
6
Exceptions

6.1 Technical Preliminaries
Exceptions are a new way of handling errors in C++. Our first example will require three preliminary

details: unused arguments, ellipsis, and integer overflow.

A function argument whose value is unused

The second argument of thisprint function will eventually specify the base in which to print the
first argument. Butright now the second argument is unused and the function prints only in base 10.We
can indicate that the lack of use is deliberate, and avoid the ‘‘unused argument’’ warning, by giving no
name to the second argument in the function definition in p. 13.

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid print(int i, int);
6
7 i nt main()
8 {
9 print(100, 10);

10 return EXIT_SUCCESS;
11 }
12
13 void print(int i, int)
14 {
15 cout << i << "\n";
16 }

Even if thevalue of an argument is unused, itsdata typemay still be relevant. If two or more func-
tions share the same name, the data type of an argument can tell the computer which function to call.In
fact, the mere presence or absence of an argument can identify the function.

Here are four examples of arguments whose values are not used, or, more radically, arguments that
have no value at all. In each case, the only purpose of the argument is to allow us to overload the function
name.

(1) A class can have two operator++ member functions, one for prefix and one for postfix.What
allows them to have the same name is that their arguments are different. Seepp. 289−290.

When we write lines 20 and 24, the computer behaves as if we had written the comments alongside
them. Theprefix operator++ in line 20 calls theoperator++ function with no argument, while the

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

586 Exceptions Chapter 6

postfix operator++ in line 24 calls theoperator++ function with anint argument whose value (always
zero) is ignored. (Ditto for the twooperator-- functions.)

17 #include "obj.h" //pp. 179−180
18
19 obj ob = 10;
20 cout << ++ob << "\n"; //cout << ob.operator++() << "\n";
21
22 //At this point, the object contains 11.
23
24 cout << ob++ << "\n"; //cout << ob.operator++(0) << "\n";
25
26 //At this point, the object contains 12.

11 line 20
11 line 24

(2) The Standard Library contains a globaloperator new function that dynamically allocates
memory for all data types.

27 void *operator new(size_t n);

To call a different function to allocate memory for objects of a specific class, we write anoperator new
member function for that class:

28 class myclass {
29 //etc.
30 public:
31 void *operator new(size_t n);
32 };

Since this class-specificoperator new can get the size of the object by sayingsizeof (myclass) ,
it has no need to use the argumentn. The argument will be used only when other classes are derived from
myclass ; see pp. 416 and 501−503.

(3) Theoperator new memory allocation functions in the C++ Standard Library come in pairs.
With the extra argumentnothrow they indicate failure by returning zero; without thenothrow , they
indicate failure by ‘‘throwing an exception’’.

When we write lines 35 and 36, the computer behaves as if we had written the comments in 38 and
39 respectively. The computer always passes a first argument of data typesize_t to the
operator new function. Any arguments in the parentheses after the operatornew in lines 35−36 are
passed along after thesize_t . The only purpose of thenothrow argument is to let us have two func-
tions with the same name.Its value is ignored. (Ditto for the pairs ofoperator delete functions.)
See p. 625.

33 #include <new> //for nothrow
34
35 int *const p = new int;
36 int *const p = new(nothrow) int;
37
38 //int *const p = operator new(sizeof (int)); //Line 35 does this.
39 //int *const p = operator new(sizeof (int), nothrow); //Line 36 does this.

In fact, thenothrow object has no value at all: it contains no members. Its declaration is

40 //Excerpt from the header file <new>
41
42 class nothrow_t { //a class with no members

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

43 };
44
45 extern const nothrow_t nothrow; //the only object of this class

You’ll have to wait until we do templates, iterator categories, and dispatching before the next two
examples will make sense.

(4) The C++ Standard Library functions whose arguments are iterators are calledalgorithms; exam-
ples arefind , copy , sort , and distance . An algorithm sometimes passes the iterators to ahelper
function to do its work. An algorithm might have sev eral versions of its helper functions, one for each
‘‘ category’’ of i terator.

The helper functions for an algorithm all have the same name and the same iterator arguments, but
each takes an additional argument called aniterator tag. Like nothrow , an iterator tag object has no
members and no value. Butthere are several classes of tags, one for each category of iterator, allowing the
algorithm to call the correct helper via function name overloading. Seepp. 916−917.

(5) Obsolete implementations of the C++ Standard Library, including Microsoft’s, had many other
arguments whose value was ignored but whose data type was relevant. Oftenthese arguments were merely
pointers to objects of different classes, containing the valueNULLor 0, to avoid the expense of constructing
any actual objects. The clearest example in the literature is the third argument of the function
iter_swap_impl in p. 43 ofGeneric Programming and the STL.Newer versions of C++ avoid these
arguments by using the template classiterator_traits .

Ellipsis

Here is a C declaration for a function whose arguments, except for the first, can be of any number or
data type. The ellipsis dots constitute a single token, so there can be no whitespace among them.

1 i nt printf(const char *format, ...);

In C++, the comma before the ellipsis is optional for some reason.

2 i nt printf(const char *format ...);

The only common functions with indeterminate arguments areprintf and scanf and their
cousinsfprintf , sprintf , etc. Thefunctions are vital in C, deprecated in C++.Unix system program-
mers know the ellipsis from the functionsexeclp and execl (rhymes with ‘‘Doctor Jekyll’ ’), used to
fork and spawn a process. In C++, ellipses will be used primarily for the ‘‘exception handlers’’ below.

Integer overflow

INT_MIN and INT_MAX are the minimum and maximum values of data typeint . They may be
different on each platform. But on all two’s complement platforms, the quotientINT_MIN / -1 will not
fit in an int :

16-bit integer 32-bit integer 64-bit integer
sizeof(int) == 2 sizeof(int) == 4 sizeof(int) == 8

INT_MIN −32,768 −2,147,483,648 −9,223,372,036,854,775,808

INT_MAX 32,767 2,147,483,647 9,223,372,036,854,775,807

INT_MIN and INT_MAX are macros in the<climits> header file of the C++ Standard Library.
But macros are deprecated in C++.We will get this information about integers from the template class
numeric_limits<int> on pp. 745−747 instead.

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.2 Thr ow and Catch an Exception 587

588 Exceptions Chapter 6

6.2 Throw and Catch an Exception
C++ exceptions are a new way of responding to errors.They hav enothing to do with operating sys-

tem exceptions, interrupts, or signals.

There are four reasons to use exceptions.

(1) An exception transmits information from the point where an error was discovered to the point
where remedial action is taken. Thesetwo locations may be far apart in your program.For example, let
main call f , f call g, andg discover an error:

main

f

g

Our knee-jerk reaction has always been to output an error message and drop dead on the spot (lines
23−26):

1 #include <iostream>
2 #include <cstdlib> //for exit and EXIT_FAILURE
3 #include <cstring> //for strcmp
4 using namespace std;
5
6 v oid f();
7 v oid g();
8
9 i nt main(int argc, char **argv)

10 {
11 const bool verbose = argc >= 2 && strcmp(argv[1], "-v") == 0;
12 f();
13 return EXIT_SUCCESS;
14 }
15
16 void f()
17 {
18 g();
19 }
20
21 void g()
22 {
23 if (something is wrong) {
24 cerr << "error message\n";
25 exit(EXIT_FAILURE);
26 }
27 }

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

But we might want to call the functiong in many different programs. In this case we couldn’t write
the action ing, because each program might need a different error message or exit code. We would have to
write the action up in one of the functions that calledg: f or main .

Even if g were used only in this one program, we still might not be able to write the action ing. The
program might run in two modes, terse and verbose, or English and Spanish, controlled by thebool in line
11. Sincethe bool is local tomain , only main knows which message to print. Once again, we would
have to write the action aboveg, up in main .

Of course, we could give return values tog andf , and bucket-brigade the result of the above line 23
back up tomain :

28 int main(int argc, char **argv)
29 {
30 const bool verbose = argc >= 2 && strcmp(argv[1], "-v") == 0;
31
32 if (!f()) {
33 if (verbose) {
34 cerr << "verbose error message\n";
35 } else {
36 cerr << "terse error message\n";
37 }
38 return EXIT_FAILURE;
39 }
40
41 return EXIT_SUCCESS;
42 }
43
44 bool f()
45 {
46 return g();
47 }
48
49 bool g()
50 {
51 if (something is wrong) {
52 return false;
53 }
54
55 return true;
56 }

But this copies the return value ofg over and over on its way up tomain . Our return value is merely a
bool , but other return values might be objects that are expensive to copy. In any case, it would be simpler
for g andf to returnvoid . Can we avoid burdeningg andf with return values?

A C++ exception is a faster way to transmit information fromg back up tomain . It transmits the
information directly from a lower-level function to one of the higher-level ones that called it. Along the
way, the information is not repeatedly copied, like thebool ’s in lines 49 and 52.

(2) Most of the time, an exception isthrown, or sent on its way, because something has gone wrong.
But an exception can also be thrown whenever the information to be transmitted upwards won’t fit into the
normal channels, i.e., into the return type of the function. That is why it is called an ‘‘exception’’, not an
‘‘ error’’. An exception gives a function an extra, high-bandwidth return type for unusual occasions, in addi-
tion to its normal return type.

(3) Every constructed object must be destructed, or disaster could result. Consider the humble
terminal::put function in lines 36−47 ofterminal.C on p. 161. It calls theexit function if its
argument is a non-printable character, so the test program on pp. 157−159 would callexit if we type a

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.2 Thr ow and Catch an Exception 589

590 Exceptions Chapter 6

RETURNor any other non-printable character. Before terminating the program,exit will call the destruc-
tors for the statically allocated objects. But ourterminal is allocated automatically, because it is a data
member of an object that is allocated automatically, so the work done by the constructor for class
terminal will never be undone. Ourscreen could be left in graphics mode, or with a derelict window.

(4) Even if we don’t terminate the program, there’s another reason why we might want to call
destructors when an exception is thrown. Errorhandling in any language often requires us tobacktrack,or
dismantle some of our work to get back to a clean state from which we can continue onwards. InC++, the
backtracking is performed by calling destructors. An exception will call the destructors for all the local
objects in the functions that it flies over. For example, an exception thrown fromg back up tof will cause
a mass extinction of all the automatic objects ing.

The more severe the error is, the farther we have to backtrack. Avery severe error ing will throw an
exception all the way back up tomain , destructing all the objects ing andf . A less severe exception may
be caught halfway up tomain , destructing fewer objects and backtracking less far.

Thr ow and catch an exception

An exception usually transmits information from one function to another. But our first example will
transmit information within a function.

The keyword try and the following code in curly braces in line 20−45 is called atry block. The try
block has to test for overflow before truncation becauseINT_MIN % −1 is not equal to zero with myg++
compiler.

The keyword catch and the following argument in parentheses and code in curly braces is called a
handler (lines 47−49, 51−54, 56−59, 61−63). If any exception isthrow ’n inside a try block, we go
directly to the appropriate handler in the list of handlers after the try block.

An automatically allocated variable is constructed with a declaration or as an anonymous temporary;
a dynamically allocated variable is constructed withnew. Any automatically allocated variable constructed
in thetry block (e.g., lines 22 and 26) will be destructed as we are catapulted out of the block.A dynami-
cally allocated variable, however, will not destructed.

The handlers are tried one by one in the order in which they are written. The optional... handler in
lines 61−63 must be last because it will catch any exception. Any handler that came after it would have no
chance to catch anything.

If the code inside ourtry { } were somehow to throw an exception of any data type other thanint ,
truncation , or overflow , you would go to the... handler. If there were no... handler, the
terminate function would be called, which will call theabort function, which assassinates the pro-
gram. (Onmy platform, Unix, it sends the ‘‘abort signal’’ SIGABRTto the program.) These two functions
have already been written for you in the C++ Standard Library. To make the terminate function do
something other than callingabort , you can write your own terminate function and make it opera-
tional by passing its address to theset_terminate function on pp. 614−615, analogous to the
set_new_handler function on pp. 397−398. Include the header file<exception> for
set_terminate .

Other than the... handler, every handler must have exactly one argument. Andeach handler must
have an argument of a different type.

If the handler uses the value or members of the caught object, it must declare a name for the caught
object (lines 47 and 51). But if the handler doesn’t use them, or if the caught object contains no value or
members, the handler doesn’t hav eto declare a name for it (line 56).

After executing the body of one of the handlers, we go to the statement after the last handler (line
65). Andif no exception has been thrown at all, we skip all the handlers and go straight from line 45 to line
65.

Line 14 is a declaration for a class that has no members.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/exception1.C

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <iostream>
2 #include <cstdlib>
3 #include <climits>
4 using namespace std;
5
6 s truct truncation {
7 i nt dividend; //data members public for simplicity
8 i nt divisor;
9

10 truncation(int initial_dividend, int initial_divisor)
11 : dividend(initial_dividend), divisor(initial_divisor) {}
12 };
13
14 class overflow {};
15
16 int main()
17 {
18 int status = EXIT_FAILURE; //guilty until proven innocent
19
20 try {
21 cout << "Please input the dividend and press RETURN: ";
22 int dividend; //uninitialized variable
23 cin >> dividend;
24
25 cout << "Please input the divisor and press RETURN: ";
26 int divisor; //uuninitialized variable
27 cin >> divisor;
28
29 if (divisor == 0) {
30 throw dividend;
31 }
32
33 if (dividend == INT_MIN && divisor == -1) {
34 const overflow ov = overflow();
35 throw ov;
36 }
37
38 if (dividend % divisor != 0) {
39 const truncation t(dividend, divisor);
40 throw t;
41 }
42
43 cout << "The quotient is " << dividend / divisor << ".\n";
44 status = EXIT_SUCCESS;
45 }
46
47 catch (int i) {
48 cerr << "Attempt to divide " << i << " by zero.\n";
49 }
50
51 catch (truncation t) {
52 cerr << "Truncation would result when dividing " << t.dividend
53 << " by " << t .divisor << ".\n";
54 }

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.2 Thr ow and Catch an Exception 591

592 Exceptions Chapter 6

55
56 catch (overflow) {
57 cerr << "Integer overflow would result when dividing " << INT_MIN
58 << " by - 1.\n";
59 }
60
61 catch (...) {
62 cerr << "Caught unexpected exception.\n";
63 }
64
65 return status;
66 }

Since the objectov in line 34 isconst and has no user-defined default constructor (its class has no
user-defined members at all), we must call its implicitly-defined constructor with explicit parentheses.See
the C++ Standard, §8.5.We can’t do this by writing

67 const overflow ov();

since that would look like a function call (pp. 134−135.) But don’t worry: the declaration will shortly be
removed.

To turn on exception handling in Microsoft Visual C++, select the ‘‘Enable exception handling’’
option in the C++ Language category of the C/C++ tab in the Project Settings dialog box, or use the/GX
compiler switch.

Please input the dividend and press RETURN: 10
Please input the divisor and press RETURN: 5
The quotient is 2.

Please input the dividend and press RETURN: 10
Please input the divisor and press RETURN: 0
Attempt to divide 10 by zero.

Please input the dividend and press RETURN: −2147483648
Please input the divisor and press RETURN: −1
Integer overflow would result when dividing -2147483648 by -1.

Please input the dividend and press RETURN: 10
Please input the divisor and press RETURN: 3
Truncation would result when dividing 10 by 3.

Thr ow an object and catch it by reference

We destruct two objects as we pass line 16.To see which one is destructed first, line 15 tags one of
them with a distinct value.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/throwobj1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 i nt main()

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

7 {
8 t ry {
9 obj ob = 10;

10 throw ob;
11 }
12
13 catch (obj ob) {
14 cout << ob << "\n";
15 ++ob;
16 }
17
18 return EXIT_SUCCESS;
19 }

construct 10 line 9
copy construct 10 line 10; let’s call this one ‘‘the thrown object’’
destruct 10 As we pass line 11, we destruct the object in line 9.
copy construct 10 line 13
10 line 14
destruct 11 As we pass line 16, we destruct the object in line 13.
destruct 10 Then line 16 destructs the thrown object.

We can eliminate the underlined object by catching the thrown object by reference:

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/throwobj2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 i nt main()
7 {
8 t ry {
9 obj ob = 10;

10 throw ob;
11 }
12
13 catch (const obj& ob) {
14 cout << ob << "\n";
15 }
16
17 return EXIT_SUCCESS;
18 }

construct 10 line 9
copy construct 10 Line 10 constructs the thrown object.
destruct 10 Line 11 destructs the object in line 9.
10 line 14
destruct 10 Line 15 destructs the thrown object.

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.3 Thr ow an Anonymous Object 593

594 Exceptions Chapter 6

6.3 Throw an Anonymous Object
Line 34 constructs an anonymous (i.e., nameless) object of classoverflow by giving no arguments

to its constructor. (Classoverflow actually has no constructor, but you have to write line 34 as if it had a
constructor with no arguments.) Itthen throws the anonymous object.Similarly, line 38 constructs an
anonymous object of classtruncation by giving two arguments to its constructor. It then throws the
anonymous object.

Line 49 catches by reference to avoid constructing and destructing an unnecessary copy of the caught
object. Ididn’t bother to catch by reference in lines 45 and 54, because those objects take almost no time to
copy. We’ll see another reason to catch by reference when we talk about exceptions and inheritance.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/exception2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <climits>
4 using namespace std;
5
6 s truct truncation {
7 i nt dividend;
8 i nt divisor;
9

10 truncation(int initial_dividend, int initial_divisor)
11 : dividend(initial_dividend), divisor(initial_divisor) {}
12 };
13
14 class overflow {};
15
16 int main()
17 {
18 int status = EXIT_FAILURE;
19
20 try {
21 cout << "Please input the dividend and press RETURN: ";
22 int dividend; //uninitialized variable
23 cin >> dividend;
24
25 cout << "Please input the divisor and press RETURN: ";
26 int divisor; //uninitialized variable
27 cin >> divisor;
28
29 if (divisor == 0) {
30 throw dividend;
31 }
32
33 if (dividend == INT_MIN && divisor == -1) {
34 throw overflow();
35 }
36
37 if (dividend % divisor != 0) {
38 throw truncation(dividend, divisor);
39 }
40
41 cout << "The quotient is " << dividend / divisor << ".\n";
42 status = EXIT_SUCCESS;

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

43 }
44
45 catch (int i) {
46 cerr << "Attempt to divide " << i << " by zero.\n";
47 }
48
49 catch (const truncation& t) {
50 cerr << "Truncation would result when dividing " << t.dividend
51 << " by " << t .divisor << ".\n";
52 }
53
54 catch (overflow) {
55 cerr << "Integer overflow would result when dividing " << INT_MIN
56 << " by - 1.\n";
57 }
58
59 catch (...) {
60 cerr << "Caught unexpected exception.\n";
61 }
62
63 return status;
64 }

6.4 AnException that Escapes from a Function
A block is a group of zero or more statements surrounded by{ curly braces} . Examples are the body

of a function,for loop, if statement, ortry block.

When we throw an exception inside a block and catch it outside, or when we never catch it at all, we
say that the exception hasescapedfrom the block. Because of theexception specificationin lines 17 and
58, the only exceptions that are allowed to escape fromf are those of data typesint , overflow , or
truncation . If an exception of any other data type somehow escapes fromf , theunexpected func-
tion would be called, which will call theterminate function, which will call theabort function.

Like terminate and abort , the unexpected function has already been written for us in the
C++ Standard Library. But if we want theunexpected function to do something other than calling
terminate , we can write our own unexpected function and make it operational by passing its address
to theset_unexpected function. (Include<exception> for set_unexpected .)

A function with no exception specification is allowed to have any exception escape from it.Excep-
tion specifications are therefore optional in C++, but mandatory in Java.

If an exception travels all the way up throughmain but is nev er caught anywhere, the program
would automatically call theterminate function, which will call theabort function. Inthis case, the
unexpected function is not called.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/exception3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for strcmp
4 #include <climits>
5 using namespace std;
6
7 s truct truncation {
8 i nt dividend;
9 i nt divisor;

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.4 An Exception that Escapes from a Function 595

596 Exceptions Chapter 6

10
11 truncation(int initial_dividend, int initial_divisor)
12 : dividend(initial_dividend), divisor(initial_divisor) {}
13 };
14
15 class overflow {};
16
17 void f() throw (int, overflow, truncation); //exception specification
18
19 int main(int argc, char **argv)
20 {
21 int status = EXIT_FAILURE;
22 const bool verbose = argc >= 2 && strcmp(argv[1], "-v") == 0;
23
24 try {
25 f();
26 status = EXIT_SUCCESS;
27 }
28
29 catch (int i) {
30 if (verbose) {
31 cerr << "Attempt to divide " << i << " by zero.\n";
32 }
33 }
34
35 catch (const truncation& t) {
36 if (verbose) {
37 cerr << "Truncation would result when dividing " << t.dividend
38 << " by " << t .divisor << ".\n";
39 }
40 }
41
42 catch (overflow) {
43 if (verbose) {
44 cerr << "Overflow would result when dividing " << INT_MIN
45 << " by - 1.\n";
46 }
47 }
48
49 catch (...) {
50 if (verbose) {
51 cerr << "Caught unexpected exception.\n";
52 }
53 }
54
55 return status;
56 }
57
58 void f() throw (int, overflow, truncation)
59 {
60 cout << "Please input the dividend and press RETURN: ";
61 int dividend; //uninitialized variable
62 cin >> dividend;
63

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

64 cout << "Please input the divisor and press RETURN: ";
65 int divisor; //uninitialized variable
66 cin >> divisor;
67
68 if (divisor == 0) {
69 throw dividend;
70 }
71
72 if (dividend == INT_MIN && divisor == -1) {
73 throw overflow();
74 }
75
76 if (dividend % divisor != 0) {
77 throw truncation(dividend, divisor);
78 }
79
80 cout << "The quotient is " << dividend / divisor << ".\n";
81 }

6.5 AClass whose Member Functions Throw Exceptions
Four things can go wrong in the member functions of the following classdate :

(1) Theinitial_month argument of the constructor could be invalid.

(2) Theinitial_day argument of the constructor could be invalid.

(3) We could call anoperator++ member function (prefix or postfix) of adate that already contains
the last possible date, December 31 of the yearINT_MAX.

(4) We could call anoperator-- member function (prefix or postfix) of adate that already contains
the earliest possible date, January 1 of the yearINT_MIN .

We therefore create four exception classes,

date::bad_month
date::month_and_day
date::overflow
date::underflow

To remind us what these four classes are for, we giv e them the last namedate by declaring them
inside the{ curly braces} in lines 6 and 77 ofdate.h .

But they can’t be declared just anywhere within the curly braces. The declaration for a class must
always come before any other mention of the class. In fact, the same is true of almost all declarations in C
and C++. Before we declare the constructor of classdate in lines 56−57, we must write the entire decla-
ration, not merely a forward declaration, for classbad_month in lines 31−39, and for class
bad_month_and_day in lines 41−51. The declaration for classoverflow in line 53 must come
before the declaration of the prefixoperator++ in line 59 and the postfixoperator++ in lines 62−66.
And the declaration for classunderflow in line 54 must come before the declaration of the prefix
operator-- in line 60 and the postfixoperator-- in lines 68−72.

We also provide each exception class with anoperator<< function, so that the handlers can output
them without bothering with their internal details.Theoperator<< ’s that print classesbad_month and
bad_month_and_day must be friends of these classes to access their private data members. But the
operator<< ’s that print classesoverflow andunderflow have no need of friendship, since those
classes contain no data members at all.We declare them after line 77 to show that they are neither friends
nor members of any class.

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.5 A Class whose Member Functions Throw Exceptions 597

598 Exceptions Chapter 6

All four of theoperator<< functions for the exception classes are inline, but only the two in lines
79−85 need the keyword inline . The other two are inline because they are defined, not merely declared,
within the curly braces in lines 6−77. The keyword inline also makes the functions in lines 79−85 static,
in the sense of being visible only within the.C file that includesdate.h . Without the keyword, these
functions would be ‘‘multiply defined’’ i f date.h were included in more than one.C file.

Within the all-important curly braces in lines 6 and 77, we’re on a first-name basis with the members
of classdate . That’s why line 36 can get away with sayingbad_month . But outside the curly braces,
we have to address each member of classdate by its full name.That’s why line 79 needs the stiffly for-
maldate::overflow .

As usual, the postfixoperator++ in lines 62−66 calls the prefixoperator++ in line 59. The
prefix operator++ throws anoverflow exception which the postfixoperator++ does not catch.
Therefore the postfixoperator++ throws the same exception.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/except1/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 c lass date {
7 s tatic const int length[];
8
9 i nt year;

10 int month; //date::january to date::december inclusive
11 int day; //1 to length[month] inclusive
12
13 public:
14 enum month_t { //indices into the length array
15 january = 1,
16 february,
17 march,
18 april,
19 may,
20 june,
21 july,
22 august,
23 september,
24 october,
25 november,
26 december
27 };
28
29 //Exceptions thrown by the member functions of class date:
30
31 class bad_month {
32 const int month;
33 public:
34 bad_month(int initial_month): month(initial_month) {}
35
36 friend ostream& operator<<(ostream& ost, const bad_month& bm) {
37 return ost << "bad month " << bm.month;
38 }
39 };

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

40
41 class bad_month_and_day {
42 const int month;
43 const int day;
44 public:
45 bad_month_and_day(int initial_month, int initial_day)
46 : month(initial_month), day(initial_day) {}
47
48 friend ostream& operator<<(ostream& ost, const bad_month_and_day& bd) {
49 return ost << "bad month " << bd.month << ", day " << bd.day;
50 }
51 };
52
53 class overflow {};
54 class underflow {};
55
56 date(int initial_month, int initial_day, int initial_year)
57 throw (bad_month, bad_month_and_day);
58
59 date& operator++() throw (overflow);
60 date& operator--() throw (underflow);
61
62 const date operator++(int) throw (overflow) {
63 const date old = *this;
64 ++*this; //(*this).operator++();
65 return old;
66 }
67
68 const date operator--(int) throw (underflow) {
69 const date old = *this;
70 --*this; //(*this).operator--();
71 return old;
72 }
73
74 friend ostream& operator<<(ostream& ost, const date& d) {
75 return ost << d.month << "/" << d.day << "/" << d.year;
76 }
77 };
78
79 inline ostream& operator<<(ostream& ost, const date::overflow&) {
80 return ost << "can’t go beyond December 31, " << INT_MAX;
81 }
82
83 inline ostream& operator<<(ostream& ost, const date::underflow&) {
84 return ost << "Can’t go before January 1, " << INT_MIN;
85 }
86 #endif

With my compiler, we’re on a first-name basis with the members of classdate from the double
colon in line 20 to the closing curly brace in line 34.That’s why line 21 doesn’t need to mention the last
name ofbad_month andbad_month_and_day . With other compilers, line 21 must say
date::bad_month anddate::bad_month_and_day .

If the prefixoperator++ throws theoverflow exception in line 46, it first restores thedate to
its original value in lines 43−45.We don’t want to leave the date in an inconsistent, half-incremented

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.5 A Class whose Member Functions Throw Exceptions 599

600 Exceptions Chapter 6

state. Lines44−45 may be combined to

87 day = date_length[month = december];

But don’t do it. C++does not share C’s rage to cram as much code as possible into a single expression.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/except1/date.C

1 #include <climits>
2 #include "date.h"
3
4 c onst int date::length[] = {
5 0, / /dummy
6 31, //january
7 29, //february
8 31, //march
9 30, //april

10 31, //may
11 30, //june
12 31, //july
13 31, //august
14 30, //september
15 31, //october
16 30, //november
17 31 //december
18 };
19
20 date::date(int initial_month, int initial_day, int initial_year)
21 throw (bad_month, bad_month_and_day)
22 {
23 year = i nitial_year;
24
25 if (initial_month < january || initial_month > december) {
26 throw bad_month(initial_month);
27 }
28 month = i nitial_month;
29
30 if (initial_day < 1 || initial_day > length[month]) {
31 throw bad_month_and_day(month, initial_day);
32 }
33 day = i nitial_day;
34 }
35
36 date& date::operator++() throw (overflow) //prefix
37 {
38 if (++day > length[month]) {
39 day = 1;
40 if (++month > december) {
41 month = j anuary;
42 if (year >= INT_MAX) {
43 //Undo the ++’s in lines 38 and 40.
44 month = december;
45 day = l ength[december];
46 throw overflow();
47 }
48 ++year;

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

49 }
50 }
51
52 return *this;
53 }
54
55 date& date::operator--() throw (underflow) //prefix
56 {
57 if (--day < 1) {
58 if (--month < january) {
59 month = december;
60 if (year <= INT_MIN) {
61 //Undo the --’s in line 57 and 58.
62 month = j anuary;
63 day = 1;
64 throw underflow();
65 }
66 --year;
67 }
68 day = l ength[month];
69 }
70
71 return *this;
72 }

Line 12 ofmain.C constructs the last possibledate , causing theoperator++ in line 13 to throw
adate::overflow exception.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/except1/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <climits>
4 #include "date.h"
5 using namespace std;
6
7 i nt main()
8 {
9 i nt status = EXIT_FAILURE;

10
11 try {
12 date d(date::december, 31, INT_MAX);
13 cout << ++d << "\n"; //cout << d.operator++() << "\n";
14 status = EXIT_SUCCESS;
15 }
16
17 catch (const date::bad_month& bm) {
18 cerr << bm << "\n"; //operator<<(cerr, bm) << "\n";
19 }
20
21 catch (const date::bad_month_and_day& bd) {
22 cerr << bd << "\n";
23 }
24
25 catch (const date::overflow& ov) {

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.5 A Class whose Member Functions Throw Exceptions 601

602 Exceptions Chapter 6

26 cerr << ov << "\n";
27 }
28
29 catch (const date::underflow& un) {
30 cerr << un << "\n";
31 }
32
33 catch (...) {
34 cerr << "Caught unexpected exception.\n";
35 }
36
37 return status;
38 }

can’t go beyond December 31, 2147483647

6.6 Hierarchies of Exceptions
We needed five separate handlers in lines 17−35 of the above main.C . But we will now catch

overflow andunderflow with a single handler by publicly deriving them from a common base class,
flow . Similarly, we will publicly derive classbad_month_and_day from classbad_month . The
inheritance must be public so we can take advantage of it when we catch the exceptions inmain .

date::bad_month

date::bad_month_and_day

date::flow

date::overflow date::underflow

All fiv e of the above classes will still have the last namedate because they are declared within the curly
braces in lines 6 and 96 ofdate.h .

Each class derived from flow will have to be printed differently, so I’d l ike flow ’s operator<<
in lines 58−61 to be virtual.But only a member function, not a friend, can be virtual. As on pp. 496−497,
our workaround will be to have theoperator<< call the virtual member functionprint in line 54 to do
all the work. Theclasses derived from flow will have to override thisprint because it is a pure virtual
function, but they will not override operator<< . Finally, a class with a virtual function must also have a
virtual destructor (line 56).

Thedate::bad_month::print in line 36 has to be public, since it is called by a function that is
neither a member nor a friend of classdate::bad_month (line 43). But the corresponding
date::flow::print in line 54 can be private, since it is never called by a function that is neither a
member nor a friend of classdate::flow . In fact, it is never called at all.

The constructor in line 76 can throw abad_month_and_day as well as abad_month . But
bad_month_and_day is derived from bad_month , so it doesn’t need to be mentioned in the exception
specification.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/except2/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5
6 c lass date {

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

7 s tatic const int length[];
8
9 i nt year; //must construct data members in this order

10 int month; //date::january to date::december inclusive
11 int day; //1 to length[month] inclusive
12
13 public:
14 enum month_t { //indices into the length array
15 january = 1,
16 february,
17 march,
18 april,
19 may,
20 june,
21 july,
22 august,
23 september,
24 october,
25 november,
26 december
27 };
28
29 //Exceptions thrown by the constructor of class date:
30
31 class bad_month {
32 const int month;
33 public:
34 bad_month(int initial_month): month(initial_month) {}
35 virtual ˜bad_month() {}
36 virtual void print(ostream& ost) const {ost << "bad month " << month;}
37 };
38
39 class bad_month_and_day: public bad_month {
40 const int day;
41
42 void print(ostream& ost) const {
43 bad_month::print(ost);
44 ost << ", day " << day;
45 }
46 public:
47 bad_month_and_day(int initial_month, int initial_day)
48 : bad_month(initial_month), day(initial_day) {}
49 };
50
51 //Exceptions thrown by the ’crement operators functions of class date:
52
53 class flow {
54 virtual void print(ostream&) const = 0;
55 public:
56 virtual ˜flow() {}
57
58 friend ostream& operator<<(ostream& ost, const flow& f) {
59 f.print(ost);
60 return ost;

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.6 Hierarchies of Exceptions 603

604 Exceptions Chapter 6

61 }
62 };
63
64 class overflow: public flow {
65 void print(ostream& ost) const {
66 ost << "can’t go beyond December 31, " << INT_MAX;
67 }
68 };
69
70 class underflow: public flow {
71 void print(ostream& ost) const {
72 ost << "can’t go before January 1, " << INT_MIN;
73 }
74 };
75
76 date(int initial_month, int initial_day, int initial_year) throw (bad_month);
77
78 date& operator++() throw (overflow);
79 date& operator--() throw (underflow);
80
81 const date operator++(int) throw (overflow) {
82 const date old = *this;
83 ++*this;
84 return old;
85 }
86
87 const date operator--(int) throw (underflow) {
88 const date old = *this;
89 --*this;
90 return old;
91 }
92
93 friend ostream& operator<<(ostream& ost, const date& d) {
94 return ost << d.month << "/" << d.day << "/" << d.year;
95 }
96 };
97
98 inline ostream& operator<<(ostream& ost, const date::bad_month& bm) {
99 bm.print(ost);

100 return ost;
101 }
102 #endif

On some platforms, thebad_month in line 20 must be written asdate::bad_month . Ditto for
lines 35 and 54.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/except2/date.C

1 #include <climits>
2 #include "date.h"
3
4 c onst int date::length[] = {
5 0, / /dummy
6 31, //january
7 29, //february

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

8 31, //march
9 30, //april

10 31, //may
11 30, //june
12 31, //july
13 31, //august
14 30, //september
15 31, //october
16 30, //november
17 31 //december
18 };
19
20 date::date(int initial_month, int initial_day, int initial_year) throw (bad_month)
21 {
22 year = i nitial_year;
23
24 if (initial_month < january || initial_month > december) {
25 throw bad_month(initial_month);
26 }
27 month = i nitial_month;
28
29 if (initial_day < 1 || initial_day > length[month]) {
30 throw bad_month_and_day(month, initial_day);
31 }
32 day = i nitial_day;
33 }
34
35 date& date::operator++() throw (overflow) //prefix
36 {
37 if (++day > length[month]) {
38 day = 1;
39 if (++month > december) {
40 month = j anuary;
41 if (year >= INT_MAX) {
42 //Undo the ++’s in lines 37 and 39.
43 month = december;
44 day = l ength[month];
45 throw overflow();
46 }
47 ++year;
48 }
49 }
50
51 return *this;
52 }
53
54 date& date::operator--() throw (underflow) //prefix
55 {
56 if (--day < 1) {
57 if (--month < january) {
58 month = december;
59 if (year <= INT_MIN) {
60 //Undo the --’s in lines 56 and 57.
61 month = j anuary;

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.6 Hierarchies of Exceptions 605

606 Exceptions Chapter 6

62 day = 1;
63 throw underflow();
64 }
65 --year;
66 }
67 day = l ength[month];
68 }
69
70 return *this;
71 }

Line 16 ofmain.C will catch date::bad_month , or any other exception of a class that is pub-
licly derived from classdate::bad_month . Similarly, line 20 will catch anydate::flow .

Lines 16 and 20 must catch by reference to avoid slicing off the additional members introduced in the
derived classes. For slicing, see pp. 490−491.For example, if the argument in line 16 was declared as a
plain olddate::bad_month , not as a reference thereto, theoperator<< in line 17 would always call
date::bad_month::print . It would never call never call
date::bad_month_and_day::print , since thevirtual mechanism is used only when the object
is specified by a pointer or reference.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/except2/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <climits>
4 #include "date.h"
5 using namespace std;
6
7 i nt main()
8 {
9 i nt status = EXIT_FAILURE;

10
11 try {
12 date d(date::april, 31, 2014);
13 status = EXIT_SUCCESS;
14 }
15
16 catch (const date::bad_month& b) {
17 cerr << b << "\n";
18 }
19
20 catch (const date::flow& f) {
21 cerr << f << "\n";
22 }
23
24 catch (...) {
25 cerr << "Caught unexpected exception.\n";
26 }
27
28 return status;
29 }

bad month 4, day 31

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

As we saw earlier, the handlers are tried in the order in which they are listed. The handler for trunca-
tion comes before the one for overflow since truncation happens more often. If we inserted the following at
the above line 15 ofmain.C , line 16 would no longer have a chance to catch
date::bad_month_and_day .

30 catch (const date::bad_month_and_day& b) {
31 cerr << b << "\n";
32 }

6.7 Backtracking

Error recovery sometimes requires backtracking or dismantling.

A compiler builds a tree whenever it sees an expression. Let’s imagine a simple language in which
each expression is on a separate line. When the compiler encounters the syntax error in line 2, it removes
the partially constructed second tree before it begins to build the third one.

1 a = b + c
2 d = e -
3 g = h * i

list of statements

=

a +

b c

=

d -

e ?

list of statements

=

a +

b c

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.7 Backtracking 607

608 Exceptions Chapter 6

list of statements

=

a +

b c

=

g *

h i

Thr owing an exception destructs the automatic objects.

Whenexit is called, only the statically allocated objects of a program are destructed (pp. 184−185).
When exceptions are thrown, the automatically allocated objects can be destructed as well.The dynamic
objects will not be destructed, however, unless we provide for them as described below.

To illustrate,main will call f , f will call g, and on the way down we will construct objects of all
three storage classes. The static and automatic objects are namedstatic - and auto -. Thepointerp in
line 39 is automatic although the object it points to is dynamic. This object has no name.

main

f

g

When an exception escapes from a block, we destruct all the automatic objects constructed in the
block. Whenthe block is a function, we also destruct all the automatics in the function that called it, and
the automatics in the function that called that one, all the way up to, but not including, the function that
contains thetry statement. Thismass extinction of automatic objects is calledunwinding the stack.

If the exception is never caught, the unwinding extends to every automatic object. The uncaught
exception will then terminate the program, destructing the static objects as well.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/unwind.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 c lass bad {};
7
8 v oid f() throw (bad);
9 v oid g() throw (bad);

10
11 obj static1 = 10;

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

12 obj static2 = 20;
13
14 int main()
15 {
16 int status = EXIT_FAILURE;
17 obj auto3 = 30;
18 obj auto4 = 40;
19
20 try {
21 obj auto5 = 50;
22 obj auto6 = 60;
23 f();
24 status = EXIT_SUCCESS;
25 }
26
27 catch (const bad&) {
28 cout << "caught bad in main\n";
29 }
30
31 return status;
32 }
33
34 void f() throw (bad)
35 {
36 obj auto7 = 70;
37 obj auto8 = 80;
38 static obj static9 = 90;
39 obj *const p = new obj(100);
40
41 g();
42 delete p; //Line 50 prevents this from being executed.
43 }
44
45 void g() throw (bad)
46 {
47 obj auto11 = 110;
48 obj auto12 = 120;
49
50 throw bad();
51 }

The stack is unwound as the exception flies from the above line 50 up to 27.The output produced by
the unwinding is displayed between the pair of horizontal lines. The static and dynamic objects in the
above lines 38−39 are not destructed as part of the unwinding.The static object is eventually destructed
when line 31 returns frommain . The dynamic object is never destructed.

The dynamic object could be destructed after the unwinding by makingp global and inserting
anotherdelete p; at line 27½.Alternatively, it could be destructed during the unwinding, by means of
theauto_ptr on pp. 611−612 or thethrow without an operand on p. 621.

The error message in the above line 28 would normally be written tocerr , not cout . But this
would confuse the sequence of events. cerr is unbuffered, which would allow the message to elbow its
way ahead of the other output.

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.7 Backtracking 609

610 Exceptions Chapter 6

construct 10 Lines 11−12 construct two global static objects.
construct 20
construct 30 Lines 17−18 construct two automatic objects local tomain .
construct 40
construct 50 Lines 21−22 construct two automatic objects local totry block in main .
construct 60
construct 70 Lines 36−37 construct two automatic objects local tof .
construct 80
construct 90 Line 38 constructs one static object local tof .
construct 100 Line 39 constructs one dynamic object; never destructed.
construct 110 Lines 47−48 construct two automatic objects local tog.
construct 120
destruct 120 Line 50 unwinds the stack.
destruct 110
destruct 80
destruct 70
destruct 60
destruct 50
caught bad in main
destruct 40 Line 31 destructs the remaining automatic objects local tomain .
destruct 30
destruct 90 Line 31 destructs the three static objects.
destruct 20
destruct 10

If we change thethrow bad() in the above line 50 to a call toexit , the stack will no longer be
unwound. Theoutput below the line is produced after the call toexit .

construct 10
construct 20
construct 30
construct 40
construct 50
construct 60
construct 70
construct 80
construct 90
construct 100
construct 110
construct 120
destruct 90 Only the static objects are still destructed.
destruct 20
destruct 10

If we change thethrow bad() in the above line 50 toterminate() or abort() , no object will
be destructed, not even the static ones.

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

construct 10
construct 20
construct 30
construct 40
construct 50
construct 60
construct 70
construct 80
construct 90
construct 100
construct 110
construct 120

auto_ptr

The above program left its dynamically allocated object undestructed and undeleted. An elegant way
to take care of this is with anauto_ptr object.

The dynamic object, having no name, is referenced by means of a pointer. Here is line 39 of the
aboveunwind.C on p. 609.

1 / /The "const" keeps p pointing to the same object.
2 obj *const p = new obj(100);

An auto_ptr object contains a pointer to a dynamic object; we say that theauto_ptr points to
the latter. Like the vector in the standard library, classauto_ptr is a ‘‘template’’ (Chapter 7).The
name of the data type to which theauto_ptr points is plugged into the<angle brackets>; the address of
the dynamic object to which theauto_ptr points is passed as an argument to the constructor.

3 / /The "const" keeps p pointing to the same object.
4 c onst auto_ptr<obj> p(new obj(100));

This constructor isexplicit , so its argument must always be in parentheses.The above line 4 could not
be written

5 c onst auto_ptr<obj> p = new obj(100); //won’t compile

When anauto_ptr is destructed, it applies thedelete operator to the pointer it contains.This
operator calls the destructor for the dynamic object.For example, we can change the functionf of
unwind.C to the following, removing the haplessdelete p; in the above line 42. Include the header
file <memory> for auto_ptr .

6 v oid f() throw (bad)
7 {
8 obj auto7 = 70;
9 obj auto8 = 80;

10 static obj static9 = 90;
11 const auto_ptr<obj> p(new obj(100));
12
13 g();
14 }

The objectsauto7 , auto8 , and p are automatically allocated. Their destructors will always be
called when we leave the { curly braces} of f , whether or notg throws an exception. Thedestructor forp
will delete the object to whichp points, fixing the memory leak.

Thanks to the magic of operator overloading, anauto_ptr can be dereferenced with the same syn-
tax as a plain old pointer. For example, the*p in line 19 is the dynamic object to whichp points, and the
p-> in line 21 lets us access a member of the dynamic object. But there is one difference. Theunadorned

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.7 Backtracking 611

612 Exceptions Chapter 6

p in line 24 is not the address of the dynamic object.To get the address, we have to call theget in line 25.
(Theoperator-> in line 21 actually returns the same value asget .)

15 void f()
16 {
17 const auto_ptr<obj> p(new obj(100));
18
19 cout << *p; //operator<<(cout, p.operator*());
20 cout << "\n";
21 p->print(); //p.operator->()->print();
22 cout << "\n";
23
24 //cout << "Address of dynamic object: " << p << "\n"; //won’t compile
25 cout << "Address of dynamic object: " << p.get() << "\n";
26 } //obj is deleted here

Even in the absence of exceptions, anauto_ptr is a general mechanism for ensuring that a dynam-
ically allocated variable does not outlive the pointer that points to it.For example, the following block
deleted the dynamically allocated nodes in a linked list; see lines 52−57 oflinked.C on p. 399. The
const at the start of line 29 gives doomed read-only access to the dynamic object.

27 for (const node *p = first; p;) {
28 cout << *p << "\n";
29 const node *const doomed = p;
30 p = p->next;
31 delete doomed;
32 }

We can let anauto_ptr do thedelete for us. Theconst in the angle brackets in line 35 gives
doomed read-only access to the dynamically allocated object.(Resist the temptation to insert line 36 into
the end of line 33.)

33 for (const node *p = first; p;) {
34 cout << *p << "\n";
35 const auto_ptr<const node> doomed(p);
36 p = p->next;
37 }

A similar auto_ptr can be used in the block in lines 23−27 of the destructor forgame in p. 542.

Tw o warnings aboutauto_ptr .

(1) The pointer in theauto_ptr must always point to a scalar, not to an array. The destructor for
auto_ptr always applies thedelete operator, not thedelete[] operator, to this pointer. And, of
course, the pointed-to variable must be dynamically allocated.

(2) A dynamically allocated variable can bedelete ’d only once. This means we must never hav e
two auto_ptr ’s pointing to the same object.To prevent this, the copy constructor andoperator= for
classauto_ptr set the internal pointer of the right-handauto_ptr to zero. We say that these functions
transfer ownership of the dynamic variable from the rightauto_ptr to left one.

38 auto_ptr<obj> p1(new obj(10));
39
40 //if p1 were destructed at this point,
41 //p1’s destructor would delete the obj.
42
43 auto_ptr<obj> p2 = p1; //copy constructor
44
45 //If p1 and p2 were destructed at this point,
46 //p2’s destructor would delete the obj

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

47 //and p1’s destructor would do nothing.
48
49 p1 = p2; //p1.operator=p2();
50
51 //If p1 and p2 were destructed at this point,
52 //the p2’s destructor would do nothing
53 //and p1’s destructor would delete the obj.

The ‘‘algorithms’’ i n Chapter 8 assume that an element of a container can be copied without damage
to the original.But anauto_ptr has a copy constructor andoperator= that drain their argument. Do
not attempt to store anauto_ptr into avector or list .

Finally, an auto_ptr can also yield its responsibility to a plain old pointer.

54 auto_ptr<obj> p(new obj(10));
55 obj *plain = p.release();
56
57 //If p was destructed at this point, p’s destructor would do nothing.
58 delete plain; //must remember to delete the dynamic object by hand.

An auto_ptr can also be reset:

59 auto_ptr<obj> p(new obj(10));
60
61 p.reset(new obj(10)); //p deletes 1st obj, takes ownership of 2nd obj
62 p.reset(); //p deletes 2nd obj
63
64 //If p was destructed at this point, its destructor would do nothing.

Destruction is a privilege.

Does every automatic object get destructed when an exception leaves a block? Doesev ery static
object get destructed when an exceoption is thrown but not caught?It depends what we mean by ‘‘object’’.

A completely constructedobject is one from whose constructor we have returned, either by a
return statement or by reaching the closing curly brace} at the end of the constructor’s body. Only a
completely constructed object is eligible for the privilege of destruction. An example is the data member
e1 in the program below.

If an exception escapes from an object’s constructor, the object will never be completely constructed.
It is therefore ineligible for the privilege of destruction. Such is the case of the stillborne2 , even though
part of its constructor has been executed. Infact, such is also the case of the surrounding objectb.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/privilege.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass even {
6 i nt i;
7 public:
8 even(int initial_i) throw (int): i(initial_i) {
9 c out << "constructor for even " << i << " started ";

10 if (i % 2 != 0) {
11 throw i;
12 }
13 cout << "and finished.\n";

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.7 Backtracking 613

614 Exceptions Chapter 6

14 }
15
16 ˜even() {cout << "\ndestruct even " << i << "\n";}
17 };
18
19 class big {
20 even e1;
21 even e2;
22 even e3;
23 public:
24 big(int initial_e1, int initial_e2, int initial_e3) throw (int)
25 : e1(initial_e1), e2(initial_e2), e3(initial_e3) {
26 cout << "construct big\n";
27 }
28
29 ˜big() {cout << "destruct big\n";}
30 };
31
32 int main()
33 {
34 try {
35 big b(10, 21, 30);
36 }
37
38 catch (int i) {
39 cerr << "main caught the integer " << i << ".\n";
40 return EXIT_FAILURE;
41 }
42
43 return EXIT_SUCCESS;
44 }

constructor for even 10 started and finished.
constructor for even 21 started
destruct even 10
main caught the integer 21.

We can’t have two exceptions in the air simultaneously

An exception cannot escape from a function while another exception remains uncaught.For exam-
ple, an exception cannot escape from a destructor that was triggered by an exception escaping from a block.
If this happens, the functionterminate will be called. To prove it, I wrote aterminate function that
prints a message.

Line 22 throws an exception which destructs thepit in line 21 as it escapes from the block in lines
20−23. Butbefore this exception is caught in line 25, the destructor ofpit tries to throws another excep-
tion. Thiscalls theterminate function.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/air1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <exception> //for set_terminate
4 using namespace std;
5

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

6 c lass pitcher {
7 public:
8 ˜ pitcher() throw (int) {
9 c out << "˜pitcher about to throw 20.\n";

10 throw 20;
11 }
12 };
13
14 void my_terminate();
15
16 int main()
17 {
18 set_terminate(my_terminate);
19
20 try {
21 pitcher pit;
22 throw 10;
23 }
24
25 catch (int i) {
26 cout << "main caught int " << i << ".\n";
27 }
28
29 return EXIT_SUCCESS;
30 }
31
32 void my_terminate()
33 {
34 cerr << "my_terminate has been called.\n";
35 exit(EXIT_FAILURE);
36 }

˜pitcher about to throw 20.
my_terminate has been called.

A destructorcan throw an exception, but we have to be careful. If another exception has been
thrown but not yet caught, the destructor must catch any exception that it throws. Theexception thrown by
the destructor would terminate the program if it escaped from the destructor.

Line 9 shows how a destructor can tell if there is an exception that has been thrown but not yet
caught. Asthe exception thrown in line 30 escapes from the block in lines 28−31, we call the destructor for
the objectpit in line 29. In this call, theif in line 9 is true, so the destructor catches the exception it
throws in line 11.To verify that the program has

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/air2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <exception> //for uncaught_exception and set_terminate
4 using namespace std;
5
6 c lass pitcher {
7 public:
8 ˜ pitcher() throw (int) {
9 i f (uncaught_exception()) {

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.7 Backtracking 615

616 Exceptions Chapter 6

10 try {
11 throw 20; //This exception will not escape from the destructor.
12 }
13 catch (int i) {
14 cout << "˜pitcher caught int " << i << ".\n";
15 }
16 } else {
17 throw 30; //This exception will escape from the destructor.
18 }
19 }
20 };
21
22 void my_terminate();
23
24 int main()
25 {
26 set_terminate(my_terminate);
27
28 try {
29 pitcher pit;
30 throw 10;
31 }
32
33 catch (int i) {
34 cout << "main caught int " << i << ".\n";
35 }
36
37 return EXIT_SUCCESS;
38 }
39
40 void my_terminate()
41 {
42 cerr << "my_terminate has been called.\n";
43 exit(EXIT_FAILURE);
44 }

˜pitcher caught int 20.
main caught int 10.

Recall that there is one other thing a destructor must not do: call theexit function. Seep. 184.

6.8 CatchExceptions at Two or M ore Lev els
A trivial error requires the dismantling of only a few objects; a more severe one may require the dis-

mantling of many. We can arrange this by declaring the objects in layers. The foundations will be laid in
the functionf , the walls are raised ing, and the roof is put on inh.

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

main

f

g

h

constructsfoundations

constructswalls

constructsroof

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/level1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 using namespace std;
5
6 c lass foundation {
7 public:
8 ˜ foundation() {cerr << "destruct the foundation\n";}
9 } ;

10
11 class walls {
12 public:
13 ˜walls() {cerr << "destruct the walls\n";}
14 };
15
16 class roof {
17 public:
18 ˜roof() {cerr << "destruct the roof\n";}
19 };
20
21 //Data types of the exceptions:
22 class trivial {}; //handling this requires the destruction of only the roof
23 class medium {}; //requires destruction of roof and walls
24 class severe {}; //requires destruction of roof, walls, and foundations
25
26 void f() throw (severe);
27 void g() throw (severe, medium);
28 void h() throw (severe, medium, trivial);
29
30 int main()
31 {
32 srand(static_cast<unsigned>(time(0)));
33
34 try {
35 f();
36 }
37
38 catch (severe) {
39 cerr << "main caught a severe exception.\n";

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.8 Catch Exceptions at Two or M ore Lev els 617

618 Exceptions Chapter 6

40 return EXIT_FAILURE;
41 }
42
43 return EXIT_SUCCESS;
44 }
45
46 void f() throw (severe)
47 {
48 foundation found;
49
50 try {
51 g();
52 }
53
54 catch (medium) {
55 cerr << "f caught a medium exception.\n";
56 }
57 }
58
59 void g() throw (severe, medium)
60 {
61 walls w;
62
63 try {
64 h();
65 }
66
67 catch (trivial) {
68 cerr << "g caught a trivial exception.\n";
69 }
70 }
71
72 void h() throw (severe, medium, trivial)
73 {
74 roof r;
75
76 switch (rand() % 3) {
77 case 0:
78 throw trivial();
79 break; //this statement currently unnecessary
80
81 case 1:
82 throw medium();
83 break;
84
85 case 2:
86 throw severe();
87 break;
88
89 default:
90 break;
91 }
92 }

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

To handle a trivial exception, all we have to dismantle is theroof . The walls and
foundation are destructed later, when we return fromg andf .

destruct the roof
g c aught a trivial exception.
destruct the walls
destruct the foundation

But to handle amedium exception, we have to dismantle theroof and thewalls :

destruct the roof
destruct the walls
f c aught a medium exception.
destruct the foundation

To handle asevere exception, we must dismantle theroof , walls , and foundation :

destruct the roof
destruct the walls
destruct the foundation
main caught a severe exception.

6.8.1 Catchand Re-throw
The operatorthrow can be written with no operand inside of an exception handler. It will re-throw

the exception that the handler caught. See lines 71−76.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/level2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 using namespace std;
5
6 c lass foundation {
7 public:
8 ˜ foundation() {cerr << "destruct the foundation\n";}
9 } ;

10
11 class walls {
12 public:
13 ˜walls() {cerr << "destruct the walls\n";}
14 };
15
16 class roof {
17 public:
18 ˜roof() {cerr << "destruct the roof\n";}
19 };
20
21 //Data types of the exceptions:
22 class trivial {}; //handling this requires the destruction of only the roof
23 class medium {}; //requires destruction of roof and walls
24 class severe {}; //requires destruction of roof, walls, and foundations
25

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.8.1 Catch and Re-throw 619

620 Exceptions Chapter 6

26 void f() throw (severe);
27 void g() throw (severe, medium);
28 void h() throw (severe, medium, trivial);
29
30 int main()
31 {
32 srand(static_cast<unsigned>(time(0)));
33
34 try {
35 f();
36 }
37
38 catch (severe) {
39 cerr << "main caught a severe exception.\n";
40 return EXIT_FAILURE;
41 }
42
43 return EXIT_SUCCESS;
44 }
45
46 void f() throw (severe)
47 {
48 foundation found;
49
50 try {
51 g();
52 }
53
54 catch (medium) {
55 cerr << "f caught a medium exception.\n";
56 }
57 }
58
59 void g() throw (severe, medium)
60 {
61 walls w;
62
63 try {
64 h();
65 }
66
67 catch (trivial) {
68 cerr << "g caught a trivial exception.\n";
69 }
70
71 catch (...) {
72 cerr << "g caught a non-trivial exception.\n"
73 "Don’t worry about having scratched the walls when destructing\n"
74 "the roof--we’re about to destruct the walls too.\n";
75 throw;
76 }
77 }
78
79 void h() throw (severe, medium, trivial)

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

80 {
81 roof r;
82
83 switch (rand() % 3) {
84 case 0:
85 throw trivial();
86 break;
87
88 case 1:
89 throw medium();
90 break;
91
92 case 2:
93 throw severe();
94 break;
95
96 default:
97 break;
98 }
99 }

If the above line 89 throws amedium exception,

destruct the roof
g c aught a non-trivial exception.
Don’t worry about having scratched the walls when destructing
the roof--we’re about to destruct the walls too.
destruct the walls
f c aught a medium exception.
destruct the foundation

▼ Homework 6.8.1a: catch and rethrow

The programunwind.C on p. 609 fails to destruct the dynamically allocated object in line 39.Fix
it by changing lines 39−42 to

1 obj *const p = new obj(100);
2
3 t ry {
4 g();
5 }
6
7 c atch (...) {
8 delete p;
9 t hrow;

10 }
11
12 delete p;

It was a lot simpler with theauto_ptr on pp. 611−612, wasn’t it? We didn’t hav e to write the
delete p; twice.
▲

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.9 Exceptions in the C++ Standard Library 621

622 Exceptions Chapter 6

6.9 Exceptionsin the C++ Standard Library
Many functions in the C++ Standard Library will throw an exception if something goes wrong.All

of these exceptions are derived from the base classexception on p. 628, declared in the header file
<exception> . There are often two ways of doing a given job, one that throws an exception and one that
returns an error code. In addition to the examples in §6.9, there will be another on pp. 1014−1015.

6.9.1 Containers:vector, string, and bitset
[C. A. R. Hoare] points out quite correctly that the current practice of compiling
subscript range checks into the machine code while a program is being tested, then
suppressing the checks during production runs, is like a sailor who wears a life
preserver while training on land but leaves it behind when he sails!On the other
hand, the sailor isn’t so foolish if life vests are extremely expensive, and if he is
such an excellent swimmer that the chance of needing one is quite small compared
with the other risks he is taking.

−Donald Knuth,Structured Programming with go to Statements

Any value read from input is suspicious. The variablei in line 14 will be a subscript for a vector.
Since line 15 reads its value from input, line 18 calls the member functionat to see if it is in range. If not,
at throws theout_of_range exception declared in the header file<stdexcept> . (The in_range
member function of classterminal was named after this class; see line 31 ofterminal.h on p. 160.)

Every class derived from classexception has thewhat function in line 22, returning a string.We
print it to see how helpful it is.

If the at in line 18 throws a different exception derived from classexception , it will be caught at
line 26. If theat throws an exception not derived from this class, it will be caught at line 31.

We are confident (i.e., willing to gamble) that the loop in line 36 will keep the subscript within the
legal range for the vector. Line 37 therefore calls the member functionoperator[] instead ofat . It
does the same job asat but without the error checking.operator[] is faster thanat , but could blow
up if the subscript is out of range. So could the loop in lines 40−42.

Classstring has a member functionat that does subscript checking (out_of_range), and an
operator[] that does not.Classbitset has member functionsflip , set , reset , and test that
do subscript checking (out_of_range), and anoperator[] that does not. The member function
to_ulong of classbitset will throw an overflow_error if the bitset ’s value cannot fit into a
long unsigned .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/out_of_range.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include <stdexcept> //for out_of_range
5 using namespace std;
6
7 i nt main()
8 {
9 i nt a[] = {10, 20, 30};

10 const size_t n = sizeof a / sizeof a[0];
11 vector<int> v(a, a + n);
12
13 cout << "Please input a subscript: ";
14 vector<int>::size_type i; //data type for a vector subscript
15 cin >> i;
16

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

17 try {
18 cout << "Element number " << i << " is " << v.at(i) << ".\n";
19 }
20
21 catch (const out_of_range& out) {
22 cerr << "caught out_of_range exception " << out.what() << "\n";
23 return EXIT_FAILURE;
24 }
25
26 catch (const exception& e) {
27 cerr << "caught another exception " << e.what() << "\n";
28 return EXIT_FAILURE;
29 }
30
31 catch (...) {
32 cerr << "caught unexpected exception\n";
33 return EXIT_FAILURE;
34 }
35
36 for (vector<int>::size_type i = 0; i < v.size(); ++i) {
37 cout << v[i] << "\n"; //cout << v.operator[](i) << "\n";
38 }
39
40 for (vector<int>::const_iterator it = v.begin(); it != v.end(); ++it) {
41 cout << *it << "\n"; //cout << it.operator*() << "\n";
42 }
43
44 return EXIT_SUCCESS;
45 }

Please input a subscript: 4
Element number 4 is caught out_of_range exception vector::_M_range_check

6.9.2 Classistream
Before they inv ented exceptions, the conscientious programmer had to write a complicatedif state-

ment after every attempt at input. See lines 11−32 ofwhy.C on pp. 330−331.

But now, the>> in the following line 13 can throw an exception if anything goes wrong.To ask it to,
simply call the input stream’s member functionexceptions in line 7.

On my platform, the argument in line 7 has the value 7. But think of it as ‘‘yes, yes, yes’’ as in When
Harry Met Sally. Each bit position of the argument represents a condition for which we wantcin to throw
an exception. Theenumerations of classios_base provide a convenient name for each position, and we
combine them with ‘‘bitwise or’’.

ios_base::badbit 00000100
ios_base::failbit 00000010

| i os_base::eofbit 00000001
00000111

The int i in line 9 must be declared outside the block in lines 12−14 if it is to be mentioned in line
35 outside the block.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/failure.C

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.9.2 Classistream 623

624 Exceptions Chapter 6

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 c in.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
8
9 i nt i; //uninitialized variable

10 cout << "Please input an integer: ";
11
12 try {
13 cin >> i;
14 }
15
16 catch (const ios_base::failure& fail) {
17 cerr << "caught ios_base::failure exception " << fail.what()
18 << "\n";
19
20 if (cin.eof()) {
21 cerr << "encountered end of input\n";
22 } else if (cin.bad()) {
23 cerr << "couldn’t input characters from outside world\n";
24 } else if (cin.fail()) {
25 cerr << "the first non-whitespace characters read\n"
26 "from input were not one or more consecutive\n"
27 "digits optionally preceded by a minus sign\n";
28 } else {
29 cerr << "unknown error\n";
30 }
31
32 return EXIT_FAILURE;
33 }
34
35 cout << "The number was " << i << ".\n";
36 return EXIT_SUCCESS;
37 }

Please input an integer: 10
The number was 10.

Please input an integer: hello
caught ios_base::failure exception basic_ios::clear
the first non-whitespace characters read
from input were not one or more consecutive
digits optionally preceded by a minus sign

Please input an integer: control-d (the end-of-file keystroke)
caught ios_base::failure exception basic_ios::clear same retval fromwhat
encountered end of input

The above line 7 will also cause exceptions to be thrown by anoperator>> or operator<< that
we wrote ourselves. Inthedate.C on p. 338, for example, a failure of the>> operator in lines 10 or 16

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

will throw an exception. Thecall tosetstate in line 21 will also throw an exception.

6.9.3 new and delete
Theoperator new functions in the standard libary will throw an exception of typebad_alloc

if they cannot allocate the requested memory, and if no new_handler has been established. Here are
their declarations, together with the matchingdelete ’s.

1 v oid *operator new(size_t n) throw (bad_alloc);
2 v oid operator delete(void *p) throw ();
3
4 v oid *operator new[](size_t n) throw (bad_alloc);
5 v oid operator delete[](void *p) throw ();

The standard library has an empty classnothrow_t , and one object namednothrow of that class.

6 / /Excerpt from <new>
7
8 s truct nothrow_t {};
9 extern const nothrow_t nothrow;

The only purpose ofnothrow is to let us have an alternative series of functions that do not throw excep-
tions. Theoperator new ’s in this series simply return zero if they cannot allocate the memory. The
operator delete ’s will be discussed below.

10 void *operator new(size_t n, const nothrow_t&) throw ();
11 void operator delete(void *p, const nothrow_t&) throw ();
12
13 void *operator new[](size_t n, const nothrow_t&) throw ();
14 void operator delete[](void *p, const nothrow_t&) throw ();

We now hav ethree ways to respond to an allocation error. Line 33 and 34 call anew_handler
function; line 25 throws an exception; and line 17 returns zero.You probably want to throw and catch an
exception.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/new.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new> //for nothrow, bad_alloc, set_new_handler
4 using namespace std;
5
6 c onst char *progname;
7 v oid my_new_handler();
8
9 i nt main(int argc, char **argv)

10 {
11 progname = argv[0];
12
13 cout << "How many bytes do you want to allocate? ";
14 size_t n;
15 cin >> n;
16
17 char *const p1 = new(nothrow) char [n]; //return 0 on error
18 if (p1 == 0) {
19 cerr << progname << ": out of store\n";
20 return EXIT_FAILURE;

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.9.3 new and delete 625

626 Exceptions Chapter 6

21 }
22 delete[] p1;
23
24 try {
25 char *const p2 = new char [n]; //throw exception on error
26 delete[] p2;
27 }
28 catch (const bad_alloc& bad) {
29 cerr << progname << ": out of store: " << bad.what() << "\n";
30 return EXIT_FAILURE;
31 }
32
33 set_new_handler(my_new_handler);
34 char *const p3 = new char [n]; //call my_new_handler on error
35 delete[] p3;
36
37 return EXIT_SUCCESS;
38 }
39
40 void my_new_handler()
41 {
42 cerr << progname << ": out of store\n";
43 exit(EXIT_FAILURE);
44 }
45

How many bytes do you want to allocate? 4294967296
new: out of store

The above line 17 showed how to passnothrow to anoperator new . How do we pass it to an
operator delete ? We don’t—the computer does. Assume that anew operator calls an
operator new or operator new[] function, with or without anothrow , followed by a construc-
tor. If the constructor throws an exception, thenew operator will call the corresponding
operator delete or operator delete[] function, with or without anothrow . This is the only
way that thenothrow version ofoperator delete or operator delete[] can be called.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/nothrow.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 using namespace std;
5
6 i nline void *operator new(size_t n) throw (bad_alloc) {
7 c out << "operator new without nothrow\n";
8 i f (void *const p = malloc(n)) {
9 r eturn p;

10 }
11 throw bad_alloc();
12 };
13
14 inline void operator delete(void *p) throw () {
15 cout << "operator delete without nothrow\n";
16 free(p);

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

17 }
18
19 inline void *operator new(size_t n, const nothrow_t&) throw () {
20 cout << "operator new with nothrow\n";
21 return malloc(n);
22 }
23
24
25 inline void operator delete(void *p, const nothrow_t&) throw () {
26 cout << "operator delete with nothrow\n";
27 free(p);
28 }
29
30 class obj {
31 public:
32 obj() throw (int) {throw 10;}
33 };
34
35 int main()
36 {
37 try {
38 obj *const p1 = new obj;
39 }
40 catch (int i) {
41 cout << "caught " << i << "\n";
42 }
43 catch (...) {
44 cout << "caught exception other than int\n";
45 }
46
47 try {
48 obj *const p2 = new(nothrow) obj;
49 }
50 catch (int i) {
51 cout << "caught " << i << "\n";
52 }
53 catch (...) {
54 cout << "caught exception other than int\n";
55 }
56
57 return EXIT_SUCCESS;
58 }

operator new without nothrow
operator delete without nothrow
caught 10
operator new with nothrow
operator delete with nothrow
caught 10

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.9.3 new and delete 627

628 Exceptions Chapter 6

▼ Homework 6.9.3a: let life::operator− catch bad_alloc

Our life::operator- on pp. 441−442 kept callingvector<life>::push_back with wild
abandon. Ifpush_back throws abad_alloc exception, letoperator- catch it and return
INT_MAX.
▲

▼ Homework 6.9.3b:
Version 3.8 of the Rabbit Game: throw exceptions

At the first sign of trouble, the game writes an error message tocerr and thenexit ’s. But calling
exit means that the terminal will never be properly destructed. Our screen could be left in graphics mode
or with a derelict window—a different outcome on each platform.

To ensure that every object is destructed, we will terminate the game by throwing an exception if
anything goes wrong. The exception will carry an error message up tomain . exit will no longer be
called anywhere, except in the C code interm.c . The files that included<cstdlib> only for exit and
EXIT_FAILURE will no longer need to do so.

The C++ Standard Library has a class namedexception , containing the following members
(among others).

1 / /Excerpt from <exception>
2
3 c lass exception {
4 public:
5 exception() throw () {}
6 exception(const exception& other) throw ();
7 v irtual ˜exception() throw ();
8 exception& operator=(const exception& another) throw ();
9

10 virtual const char *what() const throw ();
11 };

Like the objectcout , classexception has the last namestd (p. 20). We must therefore either call it
std::exception or sayusing namespace std; .

The exceptions that we throw will be of the following classexcept , publicly derived from the
above so we can catch them together. The base class destructor can throw nothing, so the derived class
destructor must be declared to throw no more than nothing.That’s the only reason the derived destructor
had to be declared.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/exception/except.h

1 #ifndef EXCEPTH
2 #define EXCEPTH
3 #include <sstream> //for ostringstream
4 #include <exception> //for exception
5 #include <string>
6 using namespace std;
7
8 c lass except: public exception {
9 c onst string s;

10 public:
11 ˜except() throw () {}
12 except(const string& initial_s) throw () : s(initial_s) {}
13 except(const ostringstream& ost) throw () : s(ost.str()) {}
14 const char *what() const throw () {return s.c_str();}
15 };

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

16 #endif

Don’t bother writing an exception specification for each function in the game. Justconstruct and
throw an except if anything goes wrong. Here is an example. We saw the double cast in line 12 in line
15 ofstatic_cast on p. 65. terminal.C will no longer include<cstdlib> since it no longer calls
exit .

1 / /Excerpt from terminal.C.
2 #include <sstream> //for ostringstream
3 #include "terminal.h"
4 #include "except.h"
5 using namespace std;
6
7 v oid terminal::put(unsigned x, unsigned y, char c)
8 {
9 i f (isprint(static_cast<unsigned char>(c)) == 0) {

10 ostringstream ost;
11 ost << "unprintable character "
12 << static_cast<unsigned>(static_cast<unsigned char>(c))
13 << " at l ocation (" << x << ", " << y << ")";
14 throw except(ost);
15 }
16
17 check(x, y);
18 term_put(x, y, c);
19 }

▲

▼ Homework 6.9.3c:
Version 3.9 of the Rabbit Game: catch the exceptions

The wabbit ’s are constructed ingame::game ; the surviving ones are destructed in
game::˜game . But suppose an exception escapes from awabbit ’s constructor and from the
game::game which called it. Thegame object, never having been completely constructed, will be ineli-
gible for the privilege of destruction.Thegame’s destructor will never be called; the surviving wabbit ’s
will never be destructed.

Our solution is simple.Before any exception escapes from thegame’s constructor, thegame’s con-
structor will destruct any wabbit ’s that have been constructed.The game’s destructor will still not be
called. Butthis is now harmless because there is nothing that thedestructor needs to do.

(1) Put the code that destructs thewabbit ’s into a separate function.It will be called by the
destructor for classgame, which will now be short enough to be inline.

1 / /A new non-static, private member function of class game.
2
3 v oid game::depopulate()
4 {
5 / /Destruct and deallocate all the wabbit’s that exist at this point.
6 / /Use the delete loop that was in game::˜game
7 / /(lines 23-27 of game.C on p. 542).
8 }

(2) The constructor forgame will catch any exception thrown by a constructor for any wabbit . It
will delete any wabbit’s that have already been constructed up to this point, and then re-throw the excep-
tion.

9 game::game(char initial_c)

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.9.3 new and delete 629

630 Exceptions Chapter 6

10 : term(initial_x)
11 {
12 try {
13 //code to construct all the wabbit’s, e.g.,
14 new rabbit(this, /* etc. */);
15 }
16
17 catch (...) {
18 depopulate();
19 throw;
20 }
21 }

(3) The re-thrown exceptions, and all others, will be caught inmain . The filemain.C will have to
include<new> for classbad_alloc in line 12, and<exception> for classexception in line 16.
We no longer call the functionset_new_handler .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/game6/main.C

1 i nt main(int argc, char **argv)
2 {
3 i nt status = EXIT_FAILURE; //guilty until proven innocent
4 s rand(static_cast<unsigned>(time(0)));
5
6 t ry {
7 game g;
8 g.play();
9 s tatus = EXIT_SUCCESS;

10 }
11
12 catch (const bad_alloc& bad) {
13 cerr << argv[0] << ": new failed: " << bad.what() << "\n";
14 }
15
16 catch (const exception& e) {
17 cerr << argv[0] << ": " << e.what() << "\n";
18 }
19
20 catch (...) {
21 cerr << argv[0] << ": main caught unexpected exception.\n";
22 }
23
24 return status;
25 }

▲

▼ Homework 6.9.3d: why did this solution crash the program?

In an early version of the game, the master list containedauto_ptr ’s.

1 l ist<auto_ptr<wabbit> > master;

Thegame’s constructor constructed theterminal and the master list and then started to construct
the wabbit ’s. If an exception escaped from the awabbit ’s constructor, it was also allowed to escape
from thegame’s constructor. In this case, thegame was nev er completely constructed, and hence never
destructed.

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Although thegame wqas never completely constructed, thegame’s terminal andmaster data
members were. Thewabbit ’s were destructed by themaster ’s destructor.

Or so I hoped. What actually happened?Hint: why must thegame object outlive its wabbit ’s?
See p. 613 for another reason why a container ofauto_ptr ’s is dangerous.
▲

printed 4/8/14
8:55:29 AM

All rights
reserved ©2014 Mark Meretzky

Section 6.9.3 new and delete 631

