

Consolidate the repetion with the following template function. This will also demonstrate why we
gave each layout class a first name and last name (father::layout) rather than a compound-word
name (father_layout).

There will be two complications:

(1) Lines 10 and 11 will need the keyword typename to tell the computer thatT::layout is the
name of a data type.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

(2) For the time being, you will have to pass the name of the data type as the function argument
name in line 8. We will eliminate this on p. 1017 when we have Runtime Type Identification.

1 / *
2 T must be father or a class derived therefrom. T must also have a data
3 t ype member layout containing a pointer v to a structure containing a
4 pointer f to a function taking a pointer to T and returning void.
5 * /
6
7 t emplate <class T>
8 v oid print(const char *name, const T *p)
9 {

10 const typename T::layout& flay =
11 reinterpret_cast<const typename T::layout &>(*p);
12
13 //etc.
14 p->f();
15 flay.ptr_to_vtbl->ptr_to_f(p); //low-level way to do the same thing
16 //etc.
17 }
18
19 int main()
20 {
21 father fath(10);
22 print<father>("father", &fath);
23
24 derived d(20, 30, 40);
25 print<derived>("derived", &d);
26 print<father>("father", &d);
27
28 return EXIT_SUCCESS;
29 }

▲

7.1.8 Exporta template definition
Can a template function (or template class) be declared in a header file and defined in a.C file? We

attempt to do so with the keyword export in line 4.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/export/f.h

1 #ifndef FH
2 #define FH
3
4 export template <class T>
5 v oid f(const T& t); //declaration
6 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/export/f.C

1 #include <iostream>
2 #include "f.h"
3 using namespace std;
4

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.1.8 Export a template definition 677

678 Templates Chapter7

5 t emplate <class T>
6 v oid f(const T& t) { //definition
7 c out << "f<T>(" << t << ")\n";
8 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/export/main.C

1 #include <cstdlib>
2 #include "f.h"
3 using namespace std;
4
5 i nt main()
6 {
7 f (10);
8 r eturn EXIT_SUCCESS;
9 }

The GNUg++ compiler says

In file included from main.C:2:0:
In file included from f.C:2:0:
f.h:4:1: warning: keyword ’export’ not implemented, and will be ignored
Undefined first referenced

symbol in file
void f<int>(int const&) /var/tmp//ccGDaWEz.o
ld: fatal: symbol referencing errors. No output written to /dev/null
collect2: ld returned 1 exit status

The SunCCcompiler says

main.C:
f<T>(10)

7.1.9 Point of definition vs. point of instantiation
The following lines 7−12 define a template functionf . These lines are thepoint of definitionfor the

template.

Line 18 calls the template function, pasting an instantiation of it into the program at somepoint of
instantiation. Where is the point of instantiation, and does it matter?Line 18 is inside themain function.
According to the C++ Standard (§14.6.4.1, ¶1), the point of instantiation should therefore be at line 21,
immediately after the definition ofmain .

Armed with this terminology, we can introduce more terminology. The nameprint in line 10 is
independentbecause its binding—the choice of which function the name refers to—has nothing to do with
which data type theT stands for. An independent name is bound at the point of definition for the template.
At this point, lines 7−12, the computer has seen only theprint(double) in line 5, not the other
print ’s in 14 and 22. The nameprint in line 10 is bound to the functionprint(double) in line 5,
and the’A’ is converted to adouble . (For binding a name to a function, see p. 666.)

The nameprint in line 11 isdependentbecause its binding does depend on which data type theT
stands for. A dependent name is bound at the point of instantiation for the template, which should be line
21. At this point, the computer has seen theprint(double) in 5 and theprint(int) in 14. The
nameprint in line 11 is therefore bound to the functionprint(int) , since this is the best match for
thet .

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/instantiation/main.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline void print(double d) {cout << fixed << d << "\n";}
6
7 t emplate <class T>
8 v oid f(const T& t)
9 {

10 print(’A’); //This print is bound at f’s point of definition.
11 print(t); //This print is bound at f’s point of instantiation.
12 }
13
14 inline void print(int i) {cout << i << "\n";}
15
16 int main()
17 {
18 f(’A’);
19 return EXIT_SUCCESS;
20 }
21
22 inline void print(char c) {cout << "’" << c << "’\n";}

The correct output is

65.000000 Line 10 calls line 5 (assume ASCII).
65 Line 11 calls line 14.

The GNU g++ compiler incorrectly placed the point of instantiation at the end of the program, after
line 22.

65.000000 Line 10 calls line 5.
65.000000 Line 11 calls line 22.

The Sun CC compiler version 5.11 options and the Microsoft Optimizing Compiler version
16.00.21003.01 are even farther from the Standard.

’A’ Line 10 calls line 22.
’A’ Line 11 calls line 22.

The moral is: do not scatter the declarations of theprint functions all around the program.Place
them together.

7.2 Template Classes
We often find ourselves writing the same class several times, plugging in a different data type each

time. Containerclasses are the classic examples: avector of int ’s will be almost identical to avector
of objects.We can define the class once and for all as a ‘‘template class’’.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classstack 679

680 Templates Chapter7

7.2.1 ASimple Example: classstack

A template class

Our classstack , seen first on pp. 149−154 and most recently on 503−505, was hardwired to store
and retrieve only int ’s. Here it is again, renamedstack_int . We provide one of everything you would
want to see: a data type member (line 7), data members both static and non-static (lines 9 and 10), member
functions both inline and non-inline (lines 13 and 14), a friend function (line 19), and a function that is nei-
ther a member nor a friend (line 22). The== in line 23 calls theoperator== in line 19.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack_template/stack_int.h

1 #ifndef STACK_INTH
2 #define STACK_INTH
3 #include <cstddef> //for size_t
4
5 c lass stack_int {
6 public:
7 t ypedef int value_type;
8 private:
9 s tatic const size_t max_size = 100;

10 value_type a[max_size];
11 size_t n; //stack pointer: subscript of next free element
12 public:
13 stack_int(): n(0) {}
14 ˜stack_int();
15
16 void push(value_type i);
17 value_type pop();
18
19 friend bool operator==(const stack_int& s1, const stack_int& s2);
20 };
21
22 inline bool operator!=(const stack_int& s1, const stack_int& s2) {
23 return !(s1 == s2); //return !operator==(s1, s2);
24 }
25 #endif

Thevalue_type in the following line 15 does not need the last namestack_int , but the one in
line 28 does. See pp. 422−423.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack_template/stack_int.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stack_int.h"
4 using namespace std;
5
6 s tack_int::˜stack_int()
7 {
8 i f (n != 0) {
9 c err << "Warning: stack still contains " << n << " value(s).\n";

10 }
11 }
12
13 //Push a value onto the stack.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

14
15 void stack_int::push(value_type i)
16 {
17 if (n == max_size) { //overflow
18 cerr << "Can’t push when size " << n << " == capacity "
19 << max_size << ".\n";
20 exit(EXIT_FAILURE);
21 }
22
23 a[n++] = i ;
24 }
25
26 //Pop a value off the stack.
27
28 stack_int::value_type stack_int::pop()
29 {
30 if (n == 0) { //underflow
31 cerr << "Can’t pop when size " << n << " == 0.\n";
32 exit(EXIT_FAILURE);
33 }
34
35 return a[--n];
36 }
37
38 bool operator==(const stack_int& s1, const stack_int& s2)
39 {
40 if (s1.n != s2.n) {
41 return false;
42 }
43
44 for (size_t i = 0; i < s1.n; ++i) {
45 if (s1.a[i] != s2.a[i]) {
46 return false;
47 }
48 }
49
50 return true;
51 }

Here is the class renamed and modified to store and retrievedouble ’s. Note that the data members
max_size andn remainsize_t ’s.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack_template/stack_double.h

1 #ifndef STACK_DOUBLEH
2 #define STACK_DOUBLEH
3 #include <cstddef> //for size_t
4
5 c lass stack_double {
6 public:
7 t ypedef double value_type;
8 private:
9 s tatic const size_t max_size = 100;

10 value_type a[max_size];
11 size_t n; //stack pointer: subscript of next free element

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classstack 681

682 Templates Chapter7

12 public:
13 stack_double(): n(0) {}
14 ˜stack_double();
15
16 void push(value_type d);
17 value_type pop();
18
19 friend bool operator==(const stack_double& s1, const stack_double& s2);
20 };
21
22 inline bool operator!=(const stack_double& s1, const stack_double& s2) {
23 return !(s1 == s2);
24 }
25 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack_template/stack_double.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stack_double.h"
4 using namespace std;
5
6 s tack_double::˜stack_double()
7 {
8 i f (n != 0) {
9 c err << "Warning: stack still contains " << n << " value(s).\n";

10 }
11 }
12
13 //Push a value onto the stack.
14
15 void stack_double::push(value_type d)
16 {
17 if (n == max_size) { //overflow
18 cerr << "Can’t push when size " << n << " == capacity "
19 << max_size << ".\n";
20 exit(EXIT_FAILURE);
21 }
22
23 a[n++] = d;
24 }
25
26 //Pop a value off the stack.
27
28 stack_double::value_type stack_double::pop()
29 {
30 if (n == 0) { //underflow
31 cerr << "Can’t pop when size " << n << " == 0.\n";
32 exit(EXIT_FAILURE);
33 }
34
35 return a[--n];
36 }
37

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

38 bool operator==(const stack_double& s1, const stack_double& s2)
39 {
40 if (s1.n != s2.n) {
41 return false;
42 }
43
44 for (size_t i = 0; i < s1.n; ++i) {
45 if (s1.a[i] != s2.a[i]) {
46 return false;
47 }
48 }
49
50 return true;
51 }

The stacks cannot be consolidated with inheritance.

Can we consolidate the above two classes by deriving them from a common base class. But we can
do this only if the functions constituting a virtual function agree in the data types of their arguments and
return values.

1 / /will not compile
2
3 c lass stack {
4 public:
5 t ypedef ??? value_type; //What data type would go here?
6
7 v irtual ˜stack();
8 v irtual void push(value_type v);
9 v irtual value_type pop();

10 };
11
12 class stack_int: public stack {
13 public:
14 typedef int value_type;
15
16 void push(value_type i);
17 value_type pop();
18 };
19
20 class stack_double: public stack {
21 public:
22 typedef double value_type;
23
24 void push(value_type d);
25 value_type pop();
26 };

Consolidate the repetition with a class template

To consolidate the above classes, we can define thetemplate classin the following line 14. The
standard library already has a template classstack (pp. 155−157), but we will write our own.

For a non-template class, the class itself can be defined in a header file but the static data members
and non-inline member functions must be defined in the corresponding.C file. For a template class, the
class definition and all of its member definitions can go in the header file. As on p. 639, this is the only

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classstack 683

684 Templates Chapter7

portable way to mention the class in more than one.C file of a program.The template classvector , for
example, the flagship class of the C++ Standard Library, is defined in the header file<vector> .

Once again, we provide one of everything you would want to see: a data type member (line 16), data
members both static and non-static (lines 18 and 20), static data members initialized both inside and outside
the class definition (lines 18 and 19), member functions both inline and non-inline (lines 23 and 24), a
friend function (line 29), and a function that is neither a member nor a friend (line 87).

The class definition begins with the template preamble in line 13.A member definition written out-
side the class definition requires the same preamble.For example, the member functionpush in line 46
and the static data memberx in line 33 have the preambles in 45 and 32 respectively. But a declaration or
definition inside the class definition must not have a copy of the class preamble.For example, the con-
structor in 23 and the destructor in 24 have no preambles of their own.

We can saystack instead ofstack<T> within the { curly braces} of the class definition in lines
14−30. The<T> after eachstack in lines 23, 24, and 29 is therefore unnecessary. We can also say
stack instead ofstack<T> within the definition of a member, from the double colon (line 36) to the end
of the definition (line 41). The last<T> in lines 36 and 33 are therefore unnecessary. But everywhere else,
the<T> in stack<T> is required.For example, the first<T> in lines 36 and 33 will have to remain. So
will the <T>’s in lines 71 and 87, becauseoperator== andoperator!= are not members of class
stack<T> .

We could have written value_type in place of the last T in line 46, and
stack<T>::value_type in place of the firstT in line 60. ButT is more concise.

A friend of a template class

The first<T> in line 29 shows thatoperator== is a template function. (TheT is optional, but the
<angle brackets> must be written.)For each data typeT, operator==<T> will be a friend of the cor-
responding classstack<T> . Thusoperator==<int> will be a friend ofstack<int> ;
operator==<double> will be a friend ofstack<double> . This correspondence is called aone-to-
one friendship; for others, see pp. 729−734.

A <T> can be applied to the name of a function only if the function was previously declared to be a
template function.We must therefore write the template declaration in line 11 before the friend declaration
in line 29. Unfortunately, line 11 can be only a declaration, not the definition, foroperator== . The def-
inition for operator== mentions some of the members of classstack (e.g., then in line 73), so it must
come after the definition for classstack .

A <T> can be applied to the name of a class only if the class was previously declared to be a tem-
plate class.We must therefore write the template declaration in line 8 before mentioningstack in line 11.
For other examples of forward declarations, see pp. 465−466.

Template class vs. class template

As on pp. 664−665, aclass templateis a template that manufactures instantiations of a class.The
following lines 13−30 are a class template; lines 35−41 are a function template. Lines 32−33 must be a
static data member template.

The set of all possible instantiations of a class template is atemplate class.A template class is not a
data type. It is an indefinitely large set of data types:stack<int> , stack<double> , etc.

Our template classstack is a set of classes that differ only in the data type plugged into them.We
were therefore able to instantiate the template class from a single class template.On pp. 702−707 we will
see a set of classes that differ in other ways. We will have to instantiate this template class from more than
one class template. The extra templates will be called ‘‘partial’’ and ‘‘explicit’’ specializations.

The double colons in lines 71 and 87 ensure that we’re talking about thestack that belongs to no
namespace, notstd::stack . They are needed in case the headers in lines 3 and 4 include the standard
library header<stack> .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack_template/stack.h

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

1 #ifndef STACKH
2 #define STACKH
3 #include <iostream> //iostream includes cstddef, which defines size_t
4 #include <cstdlib>
5 using namespace std;
6
7 t emplate <class T>
8 c lass stack; //forward declaration for a template class
9

10 template <class T>
11 bool operator==(const stack<T>& s1, const stack<T>& s2);
12
13 template <class T>
14 class stack {
15 public:
16 typedef T value_type;
17 private:
18 static const size_t max_size = 100;
19 static size_t x; //just to demonstrate the syntax
20 T a[max_size];
21 size_t n; //stack pointer: subscript of next free element
22 public:
23 stack<T>(): n(0) {}
24 ˜stack<T>();
25
26 void push(const T& t);
27 T& pop();
28
29 friend bool operator==<T>(const stack<T>& s1, const stack<T>& s2);
30 };
31
32 template <class T>
33 size_t stack<T>::x = sizeof (stack<T>); //definition of static data member
34
35 template <class T>
36 stack<T>::˜stack<T>()
37 {
38 if (n != 0) {
39 cerr << "Warning: stack still contains " << n << " value(s).\n";
40 }
41 }
42
43 //Push a value onto the stack.
44
45 template <class T>
46 void stack<T>::push(const T& t)
47 {
48 if (n == max_size) { //overflow
49 cerr << "Can’t push when size " << n << " == capacity "
50 << max_size << ".\n";
51 exit(EXIT_FAILURE);
52 }
53
54 a[n++] = t ;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classstack 685

686 Templates Chapter7

55 }
56
57 //Pop a value off the stack.
58
59 template <class T>
60 T& stack<T>::pop()
61 {
62 if (n == 0) { //underflow
63 cerr << "Can’t pop when size " << n << " == 0.\n";
64 exit(EXIT_FAILURE);
65 }
66
67 return a[--n];
68 }
69
70 template <class T>
71 bool operator==(const ::stack<T>& s1, const ::stack<T>& s2)
72 {
73 if (s1.n != s2.n) {
74 return false;
75 }
76
77 for (size_t i = 0; i < s1.n; ++i) {
78 if (s1.a[i] != s2.a[i]) {
79 return false;
80 }
81 }
82
83 return true;
84 }
85
86 template <class T>
87 inline bool operator!=(const ::stack<T>& s1, const ::stack<T>& s2) {
88 return !(s1 == s2);
89 }
90 #endif

Create new data types

An instantiation of a template function usually requires no explicit template argument; the computer
can deduceT from the function arguments. Butan instantiation of a template class always requires an
explicit template argument; examples are in the following lines 9, 16, and 23. Note that the data types
stack<double> in 9 andstack<date> in 23 are not derived from a common base class and are not
friends of each other.

We can now create many stack types with only one template class definition. The solid boxes in this
diagram represent data types; the dashed box represents a template class. The dashed lines in this diagram
represent instantiation. The solid lines mean ‘‘gets plugged into the<angle brackets> of ’’.

For the possibility of templates other than function templates and class templates, see pp. 706−707.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

stackdouble date

stack<double> stack<date>

Lines 25−26 construct an object with a declaration and then insert it into a container. But an object
mentioned only once should be an anonymous temporary, like thedate in line 28.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack_template/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stack.h"
4 #include "date.h"
5 using namespace std;
6
7 i nt main()
8 {
9 : :stack<double> s1;

10 s1.push(2.71); //e
11 s1.push(3.14); //pi
12
13 cout << s1.pop() << "\n";
14 cout << s1.pop() << "\n\n";
15
16 ::stack<double> s2 = s1; //copy constructor
17 if (s1 == s2) { //if (operator==(s1, s2)) {
18 cout << "They are equal.\n";
19 }
20
21 cout << "\n";
22
23 ::stack<date> s3;
24
25 date independence_day(date::july, 4, 1776);
26 s3.push(independence_day);
27
28 s3.push(date(date::october, 29, 1929));
29 s3.push(date(date::december, 7, 1941));
30 s3.push(date(date::july, 20, 1969));
31 s3.push(date(date::september, 11, 2001));
32
33 cout << s3.pop() << "\n";
34 cout << s3.pop() << "\n";
35 cout << s3.pop() << "\n";
36 cout << s3.pop() << "\n";
37 cout << s3.pop() << "\n";
38
39 return EXIT_SUCCESS;
40 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classstack 687

688 Templates Chapter7

3.14
2.71

They are equal.

9/11/2001
7/20/1969
12/7/1941
10/29/1929
7/4/1776

Warning: the above lines 13−14 cannot be combined to the following.

41 cout << s1.pop() << "\n"
42 << s1.pop() << "\n\n";

Had we done this, we could still predict that the<< operators will be executed from left to right. But we
could not predict which call topop would be executed first: neither of the dashed boxes contains the other.
See pp. 14−16.

cout << s1 . pop () << "\n" << s1 . pop () << "\n\n"

Hide the name of an instantiation of a template class

If you have a mother-in-law with only one eye and she has it in the center of her
forehead, you don’t keep her in the living room.

—Lyndon Baines Johnson, quoted in David Halberstam’sThe Best and the Brightest, Chapter 19

If you are uncomfortable with the<angle brackets> in the above line 9, you can hide them in a type-
def.

1 #include "stack.h"
2 #include "date.h"
3
4 / /From now on, stack_double_t means ::stack<double>.
5 t ypedef ::stack<double> stack_double_t;
6
7 s tack_double_t s1; //means ::stack<double> s1;
8
9 / /from now on, stack_date_t means stack<date>

10 typedef ::stack<date> stack_date_t;
11
12 stack_date_t s2;

Many common data types are actually typedefs for an instantiation of a template class.We hav ebeen
using them without suspecting their true nature. Their full names will often appear in error messages.

13 //Excerpt from <string>.
14 typedef basic_string<char> string;

15 //Excerpts from <iostream>.
16 typedef basic_istream<char> istream; //e.g., cin
17 typedef basic_ostream<char> ostream; //e.g., cout, cerr, clog

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

18 //Excerpts from <fstream> for file i/o.
19 typedef basic_ifstream<char> ifstream;
20 typedef basic_ofstream<char> ofstream;
21 typedef basic_fstream<char> fstream;

The same header files contain a parallel series of typedefs for wide characters.

22 typedef basic_string<wchar_t> wstring;

23 typedef basic_istream<wchar_t> wistream; //e.g., wcin
24 typedef basic_ostream<wchar_t> wostream; //e.g., wcout, wcerr, wclog

25 typedef basic_ifstream<wchar_t> wifstream;
26 typedef basic_ofstream<wchar_t> wofstream;
27 typedef basic_fstream<wchar_t> wfstream;

Default value for a template argument

Let’s make the T default to the data typeint in the above template classstack . Change the pre-
amble in line 13 ofstack.h on p. 685 to the following. Donot change any of the other preambles.

1 t emplate <class T = int>

We can now create a stack ofint ’s as follows. Notethat the<angle brackets> in line 4 are still
required.

2 #include "stack.h"
3
4 : :stack<> s1; //a stack of int’s
5 : :stack<int> s2; //another stack of int’s
6 : :stack<double> s3; //a stack of double’s
7 / /::stack s4; //won’t compile

Only a template class, not a template function, can take a default value for a template argument.

Nested instantiations need whitespace.

Instantiations can be nested. In other words, the name of an instantiation of a template class can be
plugged into the<angle brackets> of another template.When we do this, we must always separate the
closing>’s with whitespace.Whitespace is always needed between any consecutive tokens that would oth-
erwise look like one big token. Seep. 101.

The other template will usually be a template class:

1 #include <vector>
2 #include <list>
3 #include <string>
4 #include <complex> //for class complex, p. 210
5 using namespace std;
6
7 c omplex<double> c; //a complex number
8 v ector<complex<double> > v; //a vector of complex numbers
9 v ector<list<string> > hs(100); //a hash table of strings

10 vector<list<complex<double> > > hc(100); //a hash table of complex numbers

But the other template could also be a template function, such as thestep on pp. 655−658. On my
platform, avector begins with a pointer to the first element.On every platform, the remaining elements
are stored consecutively.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.1 A Simple Example: classstack 689

690 Templates Chapter7

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack_template/nest.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <complex>
5 #include "step.h"
6 using namespace std;
7
8 i nt main()
9 {

10 complex<double> a[] = {
11 complex<double>(10, 20),
12 complex<double>(30, 40),
13 complex<double>(50, 60),
14 };
15 const size_t n = sizeof a / sizeof a[90];
16 vector<complex<double> > v(a, a + n);
17 const void *p = stand<const complex<double> *>(&v);
18
19 step<complex<double> >(p); //element 0
20 step<complex<double> >(p); //element 1
21 step<complex<double> >(p); //element 2
22 return EXIT_SUCCESS;
23 }

0xffbff0f4: 0x22d68
0x22d68: (10,20)
0x22d78: (30,40)
0x22d88: (50,60)

7.2.2 ConstantTemplate Arguments
We can plug any data type into the template classstack , but the maximum number of elements is

still hardwired to 100.We will now parameterize this number with aconstant template argument.

A constant template argument must be integral (p. 61), a pointer, or an enumeration, not adouble
or an object.For example, the constant template argumentMAX_SIZE in line 13 is asize_t , which is a
typedef forunsigned or unsigned long . We can give it a default value (100) becausestack is a
template class, not a template function.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_arg/stack.h

1 #ifndef STACKH
2 #define STACKH
3 #include <iostream> //iostream includes cstddef, which defines size_t
4 #include <cstdlib>
5 using namespace std;
6
7 t emplate <class T, size_t MAX_SIZE>
8 c lass stack;
9

10 template <class T, size_t MAX_SIZE>
11 bool operator==(const stack<T, MAX_SIZE>& s1, const stack<T, MAX_SIZE>& s2);

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

12
13 template <class T, size_t MAX_SIZE = 100> //Don’t write the = 100 anywhere else.
14 class stack {
15 public:
16 typedef T value_type;
17 private:
18 T a[MAX_SIZE];
19 size_t n; //stack pointer: subscript of next free element
20 public:
21 stack(): n(0) {}
22 ˜stack();
23
24 void push(const T& t);
25 T& pop();
26
27 friend bool operator==<T, MAX_SIZE>(const stack& s1, const stack& s2);
28 };
29
30 template <class T, size_t MAX_SIZE>
31 stack<T, MAX_SIZE>::˜stack()
32 {
33 if (n != 0) {
34 cerr << "Warning: stack still contains " << n << " value(s).\n";
35 }
36 }
37
38 //Push a value onto the stack.
39
40 template <class T, size_t MAX_SIZE>
41 void stack<T, MAX_SIZE>::push(const T& t)
42 {
43 if (n == MAX_SIZE) { //overflow
44 cerr << "Can’t push when size " << n << " == capacity "
45 << MAX_SIZE << ".\n";
46 exit(EXIT_FAILURE);
47 }
48
49 a[n++] = t ;
50 }
51
52 //Pop a value off the stack.
53
54 template <class T, size_t MAX_SIZE>
55 T& stack<T, MAX_SIZE>::pop()
56 {
57 if (n == 0) { //underflow
58 cerr << "Can’t pop when size " << n << " <= 0.\n";
59 exit(EXIT_FAILURE);
60 }
61
62 return a[--n];
63 }
64
65 template <class T, size_t MAX_SIZE>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.2 Constant Template Arguments 691

692 Templates Chapter7

66 bool operator==(const ::stack<T, MAX_SIZE>& s1, const ::stack<T, MAX_SIZE>& s2)
67 {
68 if (s1.n != s2.n) {
69 return false;
70 }
71
72 for (size_t i = 0; i < s1.n; ++i) {
73 if (s1.a[i] != s2.a[i]) {
74 return false;
75 }
76 }
77
78 return true;
79 }
80
81 template <class T, size_t MAX_SIZE>
82 inline bool operator!=(const ::stack<T, MAX_SIZE>& s1,
83 const ::stack<T, MAX_SIZE>& s2) {
84 return !(s1 == s2);
85 }
86 #endif

The value of a constant template argument must be a constant expression (p. 234), not a variable. An
example is the100 in line 9.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/const_arg/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stack.h"
4 #include "date.h"
5 using namespace std;
6
7 i nt main()
8 {
9 : :stack<double, 100> s1; //could also say 50 + 50

10 ::stack<double> s2; //same data type: 100 is the default
11
12 s1.push(2.71); //e
13 s1.push(3.14); //pi
14
15 cout << s1.pop() << "\n";
16 cout << s1.pop() << "\n\n";
17
18 ::stack<date, 4> s3;
19
20 s3.push(date(date::july, 4, 1776));
21 s3.push(date(date::october, 29, 1929));
22 s3.push(date(date::december, 7, 1941));
23 s3.push(date(date::july, 20, 1969));
24 s3.push(date(date::september, 11, 2001)); //will overflow the stack
25
26 cout << s3.pop() << "\n";
27 cout << s3.pop() << "\n";
28 cout << s3.pop() << "\n";

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

29 cout << s3.pop() << "\n";
30 cout << s3.pop() << "\n";
31
32 return EXIT_SUCCESS;
33 }

3.14
2.71

Can’t push when size 4 == capacity 4. caused by line 24 ofmain.C

Recognize the angle brackets

The default value of a constant template argument could be an expression.

1 t emplate <class T, size_t MAX_SIZE = 10 + 20>
2 c lass stack {

But an expression containing the> operator must be enclosed in parentheses.

3 t emplate <class T, bool B = (10 > 20)>
4 c lass stack {

For a real-world example, see p. 710.A similar use of parentheses is to enclose a comma operator in a
function argument; see p. 264.

▼ Homework 7.2.2a: let the dimensions of the game of life be constant template arguments

We can give dimensions to an array. With constant template arguments, we can also give dimensions
to a class. Change classlife from

1 c lass life {
2 s tatic const size_t xmax = 10;
3 s tatic const size_t ymax = 10;
4 t ypedef bool _matrix_t[ymax + 2][xmax + 2]; //array needs height first
5 _matrix_t matrix;
6 public:
7 t ypedef bool matrix_t[ymax][xmax];

to

8 t emplate <size_t XMAX = 10, size_t YMAX = 10> //users expect width first
9 c lass life {

10 typedef bool _matrix_t[YMAX + 2][XMAX + 2]; //array needs height first
11 public:
12 typedef bool matrix_t[YMAX][XMAX];

We can then construct games as follows.

13 life<10, 20> g1 = argument for constructor; / /10 × 20 (width × height)
14 life<30> g2 = argument for constructor; / /30 × 10
15 life<> g3 = argument for constructor; / /10 × 10

▲

▼ Homework 7.2.2b:
Version 4.0 of the Rabbit Game: create the four rank classes with one template

The ranks in the food chain are represented by four classes, introduced on pp. 564−565 and last mod-
ified on p. 582.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.2 Constant Template Arguments 693

694 Templates Chapter7

inert
victim
predator
halogen

They are identical except for the levels of hunger and bitterness in lines 7−8.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/private/inert.h

1 #ifndef INERTH
2 #define INERTH
3 #include <climits> //for INT_MIN and INT_MAX
4 #include "wabbit.h"
5
6 c lass inert: private virtual wabbit {
7 i nt hungry() const {return INT_MIN;}
8 i nt bitter() const {return INT_MAX;}
9 public:

10 inert(game *initial_g, unsigned initial_x, unsigned initial_y,
11 char initial_c)
12 : wabbit(initial_g, initial_x, initial_y, initial_c) {}
13 };
14 #endif

Remove the four classesinert , victim , predator , and halogen , and their header files.
Replace them with the template class in the following line 7. Then reinstate classesinert , victim ,
predator , and halogen as the typedefs in 16−20.Classboulder , for example, will now be derived
from immobile andinert_t , and the constructor forboulder will call the constructors for
immobile andinert_t .

In place of the macroINT_MIN in line 18, I would rather call the function
numeric_limits<int>::min() on pp. 745−747. But a template argument must be a constant
expression (p. 234), not the return value of a function.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rank.h

1 #ifndef RANKH
2 #define RANKH
3 #include <climits>
4 #include "wabbit.h"
5
6 t emplate <int HUNGRY, int BITTER>
7 c lass rank: private virtual wabbit {
8 i nt hungry() const {return HUNGRY;}
9 i nt bitter() const {return BITTER;}

10 public:
11 rank(game *initial_g, unsigned initial_x, unsigned initial_y,
12 char initial_c)
13 : wabbit(initial_g, initial_x, initial_y, initial_c) {}
14 };
15
16 //Convenient names for the rank classes:
17
18 typedef rank<INT_MIN, INT_MAX> inert_t;
19 typedef rank<INT_MIN, INT_MIN> victim_t;
20 //etc.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

21 #endif

▲

▼ Homework 7.2.2c:
Version 4.1 of the Rabbit Game: create the sixteen grandchild classes with one template

The various species of animals (boulder , rabbit , wolf , etc.) becamegrandchildren of class
wabbit on pp. 565−566, and were last modified on p. 582.They are identical except for the names of the
two base classes and the value of thechar literal.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/private/boulder.h

1 #ifndef BOULDERH
2 #define BOULDERH
3 #include "immobile.h"
4 #include "rank.h"
5
6 c lass boulder: private immobile, private inert_t {
7 public:
8 boulder(game *initial_g, unsigned initial_x, unsigned initial_y)
9 : wabbit(initial_g, initial_x, initial_y, ’b’),

10 immobile(initial_g, initial_x, initial_y, ’b’),
11 inert_t (initial_g, initial_x, initial_y, ’b’)
12 {}
13 };
14 #endif

Remove classesboulder , rabbit , wolf , etc., and their header files.Replace them with the tem-
plate class in the following line 8.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/grandchild.h

1 #ifndef GRANDCHILDH
2 #define GRANDCHILDH
3
4 / /MOTION must have member functions decide and (optionally) punish;
5 / /RANK must have member functions hungry and bitter.
6
7 t emplate <class MOTION, class RANK, char C>
8 c lass grandchild: private MOTION, private RANK {
9 public:

10 grandchild(game *initial_g, unsigned initial_x, unsigned initial_y)
11 : wabbit(initial_g, initial_x, initial_y, C),
12 MOTION(initial_g, initial_x, initial_y, C),
13 RANK(initial_g, initial_x, initial_y, C)
14 {}
15 };
16 #endif

Reinstate classesboulder , rabbit , wolf , etc., as the instantiations of classgrandchild in the
following lines 14, 18, etc.

1 / /Excerpt from game.C.
2
3 / /The header files for the four styles of motion.
4 #include "manual.h"

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.2 Constant Template Arguments 695

696 Templates Chapter7

5 #include "brownian.h"
6 / /etc.
7
8 #include "rank.h"
9 #include "grandchild.h"

10
11 //Excerpt from game::game
12
13 case ’b’: //boulder
14 new grandchild<immobile, inert_t, ’b’>(this, x, y);
15 break;
16
17 case ’r’: //rabbit
18 new grandchild<brownian, victim_t, ’r’>(this, x, y);
19 break;

Or make the code self-documenting by hiding each data type in a typedef:

20 case ’b’:
21 typedef grandchild<immobile, inert_t, ’b’> boulder_t;
22 new boulder_t(this, x, y);
23 break;
24
25 case ’r’:
26 typedef grandchild<brownian, victim_t, ’r’> rabbit_t;
27 new rabbit_t(this, x, y);
28 break;

▲

7.2.3 ‘‘Template” Template Arguments
A template argument can stand for a data type (T) or a constant value (MAX_SIZE). Bothpossibili-

ties appeared in line 13 ofstack.h on p. 691.A template argument can also stand for a template class
such asvector , list , or grandchild .

Why can’t our existing T stand forvector ? A T can indeed stand for any data type, but vector is
not a data type. It is a template class, which is an indefinitely large set of data types.To stand for a tem-
plate class, a new kind of template argument had to be invented.

Our examples will be rudimentary versions of the container classesset andmap in the C++ Stan-
dard Library. The template arguments of the realset and map are different from the arguments used
below. And the return values of the member functions of the realset andmapare much more useful than
the simple data types below.

A set

A set object contains values of typeT, but only at most one copy of any value. We will present
three implementations of the class; the third will have a ‘‘template’’ template argument.

We first implement the class on top of avector , the data memberv in line 12. Since we wrote no
default constructor forset , it behaves as if we had written one that calls the default constructor forv and
does nothing else.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/set/set1/set.h

1 #ifndef SETH
2 #define SETH

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

3 #include <iostream>
4 #include <cstdlib>
5 #include <vector>
6 using namespace std;
7
8 / /T must be copy constructable (line 31) and equality comparable (line 17).
9

10 template <class T>
11 class set {
12 vector<T> v;
13 public:
14 bool find(const T& t) const {
15 for (typename vector<T>::const_iterator it = v.begin();
16 it != v.end(); ++it) {
17 if (*it == t) {
18 return true;
19 }
20 }
21
22 return false;
23 }
24
25 void insert(const T& t) {
26 if (find(t)) {
27 cerr << "Sorry, the value is already in the set.\n";
28 exit(EXIT_FAILURE);
29 }
30
31 v.push_back(t);
32 }
33 };
34 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/set/set1/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string>
4 #include "set.h"
5 using namespace std;
6 i nt main()
7 {
8 : :set<string> s; //born empty
9 s .insert("Mercury");

10 s.insert("Venus");
11 s.insert("Earth");
12
13 cout << boolalpha
14 << s.find("Mercury") << "\n"
15 << s.find("Mongo") << "\n";
16
17 return EXIT_SUCCESS;
18 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.3 ‘‘ Template” Template Arguments 697

698 Templates Chapter7

true Mercury was inserted in line 8.
false Mongo was never inserted.

Our choice ofvector as the underlying container was hardwired into lines 12 and 15 of the above
set.h . We can parameterize it with the template argumentCONTAINERin the following line 11.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/set/set2/set.h

1 #ifndef SETH
2 #define SETH
3 #include <iostream>
4 #include <cstdlib>
5 #include <vector>
6 using namespace std;
7
8 / /T must be copy constructable and equality comparable.
9 / /CONTAINER must have const_iterator, begin, end, push_back.

10
11 template <class T, class CONTAINER = vector<T> > //needs whitespace
12 class set {
13 CONTAINER c;
14 public:
15 bool find(const T& t) const {
16 for (typename CONTAINER::const_iterator it = c.begin();
17 it != c.end(); ++it) {
18 if (*it == t) {
19 return true;
20 }
21 }
22
23 return false;
24 }
25
26 void insert(const T& t) {
27 if (find(t)) {
28 cerr << "Sorry, the value is already in the set.\n";
29 exit(EXIT_FAILURE);
30 }
31
32 c.push_back(t);
33 }
34 };
35 #endif

Line 10 uses the default container; line 19 overrides it.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/set/set2/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 #include <string>
5 #include "set.h"
6 using namespace std;
7

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

8 i nt main()
9 {

10 ::set<string> s; //implemented atop vector<string>
11 s.insert("Mercury");
12 s.insert("Venus");
13 s.insert("Earth");
14
15 cout << boolalpha
16 << s.find("Mercury") << "\n"
17 << s.find("Mongo") << "\n\n";
18
19 ::set<string, list<string> > s2; //implemented atop list<string>
20 s2.insert("Mercury");
21 s2.insert("Venus");
22 s2.insert("Earth");
23
24 cout << boolalpha
25 << s2.find("Mercury") << "\n"
26 << s2.find("Mongo") << "\n";
27
28 return EXIT_SUCCESS;
29 }

true
false

true
false

I’m afraid that the two copies ofstring in the above line 19 might get out of sync.I wish we could
say

30 ::set<string, list> s2;

But CONTAINERhas to be a data type, andlist is not a data type. If we try it, the program will not com-
pile.

main.C: In function ’int main()’:
main.C:19:21: error: type/value mismatch at argument 2 in template
parameter list for ’template<class T, class CONTAINER> class set’
main.C:19:21: error: expected a type, got ’list’

The solution is to letCONTAINERbe atemplatetemplate argument. Thefollowing line 15 declares
thatCONTAINERis a template class that will accept one template argumentU. (We don’t hav eto write the
U, but it makes the declaration ofCONTAINERlook more familiar.) For example,CONTAINERcould be
myvector , which is exactly the same as the standard libraryvector except that it takes only one tem-
plate argument. (std::vector takes two.) Lines17 and 20 apply one template argument to the
CONTAINER.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/set/set3/set.h

1 #ifndef SETH
2 #define SETH
3 #include <iostream>
4 #include <cstdlib>
5 #include <vector>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.3 ‘‘ Template” Template Arguments 699

700 Templates Chapter7

6 using namespace std;
7
8 t emplate <class T>
9 c lass myvector: public vector<T> {

10 };
11
12 //T must be copy constructable and equality comparable.
13 //CONTAINER must have const_iterator, begin, end, push_back.
14
15 template <class T, template <class U> class CONTAINER = myvector>
16 class set {
17 CONTAINER<T> c;
18 public:
19 bool find(const T& t) const {
20 for (typename CONTAINER<T>::const_iterator it = c.begin();
21 it != c.end(); ++it) {
22 if (*it == t) {
23 return true;
24 }
25 }
26
27 return false;
28 }
29
30 void insert(const T& t) {
31 if (find(t)) {
32 cerr << "Sorry, the value is already in the set.\n";
33 exit(EXIT_FAILURE);
34 }
35
36 c.push_back(t);
37 }
38 };
39 #endif

We can now define the following template class at line 7 ofmain.C on p. 698.

40 template <class T>
41 class mylist: public list<T> {
42 };

and change line 19 ofmain.C to the following. Theoutput remains the same.

43 //string is a data type, mylist is a template class w/ 1 template arg
44 ::set<string, mylist> s2;

In real life, we would never write the above classset . We would simply include the standard library
header file<set> , declare aset<string> , and call its member functionsinsert , find , erase , etc.

A ‘ ‘template’’ t emplate argument that takes two different T’s

It scarcely seems worthwhile to introduce a new language feature just to avoid writing the name
string twice in line 19 ofmain.C on p. 699. The real purpose of this feature is to allow a template to
apply two different template arguments to theCONTAINER, as in the following lines 18 and 19.

A map object contains pairs of values of typesKEYandVALUE. Think of it as an array whose sub-
scripts are of typeKEYand whose elements are of typeVALUE. Lines 18 and 19 can apply one template
argument toCONTAINERthanks to the declaration in line 16.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/mymap/map.h

1 #ifndef MAP
2 #define MAP
3 #include <iostream>
4 #include <cstdlib>
5 using namespace std;
6
7 t emplate <class T>
8 c lass myvector: public vector<T> {
9 } ;

10
11 //KEY must be copy constructable and equality comparable.
12 //VALUE must be copy constructable.
13 //CONTAINER must have const_iterator, begin, end, push_back.
14
15 template <class KEY, class VALUE,
16 template <class U> class CONTAINER = myvector>
17 class map {
18 CONTAINER<KEY> key;
19 CONTAINER<VALUE> value;
20 public:
21 const VALUE& find(const KEY& k) const {
22 typename CONTAINER<VALUE>::const_iterator itv = value.begin();
23
24 for (typename CONTAINER<KEY>::const_iterator itk = key.begin();
25 itk != key.end(); ++itk, ++itv) {
26
27 if (*itk == k) {
28 return *itv;
29 }
30 }
31
32 cerr << "key not found\n";
33 exit(EXIT_FAILURE);
34 }
35
36 void insert(const KEY& k, const VALUE& v) {
37 key .push_back(k);
38 value.push_back(v);
39 }
40 };
41 #endif

Here is amap that contains each planet’s gravity as a fraction of the earth’s.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/mymap/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <string>
5 #include <list>
6 #include "map.h"

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.3 ‘‘ Template” Template Arguments 701

702 Templates Chapter7

7 using namespace std;
8
9 t emplate <class T>

10 class mylist: public list<T> {
11 };
12
13 int main()
14 {
15 ::map<string, double> gravity; //implemented atop 2 vectors
16
17 gravity.insert("Mercury", .27);
18 gravity.insert("Venus", .85);
19 gravity.insert("Earth", 1.00);
20 cout << "Mercury" << ", " << gravity.find("Mercury") << "\n";
21
22 ::map<string, double, mylist> gravity2; //implemented atop 2 mylists
23 gravity2.insert("Mercury", .27);
24 cout << "Mercury" << ", " << gravity2.find("Mercury") << "\n";
25
26 return EXIT_SUCCESS;
27 }

Mercury, 0.27
Mercury, 0.27

A map should contain only at most one pair with a given subscript. We declined to check for this
because afind function whose return type isVALUEor VALUE&has no graceful way of returning an
indication of failure. Even worse, parallel containers such as those in the above lines 18 and 19 tend to fall
out of sync. It would be better to have one data structure containing objects each of which has a pair of
data members. These ‘‘pair’’ objects will appear on pp. 785−787.

In real life, we would never write the above classmap. We would simply include the header file
<map>and declare themap<string, double> on p. 787.

7.2.4 Partial and Explicit Specialization of a Template Class
We can overload the name of a function or template function, but not the name of a class or template

class. To compensate, a template class can bepartially specializedandexplicitly specialized.Only tem-
plate classes, not template functions, can be partially specialized.

The following class is merely a wrapper for the data membert in line 9. We provide member func-
tions defined inside and outside the class definition, in lines 11 and 12.

Line 8 is theprimary templatefor classwrapper because it has no<angle brackets> after the
namewrapper . The primary template will instantiate awrapper for any data type not covered by the
specializations below it.

Line 19 is apartial specializationbecause it has angle brackets containing aT. This template will
instantiate awrapper for any type of pointer not covered by an even more specific specialization.

Line 37 is anexplicit specialization because its angle brackets contain noT. This template will
instantiate only one type ofwrapper , for a pointer to aconst char . Its preamble in line 36 has noT,
just like the preamble for an explicit specialization of a template function. (See line 9 ofexplicit.C on
p. 665.)

The primary template and its specializations may differ in the names and types of their members and
friends; compare thet in line 9 with thep’s in 20 and 38.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Partial and explicit specializations can be written in any order as long as they come after the primary
template. Thusan explicit specialization belongs to the template class as a whole, not to any particular par-
tial specialization.For example, the explicit specialization forconst char * could have been defined
before the partial specialization forconst T * , or without any partial specialization at all.Recall that the
rules were different for template functions: an explicit specialization of a template function belonged to one
particular template function, not to of all the template functions sharing the same name.

Oddly, the explicit specialization’s member function in line 45 has no preamble of its own. Alsonote
than lines 36−42 are redundant.We can comment them out because 18−24 will instantiate the same code.
If we do this, however, we must comment line 44 back in.

Line 48 is a partial specialization for any type ofvector . Theconst_iterator in line 60 is a
member of an instantiation ofvector . But the primary template forvector and its various specializa-
tions may differ in the names and types of their members. Theoretically, theconst_iterator of
vector<int> might be name of a data type, while theconst_iterator of vector<char> might
be a data member. To show thatconst_iterator is the name of a data type, we need the keyword
typename as on pp. 671−676.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/partial/wrapper.h

1 #ifndef WRAPPERH
2 #define WRAPPERH
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6
7 t emplate <class T>
8 c lass wrapper { //primary template
9 c onst T t;

10 public:
11 wrapper(const T& initial_t): t(initial_t) {}
12 void print() const;
13 };
14
15 template <class T>
16 inline void wrapper<T>::print() const {cout << t;}
17
18 template <class T>
19 class wrapper<const T *> { //partial specialization
20 const T * const p;
21 public:
22 wrapper(const T * initial_p): p(initial_p) {}
23 void print() const;
24 };
25
26 template <class T>
27 void wrapper<const T *>::print() const
28 {
29 cout << p;
30 if (p != 0) {
31 cout << " -> ";
32 wrapper<T>(*p).print();
33 }
34 }
35
36 template <>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4 Partial and Explicit Specialization of a Template Class 703

704 Templates Chapter7

37 class wrapper<const char *> { //explicit specialization
38 const char *const p;
39 public:
40 wrapper(const char *initial_p): p(initial_p) {}
41 void print() const;
42 };
43
44 //template <> //No preamble.
45 inline void wrapper<const char *>::print() const {cout << "\"" << p << "\"";}
46
47 template <class T>
48 class wrapper<vector<T> > { //another partial specialization
49 const vector<T> v;
50 public:
51 wrapper(const vector<T>& initial_v): v(initial_v) {}
52 void print() const;
53 };
54
55 template <class T>
56 void wrapper<vector<T> >::print() const
57 {
58 cout << "(";
59
60 for (typename vector<T>::const_iterator it = v.begin(); it != v.end();
61 ++it) {
62 if (it != v.begin()) {
63 cout << ", ";
64 }
65 wrapper<T>(*it).print();
66 }
67
68 cout << ")";
69 }
70 #endif

The above line 32 constructs an anonymous object and calls itsprint function. If this makes you
uncomfortable, give the object a name:

71 const wrapper<T> w(*p);
72 w.print();

Thefor loop in the above lines 60−61 can tamed with a typedef:

73 typedef typename vector<T>::const_iterator const_iterator;
74
75 for (const_iterator it = v.begin(); it != v.end(); ++it) {

The vvi in the following line 25 is born holding two empty vector<int> ’s. We then push inte-
gers into them.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/partial/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include "wrapper.h"

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

5 using namespace std;
6
7 i nt main()
8 {
9 i nt i = 10;

10 wrapper<int>(i).print(); //construct anonymous temporary and print it
11 cout << "\n";
12
13 wrapper<const int *>(&i).print();
14 cout << "\n";
15
16 wrapper<const char *>("hello").print();
17 cout << "\n";
18
19 const char *a[] = {"moe", "larry", "curly"};
20 const size_t n = sizeof a / sizeof a[0];
21 vector<const char *> v(a, a + n);
22 wrapper<vector<const char *> >(v).print();
23 cout << "\n";
24
25 vector<vector<int> > vvi(2); //2nd func arg defaults to vector<int>()
26 vvi[0].push_back(10);
27 vvi[0].push_back(20);
28 vvi[1].push_back(30);
29 vvi[1].push_back(40);
30 vvi[1].push_back(50);
31 wrapper<vector<vector<int> > >(vvi).print();
32 cout << "\n";
33
34 return EXIT_SUCCESS;
35 }

10 line 10: int
0xffbff084 -> 10 line 13:const int *
"hello" line 16:const char *
("moe", "larry", "curly") line 22:vector<const char *>
((10, 20), (30, 40, 50)) line 31:vector<vector<int> >

▼ Homework 7.2.4a: a partial specialization for T *

Without theconst , line 13 of the abovemain.C would instantiate the primary template for class
wrapper , not the template forwrapper<const T *> . After all, int is not aconst T , so the int *
in line 13 could not be aconst T * .

0xffbff1fc

Remedy this by defining a partial specialization forwrapper<T *> without theconst .
▲

▼ Homework 7.2.4b: create an operator<< friend

Createoperator<< friends for classwrapper and each of its specializations.Then let each
print member function do its work by calling the correspondingoperator<< .

You will have to define fouroperator<< functions (five, with the previous homework). The
operator<< that takes awrapper<const char *> will not be a template function; the others will

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4 Partial and Explicit Specialization of a Template Class 705

706 Templates Chapter7

be. Theones that take wrapper<T> andwrapper<const char *> will be inline; the others will not
be.
▲

▼ Homework 7.2.4c: try to make a partial specialization of a template function

A template function cannot have a partial specialization. Learn to recognize the error message on
your platform when you accidentally try it.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/partial/function.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 i nline void print(const T& t) {cout << t;}
7
8 t emplate <class T>
9 v oid print<const T *>(const T *p)

10 {
11 cout << p;
12 if (p != 0) {
13 cout << " -> " << *p;
14 }
15 }
16
17 int main()
18 {
19 int i = 1 0;
20 print(&i);
21 cout << "\n";
22 return EXIT_SUCCESS;
23 }

The GNUg++ compiler says

function.C:9:33: error: function template partial specialization
’print<const T*>’ is not allowed

The SunCCcompiler says

sh[1]: CC: not found [No such file or directory]

▲

Simulating other kinds of templates

The only kinds of templates are function templates and class templates. But two others can be con-
vincingly faked.

(1) Imagine a ‘‘variable template’’. Let’s say that each built-in data typeT needed its own int vari-
able nameddigits10 , giving the number of decimal digits that can be held in aT.

1 t emplate <class T> //T must be a numeric type (char to long double).
2 v oid f()
3 {
4 / /wishful thinking, won’t compile

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

5
6 c out << "This data type can hold " << digits10<T>
7 << " d ecimal digits.\n";
8 }

We can implement this family of variables by making a template class with a public static data mem-
ber nameddigits10 , and then specializing the class for each type. In fact, this has already been done for
us. Seethedigits10 static data member of the template classnumeric_limits on p. 746.

(2) Imagine a ‘‘typedef template’’. Let’s say that each of the built-in character types,char and
wchar_t , needed its own typedef giving the corresponding type of integer big enough to hold any value
for that type of character, as well as the end-of-file value.

9 t emplate <class CHAR> //CHAR could be char or wchar_t.
10 void f(CHAR c) //can be passed by value
11 {
12 //wishful thinking; won’t compile
13 int_type<CHAR> i = c ;
14
15 cout << "The corresponding integer value is " << i << "\n";
16 }

We can implement this family of typedefs by making a template class with a public typedef member
namedint_type , and then specializing the class for each type. In fact, this has already been done for us.
See theint_type typedef member of the template classchar_traits in lines 8 and 11 of
char_traits.C on p. 749.

7.2.4.1 Template Metaprogramming

Whenever possible, we want to compute at compile time rather than at runtime. Consider

1 c out << 10 + 20 << "\n";

or even

1 i nt i = 10;
2 c onst int j = 20;
3 c out << i + j << "\n";

All the operands of the+ operator areconstants,in the sense of ‘‘values that are known at compile time’’.
A smart, well-motivated compiler can performconstant foldingand behave as if we had said

4 c out << 30 << "\n";

Constant folding also includines making decisions at compile time. When we write

5 i f (true) {
6 c out << "true\n";
7 } else {
8 c out << "false\n";
9 }

a smart compiler can behave as if we had said

10 cout << "true\n";

To guarantee that a constant will be folded at compile time, we use a technique calledtemplate
metaprogramming. It exploits constant template arguments, explicit specialization, and enumerations.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 707

708 Templates Chapter7

Change function arguments to template arguments.

Our first example is the classicfor loop, which has to perform a comparison and increment during
each iteration.

1 f or (int i = 1; i <= 4; ++i) {
2 c out << i << "\n";
3 }

We could avoid this runtime arithmetic byunrolling the loop:

4 c out << 1 << "\n";
5 c out << 2 << "\n";
6 c out << 3 << "\n";
7 c out << 4 << "\n";

Template metaprogramming will let us unroll the loop without typing it over and over. To ease the transi-
tion to metaprogramming, we first rewrite the loop using recursion.For the time being, the comparisons
and increments will still be done at runtime.

8 / /Output the integers from 1 to last inclusive.
9 / /If last <= 0, output nothing.

10
11 inline void count(int last)
12 {
13 if (last > 0) {
14 count(last - 1);
15 cout << last << "\n";
16 }
17 }
18
19 int main()
20 {
21 count(4);
22 }

Incidentally, the inline declaration in the above line 11 can be honored only if the value oflast
is known at compile time.A smart compiler might look ahead to the4 in line 21, but there is no guarantee
of this. If the value is unknown, an inlined function that calls itself will blow up to infinite size.

We now change the function argumentlast to the template argumentLAST in the following line 9.
This results in a series of different functions:count<0> , count<1> , count<2> , etc. Thecalls can now
be inline because no function calls itself.

The value of a constant template argument isalways computed at compile time, so each subtraction
in line 12 will now be done at compile time. And the name of a function isalways bound at compile time,
unless the function is a virtual member function.For example, eachcount<LAST-1> in line 12 will be
bound at compile time either to an instantiation of line 10 or to line 17.Each comparison ofLAST-1 to
zero will therefore be done at compile time.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/unroll1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 / /Output the integers from 1 to LAST inclusive. LAST must be non-negative.
6 / /count is a template function consisting of the general-purpose template
7 / /in line 10 and the explicit specialization in line 17.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

8
9 t emplate <int LAST>

10 inline void count()
11 {
12 count<LAST - 1 >();
13 cout << LAST << "\n";
14 }
15
16 template <>
17 inline void count<0>() {}
18
19 int main()
20 {
21 count<4>(); //4 lines of output
22 count<0>(); //no output
23 //count<-1>(); //won’t compile: "instantiation depth exceeds maximum"
24
25 return EXIT_SUCCESS;
26 }

1
2
3
4

▼ Homework 7.2.4.1a: allow LAST to be negative

The above program will not compile ifLAST is negative (line 23). Remedy this in three easy steps.

(1) In the above lines 5−17, change the name of the template function fromcount to _count .

(2) After the definition of_count , define the following template function. Line 5 is the only place
where the program will call_count .

1 / /Output the integers from 1 to LAST inclusive.
2 / /If LAST < 1, output nothing.
3
4 t emplate <int LAST>
5 i nline void count() {_count<LAST < 1 ? 0 : LAST>();}

(3) Themain function will continue to callcount , but now it will be the count we just intro-
duced.
▲

Explicit specialization of more than one template argument

The starting point 1 was implicitly hardwired into the above loop, although it is hard to see where.It
took the form of the explicit specialization for zero in line 17 ofunroll1.C . The starting point can also
be parameterized as the first template argument in the following line 20. When line 12 senses that the loop
is done, it will pass two zeroes to the explicit specialization in line 16. As on p. 664, if any template argu-
ment is explicitly specialized, they all must be.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/unroll2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 709

710 Templates Chapter7

4
5 / /Output the integers from FIRST to LAST inclusive.
6 / /If FIRST > LAST, just print FIRST.
7
8 t emplate <int FIRST, int LAST>
9 v oid count()

10 {
11 cout << FIRST << "\n";
12 count<FIRST >= LAST ? 0 : FIRST + 1, FIRST >= LAST ? 0 : LAST>();
13 }
14
15 template <>
16 inline void count<0, 0>() {}
17
18 int main()
19 {
20 count<-1, 4>(); //-1 to 4 inclusive
21 return EXIT_SUCCESS;
22 }

To consolidate the repetition in the above line 12, rewrite it as follows. Thevalue of an enumeration
is always computed at compile time, allowing it to be part of a constant template argument.

23 enum {done = FIRST >= LAST};
24 count<done ? 0 : F IRST + 1, done ? 0 : LAST>();

-1
0
1
2
3
4

▼ Homework 7.2.4.1b: allow FIRST to be greater than LAST

The above function should produce no output ifFIRST > LAST . Accomplish this in three easy
steps.

(1) In the above lines 5−16, change the name of the template function fromcount to _count .

(2) After the definition of_count , define the following template function. Line 6 is the only place
where the program will call_count . Note that a template argument containing the operator> must be
enclosed in parentheses; see p. 693.

1 / /Output the integers from FIRST to LAST inclusive.
2 / /If FIRST > LAST, output nothing.
3
4 t emplate <int FIRST, int LAST>
5 i nline void count() {
6 _count<(FIRST > LAST ? 0 : FIRST), (FIRST > LAST ? 0 : LAST)>();
7 }

To consolidate the repetition in the above line 6, rewrite it as follows.

8 enum {empty = FIRST > LAST};
9 _count<empty ? 0 : FIRST, empty ? 0 : LAST>();

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

(3) Themain function will continue to callcount , but now it will be the count we just intro-
duced.
▲

▼ Homework 7.2.4.1c: bubblesort

The following function bubblesorts an array ofn integers into increasing order (pp. 47−48). In con-
trast to the usual C++ practice, we pass it a starting address and a count of elements.Warning: thesize_t
n is unsigned.If n were zero, then-1 in line 4 would be a huge positive number and the loop would iter-
ate too many times. Line3 prevents this from happening.

1 v oid sort(int *p, size_t n)
2 {
3 f or (; n > 1; --n) {
4 f or (size_t i = 0; i < n - 1; ++i) {
5 i f (p[i + 1] < p[i]) { //if in wrong order,
6 c onst int temp = p[i]; //swap them
7 p[i] = p[i + 1];
8 p[i + 1] = temp;
9 }

10 }
11 }
12 }

The comparision in the above line 5, and the initializations and assignments in lines 6−8, will have to
be performed at runtime.Only then are the values of the array elements known. But if the number of ele-
ments was known at compile time, we could unroll the loops. The comparisons, decrement, and increment
in lines 3 and 4, and the miscellaneous additions in lines 5−8, could all be done at compile time.

The first step is to write the loops recursively.

13 //This function does the work of the inner loop (lines 4-10 above).
14 //Examine and modify the elements whose subscripts are i to j inclusive.
15 //Since this function is called only from lines 27 and 37,
16 //it can assume that i < j.
17
18 void inner(int *p, size_t i, size_t j)
19 {
20 if (p[i + 1] < p[i]) { //if in wrong order,
21 const int temp = p[i]; //swap them
22 p[i] = p[i + 1];
23 p[i + 1] = t emp;
24 }
25
26 if (i + 1 < j) {
27 inner(p, i + 1, j);
28 }
29 }
30
31 //This function does the work of the outer loop (lines 3 and 11 above).
32 //Sort n elements (subscripts 0 to n-1 inclusive).
33
34 void sort(int *p, size_t n)
35 {
36 if (n > 1) {
37 inner(p, 0, n - 1);
38 sort(p, n - 1);

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 711

712 Templates Chapter7

39 }
40 }

The next step is to change the function arguments to template arguments. Definethe following tem-
plate functions, including the explicit specializations shown below. The if in the above line 20 will still be
done at runtime; the ones in lines 26 and 36 will disappear.

41 //Examine and modify the elements whose subscripts are I to J inclusive.
42
43 template <size_t I, size_t J>
44 void inner(int *p)
45 {
46 //fill this in;
47 }
48
49 template <>
50 inline void inner<0, 0>(int *p) {}
51
52 //Sort N elements (subscripts 0 to N-1 inclusive).
53
54 template <size_t N>
55 void sort(int *p)
56 {
57 //fill this in;
58 }
59
60 template <>
61 inline void sort<0>(int *p) {}

When you are done, try to change all theint ’s in the above lines 41−64 toT’s. What goes wrong?
▲

Change a template function to a template class.

The factorial function is the product of all the positive integers up to a given integer. For example,
the factorial of 4 is

4! = 1 × 2 × 3 × 4 = 24

The factorial of zero is defined to be zero; the factorial of a negative integer is undefined.

A straightforward way to compute a factorial is with the following loop.

1 i nt factorial(int n)
2 {
3 i nt product = 1;
4
5 f or (; n > 1; --n) {
6 product *= n;
7 }
8
9 r eturn product;

10 }

A more elegant function uses recursion.

11 inline int factorial(int n) {return n <= 1 ? 1 : n * factorial(n - 1);}

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

We can perform the comparisons and subtractions at compile time by changing the function argu-
ments to template arguments.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/factorial1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <int I>
6 i nline int factorial() {return I * factorial<I - 1>();}
7
8 t emplate <>
9 i nline int factorial<0>() {return 1;}

10
11 int main()
12 {
13 cout << factorial<4>() << "\n";
14 return EXIT_SUCCESS;
15 }

24

What about the multiplications?For all we know, the above line 13 might still be compiled as

16 cout << 4 * 3 * 2 * 1 << "\n";

leaving the product to be computed at runtime.We would like a guarantee that the line will be compiled as
follows.

17 cout << 24 << "\n";

A simple adjustment is all that is necessary. We changefactorial from a function with a return
value to a class with a public enumeration.The* in the following line 7 computes the value of the enumer-
ation, and the value of an enumeration isalwayscomputed at compile time.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/factorial2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <int I>
6 s truct factorial {
7 enum {value = I * factorial<I - 1>::value};
8 } ;
9

10 template <>
11 struct factorial<0> {
12 enum {value = 1};
13 };
14
15 int main()
16 {
17 cout << factorial<4>::value << "\n";
18 return EXIT_SUCCESS;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 713

714 Templates Chapter7

19 }

24

Were the multiplications really moved up to compile time? There is no way to tell from the output;
we will have to examine the translation of the program into assembly language. My compiler (GNUg++)
lets me see this with the-S option.

1$ g++ -S factorial2.C minus uppercase S
2$ ls -l factorial2.s minus lowercase L
3$ more factorial2.s

main:
!etc.
mov 24, %o1

A compile-time array

Each classj in the following lines 52−55 takes a Julian date in the range 1 to 365 inclusive and
offers public enumerations giving the corresponding month and day of the month. All arithmetic, testing,
and looping are done at compile time.

The general-purpose template for classlength must be declared in line 8 before the explicit spe-
cializations can be defined in lines 10−21.But the general-purpose template need not be defined: there is
no such value as the length of a general-purpose month.

In line 31,same_month is true (or at least non-zero) if the Julian dayJ belongs to the same month
asJ-1 .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/month.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 / /length<MONTH>::value is the number of days in month MONTH (1 to 12 inclusive).
6
7 t emplate <int MONTH>
8 s truct length;
9

10 template <> struct length< 1> {enum {value = 31};}; //january
11 template <> struct length< 2> {enum {value = 28};}; //february
12 template <> struct length< 3> {enum {value = 31};}; //march
13 template <> struct length< 4> {enum {value = 30};}; //april
14 template <> struct length< 5> {enum {value = 31};}; //may
15 template <> struct length< 6> {enum {value = 30};}; //june
16 template <> struct length< 7> {enum {value = 31};}; //july
17 template <> struct length< 8> {enum {value = 31};}; //august
18 template <> struct length< 9> {enum {value = 30};}; //september
19 template <> struct length<10> {enum {value = 31};}; //october
20 template <> struct length<11> {enum {value = 30};}; //november
21 template <> struct length<12> {enum {value = 31};}; //december
22
23 //j<J>::month is the month (1 to 12 inclusive) and j<J>::day is the day
24 //of the month (1 to 31 inclusive) of Julian date J (1 to 365 inclusive).

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

25
26 template <int J>
27 class j {
28 enum {
29 d = j <J - 1>::day,
30 m = j <J - 1>::month,
31 same_month = d < l ength<m>::value
32 };
33 public:
34 enum {
35 month = same_month ? m : m + 1,
36 day = same_month ? d + 1 : 1
37 };
38 };
39
40 template <>
41 class j<1> { //Julian date 1 is january 1.
42 public:
43 enum {
44 month = 1,
45 day = 1
46 };
47 };
48
49 int main()
50 {
51 cout
52 << j< 1>::month << " " << j< 1>::day << "\n" //january 1
53 << j< 31>::month << " " << j< 31>::day << "\n" //january 31
54 << j< 32>::month << " " << j< 32>::day << "\n" //february 1
55 << j<365>::month << " " << j<365>::day << "\n"; //december 31
56
57 return EXIT_SUCCESS;
58 }

1 1
1 31
2 1
12 31

Plug the derived class into the base class.

Our metaprogramming examples have used constant template arguments such asI andJ . We can
also use a data type template argumentT. First, though, we will make a side trip to examine a surprising
but curiously recurrent template pattern.

Consider a base class that keeps count of how many of its objects currently exist.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/curious1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 715

716 Templates Chapter7

6 s tatic int n;
7 public:
8 base() {++n;}
9 base(const base& another) {++n;}

10 ˜base() {--n;}
11 static int count() {return n;}
12 };
13
14 int base::n = 0;
15
16 class derived1: public base {
17 //etc.
18 };
19
20 class derived2: public base {
21 //etc.
22 };
23
24 int main()
25 {
26 derived1 a, b, c;
27 derived2 d;
28
29 cout << "derived1::count " << derived1::count() << "\n"
30 << "derived2::count " << derived2::count() << "\n";
31 return EXIT_SUCCESS;
32 }

derived1::count 4
derived2::count 4

We now hav e the total number of objects of classbase and its descendants.For this reason, it
would make more sense for the above lines 29−30 to call the function asbase::count . But what if we
wanted a separate count for each derived class? Eachderived class would need its own static data member
n and its own static member functioncount . In fact, we would have to replicate the entire base class for
each derived class.

Not surprisingly, we effect this replication by letting the base class be a template.Surprisingly, the
argument passed to the template in line 18 will be the derived class. Canwe usederived1 in the angle
brackets in line 18 before we have seen the end of its class definition in line 20?Yes, as long as the tem-
plate classbase has no code that constructs aT or needs to know the size of aT. A simpler example was
the classnode on p. 214, whose name was mentioned before the end of its class definition.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/curious2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 c lass base {
7 s tatic int n;
8 public:
9 base() {++n;}

10 base(const base& another) {++n;}

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

11 ˜base() {--n;}
12 static int count() {return n;}
13 };
14
15 template <class T>
16 int base<T>::n = 0;
17
18 class derived1: public base<derived1> {
19 //etc.
20 };
21
22 class derived2: public base<derived2> {
23 //etc.
24 };
25
26 int main()
27 {
28 derived1 a, b, c;
29 derived2 d;
30
31 cout << "derived1::count " << derived1::count() << "\n"
32 << "derived2::count " << derived2::count() << "\n";
33 return EXIT_SUCCESS;
34 }

derived1::count 3
derived2::count 1

Polymorphism at compile time

We are now ready for our final example of metaprogramming. The following line 9 calls the
implementation member function of a derived class. Thefunction is selected at runtime because of
the keyword virtual in line 8. To make the runtime selection possible, each object contains a pointer to
a vtbl (p. 498).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/polymorphism1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 public:
7 v irtual ˜base() {}
8 v irtual void implementation() const = 0;
9 v oid interface() const {implementation();}

10 };
11
12 class derived1: public base {
13 public:
14 void implementation() const {cout << "derived1\n";}
15 };
16
17 class derived2: public base {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.4.1 Template Metaprogramming 717

718 Templates Chapter7

18 public:
19 void implementation() const {cout << "derived2\n";}
20 };
21
22 int main()
23 {
24 derived1 d1;
25 d1.interface();
26
27 derived2 d2;
28 d2.interface();
29
30 cout << "sizeof (base) == " << sizeof (base) << "\n"
31 << "sizeof (derived1) == " << sizeof (derived1) << "\n"
32 << "sizeof (derived2) == " << sizeof (derived2) << "\n";
33
34 return EXIT_SUCCESS;
35 }

derived1
derived2
sizeof (base) == 4
sizeof (derived1) == 4
sizeof (derived2) == 4

When the above line 9 is called from line 25, it always selectsderived1::implementation .
A smart compiler might recognize this.If it does, it can let the member function be called without use of
the vtbl. To guarantee thatany compiler will recognize this, the following program will use the curiously
recurrent template pattern.The code is faster and the objects smaller. The bad news is thatd1 andd2 are
no longer derived from a commmon base class; no pointer (beyond a rock-bottomvoid *) can point to
both of them.

A downcastis a conversion from ‘‘pointer to base’’ to ‘ ‘pointer to derived’’. Sincethe cast in the fol-
lowing line 16 is merely a downcast, it can be performed with astatic_cast , not a
reinterpret_cast . But downcasting is not always this simple. If theDERIVEDclass was derived
from two copies of classbase class (say, from abase mother and abase paternal grandparent), the
downcast would have no way to tell which of the two base objects it is receiving the address of.For an
upcast, see p. 544.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/meta/polymorphism2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 / *
6 DERIVED must be publicly derived from class base
7 and must have a member function named implementation.
8 Class DERIVED can have only at most one class base among its ancestors.
9 i nterface can be called only when the base object is part of a DERIVED object.

10 */
11
12 template <class DERIVED>
13 class base {
14 public:

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

15 void interface() const {
16 static_cast<const DERIVED *>(this)->implementation();
17 }
18 };
19
20 class derived1: public base<derived1> {
21 public:
22 void implementation() const {cout << "derived1\n";}
23 };
24
25 class derived2: public base<derived2> {
26 public:
27 void implementation() const {cout << "derived2\n";}
28 };
29
30 int main()
31 {
32 derived1 d1;
33 d1.interface();
34
35 derived2 d2;
36 d2.interface();
37
38 cout << "sizeof (base<derived1>) == " << sizeof (base<derived1>)
39 << "\n"
40 << "sizeof (base<derived2>) == " << sizeof (base<derived2>)
41 << "\n"
42 << "sizeof (derived1) == " << sizeof (derived1) << "\n"
43 << "sizeof (derived2) == " << sizeof (derived2) << "\n";
44
45 return EXIT_SUCCESS;
46 }

derived1
derived2
sizeof (base<derived1>) == 1
sizeof (base<derived2>) == 1
sizeof (derived1) == 1
sizeof (derived2) == 1

7.2.5 Explicit Instantiation
A template isinstantiatedwhen we make the computer behave as if we had pasted a copy of the tem-

plate into the program, changing each template argument to what it stands for. The most common way to
instantiate a template class is by constructing an object of that class.A template class can also be instanti-
ated without actually constructing an object.

How can we confirm the instantiation if no object of that class is constructed? In fact, why would we
want to do this at all?Well, we might want to instantiate the following template classabsent in order to
construct its static data members.In fact, we’ll instantiate it twice in order to construct the static data mem-
bersabsent<int>::s andabsent<double>::s .

The output of lines 6 and 7 ofmain.C confirm the two instantiations. Thelack of output from line
12 of absent.h confirms that no object of classabsent<int> or absent<double> has been con-
structed.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.5 Explicit Instantiation 719

720 Templates Chapter7

Classobj was on pp. 179−180.For another example where a class must be explicitly instantiated,
see line 27 ofmain.C on p. 733.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/instantiate_class/absent.h

1 #ifndef ABSENTH
2 #define ABSENTH
3 #include <iostream>
4 #include "obj.h"
5 using namespace std;
6
7 t emplate <class T>
8 c lass absent {
9 s tatic const obj s;

10 T t;
11 public:
12 absent(const T& initial_t): t(initial_t) {cout << "constructed\n";}
13 };
14
15 template <class T>
16 const obj absent<T>::s = static_cast<int>(sizeof (T));
17 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/instantiate_class/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "absent.h"
4 using namespace std;
5
6 t emplate class absent<int>;
7 t emplate class absent<double>;
8
9 i nt main()

10 {
11 return EXIT_SUCCESS;
12 }

construct 4 line 6 ofmain.C instantiates classabsent<int>
construct 8 line 7 instantiates classabsent<double>
destruct 8 line 11 destructs the statically allocated objects
destruct 4

Derive a template class from a base class

As the above output shows, each instantiation of a template class has its own copy of a static data
member. To make all the instantiations share the same copy, the member can be placed in a non-template
base class. The template classes can then be derived from the base class.For an example, see
curious1.C on pp. 715−716.

Explicit instantiation of a template function

Lines 3 and 4 of the following f.C instantiate a template function without calling it, possibly to
place the instantiations in a library. The details are platform dependent, of course.For another example of
instantiating a function without calling it, see line 12 offunction.C on p. 781.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/instantiate_function/f.h

1 #ifndef FH
2 #define FH
3 #include <iostream>
4 using namespace std;
5
6 t emplate <class T>
7 i nline void f() {cout << sizeof (T) << "\n";}
8 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/instantiate_function/f.C

1 #include "f.h"
2
3 t emplate void f<int>();
4 t emplate void f<double>();

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/instantiate_function/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "f.h"
4 using namespace std;
5
6 i nt main()
7 {
8 r eturn EXIT_SUCCESS;
9 }

The symbol table for the ‘‘object’’ fi le f.o shows thatf has been instantiated twice.The -C option
unmangles the name of the function.

1$ g++ -c f.C
2$ ls -l f.o
3$ nm -C f.o | egrep ’ˆ\[Index\]|f<.*>’
[Index] Value Size Type Bind Other Shndx Name
[23] | 0| 56|FUNC |WEAK |0 |6 |void f<double>()
[18] | 0| 56|FUNC |WEAK |0 |5 |void f<int>()

7.2.6 Template Member Functions
A member function of a template class isipso facto a template function.A member function can

also be a template function in its own right, regardless of whether its class is a template class.

A template member function of a non-template class

The following class represents a point in a three-dimensional space, with member functions for rotat-
ing the point around the X, Y, or Z axis. Thepoint (1,0, 0) in the diagram is on line 11 ofmain.C on p.
723; its 45° rotation around the Z axis is in line 14. Since the point lies in the X-Y plane, and the Z axis
rises vertically out of the plane, the point simply rotates around the origin.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.6 Template Member Functions 721

722 Templates Chapter7

x

y

(1, 0, 0)

(
1

√2
,

1

√2
, 0)

45°

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rot1/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 using namespace std;
5
6 c lass point {
7 double x; //Cartesian coordinates
8 double y;
9 double z;

10 public:
11 point(double initial_x = 0, double initial_y = 0, double initial_z = 0)
12 : x(initial_x), y(initial_y), z(initial_z) {}
13
14 point& xrot(double theta); //theta in radians
15 point& yrot(double theta);
16 point& zrot(double theta);
17
18 friend ostream& operator<<(ostream& ost, const point& p) {
19 return ost << "(" << p.x << ", " << p.y << ", " << p.z << ")";
20 }
21 };
22 #endif

The three rotation functions are identical except for their choice of data members.They convert the
point’s coördinates from Cartesian to polarr, θ in the plane of rotation, perform the rotation, and convert
them back. As on p. 364, we avoid callingatan2 with two zero arguments.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rot1/point.C

1 #include <cmath> //for atan2
2 #include "point.h"
3 using namespace std;
4
5 / /Rotate this point around the X axis.
6
7 point& point::xrot(double theta)
8 {
9 i f (y != 0 .0 || z != 0.0) { //if this point is not on the X axis,

10 const double r = sqrt(y * y + z * z);

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

11 theta += atan2(z, y);
12 y = r * c os(theta);
13 z = r * s in(theta);
14 }
15 return *this;
16 }
17
18 //Rotate this point around the Y axis.
19
20 point& point::yrot(double theta)
21 {
22 if (z != 0.0 || x != 0.0) { //if this point is not on the Y axis,
23 const double r = sqrt(z * z + x * x);
24 theta += atan2(x, z);
25 z = r * c os(theta);
26 x = r * s in(theta);
27 }
28 return *this;
29 }
30
31 //Rotate this point around the Z axis.
32
33 point& point::zrot(double theta)
34 {
35 if (x != 0.0 || y != 0.0) { //if this point is not on the Z axis,
36 const double r = sqrt(x * x + y * y);
37 theta += atan2(y, x);
38 x = r * c os(theta);
39 y = r * s in(theta);
40 }
41 return *this;
42 }

The following line 14 multiplies the 45 degrees by
π

180
to convert it to radians. Each function

returns*this , allowing lines 20−21 to chain the calls together and print the new value of thepoint .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rot1/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath>
4 #include "point.h"
5 using namespace std;
6
7 i nt main()
8 {
9 c onst double pi = 4 * atan2(1, 1);

10
11 point p(1, 0, 0);
12 cout << p << "\n";
13
14 p.zrot(45 * pi / 1 80);
15 cout << p << "\n";
16

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.6 Template Member Functions 723

724 Templates Chapter7

17 p.xrot(45 * pi / 1 80);
18 cout << p << "\n";
19
20 cout << p.xrot(-45 * pi / 180) //Undo the previous rotations.
21 .zrot(-45 * pi / 1 80) << "\n";
22
23 return EXIT_SUCCESS;
24 }

The0.707107 represents
1

√2
. The-7.85046e-17 should have been a perfect zero, but the point

didn’t quite come back to its original position.

(1, 0, 0) lines 11−12
(0.707107, 0.707107, 0) lines 14−15: rotate around the Z axis
(0.707107, 0.5, 0.5) lines 17−18: rotate around the X axis
(1, 0, -7.85046e-17) lines 20−21: back to original position

Instead of writing the same member function three times, we can define it once and for all as atem-
plate member function.Since it is a template function, its declaration in the following line 16 and its defi-
nition in 30 have a preamble. TheA and B in the preamble are constant template arguments of type
‘‘ pointer todouble data member of classpoint ’’ . As on p. 254, this type of pointer can be dereferenced
only with .* and->* . Since these operators are binary, an operand must be written in front of them, the
unfortunatethis in lines 33−38. Of course, the template arguments could also be of a less exotic type.

A copy constructor cannot be a template member function, because a class can have only one copy
constructor. Also, a virtual member function cannot be a template function.If it were, the vtbl would be
infinitely large.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rot2/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 c lass point {
8 double x; //cartesian coordinates
9 double y;

10 double z;
11 public:
12 point(double initial_x = 0, double initial_y = 0, double initial_z = 0)
13 : x(initial_x), y(initial_y), z(initial_z) {}
14
15 template <double point::*A, double point::*B>
16 point& rot(double theta); //theta in radians
17
18 friend ostream& operator<<(ostream& ost, const point& p) {
19 return ost << "(" << p.x << ", " << p.y << ", " << p.z << ")";
20 }
21 };
22
23 /*
24 Rotate this point around the axis that is neither A nor B.
25 A positive theta rotates in the direction from the positive half of the A axis

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

26 towards the positive half of the B axis.
27 */
28
29 template <double point::*A, double point::*B>
30 point& point::rot(double theta)
31 {
32 //if this point is not on the axis,
33 if (this->*A != 0.0 || this->*B != 0.0) {
34 const double r =
35 sqrt(this->*A * t his->*A + this->*B * this->*B);
36 theta += atan2(this->*B, this->*A);
37 this->*A = r * c os(theta);
38 this->*B = r * s in(theta);
39 }
40 return *this;
41 }
42 #endif

To call the template member function, change lines 14−21 ofmain.C on pp. 723−724 to the follow-
ing. To mention the data membersx , y , andz in main , they must become public.

43 p.rot<&point::x, &point::y>(45 * pi / 180);
44 cout << p << "\n";
45
46 p.rot<&point::y, &point::z>(45 * pi / 180);
47 cout << p << "\n";
48
49 cout << p.rot<&point::y, &point::z>(-45 * pi / 180)
50 .rot<&point::x, &point::y>(-45 * pi / 180) << "\n";

The output should remain the same. The source code looks grim, but the next group of homeworks
will clean it up.

▼ Homework 7.2.6a: call the template member function from a template

There might be many classes of objects that we want to rotate around an axis: a point, a circle, a rec-
tangle. Thefollowing spin function is therefore a template function. In line 10 it should accept the
address of thepoint p in line 19. But the explicit template arguments<&T::x, &T::y> in line 13 do
not compile.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rot2/spin.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cmath>
4 #include "point.h"
5 using namespace std;
6
7 / /T must have data members x and y, and template member function rot.
8
9 t emplate <class T>

10 void spin(T *p)
11 {
12 static const double pi = 4 * atan2(1, 1);
13 p->rot<&T::x, &T::y>(45 * pi / 180);
14 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.6 Template Member Functions 725

726 Templates Chapter7

15
16 int main()
17 {
18 point p(1, 0, 0);
19 spin(&p);
20 cout << p << "\n";
21 return EXIT_SUCCESS;
22 }

What happens when the computer first sees the above line 13? It knows thatrot is a member ofT,
thanks to the-> in front of it. It also knows thatrot is not the name of a data type, thanks to the absence
of typename in front of it. The computer might even figure out thatrot is a member function ofT,
thanks to the argument list in parentheses.But the computer will not believe that rot is a templatemem-
ber function ofT. It thinks that the angle brackets are the ‘‘less than’’ and ‘‘greater than’’ operators, result-
ing in cryptic error messages.

spin.C: In function ’void spin(T*) [with T = point]’:
spin.C:19:9: instantiated from here
spin.C:13:2: error: invalid operands of types ’<unresolved overloaded
function type>’ and ’double point::*’ to binary ’operator<’
spin.C:13:2: error: invalid operands of types ’double point::*’ and
’double’ to binary ’operator>’

To tell the computer that therot in the above line 13 is a template member function, insert the
keyword template immediately before therot .
▲

▼ Homework 7.2.6b: simplify the function calls

To spare the user the pain of calling therot template function directly, giv e classpoint the follow-
ing three inline public member functions.

1 / /Rotate this point around the X, Y, or Z axis.
2 point& xrot(double theta) {return rot<&point::y, &point::z>(theta);}
3 point& yrot(double theta) {return rot<&point::z, &point::x>(theta);}
4 point& zrot(double theta) {return rot<&point::x, &point::y>(theta);}

You can now changemain back to its original wording. Therot template function can be private, and the
data members can be private again.
▲

▼ Homework 7.2.6c: simplify the function definition

Introduce two references,a andb, to make therot template function more legible.

1 t emplate <double point::*A, double point::*B>
2 point& point::rot(double theta)
3 {
4 double& a = this->*A;
5 double& b = this->*B;
6
7 i f (a != 0 .0 || b != 0.0) { //if this point is not on the axis,
8 c onst double r = sqrt(a * a + b * b);
9 / /etc.

▲

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 7.2.6d: a template member function

A series of function calls that use the same variable should be packaged as an object. The functions
should be member functions; the variable should be a data member. See p. 177.

We saw a series of calls in lines 11−14 ofstep.C on p. 656.Package them as an object, with the
data memberp in the following line 2 and the template member functions in lines 16 and 19.Theprint
functions can be member functions too.

1 c lass stepper {
2 c onst void *p;
3 public:
4 s tepper(const void *initial_p): p(initial_p) {}
5 s tepper operator=(const void *new_p) {p = new_p; return *this;}
6
7 t emplate <class T>
8 s tatic void print(const T& t) {cout << t;}
9

10 static void print(unsigned char c) { /* etc. */ }
11
12 //etc.: static print member functions for other data type(s)
13 //that require special handling
14
15 template <class T>
16 const T& stand() const { /* etc. */ }
17
18 template <class T>
19 const T& step() { /* etc. */ }
20 };

Since the step member function is called the most frequently, I would like to name it
operator() as on p. 299. But an explicit template argument can be applied to anoperator function
only if we write the name of the function in full; see p. 659.
▲

A template member function of a template class

Ever wonder how classvector got so many two-argument constructors? The following line 14
calls a constructor that takes two pointers, 15 the one that takes two list<obj> iterators (pp. 179−180),
and 16 the one that takes two vector<int> iterators. Wheredid all these constructors come from?How
many are there?

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/template_constructor/main1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>
5 #include "obj.h"
6 using namespace std;
7
8 i nt main()
9 {

10 const int a[] = {10, 20, 30};
11 const size_t n = sizeof a / sizeof a[0];
12 list<obj> li(a, a + n);
13

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.6 Template Member Functions 727

728 Templates Chapter7

14 vector<int> v1(a, a + n); //born containing 10, 20, 30
15 vector<int> v2(li.begin(), li.end()); //born containing 10, 20, 30
16 vector<int> v3(v2.begin() + 1, v2.end()); //born containing 20, 30
17
18 return EXIT_SUCCESS;
19 }

The following classvector shows how they were defined, without bothering to actually hold any
values. Itis a template class, with the familiar <class T> preamble in lines 6 and 16. Its constructor is a
template member function, with its own <class ITERATOR> preamble in lines 9 and 17. The function
definition at line 18 has both preambles. Do not attempt to combine them.

Line 18 is a two-argument constructor taking any pair of iterators—variables to which lines 21−22
can apply the operators!= , * , and ++. Specifically, the arguments are what pp. 834−837 will call ‘‘input
iterators’’, which can be used to read a series of values. Thestandard library assumes that an iterator can be
passed by value; we follow this convention here.

For a template member function defined inside the template class definition, see line 13.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/template_constructor/vector.h

1 #ifndef VECTORH
2 #define VECTORH
3 #include <iostream>
4 using namespace std;
5
6 t emplate <class T>
7 c lass vector {
8 public:
9 t emplate <class ITERATOR>

10 vector(ITERATOR first, ITERATOR last); //declaration
11
12 template <class ITERATOR>
13 void f(ITERATOR it) {} //declaration and definition
14 };
15
16 template <class T>
17 template <class ITERATOR>
18 ::vector<T>::vector(ITERATOR first, ITERATOR last) //definition
19 {
20 cout << "Constructing a vector that contains";
21 for (; first != last; ++first) {
22 cout << " " << *first;
23 }
24 cout << ".\n";
25 }
26 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/template_constructor/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>
5 #include "obj.h"
6 #include "vector.h"

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

7 using namespace std;
8
9 i nt main()

10 {
11 const int a[] = {10, 20, 30};
12 const size_t n = sizeof a / sizeof a[0];
13 list<obj> li(a, a + n);
14 std::vector<int> v(a, a + n);
15
16 ::vector<int> v1(a, a + n);
17 ::vector<int> v2(li.begin(), li.end());
18 ::vector<int> v3(v.begin() + 1, v.end());
19
20 return EXIT_SUCCESS;
21 }

construct 10 Line 13 constructs a list.
copy construct 10
destruct 10
construct 20
copy construct 20
destruct 20
construct 30
copy construct 30
destruct 30
Constructing a vector that contains 10 20 30. line 16
Constructing a vector that contains 10 20 30. line 17
Constructing a vector that contains 20 30. line 18
destruct 10 Line 20 destructs the list.
destruct 20
destruct 30

7.2.7 ‘‘One-to-Many” and ‘‘Many-to-Many” Friendships
Our template classstack and itsoperator== friend enjoy the kind of friendship that you proba-

bly want for your template classes and their friends.Each instantiation ofoperator== is a friend of, and
takes arguments of, the corresponding instantiation ofstack . Thusoperator==<int> is a friend of
stack<int> ; operator==<double> is a friend ofstack<double> . See line 29 ofstack.h on
p. 685.

There are actually three possible correspondences between a friend function and a template class:

(1) One-to-many. A non-template function can be a friend of every instantiation of a template class.

(2) One-to-one.Each instantiation of a template function can be a friend of the corresponding instan-
tiation of a template class. The function and class must agree in the number and type of their template
argument(s). For example,operator== andstack both have the template argument listclass T .

(3) Many-to-many. Every instantiation of a template function can be a friend of every instantiation of
a template class. The function and class do not have to agree in the number and type of their template argu-
ment(s).

Of course, a non-template class can also have a friend function. This friend can be a non-template
function (one-to-one) or any instantiation of a template function (many-to-one). Butthese combinations
are completely straightforward, so only template classes are discussed here.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.7 ‘‘ One-to-Many” and ‘‘Many-to-Many” Friendships 729

730 Templates Chapter7

One-to-many

The template classwrapper has the data membert in the following line 7, the constructor in 9, and
precious little else. The non-template functionoutside in line 10 is a friend of every instantiation of
wrapper . To demonstrate this universal friendship, it mention the private membert of three different
instantiations. (For each instantiation, an anonymous object is constructed.)

Surprisingly,outside was able to achieve these friendships without being a template function.But
outside had to be defined outside the body of the class definition, and it had to be defined after the class
definition since it mentionst . Hadoutside been defined within the class definition, it would have been
instantiated—copied and pasted into the program—every time the class template was instantiated.This
could causeoutside to be multiply defined, or not defined at all.

But don’t probe the limits of what will compile. Please define this kind of friend outside the class
definition, at line 13, allowing the tem,plate to be instantiated any number of times.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/many/one_to_many.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 c lass wrapper {
7 T t;
8 public:
9 wrapper(const T& initial_t = T()): t(initial_t) {}

10 friend void outside();
11 };
12
13 void outside()
14 {
15 cout << wrapper<bool>().t << "\n";
16 cout << wrapper<int>().t << "\n";
17 cout << wrapper<double>().t << "\n";
18 }
19
20 int main()
21 {
22 cout << boolalpha << fixed;
23 outside();
24 return EXIT_SUCCESS;
25 }

false Line 23 callsoutside .
0
0.000000

A non-template function with a T

Like the above functions, the following outside and inside in lines 14 and 15 are friends of
ev ery instantiation of the class.Oddly, their declarations can mentionT ev en though they are not template
functions. Eachinstantiation of the class defines anotherinside and declares anotheroutside . A sep-
arate definition has to be written for eachoutside function (lines 18−20); the GNUg++ compiler ques-
tions our judgement in undertaking this obligation. We recommend that you define this kind of friend
inside the class definition.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

If the functions had aT in their body or return value, but not in their arguments, function name over-
loading would be impossible. In this case, we would be unable to instantiate the class more than once.The
GNU g++ compiler sometimes lets us get away with this, but it shouldn’t.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/many/t.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 bool inside(const bool& t1);
6 i nt inside(const int& t1);
7 double inside(const double& t1);
8
9 t emplate <class T>

10 class wrapper {
11 T t;
12 public:
13 wrapper(const T& initial_t = T()): t(initial_t) {}
14 friend T outside(const T& t1);
15 friend T i nside(const T& t1) {return wrapper<T>(t1).t;}
16 };
17
18 inline bool outside(const bool& b) {return wrapper<bool>(b).t;}
19 inline int outside(const int& i) {return wrapper<int>(i).t;}
20 inline double outside(const double& d) {return wrapper<double>(d).t;}
21
22 int main()
23 {
24 cout << boolalpha
25 << outside(true) << "\n"
26 << outside(10) << "\n"
27 << outside(3.14) << "\n"
28
29 << inside(true) << "\n"
30 << inside(10) << "\n"
31 << inside(3.14) << "\n";
32
33 return EXIT_SUCCESS;
34 }

t.C:14:37: warning: friend declaration ’T outside(const T&)’ declares a
non-template function
t.C:14:37: note: (if this is not what you intended, make sure the
function template has already been declared and add <> after the
function name here)
true Lines 25−27 calloutside .
10
3.14
true Lines 29−31 callinside .
10
3.14

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.7 ‘‘ One-to-Many” and ‘‘Many-to-Many” Friendships 731

732 Templates Chapter7

One-to-one with a template function

We hav ealready endorsed theoperator== template function for its one-to-one friendship with a
template class (line 29 ofstack.h on p. 685). Here its is again, with some notes on portability.

Each instantiation ofoperator== is a friend of the corresponding instantiation ofwrapper .
operator== andwrapper must agree in the number and type of their template arguments (lines 8 and
11). <class T> and<class T> . Since they do, we can omit the leftmostT in lines 18 and 20, although
the<angle brackets> must remain.But before these lines can apply<T> or <> to the nameoperator== ,
there must be a prior declaration thatoperator== is a template function (line 9). And before line 9 can
apply<T> to the namewrapper , there must be a prior declaration thatwrapper is a template class (line
6).

The GNUg++ forces us to defineoperator== outside the body of the class definition, at line 28.
Line 20 is rejected, possibly because it looks like a partial specialization of a template function (p. 702).
The program can be conditionally compiled with the macro__GNUC__(four underscores), predefined for
theGNUcompiler.

We recommend that you define this kind of friend outside the class definition, in line 28, thus satisfy-
ing every compiler. That’s what we did in line 71 ofstack.h on p. 686.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/many/one_to_one1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 c lass wrapper;
7
8 t emplate <class T>
9 bool operator==(const wrapper<T>& w1, const wrapper<T>& w2);

10
11 template <class T>
12 class wrapper {
13 T t;
14 public:
15 wrapper(const T& initial_t = T()): t(initial_t) {}
16
17 #ifdef __GNUC__
18 friend bool operator==<T>(const wrapper<T>& w1, const wrapper<T>& w2);
19 #else
20 friend bool operator==<T>(const wrapper<T>& w1, const wrapper<T>& w2) {
21 return w1.t == w2.t;
22 }
23 #endif
24 };
25
26 #ifdef __GNUC__
27 template <class T>
28 inline bool operator==(const wrapper<T>& w1, const wrapper<T>& w2) {
29 return w1.t == w2.t;
30 }
31 #endif
32
33 int main()
34 {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

35 cout << boolalpha << (wrapper<int>() == wrapper<int>()) << "\n";
36 return EXIT_SUCCESS;
37 }

true

Many-to-many

Every instantiation of the template functions in the following lines 13 and 16 is a friend of every
instantiation of the class.The functions and the class need not agree in the number and type of their tem-
plate arguments. To emphasize this, the preambles in line 6 and 15 are totally different.

I’m sorry thatoutside needs the additional template argumentU in line 12. I hoped I could elimi-
nate theclass U , and change theconst U& u in line 13 toconst T& t1 . But when I tried it, I had to
remove theclass U from line 22. I then had to write a copy of lines 22−25 with eachU changed toint
(because of the10 in line 31), and another copy of lines 22−25 with eachU changed tounsigned
(because of the10u in line 33).

I also tried to change theU to T in lines 22 and 23.For consistency, I then wanted to make the same
change in lines 12 and 13. But aT in line 12 would conflict with theT in line 6. We recommend that you
define this kind of friend inside the class definition.

Line 27 instantiates the class so thatinside will be declared before we get to line 31.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/many/many_to_many.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 using namespace std;
5
6 t emplate <class T>
7 c lass wrapper {
8 T t;
9 public:

10 wrapper(const T& initial_t = T()): t(initial_t) {}
11
12 template <int BASE, int WIDTH, class U>
13 friend void outside(const U& u);
14
15 template <int BASE, int WIDTH>
16 friend void inside(const T& t1) {
17 cout << setbase(BASE) << setw(WIDTH)
18 << wrapper<T>(t1).t << "\n";
19 }
20 };
21
22 template <int BASE, int WIDTH, class U>
23 inline void outside(const U& u) {
24 cout << setbase(BASE) << setw(WIDTH) << wrapper<U>(u).t << "\n";
25 }
26
27 template class wrapper<double>; //explicit instantiation
28
29 int main()
30 {

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.7 ‘‘ One-to-Many” and ‘‘Many-to-Many” Friendships 733

734 Templates Chapter7

31 outside<16, 2>(10); //The 10 changes U to int.
32 inside<10, 2>(10);
33 outside<16, 2>(10u); //The 10u changes U to unsigned.
34 inside<10, 2>(10u);
35 return EXIT_SUCCESS;
36 }

a
10

a
10

7.2.8 Uncouplethe Data Types

A breadboard for plugging data types together

We introduced templates as glorified carbon paper, letting us avoid writing the same source code over
and over. But we can also think of templates as a way of building bigger data types out of smaller ones,
fully coequal with the aggregation and inheritance on p. 257.

Consider how we joined classesbrownian andvictim_t with private multiple inheritance to cre-
ate the following class. See lines 18 and 26 on p. 696.

grandchild<brownian, victim_t, ’r’>

The user who plugs the template arguments into the above <angle brackets> does not need to worry about
private vs. public, single vs. multiple.The glue that joins the arguments is hidden by the template.Perhaps
a grandchild contains abrownian , or contains a pointer or reference to abrownian , or is derived
from classbrownian , either publicly or privately. Or perhaps there is exactly onebrownian object,
shared by all thegrandchild objects. Orperhaps nobrownian object exists at all, and a
grandchild object merely calls the static member functions of classbrownian .

The arguments and angle brackets can even be hidden in a typedef. The person writing line 27 in the
code on p. 696 does not even need to know that a template is involved.

The standard library has many classes in which a template hides how the data types were plugged
together. Consider the familiar classvector .

1 #include <vector>
2 #include "date.h"
3 using namespace std;
4
5 v ector<date> v;

Classvector actually accepts a second template argument. We nev er had to write it because it has the
following default:

6 v ector<date, allocator<date> > v;

The member functions of classallocator<date> perform the dynamic memory allocation and deallo-
cation for a growing and shrinkingvector<date> . Once again, the template hides the exact relationship
between the data types.Does avector contain anallocator or a pointer thereto? Or does avector
call the static member functions of classallocator ? The user does not need to know.

An interface for keeping the data types separate

Pages 163−179 presented four reasons to package a chunk of code or functionality as a class.A fifth
reason is that a class is a unit of syntax that can be plugged into—or withheld from—a template.We will
see three examples.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

(1) The error checking in lines 39−43 ofprintable.h on p. 736 has been packaged as a class
printable so that it can be plugged into—or withheld from—theterminal template on pp. 740−745.

(2) The> operator in line 14 ofmain3.C on p. 768 has been packaged as a classgreater_int so
that it can be plugged into thesorter template in line 17 ofsorter2.h on p. 767.

(3) A wabbit ’s style of motion has been packaged as classes such asbrownian andmanual so
that it can be plugged into thegrandchild template on pp. 695−696.

If the template is a function template, we can pass it more than just a template argumentT. We can
also pass it a function argument whose data type isT. For example,T could be a class and the function
argument could be an object of that class, carrying data members. An example is in line 59 ofmain4.C
on p. 771.Or T could be a the data type of a pointer to a function, and the function argument could be a
pointer of that type. See line 55 ofmain4.C on p. 771.

The template classgrandchild was a breadboard for plugging other data types together (pp.
695−696). Inthe following example, a template will keep the data typesprintable and terminal
cleanly separated from each other. These two ways of using templates are opposite sides of the same coin.

Until now, our C++ code has been a straightforward extension of C. An object is just a glorified
structure; a virtual member function is a call through a pointer; a template is an overgrown macro. But
starting here, and culminating in Chapters 8 and 9, these features will come together in a synthesis that has
no counterpart in C.Functions, classes, objects, and templates will interpenetrate in new ways. Thevery
appearance of the code on the page will become remote from anything seen in a C program.

Class printable

Here is the classprintable we wrote on pp. 343−344, upgraded to throw the exceptions on pp.
628−629. Itsheart is thechar data member in the following line 11.

A printable object has the look and feel of achar . Whenever we try to read the object’s value,
the operator char in line 33 is transparently called.For example, line 14 ofmain.C on p. 738
behaves as if we had written the comment alongside.

But aprintable object will accept only printable values. Whenever we try to write a value into
an object, theoperator= member function in line 37 ofprintable.h is ultimately called. This func-
tion will reject non-printing characters such as’\a’ (alarm),’\b’ (backspace), and’\f’ (formfeed). It
will store only a printable value into the data member of aprintable object.

For example, line 12 ofmain.C calls the constructor in line 31 ofprintable.h , which calls the
operator= in line 37. And theoperator += in line 49 ofprintable.h callsoperator char to
read andoperator= to write.

The= operator in line 37 is binary: it takes two operands, as in line 10 ofprintable.C on p. 738.
An operator= must do nothing if its operands are the same variable (x = x). Mostoperator= ’s there-
fore begin with anif to verify that their arguments are in fact two different variables. Butthe if is unnec-
essary here.We already know that the operands are different variables because of their different data types:
the left operand (*this) is a printable , while the right operand (t) is a T that is not aprintable .
(If the right operand was aprintable , we would have called theoperator= function provided for us
implicitly.) For an earlieroperator= that needed noif , see p. 309.For the tests in lines 14 and 18 of
printable.h , and the conversion in line 21, see pp. 343−344.

The isprint member function in line 13 calls theisprint function in the standard library.
Without thestd:: in line 14, we would go into an infinite loop.

We wrote no copy constructor for classprintable because we were satisfied with the one pro-
vided implicitly. It can assume that its argument is a legal printable . We also get an implicit
operator= whose argument is aprintable .

Classprintable delivers no functionality other than the error checking in the following lines
39−41. We hav epackaged the error checking as a class so that we can plug it cleanly into—and unplug it
cleanly from—the classterminal on pp. 740−745.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data Types 735

736 Templates Chapter7

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/printable2/printable.h

1 #ifndef PRINTABLEH
2 #define PRINTABLEH
3 #include <iostream>
4 #include <sstream> //for ostringstream
5 #include <cctype> //for std::isprint
6 #include <climits> //for UCHAR_MAX
7 #include "except.h"
8 using namespace std;
9

10 class printable {
11 char c;
12
13 static bool isprint(char c) throw () {
14 return std::isprint(static_cast<unsigned char>(c)) != 0;
15 }
16
17 static bool isprint(int i) throw () {
18 return i >= 0 && i <= U CHAR_MAX && std::isprint(i) != 0;
19 }
20
21 static unsigned code(char c) throw () {
22 return static_cast<unsigned char>(c);
23 }
24
25 static int code(int i) throw () {return i;}
26 public:
27 template <class T> //T must be char or int.
28 printable& operator=(T t) throw (except);
29
30 template <class T> //T must be char or int.
31 printable(T t) throw (except) {*this = t;}
32
33 operator char() const throw () {return c;}
34 };
35
36 template <class T>
37 printable& printable::operator=(T t) throw (except)
38 {
39 if (!isprint(t)) {
40 ostringstream ost;
41 ost << "character code " << code(t) << " is not printable";
42 throw except(ost);
43 }
44
45 c = t ;
46 return *this;
47 }
48
49 inline printable& operator+=(printable& p, int i) throw (except) {
50 return p = p + i; / /return p.operator=(p.operator char() + i);
51 }
52

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

53 inline printable& operator-=(printable& p, int i) throw (except) {
54 return p = p - i ;
55 }
56
57 inline printable& operator++(printable& p) throw (except) {return p += 1;}
58 inline printable& operator--(printable& p) throw (except) {return p -= 1;}
59
60 inline const printable operator++(printable& p, int) throw (except) {
61 const printable old = p;
62 ++p;
63 return old;
64 }
65
66 inline const printable operator--(printable& p, int) throw (except) {
67 const printable old = p;
68 --p;
69 return old;
70 }
71
72 inline const printable operator+(printable p, int i) throw (except) {
73 return p += i ;
74 }
75
76 inline const printable operator+(int i, printable p) throw (except) {
77 return p += i ;
78 }
79
80 inline const printable operator-(printable p, int i) throw (except) {
81 return p -= i ;
82 }
83
84 istream& operator>>(istream& ist, printable& p) throw (except);
85 #endif

The constructor for classprintable , and many other functions that take and returnprintable ,
call each other. But this is no sin. All are inline, so no time is wasted.

(1) The=’s in lines 31, 50, and 54 of the above printable.h , and line 10 ofprintable.C , call the
operator= in line 37 ofprintable.h . But the= in line 45 ofprintable.h does not call
anyoperator= function. It is the built-in= that performs assignment tochar or int .

(2) The+=’s in lines 57, 73, and 77 ofprintable.h call theoperator+= in line 49. The
-= ’s in lines 58 and 81 ofprintable.h call theoperator-= in line 53.

(3) Theprefix++ in line 62 ofprintable.h calls the prefixoperator++ in line 57. The prefix
-- in line 68 ofprintable.h calls the prefixoperator-- in line 58.

(4) The+ and- in lines 50 and 54 ofprintable.h do not call theoperator+ and
operator- in lines 72 and 80, since these functions have not yet been seen. (The rules will change
on p. 751.)

(5) Therightmostp (the one used as an rvalue) in lines 50 and 54 ofprintable.h calls the
operator char in line 34.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/printable2/printable.C

1 #include <iostream>
2 #include "printable.h"

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data Types 737

738 Templates Chapter7

3 using namespace std;
4
5 i stream& operator>>(istream& ist, printable& p) throw (except)
6 {
7 c har c; //uninitialized variable
8
9 i f (ist >> c) { //if (operator>>(ist, c).operator void *()) {

10 p = c; / /p.operator=(c);
11 }
12
13 return ist;
14 }

We can easily combine the following lines 14−17 into a single statement, but this would complicate
the comments.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/printable2/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "except.h"
4 #include "printable.h"
5 using namespace std;
6
7 i nt main()
8 {
9 i nt status = EXIT_FAILURE;

10
11 try {
12 printable p = ’ A’;
13
14 cout << p; //operator<<(cout, p.operator char());
15 cout << "\n";
16 cout << ++p; //operator<<(cout, p.operator++().operator char());
17 cout << "\n";
18
19 p = ’ \0’;
20 status = EXIT_SUCCESS;
21 }
22
23 catch (const except& e) {
24 cerr << e.what() << "\n";
25 }
26
27 return status;
28 }

A
B my machine is ASCII
character code 0 is not printable

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Class terminal has the same error checking as class printable.

A well-written function begins by checking that its arguments are valid. For example, the following
member function, originally appearing on p. 161, checks that itschar argument is printable.

1 / /Excerpt from terminal.C.
2
3 v oid terminal::put(unsigned x, unsigned y, char c) const
4 {
5 i f (isprint(static_cast<unsigned char>(c)) == 0) {
6 ostringstream ost;
7 ost << "unprintable character "
8 << static_cast<unsigned>(static_cast<unsigned char>(c))
9 << " .\n";

10 throw except(ost);
11 }
12
13 check(x, y);
14 term_put(x, y, c);
15 }

The error checking becomes more intrusive if we make it optional via conditional compilation, and
also provide an exception specification.

16 void terminal::put(unsigned x, unsigned y, char c) const
17 #ifdef CHECK
18 throw (except)
19 #endif
20 {
21 #ifdef CHECK
22 if (isprint(static_cast<unsigned char>(c)) == 0) {
23 ostringstream ost;
24 ost << "unprintable character "
25 << static_cast<unsigned>(static_cast<unsigned char>(c))
26 << ".\n";
27 throw except(ost);
28 }
29 #endif
30
31 check(x, y);
32 term_put(x, y, c);
33 }

Now that we are checking the function arguments, we should also check the return values. For exam-
ple, here is theterminal::get from p. 160.

34 //Excerpt from terminal.C, showing the definition of a public member function
35 //that was inline when it originally appeared.
36
37 char terminal::get(unsigned x, unsigned y) const
38 {
39 check(x, y);
40 return term_get(x, y);
41 }

With conditionally compiled error checking for printability, it needs an extra variable.

42 char terminal::get(unsigned x, unsigned y) const

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data Types 739

740 Templates Chapter7

43 #ifdef CHECK
44 throw (except)
45 #endif
46 {
47 check(x, y);
48
49 const char c = term_get(x, y);
50 #ifdef CHECK
51 if (isprint(static_cast<unsigned char>(c)) == 0) {
52 ostringstream ost;
53 ost << "unprintable character "
54 << static_cast<unsigned>(static_cast<unsigned char>(c))
55 << ".\n";
56 throw except(ost);
57 }
58 #endif
59 return c;
60 }

Is there a less intrusive way to check that every character is printable? And if we did want to live fast
and dangerously, is there a cleaner way to turn the checking on and off at compile time? We are about to
see that the printability checking should never hav ebeen bundled together with classterminal . Tem-
plates will let us put asunder what should never hav ebeen joined.*

▼ Homework 7.2.8a:
Version 4.2 of the Rabbit Game: classterminal becomes a template class

Independent concepts should be independently represented .. .

—Bjarne Stroustrup,The C++ Programming Language, p. 327

The member functions of classterminal will check that their character arguments and return val-
ues are printable.To turn the checking on, the arguments and return values will beprintable objects
that are passed and returned by value. (We assume that anything playing the rôle of a character is fast
enough to pass by value.) Thechecking will then be performed by the constructors for these objects.To
turn the checking off, we will change the arguments and return values back to plain oldchar ’s.

Classterminal will be a template class, just like vector , list , and all the other containers.It
should have been a template class all along.Its template argument will be the data type of the characters
passed to and from the member functions. This will let us turn the error checking on and off cleanly.

We will now be able to construct the terminals in lines 4−6.We will also have taken our first step
towards the terminal in line 8.

1 #include "printable.h"
2 #include "terminal.h"
3
4 t erminal<char> term1(’.’);
5 t erminal<> term2(’.’); //the same data type
6 t erminal<printable> term3(’.’);
7
8 t erminal<wchar_t> term4(L’.’); //w is "wide", L is "long"

9 / /This file is terminal.h, showing some of the members of class terminal.
10 #ifndef TERMINALH
11 #define TERMINALH

* For another example of counterproductive bundling, see p. 563.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

12
13 #extern "C" {
14 #include "term.h"
15 }
16
17 template <class CHAR = char>
18 class terminal {
19 const CHAR _background;
20 const unsigned _xmax;
21 const unsigned _ymax;
22
23 public:
24 terminal(const CHAR& initial_char);

Theput member function will be simplified to the following template.We turn the character error check-
ing on and off, without any explicit conditional compilation, by our choice of the argument in the<angle
brackets> in the following lines 31 and 38. Do not write an exception specification at the end of line 26.

25 template <class CHAR>
26 void terminal<CHAR>::put(unsigned x, unsigned y, CHAR c) const
27 {
28 check(x, y);
29 term_put(x, y, c);
30 }

If we say

31 terminal<char> term(’.’);
32 term.put(0, 0, ’A’);

the above line 32 will instantiate line 26 as the following function. No error checking will be performed on
the third argument:

33 void terminal::put(unsigned x, unsigned y, char c) const
34 {
35 check(x, y);
36 term_put(x, y, c);
37 }

But if we say

38 terminal<printable> term(’.’);
39 term.put(0, 0, ’A’);

the above line 39 will instantiate line 26 as the following function.

40 void terminal::put(unsigned x, unsigned y, printable c) const
41 {
42 check(x, y);
43 term_put(x, y, c);
44 }

The third argument in the above line 40 is passed by value, calling a constructor for classprintable .
The third argument in the above line 39 was achar , so the constructor will be the one that takes achar in
line 31 ofprintable.h on p. 736. It will throw an exception if its argument is not printable.

(1) Move the definitions of the non-inline member functions of classterminal from
terminal.C to terminal.h . Then remove terminal.C entirely.

(2) Give the following preamble to the template class definition, as in the above line 17.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data Types 741

742 Templates Chapter7

45 template <class CHAR = char>

But do not write the default value in the preamble for the definition of any non-inline member function, as
in the above line 25. The default= char is written only once.

(3) Change the data member_background from const char to const CHAR . Change the fol-
lowing from char to CHAR: the return type of the member functionbackground ; the argument of the
constructor for classterminal ; the return value of the member functionget ; and thechar argument of
the member functionput .

(4) The character’\0’ is not printable, so there can be no’\0’ -terminated arrays of
printable ’s. This means that theterminal::put whose third argument is aCHAR * is now useless
and should be removed. Temporarily change the messages at the end ofgame::play to single character
such as’!’ or ’?’ . Don’t worry: we will regain the ability to print a string ofprintable ’s on p. 982.

(5) The return value of the member functionkey will remain char . CHARis only for screen char-
acters, not keystrokes.

(6) The arguments and return values of the C functions interm.h will remain char . C does not
have templates.

(7) As in the above lines 11−23,terminal::put will no longer explicitly callisprint . We
will now rely on the constructor for classCHARto perform any checking that needs to be done.
terminal.h no longer needs to include<cctype> .

(8) Every container in the C++ Standard Library has a public member namedvalue_type , which
is a typedef for the data type of each element held in the container. For example,
vector<int>::value_type is a typedef forint :

46 #include <vector>
47 using namespace std;
48
49 vector<int> v(argument(s) for constructor);
50 if (!v.empty()) {
51 vector<int>::value_type x = v [0]; //x is int
52 }

Other examples ofvalue_type were in lines 6, 10, 16−17 ofstack2.h on pp. 153−154; lines 6 and 9
of node.h on p. 214; line 18 oftypename.C on p. 675; line 16 ofstack.h on p. 685.

What isvalue_type good for? After all, isn’t it obvious that the above vector<int> would
containint ’s and thatx should therefore be anint ? We usevalue_type when wedon’t know what
type of container we’re dealing with:

53 #define CONTAINER vector<int> //suppose this #define was off in another file.
54
55 void f(const CONTAINER& c)
56 {
57 if (!c.empty()) {
58 CONTAINER::const_iterator it = c.begin();
59 CONTAINER::value_type x = * it;
60 }
61 }

In contemporary C++, the opaque nameCONTAINERis more likely to be the template argument in lines
62−63 than the macro in the above 53:

62 template <class CONTAINER>
63 void f(const CONTAINER& c)
64 {
65 if (!c.empty()) {
66 typename CONTAINER::const_iterator it = c.begin();

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

67 typename CONTAINER::value_type x = *it;
68 }
69 }

So add the following public member to the template classterminal :

70 typedef CHAR value_type;

(9) The following line compares two char ’s in the original constructor for classterminal in line
9 of terminal.C on p. 160:

71 if (_background != ’ ’) {

The_background is now aCHAR, but the’ ’ remains achar . Since we have not written an
operator!= whose left and right operands areCHARandchar , the above line 71 will be torn between
two equally good alternatives:

(a) it can convert the’ ’ from char to CHARand then perform aCHARcomparison; or

(b) it can convert the_background from CHARto char and then perform achar com-
parison.

We will have to decide for it. Go with alternative (a) by writing

72 if (_background != static_cast<CHAR>(’ ’)) {

We hav enow finished modifying classterminal .

(10) If classesgame andwabbit were changed into template classes, they would look as follows.
(Just look—do not make this change.)

73 template <class CHAR> //The forward declaration is now a template declaration.
74 class wabbit;
75
76 template <class CHAR>
77 class game {
78 typedef terminal<CHAR> terminal_t;
79 const terminal_t term;
80
81 typedef list<wabbit<CHAR> *> master_t;
82 master_t master;
83
84 public:
85 game(CHAR initial_c = ’.’): term(initial_c) {}
86 //etc.
87 };
88
89 template <class CHAR>
90 class wabbit {
91 game<CHAR> *const g;
92 //etc.
93
94 public:
95 wabbit(game<CHAR> *initial_g, //etc.
96 };

We could now hav eseveral flavors of game in the same program:

97 game<char> g1;
98 game<printable> g2;

But let’s not go this far. We don’t need the multiple flavors and the resulting code has too many <CHAR>’s.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.8 Uncouple the Data Types 743

744 Templates Chapter7

We will not change classesgame andwabbit into template classes.

(11) Instead, simply write the typedef in line 106 and the protected typedef in line 124.Change
ev ery terminal to terminal_t in classesgame, wabbit , and the classes derived from wabbit .
The first example is in line 107.

(12) Every char that represents a character on the screen (as opposed to a keystroke from the
keyboard) should be changed toterminal_t::value_type in classesgame, wabbit , and the
classes derived from wabbit . Examples are in lines 113, 116, 126 (which must come after 124), and 130.

The char ’s in manual::decide will remain char ’s. They represent keystrokes, not screen
characters. Thechar ’s in the arraya in game::game will remain char ’s. I just don’t want to fool
around with arrays ofprintable objects yet.

The typedefterminal_t in line 106 is a member of classgame. It can be mentioned only in
game.h and the files that include this header. The typedefterminal_t in line 124 is a member of class
wabbit . It can be mentioned only inwabbit.h and the files that include this header. Therefore do not
changeterminal to terminal_t , and char to terminal_t::value_type , anywhere in the files
printable.h , printable.C , terminal.h , terminal.C , term.h , term.c .

99 //Excerpt from game.h.
100 #include "printable.h"
101 #include "terminal.h"
102
103 class wabbit; //forward declaration
104
105 class game {
106 typedef terminal<printable> terminal_t;
107 const terminal_t term;
108
109 typedef list<wabbit *> master_t;
110 master_t master;
111
112 public:
113 game(terminal_t::value_type initial_c = ’.’)
114 : term(initial_c) //etc.
115
116 master_t::size_type count(terminal_t::value_type c) const;

117 //Excerpt from wabbit.h.
118 #include "game.h"
119
120 class wabbit {
121 game *const g;
122 unsigned x, y;
123 protected:
124 typedef game::terminal_t terminal_t;
125 private:
126 const terminal_t::value_type c;
127
128 public:
129 wabbit(game *initial_g, unsigned initial_x, unsigned initial_y,
130 terminal_t::value_type initial_c);

(13) Ingrandchild.h , do not change

131 template <class MOTION, class RANK, char C> //lowercase char

to

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

132 template <class MOTION, class RANK, CHAR C> //uppercase char

A constant template argument cannot be an object.
▲

7.2.9 Altruistic Template Classes:numeric_limits, iterator_traits, etc.
An altruistic template class is one whose only purpose is to give us information about other data

types. Theclassnumeric_limits<double> , for example, will give us information about the data
typedouble . There is never any reason to construct any object of this class: all of its data members and
member functions are static. Furthermore, all the data members and all the return values of the member
functions are constant values.

On pp. 754−755 we will use an altruistic class in a template to get information about a template argu-
mentT. Our first example, however, will use an altruistic class inmain .

Numeric limits

A C program gets information about the numeric data types from macros in the C Standard Library.
For example, theINT_MAX andDBL_MAXin the following lines 11 and 13 are the maximum value that
each data type can hold.

Of greater practical importance, unless you are an astronomer, is the number of significant digits that
a double can hold. Line 15 prints this number. In the output of line 16, the digits that came out correctly
are underlined; there happens to be one more than expected.

Why can adouble hold 15 decimal significant digits?A 15-significant-digit number can hold any
whole number in the range 0 to 1015 − 1 inclusive. (Of course, it could also hold fractions.)A double on
my machine has a mantissa of 53 bits, so it can hold any whole number in the range 0 to 253 − 1 inclusive.
(Of course, it could also hold fractions.) Adouble can hold any 15-significant-digit number because

1015 − 1 = 999, 999, 999, 999, 999≤ 9, 007, 199, 254, 740, 991= 253 − 1

But not every 16-significant-digit number will fit into adouble , because

253 − 1 = 9, 007, 199, 254, 740, 991< 9, 999, 999, 999, 999, 999= 1016 − 1

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/numeric/limits.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include <limits.h> /* for INT_MIN, INT_MAX */
4 #include <float.h> /* for DBL_MAX, DBL_DIG */
5
6 i nt main()
7 {
8 double d = 123456789012345678.0;
9

10 printf("Minimum int is %d.\n", INT_MIN);
11 printf("Maximum int is %d.\n\n", INT_MAX);
12
13 printf("Maximum double is %g.\n", DBL_MAX);
14 printf("A double has a %d-bit mantissa.\n", DBL_MANT_DIG);
15 printf("A double can hold %d decimal significant digits.\n", DBL_DIG);
16 printf("%.*g\n", DBL_DIG + 3, d);
17
18 return EXIT_SUCCESS;
19 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classes:numeric_limits, iterator_traits, etc. 745

746 Templates Chapter7

Without the.0 in the above line 8, the computer would think that the literal is of an integral data
type. We would then get an error message if no integral type is big enough to hold this value.

Minimum int is -2147483648.
Maximum int is 2147483647.

Maximum double is 1.79769e+308.
A double has a 53-bit mantissa.
A double can hold 15 decimal significant digits.
1234567890123456 80

A C++ program would get information about data types from the template class
numeric_limits . Only built-in numeric data types—int , char , double , but not pointers, enumera-
tions or objects—can be plugged into the<angle brackets> of numeric_limits .

The static member functionsmin andmax return the minimum and maximum possible values for a
data type.Classnumeric_limits<int> has themin function in the following line 9 that returns the
smallestint ; classnumeric_limits<double> has themax function in 11 that returns the biggest
double . This class also has the public static data memberdigits10 in line 15 corresponding to the C
macroDBL_DIG. Line 18 outputs three more than this number of digits; the sixteen that came out cor-
rectly are underlined.

The members ofnumeric_limits that give us a value of typeT are member functions (min ,
max, etc). Themembers that always give us an integral or enumeration value are data members
(digits10). This is because only integral or enumeration data members can be initialized in a class dec-
laration; see p. 238.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/numeric/limits.C

1 #include <iostream> //C++ example
2 #include <iomanip> //for setprecision
3 #include <cstdlib>
4 #include <limits> //for numeric_limits
5 using namespace std;
6
7 i nt main()
8 {
9 c out << "Minimum int is " << numeric_limits<int>::min() << ".\n"

10 << "Maximum int is " << numeric_limits<int>::max() << ".\n\n"
11 << "Maximum double is " << numeric_limits<double>::max() << ".\n"
12 << "A double has a " << numeric_limits<double>::digits
13 << "-bit mantissa.\n";
14
15 int prec = numeric_limits<double>::digits10;
16 cout << "A double can hold " << prec
17 << " d ecimal significant digits.\n";
18
19 double d = 123456789012345678.0;
20 cout << setprecision(prec + 3) << d << "\n";
21
22 return EXIT_SUCCESS;
23 }

The output may be different on your machine.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Minimum int is -2147483648.
Maximum int is 2147483647.

Maximum double is 1.79769e+308.
A double has a 53-bit mantissa.
A double can hold 15 decimal significant digits.
1234567890123456 80

Oddly, the value of the macroCHAR_MAXwas of type int (127 for a signed, 8-bitchar). The
value returned bynumeric_limits<char>::max is of typechar , which makes more sense.

There are two places wherenumeric_limits cannot be used, so don’t discard your_MIN and
_MAXmacros yet. The C++ preprocessor does not know about numeric_limits , so #if directives
will still have to be written in terms of the macros. And the value for a constant template argument must be
a constant expression (p. 234), which does not allow function calls. The INT_MIN and INT_MAX will
therefore have to remain inrank<INT_MIN, INT_MAX> . An example is in line 18 ofrank.h on p.
694.

▼ Homework 7.2.9a: numeric limits

The1.79769e+308 returned bynumeric_limits<double>::max() on my machine is

(1 − 2−53) × 21024

My base is 2, my mantissa has 53 bits, and my maximum exponent is 1024. These values are available as
threeint data members of classnumeric_limits<double> , or as three macros in the C++ header
file <cfloat> .

data members of macros in
numeric_limits <cfloat>

2 radix FLT_RADIX

53 digits DBL_MANT_DIG

1024 max_exponent DBL_MAX_EXP

The 1− 2−53 is the sum of the following series of 53 terms. It represents a mantissa of all 1’s, visible
as the numerators of the 53 fractions.

1

2
+

1

4
+

1

8
+

1

16
+ . . . +

1

9, 007, 199, 254, 740, 992
= 1 −

1

9, 007, 199, 254, 740, 992

A non-zero mantissa always starts with a 1 bit, not stored in memory, so the mantissa occupies only 52 bits.
Together with the sign bit and the 11-bit exponent, this accounts for the 64 bits of adouble on my
machine.

Let’s verify that (1− 2−53) × 21024 is in fact equal to1.79769e+308 . The standard library has sev-
eral pow functions; to get the one we want, line 9 converts theradix from int to double . Unfortu-
nately, thepow in line 12 cannot raise 2 to the power 1024, because 21024 would be infinitesimally beyond
the maximumdouble value of (1− 2−53) × 21024. The workaround is to raise 2 to the power 1023 in line
12 and then double the result in line 14.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/numeric/max.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <limits> //for numeric_limits
4 #include <cmath> //for pow
5 using namespace std;
6
7 i nt main()

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classes:numeric_limits, iterator_traits, etc. 747

748 Templates Chapter7

8 {
9 c onst double radix = numeric_limits<double>::radix;

10
11 double m = (1.0 - pow(radix, -numeric_limits<double>::digits))
12 * pow(radix, numeric_limits<double>::max_exponent - 1);
13
14 m *= radix;
15
16 if (m == numeric_limits<double>::max()) {
17 cout << fixed << m << "\n"; //fixed prevents rounding
18 }
19
20 return EXIT_SUCCESS;
21 }

179769313486231570814527423731704356798070567525844996598917476803157260
780028538760589558632766878171540458953514382464234321326889464182768467
546703537516986049910576551282076245490090389328944075868508455133942304
583236903222948165808559332123348274797826204144723168738177180919299881
250404026184124858368.000000

What is the next-to-largest value that adouble can hold?

What is the smallest positive whole number that adouble cannot hold? (It would be 9 if the man-
tissa consisted of 3 bits, no matter how big the exponent could be.) If you try to put this number into a
double , which way will it round? See theround_style data member of class
numeric_limits<double> , whose value is one of thefloat_round_style enumerations defined
in <limits> .
▲

▼ Homework 7.2.9b: ignore an input line

To count the number of characters that we input or output, use the data typestreamsize in line 10
of double.C on p. 355. This is also the data type of the first argument of theignore function in
input.C on p. 359. It ignores the specified number of characters, or everything up to and including a
delimiter such as a newline, whichever comes first.

To place no ceiling on the number of characters ignored, let the first argument ofignore be the
maximum value of the data typestreamsize . With this special value, ignore will ignore everything
up to and including the delimiter.
▲

An altruistic class with a data type member

The data types that hold characters arechar andwchar_t . In C, the vital statistics for these types
come from macros.For example,EOFandWEOFare the end-of-file value for each type, integers guaran-
teed to be different from any possible character code.We can storeEOFor any char value into anint ;
we can storeWEOFor any wchar_t value into awint_t . The latter is a typedef for a machine-depen-
dent integral type (probablyint or long), so the%din the following line 12 is not portable.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/numeric/char_traits.c

1 #include <stdio.h> /* for EOF */
2 #include <stdlib.h>
3 #include <wchar.h> /* for wint_t, WEOF */
4
5 i nt main()

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

6 {
7 i nt c = EOF;
8 printf("End-of-file integer for char is %d.\n", c);
9

10 wint_t wc = WEOF;
11 /* not portable: may be %ld on other machines */
12 printf("End-of-file integer for wchar_t is %d.\n", wc);
13
14 return EXIT_SUCCESS;
15 }

End-of-file integer for char is -1.
End-of-file integer for wchar_t is -1.

In C++, the vital statistics forchar andwchar_t come from classeschar_traits<char> and
char_traits<wchar_t> . For example, theeof static member function in the following line 8 returns
the end-of-file value for the type.

Theeof function gives us a number. The int_type in the following line 8 gives us a data type.It
is another name for the type of integer we could use to hold the end-of-file value: int , long , etc. The
next altruistic class,iterator_traits on pp. 753−757, will have many members that are names of
data types.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/numeric/char_traits.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string> //for char_traits
4 using namespace std;
5
6 i nt main()
7 {
8 c har_traits<char>::int_type c = char_traits<char>::eof();
9 c out << "End-of-file integer for char is " << c << ".\n";

10
11 char_traits<wchar_t>::int_type wc = char_traits<wchar_t>::eof();
12 cout << "End-of-file integer for wchar_t is " << wc << ".\n";
13
14 return EXIT_SUCCESS;
15 }

End-of-file integer for char is -1.
End-of-file integer for wchar_t is -1.

▲

▼ Homework 7.2.9c: use char_traits to templatize class printable

The data typechar was hardwired into classprintable on pp. 343−344 and pp. 735−738.
Parameterize the choice of character by turningprintable into the template class in line 8, renamed
basic_printable to agree with the convention on pp. 688−689.Define the class in a header file
namedprintable.h ; there will no longer be aprintable.C . Every explicit specialization defined in
printable.h must bestatic , or inline if it is short enough, so that the header file can be included
in more than one.C file of the same program.Finally, reincarnate the data typeprintable as the type-
def in line 35.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classes:numeric_limits, iterator_traits, etc. 749

750 Templates Chapter7

The template argumentCHARwill be eitherchar or wchar_t . These types, and the corresponding
int_type ’s, are fast enough to pass by value.

1 #include <string> //for char_traits
2 #include "except.h" //for except, pp. 628−629
3 using namespace std;
4
5 / /CHAR must be char or wchar_t.
6
7 t emplate <class CHAR>
8 c lass basic_printable {
9 CHAR c;

10
11 static bool isprint(CHAR c) throw ();
12 static bool isprint(typename char_traits<CHAR>::int_type i) throw ();
13
14 static typename char_traits<CHAR>::int_type code(CHAR c) throw ();
15
16 static typename char_traits<CHAR>::int_type code(
17 typename char_traits<CHAR>::int_type i) throw () {
18 return i;
19 }
20 public:
21 basic_printable& operator=(CHAR c) throw (except);
22
23 basic_printable& operator=(typename char_traits<CHAR>::int_type i)
24 throw (except);
25
26 basic_printable(CHAR c) throw (except) {*this = c;}
27
28 basic_printable(typename char_traits<CHAR>::int_type i) throw (except) {
29 *this = i ;
30 }
31
32 operator CHAR() const throw () {return c;}
33 };
34
35 typedef basic_printable<char> printable_t;
36 typedef basic_printable<wchar_t> wprintable_t;
37
38 //four explicit specializations of isprint
39 //two explicit specializations of code
40 //definitions for operator=, operator+=, operator++ (pre- & postfix), etc.

(1) For convenience, let the following typedef be a private member ofbasic_printable at the
above line 10.

41 typedef typename char_traits<CHAR>::int_type int_type;

Then changetypename char_traits<CHAR>::int_type to int_type in the rest of the class
definition in the above lines 11−33.

(2) Define four explicit specializations forbasic_printable::isprint at the above line 38.
They must have no template preambles, as in line 44 ofwrapper.h on p. 704.

(a) Thebasic_printable<char>::isprint whose function argument is achar will cast
its function argument tounsigned char and pass it to the standard libraryisprint . You

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

will have to refer to this function asstd::isprint .

(b) Thebasic_printable<char>::isprint whose function argument is a
char_traits<char>::int_type will verify that its function argument is greater than or
equal to zero and less than or equal tonumeric_limits<unsigned char>::max() .
If so, it will pass its function argument to the standard libraryisprint .

(c) Thebasic_printable<wchar_t>::isprint whose function argument is a
wchar_t will pass its function argument to the standard libraryiswprint ; include the
header<cwctype> for this function.

(d) Thebasic_printable<wchar_t>::isprint whose function argument is a
char_traits<wchar_t>::int_type will verify that its function argument is≥
numeric_limits<wchar_t>::min() and≤
numeric_limits<wchar_t>::max() . If so, it will pass its function argument to the
standard libraryiswprint .

(3) Define two explicit specializations forbasic_printable::code at the above line 39. They
must have no template preambles.

(a) Thebasic_printable<char>::code whose function argument is achar will convert
the function argument tounsigned char and then to
char_traits<char>::int_type . The first conversion must be explicit; the second can
be implicit. Warning: the function argument ofbasic_printable<char>::isprint
can be declared as an unadornedint_type , but the return type of
basic_printable<char>::code must be declared as
basic_printable<char>::int_type .

(b) Thebasic_printable<wchar_t>::code whose function argument is a
wchar_t will convert the function argument directly to
char_traits<wchar_t>::int_type .

(4) In the classprintable on p. 736, an infinite loop would have resulted ifoperator+= (line
49) andoperator+ (line 72) called each other. We declaredoperator+= beforewe defined
operator+ to allowoperator+ to calloperator+= . We declaredoperator+ after we defined
operator+= to prevent operator+= from callingoperator+ .

But now operator+= and operator+ will be template functions.Each function can call the
other, because the definition (instantiation) of each one can come after the declaration (template) for the
other. To prevent an infinite loop, declare and defineoperator+= beforeoperator+ . In the body of
operator+= , change

42 //Would call operator+ before is declared!
43 //return p.operator=(p.operator+(i));
44 return p = p + i ;

to

45 //return p.operator=(p.operator CHAR() + i);
46 return p = s tatic_cast<CHAR>(p) + i;

For the only other place where something can be mentioned before it is declared, see p. 119.

(5) The standard libary contains a template similar to the following. Recallthat the data type of
cout is ostream , which is a typedef forbasic_ostream<char> . Similarly, the data type ofwcout
is wostream , which is a typedef forbasic_ostream<wchar_t> .

47 //CHAR must be char or wchar_t.
48
49 template <class CHAR>
50 basic_ostream<CHAR>& operator<<(basic_ostream<CHAR>& ost, CHAR c);

By itself, the template will let us send achar to anostream . But it will not let us send a
printable<char> there; see line 31 on p. 653.For this reason, the library also has a function similar to

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classes:numeric_limits, iterator_traits, etc. 751

752 Templates Chapter7

the following.

51 template <>
52 basic_ostream<char>& operator<<(basic_ostream<char>& ost, char c);

Similarly, the template in the above line 50 will let us send awchar_t to awostream , but it will not let
us send aprintable<wchar_t> there. Thelibrary has no template forwchar_t corresponding to the
above line 52 so we must write our own:

53 inline wostream& operator<<(wostream& wost, basic_printable<wchar_t>& p) {
54 return wost << static_cast<wchar_t>(p);
55 }

Test basic_printable with the template classstream and the template functionf .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/numeric/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "printable.h"
4 using namespace std;
5
6 t emplate <class CHAR>
7 s truct stream {
8 s tatic basic_ostream<CHAR>& r;
9 } ;

10
11 template <>
12 basic_ostream<char>& stream<char>::r = cout;
13
14 template <>
15 basic_ostream<wchar_t>& stream<wchar_t>::r = wcout;
16
17 template <class CHAR>
18 void f()
19 {
20 try {
21 basic_printable<CHAR> p = s tatic_cast<CHAR>(’A’);
22 stream<CHAR>::r << ++p << static_cast<CHAR>(’\n’);
23
24 p = static_cast<CHAR>(’\0’);
25 }
26
27 catch (const except& e) {
28 cerr << e.what() << "\n";
29 }
30
31 stream<CHAR>::r << flush;
32 }
33
34 int main()
35 {
36 f<char>();
37 f<wchar_t>();
38 return EXIT_SUCCESS;
39 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

We will have to define anoperator== for basic_printable on p. 983.
▲

▼ Homework 7.2.9d:
Version 4.3 of the Rabbit Game: let the terminal contain printable_t objects

Run the game on aterminal<printable_t> , whereprintable_t is a typedef for the
basic_printable<char> in the previous homework.
▲

Iterator traits

Our final example of an altruistic template class isiterator_traits . It giv es us information
about any data type that is an iterator, including any type of pointer exceptvoid * andconst void * .
iterator_traits is intended for use only within a template, to provide information about a template
argumentT. For simplicity, howev er, our first example will use it inmain .

The data type plugged into the<angle brackets> of iterator_traits must be an iterator.
Examples are theconst int * in line 14 and thelist<double>::iterator in line 19.

Each container has avalue_type member giving the data type of the values stored in the con-
tainer; our first example was in classstack on p. 423. The iterator_traits for each container’s
iterator has a member with the same name and almost the same purpose. It gives the data type of a variable
that can hold a value stored and/or retrieved by the iterator.

For example, the*it1 in line 14 is aconst int . To hold this value, thex1 in line 14 is anint .
It is not necessary to makex1 aconst int . We can remove the top-level const (p. 644).

We could simply have declaredx1 to be anint . Another way to make x1 an int is to declare it to
be aniterator_traits<int *>::value_type , which is another name (i.e., a typedef) for the
data type that can hold the result of applying the* operator to aconst int * .

Let’s see one more example. Theiteratorit2 in line 19 is avector<double>::iterator ; we
retrieve adouble when we apply the operator* to it. To create a variable to hold thisdouble , we could
simply have declaredx2 to be adouble . The
iterator_traits<vector<double>::iterator>::value_type in line 19 is a gloriously
baroque name fordouble .

Lines 14 and 19 did not neediterator_traits at all, because we could see the data types of the
iterators. Butin line 22, the type of the iterator is written in a macro.Let’s say that the definition of the
macro, and the initial value of it3 , were hidden in another file where we couldn’t see them. What then
should the data type ofx3 be? Theiterator_traits in line 24 answers this question very neatly.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iterator_traits/in_main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator> //for class iterator_traits
4 #include <vector> //includes <iterator>, so previous line not needed here
5 using namespace std;
6
7 i nt main()
8 {
9 c onst int a[] = {10, 20, 30, 40, 50};

10 size_t n = s izeof a / sizeof a[0];
11 cout << fixed;
12
13 const int *it1 = a;
14 iterator_traits<const int *>::value_type x1 = *it1;
15 cout << x1 << "\n"; //x1 is an int (not a const int)

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classes:numeric_limits, iterator_traits, etc. 753

754 Templates Chapter7

16
17 vector<double> v(a, a + n);
18 vector<double>::iterator it2 = v.begin();
19 iterator_traits<vector<double>::iterator>::value_type x2 = *it2;
20 cout << x2 << "\n"; //x2 is a double.
21
22 #define ITERATOR vector<double>::iterator
23 ITERATOR it3 = v.begin();
24 iterator_traits<ITERATOR>::value_type x3 = *it3;
25 cout << x3 << "\n"; //x3 is a double.
26
27 return EXIT_SUCCESS;
28 }

10 lines 13−15
10.000000 lines 17−20
10.000000 lines 22−25

iterator_traits in a template

In contemporary C++, anITERATORis more likely to be the template argument in the following line
7 than the macro in the above line 23. A realistic use of
iterator_trait<ITERATOR>::value_type is in line 10. The template functionf can now create
a variable of the type retrieved by applying the* to whatever type of iterator was passed to it.For the
typename , see p. 675.

Lines 13, 17, and 21 show three more data types provided byiterator_traits . Use the first
two if you need a pointer or reference to the element to which the iterator refers.To ensure that line 15
always prints the address of the element, even if the element is achar , we cast the address toconst
void * .

Lines 21−27 measure the distance in elements between the elements to which the two iterators refer.
The data type ofd in line 21 is the appropriate one for holding this number, positive or neg ative. I wish we
could compute the distance with a subtraction:

1 c out << "The distance n elements is " << last - first << ".\n";

But some types of iterators permit only increment, not subtraction; an example is thelist iterator, whose
infirmities first appeared on pp. 449−450.We therefore resort to the pedestrian loop in lines 22−24.

We hav enow seen whatiterator_traits gives to a template whose template argument is an
iterator: four data types that will probably be needed to manipulate the iterator and the element to which it
refers. Thenext example will have a fifth one.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iterator_traits/in_template.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <vector>
5 using namespace std;
6
7 t emplate <class ITERATOR>
8 v oid f(ITERATOR first, ITERATOR last)
9 {

10 typename iterator_traits<ITERATOR>::value_type x = *first;
11 cout << x << " is a copy of the value to which first refers.\n";

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

12
13 typename iterator_traits<ITERATOR>::pointer p = &*first;
14 cout << "first refers to the value " << *p << " at address "
15 << static_cast<const void *>(p) << ".\n";
16
17 typename iterator_traits<ITERATOR>::reference r = *first;
18 cout << "first refers to the value " << r << " at address "
19 << static_cast<const void *>(&r) << ".\n";
20
21 typename iterator_traits<ITERATOR>::difference_type d = 0;
22 for (; first != last; ++first) {
23 ++d;
24 }
25
26 cout << "The iterators refer to elements that are " << d
27 << " e lements apart.\n\n";
28 }
29
30 int main()
31 {
32 int a[] = {10, 20, 30, 40, 50};
33 const size_t n = sizeof a / sizeof a[0];
34 cout << fixed;
35
36 int *it1 = a;
37 int *it2 = a + n - 1;
38 f(it1, it2);
39
40 vector<double> v(a, a + n);
41 vector<double>::iterator it3 = v.begin();
42 f(it3, it3 + 3);
43
44 return EXIT_SUCCESS;
45 }

If it is to your taste, you can create a local, one-word name,value_type , to stand fortypename
iterator_traits<ITERATOR>::value_type in the above line 10. That line would then become

46 typedef typename iterator_traits<ITERATOR>::value_type value_type;
47 value_type x = * it;

10 is a copy of the value to which first refers.
first refers to the value 10 at address 0xffbff04c.
first refers to the value 10 at address 0xffbff04c.
The iterators refer to elements that are 4 elements apart.

10.000000 is a copy of the value to which first refers.
first refers to the value 10.000000 at address 0x25878.
first refers to the value 10.000000 at address 0x25878.
The iterators refer to elements that are 3 elements apart.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.2.9 Altruistic Template Classes:numeric_limits, iterator_traits, etc. 755

756 Templates Chapter7

A dispatching function

The fifth data type provided byiterator_traits is namediterator_category . The fol-
lowing lines 16−17 construct a variable namedcategory of this type, and pass it to one of theprint
functions. Thefunction f that contains these lines is merely acall-through, doing all its work by calling
some other function.f is also adispatching function,since the data type of theit in line 15 determines
whichprint function is called in line 17.

iterator_category is always a typedef for one of five possible classes. These classes have no
data members, their constructors take no arguments, and the resulting objects have no value. But the
objects do have five possible data types, which lets us have the five functions with the same name in lines
7−11. A function argument whose value is unused—or nonexistent—should be declared without a name
(pp. 289−290). Needless to say, these arguments are small enough to pass by value.

We will use thisiterator_category when we talk about ‘‘iterator categories’’ on pp. 834−843.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iterator_traits/overload.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iterator>
4 #include <vector>
5 #include <list>
6 using namespace std;
7
8 i nline void print(input_iterator_tag) {cout << "input\n";}
9 i nline void print(output_iterator_tag) {cout << "output\n";}

10 inline void print(forward_iterator_tag) {cout << "forward\n";}
11 inline void print(bidirectional_iterator_tag) {cout << "bidirectional\n";}
12 inline void print(random_access_iterator_tag) {cout << "random access\n";}
13
14 template <class ITERATOR>
15 void f(ITERATOR it)
16 {
17 typename iterator_traits<ITERATOR>::iterator_category category;
18 print(category);
19 }
20
21 int main()
22 {
23 int a[] = {10, 20, 30, 40, 50};
24 size_t n = s izeof a / sizeof a[0];
25
26 int *it1 = a;
27 f(it1);
28
29 vector<int> v(a, a + n);
30 vector<int>::iterator it2 = v.begin();
31 f(it2);
32
33 list<int> li(a, a + n);
34 list<int>::iterator it3 = li.begin();
35 f(it3);
36
37 return EXIT_SUCCESS;
38 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

If it is to your taste, the variablecategory in the above lines 17−18 can be an anonymous tempo-
rary. Replace these lines by the following.

39 print(typename iterator_traits<ITERATOR>::iterator_category());

random access Line 27: a pointer is a random access iterator.
random access Line 31: avector iterator is a random access iterator.
bidirectional Line 35: alist iterator is merely a bidirectional iterator.

7.3 Template Functions and Template Classes
Template functions and template classes can interact with each other in unexpected ways. Hereis a

quick summary of the differences between these kinds of templates. The most important ones are (2) and
(4).

(1) Only template functions have template argument deduction (p. 636). The template argument of a
template class must be written explicitly.

(2) Only template functions have name overloading (p. 641).Every template class must have a different
name.

(3) Only template classes have default values for template arguments (p. 689).

(4) Only template classes have partial specialization (p. 702).

7.3.1 Pass a Pair of Iterators to an Algorithm
Our print function in line 13 oftypename.C on p. 675 was capable of printing any type of stan-

dard library container:vector , list , etc. Theelements of the container could be of any type that was
printable with<<.

But the function would accept only standard library containers, and was hardwired to print every ele-
ment. We will now define a more flexible one that can accept an array as well as a container, and that can
print only some of the elements.

7.3.1.1 AnAlgorithm to Print Part of Container , including an Array

Theprint function in the following line 45 can print all or part of the array in line 14.Theprint
in 52 can print all or part of the vector in 33. In the next example, we will combine them with a template.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/print/print1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include "date.h"
5 using namespace std;
6
7 v oid print(const int *first, const int *last);
8
9 v oid print(vector<date>::const_iterator first,

10 vector<date>::const_iterator last);
11
12 int main()
13 {
14 int a[] = {1776, 1929, 1941, 1969, 2001};
15 const size_t n = sizeof a / sizeof a[0];

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.1.1 An Algorithm to Print Part of Container, including an Array 757

758 Templates Chapter7

16
17 print(a, a + n); //Print all the elements.
18 cout << "\n";
19
20 if (n > 2) {
21 print(a + 1, a + n - 1); //Print all but 1st and last.
22 cout << "\n";
23 }
24
25 const date d[] = {
26 date(date::july, 4, 1776),
27 date(date::october, 29, 1929),
28 date(date::december, 7, 1941),
29 date(date::july, 20, 1969),
30 date(date::september, 11, 2001)
31 };
32 const size_t dn = sizeof d / sizeof d[0];
33 vector<date> v(d, d + dn);
34
35 print(v.begin(), v.end()); //Print all the elements.
36 cout << "\n";
37
38 if (v.size() > 2) {
39 print(v.begin() + 1, v .end() - 1); //Print all but 1st and last.
40 }
41
42 return EXIT_SUCCESS;
43 }
44
45 void print(const int *first, const int *last)
46 {
47 for (; first != last; ++first) {
48 cout << *first << "\n";
49 }
50 }
51
52 void print(vector<date>::const_iterator first,
53 vector<date>::const_iterator last)
54 {
55 for (; first != last; ++first) {
56 cout << *first << "\n";
57 }
58 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

1776 Line 17 prints all the elements ofa.
1929
1941
1969
2001

1929 Line 21 prints all but the first and last elements ofa.
1941
1969

7/4/1776 Line 35 prints all the elements ofv .
10/29/1929
12/7/1941
7/20/1969
9/11/2001

10/29/1929 Line 39 prints all but the first and last elements ofv .
12/7/1941
7/20/1969

Theprint in the following line 12 prints therange of zero or more consecutive elements specified
by the pair of iterators passed as function arguments. TheC++ convention is to name these arguments
first andlast , and to pass them by value.

This print is our first official algorithm, a template function whose arguments are a pair of itera-
tors that delimit a range.* The two iterators must be of the same data type, which is passed as a template
argument.

If first andlast have the same value, as in the following line 23, the range is empty and an algo-
rithm processes no elements at all. Otherwise, the algorithm starts with the element to whichfirst
refers, and process all the elements up tobut not including the one to whichlast refers. Analgorithm
never assumes thatlast refers to an element; line 15 never attempts to dereference an iterator whose value
is equal tolast . The[) notation in line 8 means ‘‘including*first , but not including*last ’’ .

The range delimited byfirst and last must have a finite number of elements, possibly zero.In
other words,last must bereachablefrom first . This means thatfirst must already be equal to
last , or that first will become equal tolast if the algorithm increments it a finite number of times.
To be reachable fromfirst , last must be equal tofirst , or must refer to a later element in the same
container, or to the location after the last element in the container.

The if in line 39 calls the algorithm only whenlast is reachable fromfirst and the range is
non-empty. If the comparison were>=, the algorithm would still be called only whenlast is reachable
from first , but it would now be called for an empty range.

The range passed to ourprint algorithm must be aninput range: a series of elements whose val-
ues can be read. This means that the expression*first in line 15 must yield a value which can be used
as an rvalue.first cannot be a ‘‘pointer tovoid ’’ o r an object whoseoperator* function returns
void . We summarize these requirements by saying that the data typeITERATORmust be an ‘‘input itera-
tor’’. For the formal definition, see pp. 834−837.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/print/print2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>

* The functionf in line 8 ofin_template.C on p. 754 was an unofficial algorithm.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.1.1 An Algorithm to Print Part of Container, including an Array 759

760 Templates Chapter7

5 #include "date.h"
6 using namespace std;
7
8 / /Print all the elements in the range [first, last).
9 / /ITERATOR must be an input iterator; its * must yield a puttable value.

10
11 template <class ITERATOR>
12 void print(ITERATOR first, ITERATOR last)
13 {
14 for (; first != last; ++first) {
15 cout << *first << "\n";
16 }
17 }
18
19 int main()
20 {
21 const int a[] = {10, 20, 30};
22 const size_t n = sizeof a / sizeof a[0];
23 print(a, a); //Print no elements (an empty range).
24
25 list<int> li(a, a + n);
26 print(li.begin(), li.end()); //Print all the elements.
27 cout << "\n";
28
29 const date da[] = {
30 date(date::july, 4, 1776),
31 date(date::october, 29, 1929),
32 date(date::december, 7, 1941),
33 date(date::july, 20, 1969),
34 date(date::september, 11, 2001)
35 };
36 const size_t dn = sizeof da / sizeof da[0];
37 vector<date> v(da, da + dn);
38
39 if (v.size() > 2) {
40 print(v.begin() + 1, v .end() - 1); //Print all but 1st and last.
41 }
42
43 return EXIT_SUCCESS;
44 }

10 Line 26 prints all the elements ofli .
20
30

10/29/1929 Line 40 prints all but the first and last elements ofv .
12/7/1941
7/20/1969

7.3.1.2 AnAlgorithm that uses the Traits of its Iterators

Following the success of ourprint algorithm on p. 760, we will now attempt a more ambitious one.
The following function, containing code seen on pp. 47−48, sorts an array ofint ’s into ascending order.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

The argumentsfirst and last point to the first element and to the one immediately after the last to be
sorted. Thenumber of elements to be sorted islast - first . The smallest value will end up in
first[0] , a.k.a.*first ; the largest, inlast[-1] , a.k.a.first[last - first - 1] .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sorter/sorter.C

1 v oid sorter(int *first, int *last)
2 {
3 while (first < --last) {
4 f or (int *p = first; p < last; ++p) {
5 i f (p[1] < p[0]) { //if p[0] and p[1] in wrong order,
6 c onst int temp = p[0]; //swap them
7 p[0] = p[1];
8 p[1] = temp;
9 }

10 }
11 }
12 }

For example,

13 int a[] = {1, 9, 6, 8, 5, 5, 2, 0, 0, 1}
14 const size_t n = sizeof a / sizeof a[0];
15
16 sorter(a, a + n); //means sorter(&a[0], &a[n]); sort the entire array
17 sorter(a, a + n / 2); //means sorter(&a[0], &a[n/2]); sort only first half

The above function is too good to be used only for sortingint ’s. It deserves to be turned into the
following algorithm. We name it sorter because the C++ Standard Library already has an algorithm
namedsort , in the header file<algorithm> .

Thesorter algorithm will still accept pointer arguments. Butit will also accept any kind of itera-
tor that can be copy constructed, and to which we can apply the four operators++ -- < [] in lines 15−17.
Such an iterator will be called a ‘‘random access iterator’’ on p. 841.

The data typelist<date>::iterator in line 40 of the following main2.C is not a random
access iterator: the operators< and[] cannot be applied to it. (It is merely a ‘‘bidirectional’’ i terator, pp.
840−841.) That’s why classlist has been provided with thesort member function in line 41. See pp.
449−450.

The data type to which the iterators refer must be copy constructible and assignable.It must also be
‘‘ strict weakly comparable’’, an elaboration of the less-than comparable on pp. 639−640.For the full story,
see pp. 778−779.

The comparison in line 17 could have been written with ‘‘greater than’’.

1 i f (it[0] > it[1]) {

But the C++ convention is to code a template so that the only inequality function the user has to define is
operator< . Another example is on p. 778.

When sorting a container ofchar * or const char * , we would probably want alphabetical
order. But the< operator applied to two char * ’s giv es us geographical order: it tells us which string is
located first in memory. We’ll fix this problem with a third argument tosorter (pp. 764−770).In the
meantime, do not pass a container of these types to thesorter algorithm.

Lines 18−19 construct a variabletemp of the data type which can hold the value of the expression
it[0] . If it is to your taste, you can create a local, one-word name,value_type , to stand for this type.
Lines 18−19 would then become the following.

2 t ypedef typename iterator_traits<ITERATOR>::value_type
3 v alue_type;

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.1.2 An Algorithm that uses the Traits of its Iterators 761

762 Templates Chapter7

4 c onst value_type temp = it[0];

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sorter/sorter.h

1 #ifndef SORTERH
2 #define SORTERH
3 #include <iterator> //for iterator_traits
4 using namespace std;
5
6 / *
7 I TERATOR must be a random access iterator. The data type of the values to
8 which it refers, typename iterator_traits<ITERATOR>::value_type, must be copy
9 c onstructable, assignable, and strict weakly comparable.

10 */
11
12 template <class ITERATOR>
13 void sorter(ITERATOR first, ITERATOR last)
14 {
15 while (first < --last) {
16 for (ITERATOR it = first; it < last; ++it) {
17 if (it[1] < it[0]) {
18 const typename iterator_traits<ITERATOR>::value_type
19 temp = i t[0];
20 it[0] = i t[1];
21 it[1] = t emp;
22 }
23 }
24 }
25 }
26 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sorter/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>
5 #include "date.h"
6 #include "sorter.h"
7 using namespace std;
8
9 t emplate <class ITERATOR>

10 void print(ITERATOR first, ITERATOR last)
11 {
12 for (; first != last; ++first) {
13 cout << *first << "\n";
14 }
15 }
16
17 int main()
18 {
19 int a1[] = {10, 30, 20, 50, 40};
20 const size_t n1 = sizeof a1 / sizeof a1[0];
21 sorter(a1, a1 + n1);

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

22 print(a1, a1 + n1);
23 cout << "\n";
24
25 const date a2[] = {
26 date(date::october, 29, 1929),
27 date(date::july, 20, 1969),
28 date(date::july, 4, 1776),
29 date(date::september, 11, 2001),
30 date(date::december, 7, 1941)
31 };
32 const size_t n2 = sizeof a2 / sizeof a2[0];
33
34 vector<date> v(a2, a2 + n2);
35 sorter(v.begin(), v.end());
36 print(v.begin(), v.end());
37 cout << "\n";
38
39 list<date> li(a2, a2 + n2);
40 //sorter(li.begin(), li.end()); //won’t compile
41 li.sort();
42 print(li.begin(), li.end());
43 return EXIT_SUCCESS;
44 }

10 lines 19−23
20
30
40
50

7/4/1776 lines 25−37
10/29/1929
12/7/1941
7/20/1969
9/11/2001

7/4/1776 lines 39−42
10/29/1929
12/7/1941
7/20/1969
9/11/2001

If the above line 40 is uncommented, theit in line 17 pfsorter.h will be an object that has no
operator[] member function.

main2.C:40: instantiated from here
sorter.h:17: error: no match for ’operator[]’ in ’it[1]’

▼ Homework 7.3.1.2a: let sorter call swap or iter_swap

Replace lines 18−21 ofsorter.h on p. 762 with to a call to theswap algorithm (pp. 648−649).

45 swap(it[0], it[1]);

sorter.h will now include<algorithm> for swap, not for iterator_traits .

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.1.2 An Algorithm that uses the Traits of its Iterators 763

764 Templates Chapter7

Better yet, replace lines 18−21 with a call to theiter_swap algorithm in the standard library.

1 / /Excerpt from <algorithm>
2
3 t emplate <class ITERATOR1, class ITERATOR2>
4 i nline void iter_swap(ITERATOR1 it1, ITERATOR2 it2)
5 {
6 c onst typename iterator_traits<ITERATOR1>::value_type temp = *it1;
7 * it1 = *it2;
8 * it2 = temp;
9 }

Sinceiter_swap dereferences the iterators for us, the call will be

10 iter_swap(it, it + 1);

▲

7.3.2 Pass a Predicate to an Algorithm

Sort into any order, not just increasing

The sorter algorithm on p. 762 sorts a range of values into ascending order. The < operator that
does this is hardwired into line 17 ofsorter.h on p. 762.

Could the order and direction of the sort somehow be passed tosorter as an argument?

1 i nt a[] = {20, 30, 10};
2 c onst size_t n = sizeof a / sizeof a[0];
3
4 / /Just a dream--won’t compile
5 s orter(a, a + n, <); //ascending order
6 s orter(a, a + n, >); //descending order
7 s orter(a, a + n, in order of increasing absolute value);
8 s orter(a, a + n, in order of how close the numbers are to 16);
9 s orter(a, a + n, in order of how many distinct prime factors each number has);

This dream is realized in the language Perl, whosesort function takes a block of code in{ curly
braces} indicating which of two values,$a or $b , should come first. The names$a and$b are built into
the language, so they need not be declared. The binary operator<=> yields −1, 0, or 1 depending on
whether its left operand is numerically less than, equal to, or greater than the right operand.

#!/bin/perl

@v = (20, 30, 10); #Create a list named @v containing 3 integers.

@v = sort {$a <=> $b} @v; #ascending numeric order
print "@v\n";

@v = sort {$b <=> $a} @v; #descending numeric order

@v = sort {abs($a - 16) <=> abs($b - 16)} @v; #how close to 16

exit 0;

http://i5.nyu.edu/ ∼mm64/book/src/sorter/sort.pl

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

10 20 30 result ofsort {$a <=> $b}

The language Ruby has a similar block of code. This time, the namesa andb are not built into the
language. They hav eto be declared by being surrounded by vertical bars.

#!/opt/sfw/bin/ruby

v = [20, 30, 10]
v = v .sort {|a, b| a <=> b} #ascending numeric order
puts v
exit 0

http://i5.nyu.edu/ ∼mm64/book/src/sorter/sort.rb

Now back to reality. The bare< operator in the above C++ line 5 will not compile.Now how could
the< be passed to thesorter function? Whatwould be the minimal argument that could carry the< and
nothing else?

A binary predicate

To design this argument, let’s pose a question about syntax. What could thex be in the following
statement? Whatkind of expressionx would accept an argument list of twoint ’s and give us back a
bool or a value convertible thereto?

1 bool b = x(10, 20);

There are three possibilities. Thex could be

(1) afunction, like thef in the following line 17;

(2) apointer to a function, like thep in line 22; or

(3) anobject with anoperator() member function, like theg in line 26.

The p declared in line 20 is a pointer to a function. The expression(*p)(i, j) in line 21 calls
the function to whichp points. Theexpression first applies the dereferencing operator* to p. Then it
applies the function call operator() to the expression*p . The parentheses around the*p are not an oper-
ator. They merely force the dereferencing operator to be applied before the function call operator. See p.
248.

* p() (i , j)

The * in line 21 is optional; line 22 does the same thing without it.And now that the* is gone, we
can dispense with the surrounding parentheses.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sorter/apply.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass function_object {
6 public:
7 bool operator()(int a, int b) const {return a < b;}
8 } ;
9

10 inline bool f(int a, int b) {return a < b;}
11
12 int main()

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 765

766 Templates Chapter7

13 {
14 int i = 1 0;
15 int j = 2 0;
16
17 bool b = f (i, j); //f is a function.
18 cout << boolalpha << b << "\n";
19
20 bool (*p)(int, int) = f; //p is a pointer to a function.
21 b = (*p)(i, j); //Lines 21-22 are two ways to call the ...
22 b = p(i, j); //... function to which p points.
23 cout << b << "\n";
24
25 function_object g;
26 b = g(i, j); //b = g.operator()(i, j);
27 cout << b << "\n";
28
29 return EXIT_SUCCESS;
30 }

true lines 17−18
true lines 19−23
true lines 25−27

An expression that can take one or more arguments and give us back a value of typebool (or con-
vertible thereto) is called apredicate.The examplesf , p, and g arebinary predicatesbecause they take
two arguments. Thereare alsounary predicates,taking one argument.

Pass a predicate to an algorithm

The order and direction of a sort can be passed to an algorithm as a binary predicate.Our example is
thecomp in the following line 17.

Like an iterator, a predicate is always passed by value. comp must be a binary predicate because line
21 applies two arguments to it and gives the result to the keyword if . comp could be a pointer to a func-
tion, such as thef passed tosorter in line 36 ofmain3.C on p. 768.* Or the predicate could be a func-
tion object, such as thegi constructed in line 39 ofmain3.C and passed tosorter in line 40.

The class ofgi (greater_int , lines 12−15 ofmain3.C) is merely stereotyped boilerplate that
holds the> comparison. Similarly, classprintable on p. 735 was merely a holder for theisprint
error checking.In each case, the rest of the class is just connective tissue. Thecomparison and the error
checking are packaged as classes because a class is the smallest chunk of syntax that can be passed as a
template argument.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sorter/sorter2.h

1 #ifndef SORTERH
2 #define SORTERH
3 #include <iterator> //for iterator_traits
4 using namespace std;
5
6 / *
7 I TERATOR must be random access.
8

* This f plays the same rôle as the pointer to a function that will be passed to the C Standard Libraryqsort in line 12
of qsort.c on p. 775.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

9 t ypename iterator_traits<ITERATOR>::value_type must be copy constructable
10 and assignable.
11
12 COMPARE must be a binary predicate accepting arguments of type
13 typename iterator_traits<ITERATOR>::value_type.
14 */
15
16 template <class ITERATOR, class COMPARE>
17 void sorter(ITERATOR first, ITERATOR last, COMPARE comp)
18 {
19 while (first < --last) {
20 for (ITERATOR it = first; it < last; ++it) {
21 if (comp(it[1], it[0])) {
22 const typename iterator_traits<ITERATOR>::value_type
23 temp = i t[0];
24 it[0] = i t[1];
25 it[1] = t emp;
26 }
27 }
28 }
29 }
30 #endif

If the comp in the above line 21 is an object, then the line behaves as if we had said

31 if (comp.operator()(it[1], it[0])) {

If the comp is a pointer to a function, it behaves as if we had said

32 if ((*comp)(it[1], it[0])) {

As on p. 764, the above lines 22−25 may be replaced by a call to theiter_swap algorithm.

When the following line 40 passesgi to sorter , the above line 21 will call theoperator()
member function ofgi . Since gi is used only once, in line 40 below, we could have made it an anony-
mous temporary like the one in 43. It has no constructor, but 43 can pretend that it has a constructor with
no arguments.

The following line 56 constructs an anonymous temporary of classgreater_date . The above
line 21 will call itsoperator() member function, which compares two date ’s. To allow this member
function to apply the> operator to a pair ofdate ’s (line 19), we must define anoperator> function for
classdate .

Why are we fooling around with temporary objects when the non-member functionf in line 36 of
main3.C does the job more simply?We will see two reasons: an object can have data members (pp.
770−772), and a member function can be called faster than a non-member function (pp. 772−776).

The member functionoperator() in line 14 ofmain3.C uses no members of the object to which
it belongs. We would therefore like to make it a static member function for extra speed. But the syntax of
the language says thatoperator() must always be non-static; see p. 287. After all, what would the syn-
tax look like for a call to a staticoperator() ?

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sorter/main3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <list>
5
6 #include "date.h"

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 767

768 Templates Chapter7

7 #include "sorter2.h"
8 using namespace std;
9

10 inline bool f(int a, int b) {return a > b;}
11
12 class greater_int {
13 public:
14 bool operator()(int a, int b) const {return a > b;}
15 };
16
17 class greater_date {
18 public:
19 bool operator()(const date& a, const date& b) const {return a > b;}
20 };
21
22 template <class ITERATOR>
23 void print(ITERATOR first, ITERATOR last, char c)
24 {
25 for (; first != last; ++first) {
26 cout << *first << c;
27 }
28 cout << "\n";
29 }
30
31 int main()
32 {
33 int a1[] = {10, 30, 20, 50, 40};
34 const size_t n1 = sizeof a1 / sizeof a1[0];
35
36 sorter(a1, a1 + n1, f);
37 print(a1, a1 + n1, ’ ’);
38
39 greater_int gi;
40 sorter(a1, a1 + n1, gi);
41 print(a1, a1 + n1, ’ ’);
42
43 sorter(a1, a1 + n1, greater_int()); //construct an anonymous object
44 print(a1, a1 + n1, ’ ’);
45
46 const date a2[] = {
47 date(date::october, 29, 1929),
48 date(date::july, 20, 1969),
49 date(date::july, 4, 1776),
50 date(date::september, 11, 2001),
51 date(date::december, 7, 1941)
52 };
53 const size_t n2 = sizeof a2 / sizeof a2[0];
54 vector<date> v(a2, a2 + n2);
55
56 sorter(v.begin(), v.end(), greater_date());
57 print(v.begin(), v.end(), ’\n’);
58
59 return EXIT_SUCCESS;
60 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

50 40 30 20 10 lines 36−37
50 40 30 20 10 lines 39−41
50 40 30 20 10 lines 43−44
9/11/2001 lines 56−57
7/20/1969
12/7/1941
10/29/1929
7/4/1776

Class greater in the C++ Standard Library

Classesgreater_int and greater_date , in lines 12 and 17 of the above main3.C , are
almost identical except for the data types ofa andb. They hav etherefore been written once and for all as
the following template class in the standard library. A C++ struct is the same as a class, except that its
members are public by default. Inparticular, a C++ struct can have member functions.

1 / /Provisional excerpt from the header file <functional>
2 / /Version 1 of struct greater. T must be greater-than comparable.
3
4 t emplate <class T>
5 s truct greater {
6 bool operator()(const T& a, const T& b) const {return a > b;}
7 } ;

To use the standard librarygreater in the above main3.C , include the header file
<functional> . Changegreater_int to greater<int> in lines 39 and 43 and remove class
greater_int ; changegreater_date to greater<date> in line 56 and remove class
greater_date . The output should remain unchanged.

The standard librarygreater library actually has three additional members not shown above.
These are the typedefs in the following lines 13−15, providing information about the member function in
line 17. Although the first argument in line 17 is aconst T& , the typedef in line 13 is an unadornedT.
This is because the intent of the typedef is to show the data type of the value passed to or from the
operator() , not the mechanism by which the value is passed. The reason for this will appear when the
typedefs are used on p. 863.

8 / /Provisional excerpt from <functional>
9 / /Version 2 of struct greater. T must be greater-than comparable.

10
11 template <class T>
12 struct greater {
13 typedef T f irst_argument_type;
14 typedef T second_argument_type;
15 typedef bool result_type;
16
17 bool operator()(const T& a, const T& b) const {return a > b;}
18 };

The same three typedefs are present in many similar classes, including the following six relational
classes.

equal less greater
not_equal_to greater_equal less_equal

For convenience, the typedefs are defined once and for all in the base classbinary_function .

19 //Excerpt from <functional>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 769

770 Templates Chapter7

20
21 template <class T1, class T2, class T3>
22 struct binary_function {
23 typedef T1 first_argument_type;
24 typedef T2 second_argument_type;
25 typedef T3 result_type;
26 };

For example, classbinary_function<int, int, bool> has the public member

27 typedef int first_argument_type;

and classbinary_function<double, double, bool> has the public member

28 typedef double first_argument_type;

Classgreater<int> was then derived from classbinary_function<int, int, bool> .
As above, the first function argument in line 35 is aconst T& , but the first template argument in line 34
is an unadornedT.

29 //Excerpt from <functional>
30 //Version 3 (the final one) of struct greater.
31 T must be greater-than comparable.
32
33 template <class T>
34 struct greater: public binary_function<T, T, bool> {
35 bool operator()(const T& a, const T& b) const {return a > b;}
36 };

For another base class that contains nothing but typedefs to be inherited by derived classes, see class
iterator on pp. 813−815.For another class similar togreater , see classmultiplies in line 57 on
p. 810. This time, theresult_type member and theoperator() return type are bothT. The product
must be returned by value, no matter whatT is, since the anonymous temporary that holdsa * b is auto-
matically allocated.

A predicate containing a data member

On p. 767 we asked why a predicate should be written as a function object rather than as a function.
Consider the predicates in the following lines 11 and 13, will tell which argument is closer to the number
1955. Thefunction in line 11 is simpler, but the number is hardwired in. The class in line 13 is more flexi-
ble: the number is passed to a constructor and stored in a data member. Although the class is more verbose
than the function, the extra code is generic boilerplate.

Our predicate in this example has aconst data member, but a non-const is also possible.

We can do even better. Instead of hardwiring the data type into lines 14 and 21, we can write it as the
template argumentT in line 32. Note that the predicate, including theT inside it, is still passed to the algo-
rithm by value. It is unimportant if we make this one copy of the T. Overwhelmingly more important is
that any T argument of the predicate’s operator() be passed by reference, since the algorithm will prob-
ably calloperator() many times.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sorter/main4.C

1 #include <iostream>
2 #include <cstdlib> //for the abs that takes and returns an int
3 #include <vector>
4 #include <list>
5 #include <functional>
6
7 #include "date.h"

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

8 #include "sorter2.h"
9 using namespace std;

10
11 inline bool f(int a, int b) {return abs(a - 1955) < abs(b - 1955);}
12
13 class closer_int {
14 const int i;
15 public:
16 closer_int(int initial_i): i(initial_i) {}
17 bool operator()(int a, int b) const {return abs(a - i) < abs(b - i);}
18 };
19
20 class closer_date {
21 const date d;
22 public:
23 closer_date(const date& initial_d): d(initial_d) {}
24
25 bool operator()(const date& a, const date& b) const {
26 return abs(a - d) < abs(b - d);
27 }
28 };
29
30 template <class T> //T must be copy constructable and have binary -
31 class closer {
32 const T t ;
33 public:
34 closer(const T& initial_t): t(initial_t) {}
35
36 bool operator()(const T& a, const T& b) const {
37 return abs(a - t) < abs(b - t);
38 }
39 };
40
41 template <class ITERATOR>
42 void print(ITERATOR first, ITERATOR last, char c)
43 {
44 for (; first != last; ++first) {
45 cout << *first << c;
46 }
47 cout << "\n";
48 }
49
50 int main()
51 {
52 int a1[] = {1929, 1969, 1776, 2001, 1941};
53 const size_t n1 = sizeof a1 / sizeof a1[0];
54
55 sorter(a1, a1 + n1, f);
56 print(a1, a1 + n1, ’ ’);
57
58 closer_int ci(1955);
59 sorter(a1, a1 + n1, ci);
60 print(a1, a1 + n1, ’ ’);
61

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 771

772 Templates Chapter7

62 sorter(a1, a1 + n1, closer_int(1955)); //construct an anonymous object
63 print(a1, a1 + n1, ’ ’);
64
65 sorter(a1, a1 + n1, closer<int>(1955));
66 print(a1, a1 + n1, ’ ’);
67
68 const date a2[] = {
69 date(date::october, 29, 1929),
70 date(date::july, 20, 1969),
71 date(date::july, 4, 1776),
72 date(date::september, 11, 2001),
73 date(date::december, 7, 1941)
74 };
75 const size_t n2 = sizeof a2 / sizeof a2[0];
76 vector<date> v(a2, a2 + n2);
77
78 sorter(v.begin(), v.end(), closer_date(date(date::july, 12, 1955)));
79 print(v.begin(), v.end(), ’\n’);
80
81 sorter(v.begin(), v.end(), closer<date>(date(date::july, 12, 1955)));
82 print(v.begin(), v.end(), ’\n’);
83
84 return EXIT_SUCCESS;
85 }

1969 1941 1929 2001 1776 lines 55−56:sorter calls f in line 11
1969 1941 1929 2001 1776 lines 58−60:sorter callsoperator() of closer_int object
1969 1941 1929 2001 1776 lines 62−63:sorter callsoperator() of closer_int object
1969 1941 1929 2001 1776 lines 65−66:sorter callsoperator() of closer<int> object
12/7/1941 lines 78−79:sorter callsoperator() of closer_date object
7/20/1969
10/29/1929
9/11/2001
7/4/1776

12/7/1941 lines 81−82:sorter callsoperator() of closer<date> object
7/20/1969
10/29/1929
9/11/2001
7/4/1776

Three ways of calling a function

Another reason to write a predicate as a function object rather than as a function is to make the algo-
rithm run faster. Let’s review the three ways of calling a function in C++.

(1) thenormal way, in the following line 11;

(2) thefaster way, making the call inline in line 12;

(3) theslower way, calling the function via the pointerp in lines 15 and 16.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sort/three.C

1 #include <iostream>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

2 #include <cstdlib>
3 using namespace std;
4
5 v oid normal();
6
7 i nline void faster() {cout << "faster\n";}
8
9 i nt main()

10 {
11 normal(); //call line 21
12 faster(); //call line 7
13
14 void (*p)() = normal; //p is a pointer to a function
15 (*p)(); //call line 21, slower than normal
16 p(); //simpler way to write line 15
17
18 return EXIT_SUCCESS;
19 }
20
21 void normal()
22 {
23 cout << "normal\n";
24 }

normal line 11
faster line 12
normal line 15
normal line 16

Mathematicians have proved that when sortingn items, we must performn log2 n comparisons in the
worst case.*To sort a million items we might have to perform almost 20 million comparisons, and
sorter will call its predicate almost 20 million times.It is to be hoped that each of these calls will be as
fast as possible.

n n log2 n

10 10× 3.32
100 100× 6.64

1,000 1,000× 9.97
10,000 10,000× 13.3

100,000 100,000× 16.6
1,000,000 1,000,000× 19.9

Whensorter is called in line 55 ofmain4.C on p. 771, thecomp in line 17 ofsorter2.h on
p. 767 is a pointer to the functionf . sorter is forced to call it in the slowest possible way, unable to take
advantage of the fact thatf is inline. But whensorter is called in line 65 ofmain4.C , thecomp is an
object of classcloser<int> . Although the object was passed tosorter as an argument, the call to its
member functionoperator() can still be inline.

* l og2 n is the power to which 2 must be raised to produce the desired numbern. For example, log2 16 = 4 and
log2 32 = 5.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 773

774 Templates Chapter7

The C++ sort algorithm vs. the C qsort function

The C++ Standard Library has two sort algorithms, both of them much faster than oursorter .
The following line 22 calls the two-argument version, which, like our two-argumentsorter in line 13 of
sorter.h on p. 762, is hardwired to apply the operator< to each pair of values that it compares. Line 36
calls the three-argument version, which lets us supply a predicate.The predicate that you want can often be
found in the standard library.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sort/sort.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <algorithm> //for 2- and 3-argument sort
5 #include <functional> //for greater
6 #include "date.h"
7 using namespace std;
8
9 t emplate <class ITERATOR>

10 void print(ITERATOR first, ITERATOR last)
11 {
12 for (; first != last; ++first) {
13 cout << *first << "\n";
14 }
15 }
16
17 int main()
18 {
19 int a[] = {1969, 2001, 1941, 1929, 1776};
20 const size_t n = sizeof a / sizeof a[0];
21
22 sort(a, a + n);
23 print(a, a + n);
24 cout << "\n";
25
26 const date da[] = {
27 date(date::july, 20, 1969),
28 date(date::september, 11, 2001),
29 date(date::december, 7, 1941),
30 date(date::october, 29, 1929),
31 date(date::july, 4, 1776)
32 };
33 const size_t dn = sizeof da / sizeof da[0];
34 vector<date> v(da, da + dn);
35
36 sort(v.begin(), v.end(), greater<date>());
37 print(v.begin(), v.end());
38 return EXIT_SUCCESS;
39 }

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

1776 lines 22−24
1929
1941
1969
2001

9/11/2001 lines 36−37
7/20/1969
12/7/1941
10/29/1929
7/4/1776

qsort in the C Standard Library

Let’s glance back at the C Standard Library functionqsort , called in the following line 12. It must
always be passed the address of a comparison function (lines 21−33), causingqsort to call this function
in the slowest possible way.

qsort is also more dangerous.The arguments in line 21 have to be const void * because
qsort is declared as

1 v oid qsort(void *base, size_t n, size_t width,
2 i nt (*p)(const void *, const void *));

The conversions in 23 and 24 have no way to check thatp1 andp2 actually point to integers. They might
point to anything.

In C++, the two-argumentsort algorithm performs its comparisons with the< operator. For
objects, the< calls anoperator< function which we can make inline. For the built-in types and pointers,
the < is built into the language and calls no comparison function at all.For enumerations, we could write
anoperator< (inline, of course) but probably don’t need to. The predicate passed to the three-argument
sort algorithm can be a function object whoseoperator() is inline.

The out-of-control conversions are not needed by thesort algorithm. Whensorting a range of ele-
ments of typeT, we provide anoperator< or a predicate whose arguments are of typeT. There are no
conversions at all.

Of course, this type safety comes at a price.We call a different instantiation of the two-argument
sort for each type ofITERATORthat we pass to it.We call a different instantiation of the three-argument
sort for each combination ofITERATORandCOMPAREthat we pass to it.Furthermore, the predicate for
the three-argumentsort will probably be an object of a template class, or a pointer to a template function.
A separate instantiation of the predicate will be created for each type ofT we pass to it. All of these instan-
tiations will make the executable program larger. But the extra speed and safety are worth it.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sort/qsort.c

1 #include <stdio.h>
2 #include <stdlib.h> /* for qsort */
3
4 i nt comp(const void *p1, const void *p2);
5
6 i nt main()
7 {
8 i nt a[] = {1, 3, 0, 2, 5};
9 c onst size_t n = sizeof a / sizeof a[0];

10 const int *p;
11
12 qsort(a, n, sizeof a[0], comp); /* last arg is pointer to function */
13

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.2 Pass a Predicate to an Algorithm 775

776 Templates Chapter7

14 for (p = a; p < a + n; ++p) {
15 printf("%d\n", *p);
16 }
17
18 return EXIT_SUCCESS;
19 }
20
21 int comp(const void *p1, const void *p2) /* sort in increasing numeric order */
22 {
23 const int i = *(const int *)p1; /* can’t dereference void * */
24 const int j = *(const int *)p2;
25
26 if (i < j) {
27 return -1;
28 }
29
30 if (i > j) {
31 return 1;
32 }
33
34 return 0;
35 }

The above lines 26−34 may be combined to the following, with some loss of clarity.

36 return i < j ? -1 : i > j ;

7.3.3 Conceptsand Models
Our sorter algorithm has a bug. Thebug is not in the code, last seen insorter2.h on pp.

766−767. Thebug is something missing from the comment.But this is not merely a sermon on the impor-
tance of comments. The output ofsorter could be wrong.

To get sorter to work, and indeed to get our originalmin template on pp. 637−638 to work, we
will have to giv e a better definition of the concept of ‘‘less-than comparable’’. For sorter , we will also
have to define the concept of ‘‘strict weakly comparable’’.

Less-than comparable

For a data type to qualify as less-than comparable, the< operator must yield a result of typebool or
convertible thereto. If it does not, the following lines 3 and 7 will not compile.

1 / /Excerpt from the min template function.
2 / /The left operand of ?: must be bool or convertible thereto.
3 r eturn b < a ? b : a;
4 }

5 / /Excerpt from sorter algorithm.
6 / /The expression in parentheses must be bool or convertible thereto.
7 i f (p[1] < p[0]) {

The< must also have the following two properties.

(1) If the left and right operands are references to the same value, either in the same variable

a < a

or in two equal expressions

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

six < half_dozen

the inequality must be false. Thisproperty is calledirreflexivity.

(2) If both of the following are true,

a < b
b < c

then it must also be true that

a < c

This property is calledtransitivity. For an unfortunateoperator< that did not have these properties, see
p. 442.

Application of less-than comparability to min

What shouldmin return if its two argumentsa andb are equal?

a == b

min is under no obligation to check for equality. In fact, min is not even allowed to check for it.An
expression such asa == b in min would be within its rights if it failed to compile.min is obliged to
compile for data types that are less-than comparable. But it is under no obligation to compile for data types
that areequality comparable, unless they happen also to be less-than comparable.

What shouldmin return if both of the following are true?

a < b
b < a

min is under no obligation to work correctly in this case, or even to check for it. If both of the above
inequalities were true,T would not be less-than comparable. The proof is simple. If both inequalities were
true, and if< were transitive, then it would also be true that

a < a

But this would mean that< is not irreflexive, and hence thatT is not less-than comparable.min is required
to work only whenT is less-than comparable. This simplifies the design ofmin .

What shouldmin return if both of the following arefalse?

a < b
b < a

This is something thatmin does have to handle. Itcertainly happens whena andb have the same value,
for example when they are equal integers. Let’s also look at an example where it happens whena andb
have different values.

The standard library has anoperator< that compares two set<int> objects,a andb, returning
true if a comes beforeb in ‘‘lexicographic order’’; see p. 952.Let’s imagine anotheroperator< that
would return true ifa is aproper subsetof b. This means that every element ofa is an element ofb, but
at least one element ofb is not an element ofa. (We will write this function on p. 861.)

The following a andb make both inequalities false, even though they are different values. a < b is
false, becausea contains 10 butb does not.b < a is false, becauseb contains 30 buta does not.

a b

2010 30

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.3 Concepts and Models 777

778 Templates Chapter7

If both inequalities are false, the standard librarymin function returns a reference to its first argu-
ment. For compatibility, our min behaves the same way: it returns a reference to its first argument when
neither argument is less than the other. That’s why we had to write the body as

8 r eturn b < a ? b : a; //Return a if neither one is less than the other.

rather than

1 r eturn a < b ? a : b; //Return b if neither one is less than the other.

We could also have written the body as follows.

2 r eturn !(a > b) ? a : b;

It’s maladroit but it does return the correct answer. The convention in C++, however, is to code a template
so that< is the only inequality applied toT. A previous example was on p. 761.

Strict weakly comparable

TheT passed tosorter must be copy constructible, assignable, and less-than comparable. Is there
any other concept of whichT must be a model?

Consider once again classset<int> , equipped with anoperator< that checks for proper subset.
We’l l make three of these objects,a, b, andc , and store them in an array.

a

bc

3010 20 40

1 #include <set> //for the template class set
2 #include "sorter.h" //for our sorter algorithm
3 using namespace std;
4
5 s et<int> arr[] = {a, b, c};
6 c onst size_t n = sizeof arr / sizeof arr[0];
7 s orter(arr, arr + n);

b < a is false, becauseb contains 40 but a does not.sorter will therefore leave arr[0] and
arr[1] unmoved. c < b is also false, becausec contains 20 butb does not.sorter will leave
arr[1] andarr[2] unmoved. But it is wrong for all three elements to be left unmoved. c should have
been moved in front ofa, becausec < a .

The sorter algorithm failed because there is one more concept of whichT must be a model.T
must bestrict weakly comparable, a more demanding concept than mere less-than comparability. Strict
weak comparability is defined in terms ofequivalence.We say that two values are equivalent if neither one
is less than the other.* In the above example,a andb were equivalent, andb andc were equivalent.

For a data type to be strict weakly comparable, equivalence must be transitive. In other words, ifa
andb are equivalent, andb andc are equivalent, thena andc must also be equivalent. Ourset<int>
data type, with theoperator< that checks for proper subset-hood, was not a model of this concept.a
andb were equivalent, andb andc were equivalent, buta andc were not equivalent.

* The author finds it helpful to paraphrase ‘‘neither a nor b is less than the other’’ as ‘‘a andb are about the same
size’’.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

The sorter algorithm will work only whenT is copy constructible, assignable, and strict weakly
comparable. Mereless-than comparability was adequate formin , but not forsorter .

7.3.4 Calla Function by Instantiating a Class
In §7.3.4, template classes will come to the aid of template functions. In §7.3.5, template functions

will reciprocate by coming to the aid of template classes.

A template class can have partial and explicit specializations.Somewhat arbitrarily, a template func-
tion can have only explicit specializations. Furthermore, we saw two problems with the latter:

(1) We cannot have a template function that takes T by reference, with an explicit specialization that
takes a specific type by value. Seep. 664.

(2) An explicit specialization is a specialization of one specific template function, and must be written
below it. Seepp. 667−668.

Both of these limitations are avoided by theprint function in the following line 55. It is merely a
dispatching function (p. 756), doing its work by calling some other function selected by its template argu-
ment T. This other function will be theprint static member function of some class_print<T> ,
selected from the partial and explicit specializations of the template class_print . With this simple tech-
nique, partial specialization can be extended to template functions.

The print member function takes T by reference in the primary template in line 12, and takes
char by value in the explicit specialization in line 17.This is the combination we were unable to achieve
on p. 664.Thechar * in line 22 no longer has to be below theconst T * in line 27; this is a freedom
we did not have on pp. 667−668.

To mention the non-member functionprint in lines 31 and 47, we must first declare it in line 8.To
make the nameprint in 31 and 47 refer to this non-member function, we must adorn it with the unary
scope operator:: . Without this operator, line 31 would try to call another instantiation of line 27.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/specialize_class/print.h

1 #ifndef PRINTH
2 #define PRINTH
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6
7 t emplate <class T>
8 i nline void print(const T& t); //declaration for non-member print in line 55
9

10 template <class T>
11 struct _print {
12 static void print(const T& t) {cout << t;}
13 };
14
15 template <>
16 struct _print<char> {
17 static void print(char c) {cout << "’" << c << "’";}
18 };
19
20 template <>
21 struct _print<const char *> {
22 static void print(const char *p) {cout << "\"" << p << "\"";}
23 };
24
25 template <class T>

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.4 Call a Function by Instantiating a Class 779

780 Templates Chapter7

26 struct _print<const T *> {
27 static void print(const T *p) {
28 cout << p;
29 if (p != 0) {
30 cout << " -> ";
31 ::print(*p); //call the non-member print (line 55)
32 }
33 }
34 };
35
36 template <class T>
37 struct _print<vector<T> > {
38 static void print(const vector<T>& v) {
39 cout << "(";
40
41 for (typename vector<T>::const_iterator it = v.begin();
42 it != v.end(); ++it) {
43
44 if (it != v.begin()) {
45 cout << ", ";
46 }
47 ::print(*it); //call the non-member print (line 55)
48 }
49
50 cout << ")";
51 }
52 };
53
54 template <class T>
55 inline void print(const T& t) {_print<T>::print(t);} //dispatching function
56 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/specialize_class/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include "print.h"
5 using namespace std;
6
7 i nt main()
8 {
9 i nt i = 10;

10 print(i);
11 cout << "\n";
12
13 print(’A’);
14 cout << "\n";
15
16 const int *p = &i;
17 print(p);
18 cout << "\n";
19
20 const char *a[] = {"moe", "larry", "curly"};

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

21 const size_t n = sizeof a / sizeof a[0];
22 vector<const char *> v(a, a + n);
23 print(v);
24 cout << "\n";
25
26 vector<vector<int> > vvi(2); //2nd func arg defaults to vector<int>()
27 vvi[0].push_back(10);
28 vvi[0].push_back(20);
29 vvi[1].push_back(30);
30 vvi[1].push_back(40);
31 vvi[1].push_back(50);
32 print(vvi);
33 cout << "\n";
34
35 return EXIT_SUCCESS;
36 }

10 L. 10 ofmain.C calls l. 59 ofprint.h , which calls l. 12 ofprint.h .
0xffbff158 -> 10 L. 17 ofmain.C calls l. 59 ofprint.h , which calls l. 27 ofprint.h .
("moe", "larry", "curly") L. 23 ofmain.C calls l. 59 ofprint.h , which calls l. 38 ofprint.h .
((10, 20), (30, 40, 50)) L. 32 ofmain.C calls l. 59 ofprint.h , which calls l. 38 ofprint.h .

7.3.5 Constructan Object by Calling a Helper Function
An explicit template argument is usually unnecessary when instantiating a template function.The

following line 10 instantiatesprint<double> and calls it; line 12 instantiatesprint<char> without
calling it.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/helper/function.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 i nline void print(const T& t) {cout << t << "\n";}
7
8 i nt main()
9 {

10 print(3.14);
11
12 void (*p)(const char&) = print; //p is a pointer to function
13 p(’A’); //(*p)(’A’); would do the same thing
14
15 return EXIT_SUCCESS;
16 }

3.14
A

But an explicit template argument is always necessary when instantiating a template class. The fol-
lowing line 18 instantiateswrapper<int> without constructing any object thereof; line 20 instantiates
wrapper<double> and constructs a named object thereof; line 23 instantiateswrapper<char> and

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.5 Construct an Object by Calling a Helper Function 781

782 Templates Chapter7

constructs an anonymous object thereof.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/helper/class.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 t emplate <class T>
6 c lass wrapper {
7 c onst T t;
8 public:
9 wrapper(const T& initial_t): t(initial_t) {}

10 void print() const {cout << t << "\n";}
11 };
12
13 template <class T>
14 inline void f(const wrapper<T>& w) {w.print();}
15
16 int main()
17 {
18 cout << sizeof (wrapper<int>) << "\n";
19
20 wrapper<double> w(3.14);
21 f(w);
22
23 f(wrapper<char>(’A’));
24
25 return EXIT_SUCCESS;
26 }

4 size may be different on other machines
3.14
A

Even though the3.14 in the above line 20 is obviously adouble , we had to write the explicit tem-
plate argument<double> anyway. I wish we didn’t hav eto.

We can avoid the<double> , at least if the object is anonymous. Themake_wrapper in the fol-
lowing line 15 is called ahelper function.It constructs and returns an anonymous object of the class indi-
cated by its function argumentt . The call tomake_wrapper(3.14) in line 12 ofmain.C constructs
and returns awrapper<double> ; themake_wrapper(’A’) in line 13 constructs and returns a
wrapper<char> .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/helper/wrapper.h

1 #ifndef WRAPPERH
2 #define WRAPPERH
3 #include <iostream>
4 using namespace std;
5
6 t emplate <class T>
7 c lass wrapper { //primary template
8 c onst T t;
9 public:

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

10 wrapper(const T& initial_t): t(initial_t) {}
11 void print() const {cout << t;}
12 };
13
14 template <class T>
15 inline wrapper<T> make_wrapper(const T& t) {return wrapper<T>(t);}
16 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/helper/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include "wrapper.h"
5 using namespace std;
6
7 t emplate <class T>
8 i nline void f(const wrapper<T>& w) {w.print(); cout << "\n";}
9

10 int main()
11 {
12 f(make_wrapper(3.14));
13 f(make_wrapper(’A’));
14
15 return EXIT_SUCCESS;
16 }

3.14
A

There are no helper functions for constructing avector or list . Helper functions are provided
only for classes whose objects are constructed anonymously, passed to functions, and never seen again.
Chapter 8 will present the six groups of helper functions in the C++ Standard Library. The first group is
readily accessible; the last four are extremely abstract.

(1) Thefunctionmake_pair constructs apair object (pp. 786−787).

(2) Thefunctionsinserter , front_inserter , andback_inserter construct an
insert_iterator , front_insert_iterator , and back_insert_iterator respec-
tively (pp. 848−849).

(3) Thefunctionsbind1st andbind2nd construct abinder1st andbinder2nd respectively (pp.
861−864).

(4) Thefunctionsptr_fun , mem_fun_ref , andmem_fun construct a
pointer_to_unary_function or pointer_to_binary_function , mem_fun_ref_t
or mem_fun1_ref_t , andmem_fun_t or mem_fun1_t respectively (pp. 869−875).

(5) The functionsnot1 and not2 construct aunary_negate and binary_negate respectively
(pp. 876 and 942−943).

(6) Thefunctionscompose1 andcompose2 construct aunary_compose and
binary_compose respectively (pp. 871 and 864−867). These are extensions to the library, not
part of the standard.

printed 4/8/14
8:58:39 AM

All rights
reserved ©2014 Mark Meretzky

Section 7.3.5 Construct an Object by Calling a Helper Function 783

