Exceptions

6.1 Technical Preliminaries

Exceptions are a meway of handling errors in C++. Our first example will require three preliminary
details: unused arguments, ellipsis, and integenflow.

A function argument whose value is unused

The second argument of thpsint function will eventually specify the base in which to print the
first agument. Butight nowv the second gument is unused and the function prints only in baseVi®.
can indicate that the lack of use is deliberate, ammitighe “unused agument’ warning, by giving no
name to the second argument in the function definition in p. 13.

#include <iostream>
#include <cstdlib>
using namespace std;

void print(int i, int);
i nt main()

{
print(100, 10);
10 return EXIT_SUCCESS;
11}
12
13 void print(int i, int)
14 {
15 cout <<i<<"\n"
16}

©CoOo~NOOOUTA,WNPE

Even if thevalue of an argument is unused, data typemay still be releant. If two or more func-
tions share the same name, the data type ofcanmmant can tell the computer which function to cai.
fact, the mere presence or absence of an argument can identify the function.

Here are four examples ofgarments whose values are not usedjrare radically arguments that
have ro value at all. In each case, the only purpose of the argument is W ado oerload the function
name.

(1) A class can hee wo operator++ member functions, one for prefix and one for postithat
allows them to hee the same name is that their arguments aferdifit. Segp. 289-290.

When we write lines 20 and 24, the computer behas if we fad written the comments alongside
them. Theprefix operator++ in line 20 calls theoperator++ function with no argument, while the

PSS hesenea ©2014 Mark Meretzky

586 Exceptions Chapter 6

postfix operatot-+ in line 24 calls th@perator++ function with anint argument whose value (@ys

zero) is ignored. (Ditto for the twaperator-- functions.)

17 #include "obj.h" //pp. 179-180
18
19 obj ob=10;
20 cout << ++o0b <<"\n"; /[cout << ob.operator++() << "\n";
21
22 /IAt this point, the object contains 11.
23
24 cout << ob++<<"\n"; /lcout << ob.operator++(0) << "\n";
25
26 /IAt this point, the object contains 12.

11 line 20

11 line 24

(2) The Standard Library contains a glologlerator new function that dynamically allocates
memory for all data types.

27 void *operator new(size_t n);

To call a different function to allocate memory for objects of a specific class, we wiigeaator new
member function for that class:

28 class myclass {

29 /letc.

30 public:

31 void *operator new(size_t n);
32}

Since this class-specifaperatornew can get the size of the object by saysimpof (myclass) ,
it has no need to use the argumeniThe argument will be used only when other classes aneedérom
myclass ; see pp. 416 and 501-503.

(3) Theoperator new memory allocation functions in the C++ Standard Library come in pairs.
With the extra gyumentnothrow they indicate failure by returning zero; without thethrow , they
indicate failure by “throwing an exception”.

When we write lines 35 and 36, the computer ehas if we fad written the comments in 38 and
39 respectiely. The computer &lays passes a first argument of data tyge_t to the
operator new function. Ary arguments in the parentheses after the operaor in lines 35-36 are
passed along after tteize t . The only purpose of theothrow argument is to let us a two func-

tions with the same namédts value is ignored. (Ditto for the pairs operator delete functions.)
See p. 625.

33 #include <new> [[for nothrow

34

35 int *const p = new int;

36 int *const p = new(nothrow) int;

37

38 /lint *const p = operator new(sizeof (int)); /ILine 35 does this.

39 /lint *const p = operator new(sizeof (int), nothrow); //Line 36 does this.

In fact, thenothrow object has no value at all: it contains no members. Its declaration is

40 //Excerpt from the header file <new>
41
42 class nothrow _t { /la class with no members

PSS hesenea ©2014 Mark Meretzky

Section 6.2 Throw and Catch an Exception 587

43}
44
45 extern const nothrow_t nothrow; [/lthe only object of this class

You'll have o wait until we do templates, iterator categories, and dispatching before the next tw
examples will mak nse.

(4) The C++ Standard Library functions whose arguments are iterators areatgdliethms; exam-
ples arefind , copy, sort , and distance . An dgorithm sometimes passes the iterators telkper
function to do its work. An algorithm might hae sveal versions of its helper functions, one for each
“ category’ of i terator.

The helper functions for an algorithm alieathe same name and the same iterator argumarits, b
each takes an additional argument calledtarator tag. Like nothrow , an terator tag object has no
members and noalue. Butthere are seeral classes of tags, one for each category of iterdtowing the
algorithm to call the correct helper via function namerloading. Segp. 916-917.

(5) Obsolete implementations of the C++ Standard Libiagiuding Microsoft's, had manother
arguments whose value was ignored but whose data type waantel®ftenthese arguments were merely
pointers to objects of different classes, containing #@eNULL or 0, to avoid the expense of constructing
ary actual objects. The clearest example in the literature is the third argument of the function
iter_swap_impl in p. 43 ofGeneric Pogramming and the STLNewer versions of C++wmid these
arguments by using the template clissator_traits

Ellipsis
Here is a C declaration for a function whose arguments, except for the first, can hewahaer or
data type. The ellipsis dots constitute a single token, so there can be no whitespace among them.
1 i nt printf(const char *format, ...);
In C++, the comma before the ellipsis is optional for some reason.

2 i nt printf(const char *format ...);

The only common functions with indeterminate arguments pairgf and scanf and their
cousindprintf , sprintf , etc. Thefunctions are vital in C, deprecated in CHdnix system program-
mers knav the ellipsis from the functionsxeclp andexecl (rhymes with “Doctor Jekll'’), used to
fork and spawn a process. In C++, ellipses will be used primarily for the “exception hdrx#ess!

Integer overflow

INT_MIN andINT_MAX are the minimum and maximum values of data typpe. They may be
different on each platform. But on alld¥8 complement platforms, the quotididT_MIN /-1 will not

fitin anint :
16-bit inteyer 32-bit integer 64-bit integer
sizeof(int) == sizegf(int) == sizeof(int) ==
INT_MIN -32,768 -2,147,483,648 -9,223,372,036,854,775,808
INT_MAX 32,767 2,147,483,647 9,223,372,036,854,775,807

INT_MIN andINT_MAX are macros in theclimits> header file of the C++ Standard Library
But macros are deprecated in CHAfe will get this information about integers from the template class
numeric_limits<int> on pp. 745-747 instead.

PSse A hesenea ©2014 Mark Meretzky

588 Exceptions Chapter 6

6.2 Throw and Catch an Exception

C++ exceptions are a meway of responding to errorsLhey havenothing to do with operating sys-
tem exceptions, interrupts, or signals.

There are four reasons to use exceptions.

(1) An exception transmits information from the point where an error wasveisdoto the point
where remedial action is tak. Thesdwo locations may be far apart in your progralfor example, let
main callf ,f callg, andg discover an eror:

main

Our knee-jerk reaction hasnalys been to output an error message and drop dead on the spot (lines
23-26):

1 #include <iostream>
2 #include <cstdlib> [lfor exit and EXIT_FAILURE
3 #include <cstring> [ffor strcmp
4 using namespace std,;
5
6 void f();
7 void g();
8
9 i nt main(int argc, char **argv)
10{
11 const bool verbose = argc >= 2 && strcmp(argv[1], "-v") == 0;
12 f0);
13 return EXIT_SUCCESS;
14}
15
16 void f()
174
18 90;
19}
20
21 void g()
22 {
23 if (something is wrong) {
24 cerr << "error message\n";
25 exit(EXIT_FAILURE);
26 }
27}

PSS hesenea ©2014 Mark Meretzky

Section 6.2 Throw and Catch an Exception 589

But we might want to call the functianin mary different programs. In this case we coutdmtite
the action irg, because each program might need a different error messagje awvde. We would have ©
write the action up in one of the functions that cafjefl or main .

Even if g were used only in this one program, we still might not be able to write the actjorilime
program might run in tev modes, terse ancerbose, or English and Spanish, controlled bybtt@ in line
11. Sincethebool is local tomain, only main knows which message to print. Once again, vl
have o write the action abee g, up in main .

Of course, we could gé return values tg andf , and kucket-brigade the result of the ab®line 23
back up tamain :

28 int main(int argc, char **argv)

29 {
30
31
32
33
34
35
36
37
38
39
40
41
42}
43

const bool verbose = argc >= 2 && strcmp(argv[1], "-v") == 0;

it (f0) {
if (verbose) {
cerr << "verbose error message\n";
} else{
cerr << "terse error message\n";

}
return EXIT_FAILURE;

}

return EXIT_SUCCESS;

44 bool ()

45 {
46
47}
48

return a();

49 bool g()

50 {
51
52
53
54
55
56}

if (something is wrong) {
return false;

}

return true;

But this copies the return value gbver and over on its way up tanain . Our return value is merely a
bool , but other return values might be objects that apersve 0 copy. In any case, it would be simpler
for g andf to returnvoid . Can we &oid burdeningy andf with return values?

A C++ exception is a faster way to transmit information frgrhack up tomain . It transmits the
information directly from a lwer-level function to one of the highéevel ones that called it. Along the
way, the information is not repeatedly copiedgltkebool s in lines 49 and 52.

(2) Most of the time, an exceptiontlwown, or sent on its &y, because something has gone wrong.
But an exception can also be thrown when¢he information to be transmitted upwardsni fit into the
normal channels, i.e., into the return type of the function. That ysitik called an “exception’, not an
“error’. An exception gves a unction an extra, high-bandwidth return type for unusual occasions, in addi-
tion to its normal return type.

(3) Every constructed object must be destructed, or disaster could result. Consider the humble
terminal::put function in lines 36-47 oferminal.C on p. 161. It calls thexit function if its
argument is a non-printable characterhe test program on pp. 157-159 would eait if we type a

PSse A hesenea ©2014 Mark Meretzky

590 Exceptions Chapter 6

RETURNMr ary other non-printable characteBefore terminating the prograrexit will call the destruc-
tors for the statically allocated objects. But ¢enminal is allocated automaticallypecause it is a data
member of an object that is allocated automaticatiyhe work done by the constructor for class
terminal will never be tndone. Ouscreen could be left in graphics mode, or with a derelict windo

(4) Even if we dort’ terminate the program, theseaother reason whwe mght want to call
destructors when an exception is thno Errorhandling in ag language often requires ushtacktrack,or
dismantle some of our work to get back to a clean state from which we can contirardoninC++, the
backtracking is performed by calling destructors. An exception will call the destructors for all the local
objects in the functions that it flieya. For example, anxeeption thrown fromg back up tdf will cause
a mass extinction of all the automatic objectgin

The more seere the error is, the farther weugaio backtrack. Avery severe error ing will throw an
exception all the way back up toain , destructing all the objects mandf . A less seere exception may
be caught halfway up tmain , destructing fewer objects and backtracking less far.

Throw and catch an exception

An exception usually transmits information from one function to anotBet our first example will
transmit information within a function.

The leyword try and the following code in curly braces in line 20—45 is calley d&lodk. The try
block has to test forverflow before truncation becausT_MIN % -1 is not equal to zero with g+
compiler.

The leyword catch and the following argument in parentheses and code in curly braces is called a
handler (lines 47-49, 51-54, 56-59, 61-63). Ifyaaxception isthrow 'n inside a try block, we go
directly to the appropriate handler in the list of handlers after the try block.

An automatically allocated variable is constructed with a declaration or as an anonymous temporary;
a dynamically allocated variable is constructed widw. Any automatically allocated variable constructed
in thetry block (e.g., lines 22 and 26) will be destructed as we are catapulted out of theAdhakami-
cally allocated variable, hower, will not destructed.

The handlers are tried one by one in the order in whighateewritten. The optional. handler in
lines 61-63 must be last because it will catch exteption. Ary handler that came after it wouldvearo
chance to catch anything.

If the code inside oury{} were somehw to throw an exception of ag data type other thaimt ,
truncation , or overflow , you would go to the. handler If there were no.. handlerthe
terminate function would be called, which will call th@bort function, which assassinates the pro-
gram. (Onmy platform, Unix, it sends the “abort sigriaBIGABRTto the program.) These bafunctions
have dready been written for you in the C++ Standard Librafg make the terminate function do
something other than callirgbort , you can write your wn terminate function and mad it opera-
tional by passing its address to #et_terminate function on pp. 614-615, analogous to the
set_new_handler function on pp. 397-398. Include the headerdis&ception> for
set_terminate

Other than the.. handler every handler must hee exactly one agument. Andeach handler must
have an agument of a different type.

If the handler uses theale or members of the caught object, it must declare a name for the caught
object (lines 47 and 51). But if the handler doeseé them, or if the caught object contains no value or
members, the handler doesimveto declare a name for it (line 56).

After executing the body of one of the handlers, we go to the statement after the last handler (line
65). Andif no exception has been thrown at all, we skip all the handlers and go straight from line 45 to line
65.

Line 14 is a declaration for a class that has no members.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exception/exceptionl.C

PSse A hesenea ©2014 Mark Meretzky

Section 6.2 Throw and Catch an Exception 591

1 #include <iostream>
2 #include <cstdlib>

3 #include <climits>

4 using namespace std,;
5

6

7

8

struct truncation {
i ntdividend; //data members public for simplicity
i ntdivisor;

10 truncation(int initial_dividend, int initial_divisor)
11 :dividend(initial_dividend), divisor(initial_divisor) {}

14 class overflow {};

15

16 int main()

17 {

18 int status = EXIT_FAILURE; /[guilty until proven innocent
19

20 try |

21 cout << "Please input the dividend and press RETURN: ";
22 int dividend; //uninitialized variable

23 cin >>dividend,;

24

25 cout << "Please input the divisor and press RETURN: ";
26 int divisor;//uuninitialized variable

27 cin >>divisor;

28

29 if (divisor ==0) {

30 throw dividend,;

31 }

32

33 if (dividend == INT_MIN && divisor == -1) {

34 const overflow ov = overflow();

35 throw ov;

36 }

37

38 if (dividend % divisor != 0) {

39 const truncation t(dividend, divisor);

40 throw t;

41 }

42

43 cout << "The quotient is " << dividend / divisor << ".\n";
44 status = EXIT_SUCCESS;

45 }

46

a7 catch (inti){

48 cerr << "Attempt to divide " <<i << " by zero.\n";

49 }

50

51 catch (truncation t) {

52 cerr << "Truncation would result when dividing " << t.dividend
53 << " by " <<t .divisor <<"\n";

54 }

PSS hesenea ©2014 Mark Meretzky

592 Exceptions Chapter 6

55

56 catch (overflow) {

57 cerr << "Integer overflow would result when dividing " << INT_MIN
58 << " by - 1.\n%

59 }

60

61 catch (..){

62 cerr << "Caught unexpected exception.\n";
63 }

64

65 return status;

66 }

Since the objeabv in line 34 isconst and has no user-defined default constructor (its class has no
userdefined members at all), we must call its implicitly-defined constructor wjilicé parenthesesSee
the C++ Standard, §88.3Me an't do this by writing

67 const overflow ov();

since that would look li& a function call (pp. 134-135.) But ddnvorry: the declaration will shortly be
removed.

To trn on exception handling in Microsoft Visual C++, select the “Enaktemion handling’
option in the C++ Language cgtay of the C/C++ tab in the Project Settings dialog box, or uséke
compiler switch.

Please input the dividend and press RETURN: 10
Please input the divisor and press RETURN: 5
The quotient is 2.

Please input the dividend and press RETURN: 10
Please input the divisor and press RETURN: 0
Attempt to divide 10 by zero.

Please input the dividend and press RETURN: —2147483648
Please input the divisor and press RETURN: -1
Integer overflow would result when dividing -2147483648 by -1.

Please input the dividend and press RETURN: 10
Please input the divisor and press RETURN: 3
Truncation would result when dividing 10 by 3.

Throw an object and catch it by reference

We destruct tvo objects as we pass line 180 e which one is destructed first, line 15 tags one of
them with a distinct value.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/exception/throwobj1.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

OO, WN B

i nt main()

PSS hesenea ©2014 Mark Meretzky

Section 6.3 Throw an Anonymous Object 593

7
8 try{
9 obj ob =10;
10 throw ob;
11 }
12
13 catch (obj ob) {
14 cout <<ob<<"\n"
15 ++0b;
16 }
17
18 return EXIT_SUCCESS;
19}
construct 10 line 9
copy construct 10 line 10; let's all this one “the thrown object”
destruct 10 As we pass line 11, we destruct the object in line 9.
copy construct 10 line 13
10 line 14
destruct 11 As we pass line 16, we destruct the object in line 13.
destruct 10 Then line 16 destructs the thrown object.
We @an eliminate the underlined object by catching the thrown object by reference:
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exception/throwobj2.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std,;
5
6 i nt main()
7
8 try{
9 obj ob =10;
10 throw ob;
11 }
12
13 catch (const obj& ob) {
14 cout <<ob<<"\n"
15 }
16
17 return EXIT_SUCCESS;
18}
construct 10 line 9
copy construct 10 Line 10 constructs the thrown object.
destruct 10 Line 11 destructs the object in line 9.
10 line 14
destruct 10 Line 15 destructs the thrown object.

PSS hesenea ©2014 Mark Meretzky

594 Exceptions Chapter 6

6.3 Throw an Anonymous Object

Line 34 constructs an anonymous (i.e., nameless) object ofodladtow by giving no aguments
to its constructor (Classoverflow actually has no constructdiut you hae write line 34 as if it had a
constructor with no guments.) ltthen throws the anonymous obje@&imilarly, line 38 constructs an
anorymous object of clasguncation by giving two arguments to its constructoit then throws the
anonymous object.

Line 49 catches by reference wm@ constructing and destructing an unnecessary obthe caught
object. Ididn’t bother to catch by reference in lines 45 and 54, because those objectsitat no time to
copy. We'll see another reason to catch by reference when we talk about exceptions and inheritance.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/exception/exception2.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <climits>
4 using namespace std,;
5
6 struct truncation {
7 i ntdividend,;
8 i nt divisor;
9
10 truncation(int initial_dividend, int initial_divisor)
11 dividend(initial_dividend), divisor(initial_divisor) {}
12}
13
14 class overflow {};
15
16 int main()
174
18 int status = EXIT_FAILURE;
19
20 try |
21 cout << "Please input the dividend and press RETURN: ";
22 int dividend; /luninitialized variable
23 cin >>dividend,;
24
25 cout << "Please input the divisor and press RETURN: ";
26 int divisor;//uninitialized variable
27 cin >>divisor;
28
29 if (divisor ==0) {
30 throw dividend;
31 }
32
33 if (dividend == INT_MIN && divisor == -1) {
34 throw overflow();
35 }
36
37 if (dividend % divisor != 0) {
38 throw truncation(dividend, divisor);
39 }
40
41 cout << "The quotient is " << dividend / divisor << ".\n";
42 status = EXIT_SUCCESS;

s hesenea ©2014 Mark Meretzky

Section 6.4 An Exception that Escapes from a Function 595

43 }

44

45 catch (inti){

46 cerr << "Attempt to divide " <<i << " by zero.\n";
47 }

48

49 catch (const truncation& t) {

50 cerr << "Truncation would result when dividing " << t.dividend
51 << " by " <<t .divisor <<"\n";

52 }

53

54 catch (overflow) {

55 cerr << "Integer overflow would result when dividing " << INT_MIN
56 << " by - 1.\n%

57 }

58

59 catch (..){

60 cerr << "Caught unexpected exception.\n";

61 }

62

63 return status;

64}

6.4 AnException that Escapes from a Function

A block is a group of zero or more statements surrounddctbyly braces. Examples are the body
of a functionfor loop,if statement, oiry block.

When we thrav an exception inside a block and catch it outside, or when wermatch it at all, we
say that the exception hascapedfrom the block. Because of tleeception specificationn lines 17 and
58, the only exceptions that are allowed to escape ffrane those of data typeg , overflow , or
truncation . If an exception of ag other data type somekhoescapes fronf , the unexpected func-
tion would be called, which will call thierminate function, which will call theabort function.

Like terminate andabort , the unexpected function has already been written for us in the
C++ Standard LibraryBut if we want thainexpected function to do something other than calling
terminate , we @an write our @n unexpected function and mak it operational by passing its address
to theset_unexpected function. (Include<exception> for set_unexpected)

A function with no exception specification is allowed twehany exeption escape from itExcep-
tion specifications are therefore optional in C++, but mandatorywa Ja

If an exception traels all the way up througimain but is neve caught anywhere, the program
would automatically call theerminate function, which will call theabort function. Inthis case, the
unexpected function is not called.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/exception/exception3.C

#include <iostream>

#include <cstdlib>

#include <cstring> //for strcmp
#include <climits>

using namespace std;

struct truncation {
i nt dividend;
i nt divisor;

O©CoOoO~NOOOUTA, WN P

R hesenea ©2014 Mark Meretzky

596 Exceptions

10

11 truncation(int initial_dividend, int initial_divisor)

12 :dividend(initial_dividend), divisor(initial_divisor) {}
13}

14

15 class overflow {};

16

17 void f() throw (int, overflow, truncation); /lexception specification
18

19 int main(int argc, char **argv)

20 {

21 int status = EXIT_FAILURE;

22 const bool verbose = argc >= 2 && strcmp(argv[1], "-v") == 0;
23

24 try |

25 f0);

26 status = EXIT_SUCCESS;

27 }

28

29 catch (inti){

30 if (verbose) {

31 cerr << "Attempt to divide " <<i << " by zero.\n";
32 }

33 }

34

35 catch (const truncation& t) {

36 if (verbose) {

Chapter 6

37 cerr << "Truncation would result when dividing " << t.dividend

38 << " by " <<t .divisor <<".\n";
39 }

40 }

41

42 catch (overflow) {

43 if (verbose) {

44 cerr << "Overflow would result when dividing " << INT_MIN

45 << " by - 1.An%

46 }

47 }

48

49 catch (..){

50 if (verbose) {

51 cerr << "Caught unexpected exception.\n";
52 }

53 }

54

55 return status;

56 }

57

58 void f() throw (int, overflow, truncation)

59 {

60 cout << "Please input the dividend and press RETURN: ";
61 int dividend, /luninitialized variable

62 cin >> dividend;

63

printed 4/8/14
8:55:29 AM

All rights
reserved

©2014 Mark Meretzky

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81}

Section 6.5 A Class whose Member Functions Thow Exceptions 597

cout << "Please input the divisor and press RETURN: ";
int divisor;//uninitialized variable
cin >>divisor;

if (divisor ==0) {
throw dividend;

}

if (dividend == INT_MIN && divisor == -1) {
throw overflow();

}

if (dividend % divisor = 0) {
throw truncation(dividend, divisor);

}

cout << "The quotient is " << dividend / divisor << ".\n";

6.5 AClass whose Member Functions Thow Exceptions
Four things can go wrong in the member functions of the following daites :

(1) Theinitial_month argument of the constructor could beaid.

(2) Theinitial_day argument of the constructor could bealid.

(3) We oould call anoperator++ member function (prefix or postfix) ofdate that already contains
the last possible date, December 31 of the Iar MAX

(4) We oould call anoperator-- member function (prefix or postfix) ofdate that already contains
the earliest possible date, January 1 of the BBRrMIN .

We therefore create four exception classes,

date::bad_month
date::month_and_day
date::overflow
date::underflow

To remind us what these four classes arevi@ gve them the last naméate by declaring them
inside the{ curly brace in lines 6 and 77 afate.h

But they can't be ceclared just aywhere within the curly braces. The declaration for a class must
always come before grnother mention of the class. In fact, the same is true of almost all declarations in C
and C++. Before we declare the constructor of allads in lines 56-57, we must write the entire decla-
ration, not merely a forward declaration, for claag_month in lines 31-39, and for class
bad_month_and_day in lines 41-51. The declaration for classverflow in line 53 must come
before the declaration of the prefiperator++ in line 59 and the postfigperator++ in lines 62-66.

And the declaration for classmderflow in line 54 must come before the declaration of the prefix
operator-- in line 60 and the postfiaperator-- in lines 68-72.

We dso provide eachxeeption class with aaperator<< function, so that the handlers can output
them without bothering with their internal detailBhe operator<< 's that print classesad_month and
bad_month_and_day must be friends of these classes to access the@edata members. But the
operator<< s that print classesverflow andunderflow have ro need of friendship, since those
classes contain no data members at\Ak ceclare them after line 77 to shahat the are neither friends
nor members of gnclass.

et hesenea ©2014 Mark Meretzky

598 Exceptions Chapter 6

All four of the operator<< functions for the exception classes are inline, but only thdrines
79-85 need thedyword inline . The other tw are inline because tlgeare defined, not merely declared,
within the curly braces in lines 6-77. Theyword inline also maks the functions in lines 79-85 static,
in the sense of being visible only within th@ file that includedate.h . Without the leyword, these
functions would be “multiply definetlif date.h were included in more than orte file.

Within the all-important curly braces in lines 6 and 77 reven a first-name basis with the members
of classdate . That's why line 36 can getweay with sayingbad_month . But outside the curly braces,
we hae b address each member of clakse by its full name. That's why line 79 needs the stiffly for
mal date::overflow

As usual, the postfioperator++ in lines 62-66 calls the prefiperator++ in line 59. The
prefix operator++ throws anoverflow exception which the postfioperator++ does not catch.
Therefore the postfigperator++ throws the same exception.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exceptl/date.h

1 #ifndef DATEH

2 #define DATEH

3 #include <iostream>
4 using namespace std,;

5
6 class date {
7 static const int length[];
8
9 i ntyear;
10 int month; //date::;january to date::december inclusive
11 int day; n to length[month] inclusive
12
13 public:
14 enum month_t{ //indices into the length array
15 january =1,
16 february,
17 march,
18 april,
19 may,
20 june,
21 july,
22 august,
23 september,
24 october,
25 november,
26 december
27 3
28
29 /[Exceptions thrown by the member functions of class date:
30
31 class bad_month {
32 const int month;
33 public:
34 bad_month(int initial_month): month(initial_month) {}
35
36 friend ostream& operator<<(ostreamé& ost, const bad_month& bm) {
37 return ost << "bad month " << bm.month;
38 }
39 3

PSse A hesenea ©2014 Mark Meretzky

Section 6.5 A Class whose Member Functions Thow Exceptions 599

40

41 class bad_month_and_day {

42 const int month;

43 const int day;

44 public:

45 bad_month_and_day(int initial_month, int initial_day)
46 : month(initial_month), day(initial_day) {}

47

48 friend ostream& operator<<(ostream& ost, const bad_month_and_day& bd) {
49 return ost << "bad month " << bd.month <<", day " << bd.day;
50 }

51 3

52

53 class overflow {};

54 class underflow {};

55

56 date(int initial_month, int initial_day, int initial_year)

57 throw (bad_month, bad_month_and_day);

58

59 date& operator++() throw (overflow);

60 date& operator--() throw (underflow);

61

62 const date operator++(int) throw (overflow) {

63 const date old = *this;

64 ++*this; //(*this).operator++();

65 return old;

66 }

67

68 const date operator--(int) throw (underflow) {

69 const date old = *this;

70 --*this; //(*this).operator--();

71 return old;

72 }

73

74 friend ostream& operator<<(ostreamé& ost, const date& d) {
75 return ost << d.month << "/" << d.day << "/" << d.year,
76 }

77}

78

79 inline ostream& operator<<(ostreamé& ost, const date::overflow&) {
80 return ost << "can't go beyond December 31, " << INT_MAX;
81}

82

83 inline ostream& operator<<(ostreamé& ost, const date::underflow&) {
84 return ost << "Can't go before January 1, " << INT_MIN;
85}

86 #endif

With my compiley we're on a first-name basis with the members of alizdée from the double
colon in line 20 to the closing curly brace in line 3¢hat’s why line 21 doesn’'need to mention the last
name ofbad_month andbad_month_and_day . With other compilers, line 21 must say
date::bad_month anddate::bad_month_and_day

If the prefixoperator++ throws theoverflow exception in line 46, it first restores tdate to
its original value in lines 43-45We dn't want to leae the date in an inconsistent, half-incremented

R hesenea ©2014 Mark Meretzky

600 Exceptions Chapter 6

state. Linegl4-45 may be combined to
87 day = date_lengthimonth = december];

But dontdo it. C++does not share €tage to cram as much code as possible into a single expression.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/exceptl/date.C

1 #include <climits>
2 #include "date.h"

3
4 constint date::length[] ={
5 0, [/dummy
6 31, [/ljanuary
7 29, /lfebruary
8 31, /Imarch
9 30, /lapril
10 31, /Imay
11 30, /ljune
12 31, [july
13 31, /laugust
14 30, /Iseptember
15 31, /loctober
16 30, /Inovember
17 31 /ldecember
18}
19
20 date::date(int initial_month, int initial_day, int initial_year)
21 throw (bad_month, bad_month_and_day)
22 {
23 year = i nitial_year;
24
25 if (initial_month < january || initial_month > december) {
26 throw bad_month(initial_month);
27 }
28 month = i nitial_month;
29
30 if (initial_day <1 || initial_day > length[month]) {
31 throw bad_month_and_day(month, initial_day);
32 }
33 day = i nitial_day;
34}
35
36 date& date::operator++() throw (overflow) //prefix
37
38 if (++day > length[month]) {
39 day = 1;
40 if (++month > december) {
41 month = j anuary;
42 if (year>=INT_MAX) {
43 //lUndo the ++’sin lines 38 and 40.
44 month = december;
45 day = | ength[december];
46 throw overflow();
47 }
48 ++year,;

PSse A hesenea ©2014 Mark Meretzky

49
50
51
52

53}

54

Section 6.5 A Class whose Member Functions Thow Exceptions 601

}

return *this;

55 date& date::operator--() throw (underflow) //prefix

56 {

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72}

©CoOo~NOOOUTA,WNPE

if (-day<1){
if (--month < january) {
month = december;
if (year <= INT_MIN) {
//lUndo the --'siin line 57 and 58.
month = j anuary;
day = 1;
throw underflow();
}
--year;
}
day = | ength[month];
}

return *this;

Line 12 ofmain.C constructs the last possildate , causing theperator++
adate::overflow exception.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/exceptl/main.C

#include <iostream>
#include <cstdlib>
#include <climits>
#include "date.h"
using namespace std;

i nt main()

{
i nt status = EXIT_FAILURE;

try {
date d(date::december, 31, INT_MAX);

cout <<++d<<"\n"; //cout << d.operator++() << "\n";
status = EXIT_SUCCESS;

}

catch (const date::bad_month& bm) {
cerr << bm << "\n"; /loperator<<(cerr, bm) << "\n";

}

catch (const date::bad_month_and_day& bd) {
cerr << bd << "\n";

}

catch (const date::overflow& ov) {

in line 13 to thrav

PeSse A hesenea ©2014 Mark Meretzky

26
27
28
29
30
31
32
33
34
35
36
37
38}

602 Exceptions Chapter 6

cerr << ov << "\n";

}

catch (const date::underflow& un) {
cerr <<un<<"\n";

}
catch (..){

cerr << "Caught unexpected exception.\n";
}

return status;

can’'t go beyond December 31, 2147483647

6.6 Hierarchies of Exceptions

We reeded fie sparate handlers in lines 17-35 of the&bmain.C . But we will nov catch
overflow andunderflow with a single handler by publicly deriving them from a common base class,
flow . Smilarly, we will publicly derive dassbad_month_and_day from classbad_month . The
inheritance must be public so we caretattvantage of it when we catch the exceptionsi&in .

date::bad_month date::flow

date::bad_month_and_day date::overflow date::underflow

All five of the abwe dasses will still hae the last namelate because theare declared within the curly
braces in lines 6 and 96 déte.h

Each class dered from flow will have o be pinted diferently, so Id like flow ’s operator<<
in lines 58-61 to be virtualBut only a member function, not a friend, can be virtual. As on pp. 496-497,
our workaround will be to he theoperator<< call the virtual member functioprint in line 54 to do
all the work. Theclasses dered from flow will have b override thisprint because it is a pure virtual
function, but thg will not override operator<< . Finally, a dass with a virtual function must alsovesa
virtual destructor (line 56).

Thedate::bad_month::print in line 36 has to be public, since it is called by a function that is
neither a member nor a friend of clasde::bad_month (line 43). But the corresponding
date::flow::print in line 54 can be prate, since it is neéer called by a function that is neither a
member nor a friend of classte::flow . Infact, it is nger called at all.

The constructor in line 76 can thv@bad_month_and_day as well as &#ad_month . But
bad_month_and_day is derved frombad_month , so it dbesnt need to be mentioned in theoeption
specification.

—On the Web at
http://i5.nyu.edu/ Omm64/book/src/except2/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>

4
5
6

using namespace std;

class date {

PSse A hesenea ©2014 Mark Meretzky

Section 6.6 Hierarchies of Exceptions 603

7 static const int length[];
8
9 i ntyear; /Imust construct data members in this order
10 int month; //date::;january to date::december inclusive
11 int day; n to length[month] inclusive
12
13 public:
14 enum month_t{ //indices into the length array
15 january =1,
16 february,
17 march,
18 april,
19 may,
20 june,
21 july,
22 august,
23 september,
24 october,
25 november,
26 december
27 3
28
29 /[Exceptions thrown by the constructor of class date:
30
31 class bad_month {
32 const int month;
33 public:
34 bad_month(int initial_month): month(initial_month) {}
35 virtual “"bad_month() {}
36 virtual void print(ostream& ost) const {ost << "bad month " << month;}
37 b
38
39 class bad_month_and_day: public bad_month {
40 const int day;
41
42 void print(ostream& ost) const {
43 bad_month::print(ost);
44 ost << day" <<day;
45 }
46 public:
47 bad_month_and_day(int initial_month, int initial_day)
48 bad_month(initial_month), day(initial_day) {}
49 b
50
51 /[Exceptions thrown by the 'crement operators functions of class date:
52
53 class flow {
54 virtual void print(ostream&) const = 0;
55 public:
56 virtual “flow() {}
57
58 friend ostream& operator<<(ostream& ost, const flow& f) {
59 f.print(ost);
60 return ost;

printed 4/8/14
8:55:29 AM

hesenea ©2014 Mark Meretzky

604 Exceptions Chapter 6

61 }
62 3
63
64 class overflow: public flow {
65 void print(ostreamé& ost) const {
66 ost <<"can't go beyond December 31, " << INT_MAX;
67 }
68 b
69
70 class underflow: public flow {
71 void print(ostream& ost) const {
72 ost <<'"can't go before January 1, " << INT_MIN;
73 }
74 3
75
76 date(int initial_month, int initial_day, int initial_year) throw (bad_month);
77
78 date& operator++() throw (overflow);
79 date& operator--() throw (underflow);
80
81 const date operator++(int) throw (overflow) {
82 const date old = *this;
83 ++*this;
84 return old;
85 }
86
87 const date operator--(int) throw (underflow) {
88 const date old = *this;
89 --*this;
90 return old;
91 }
92
93 friend ostream& operator<<(ostreamé& ost, const date& d) {
94 return ost << d.month << "/" << d.day << "/" << d.year,
95 }
96 };
97
98 inline ostream& operator<<(ostreamé& ost, const date::bad_month& bm) {
99 bm.print(ost);
100 return ost;
101}
102 #endif

On some platforms, thead_month in line 20 must be written atate::bad_month . Ditto for
lines 35 and 54.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/except2/date.C

#include <climits>
#include "date.h"

const int date::length[] = {
0, [/dummy
31, [/ljanuary
29, /lfebruary

NOoO O~ WNPRE

PeSse A hesenea ©2014 Mark Meretzky

Sect

8

9
10
11
12
13
14
15
16
17
18}
19
20 date::
21
22
23
24
25
26
27
28
29
30
31
32
33}
34

Hierarchies of Exceptions 605

ion 6.6

31, /Imarch

30, /lapril

31, /Imay

30, /ljune

31, july

31, /laugust

30, /Iseptember
31, /loctober
30, /Inovember
31 /ldecember
date(int initial_month, int initial_day, int initial_year) throw (bad_month)

year = i nitial_year;

if (initial_month < january || initial_month > december) {
throw bad_month(initial_month);

}

month = i nitial_month;

if (initial_day <1 || initial_day > length[month]) {
throw bad_month_and_day(month, initial_day);

}
day = i nitial_day;

35 date& date::operator++() throw (overflow) //prefix

36 {
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52}
53

if (++day > length[month]) {

day = 1;
if (++month > december) {
month = j anuary;

if (year >=INT_MAX) {
/lUndo the ++'sin lines 37 and 39.

month = december;
day = | ength[month];
throw overflow();

}

++year;

}

return *this;

54 date& date::operator--() throw (underflow) //prefix

55 {
56
57
58
59
60
61

if (--day < 1) {
if (--month < january) {
month = december;

if (year <= INT_MIN) {
//lUndo the --'sin lines 56 and 57.
month = j anuary;

printed 4/8/14
8:55:29 AM

All rights
reserved

©2014 Mark Meretzky

62
63
64
65
66
67
68
69
70
71}

606 Exceptions Chapter 6

day = 1;
throw underflow();
}
--year;
}
day = | ength[month];

}

return *this;

Line 16 ofmain.C will catch date::bad_month |, or any ather exception of a class that is pub-
licly derived from clasgdate::bad_month . Similarly, line 20 will catch anylate::flow

Lines 16 and 20 must catch by referencevtmdaslicing of the additional members introduced in the
derived dasses. br slicing, see pp. 490-49For example, if the argument in line 16 was declared as a
plain olddate::bad_month |, not as a reference thereto, thgerator<< in line 17 would alays call
date::bad_month::print . It would never call never call
date::bad_month_and_day::print , Snce thevirtual mechanism is used only when the object
is specified by a pointer or reference.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/except2/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <climits>

4
5

#include "date.h"
using namespace std;

i nt main()
{
i nt status = EXIT_FAILURE;
try |
date d(date:april, 31, 2014);
status = EXIT_SUCCESS;
}

catch (const date::bad_month& b) {
cerr <<b<<"n";

}

catch (const date::flow& f) {
cerr <<f<<"\n";

}
catch (..){

cerr << "Caught unexpected exception.\n";
}

return status;

bad month 4, day 31

PSS hesenea ©2014 Mark Meretzky

Section 6.7 Backtracking 607

As we sav earlier, the handlers are tried in the order in whichythee listed. The handler for trunca-
tion comes before the one foreoflow since truncation happens more often. If we inserted the following at
the abee line 15 ofmain.C , line 16 would no longer kra a t©vance to catch
date::bad_month_and_day

30 catch (const date::bad_month_and_day& b) {
31 cerr <<b<<"n";
32 }

6.7 Backtracking

Error recovery sometimes requires backtracking or dismantling.

A compiler hiilds a tree whener it sees an xpression. Les imagine a simple language in which
each expression is on a separate line. When the compiler encounters the syntax error in line\&sit remo
the partially constructed second tree before it begins to build the third one.

la=Db+c
2d=-¢e¢ -
3g=nh~*i

list of statements

list of statements

PSS hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA,WNPE

10

608 Exceptions Chapter 6

list of statements

Throwing an exception destructs the automatic objects.

Whenexit is called, only the statically allocated objects of a program are destructed (pp. 184-185).
When exceptions are thrown, the automatically allocated objects can be destructed aseavdilnamic
objects will not be destructed, howee, unless we provide for them as described welo

To illustrate,main will call f, f will call g, and on the way down we will construct objects of all
three storage classes. The static and automatic objects are statied - and auto -. Thepointerp in
line 39 is automatic although the object it points to is dynamic. This object has no name.

main

When an exception escapes from a block, we destruct all the automatic objects constructed in the
block. Whenthe block is a function, we also destruct all the automatics in the function that called it, and
the automatics in the function that called that one, all the way up to, but not including, the function that
contains thary statement. Thimass extinction of automatic objects is callevinding the stdc

If the exception is nex caught, the unwinding extends twegy automatic object. The uncaught
exception will then terminate the program, destructing the static objects as well.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/exception/unwind.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

class bad {};

void f() throw (bad);
void g() throw (bad);

11 obj staticl = 10;

PSS hesenea ©2014 Mark Meretzky

Section 6.7 Backtracking 609

12 obj static2 = 20;

13

14 int main()

15{

16 int status = EXIT_FAILURE;
17 obj auto3 = 30;

18 obj auto4 =40;

19

20 try |

21 obj auto5 =50;

22 obj auto6 = 60;

23 f0);

24 status = EXIT_SUCCESS;
25 }

26

27 catch (const bad&) {

28 cout << "caught bad in main\n";
29 }

30

31 return status;

32}

33

34 void () throw (bad)

35

36 obj auto7 =70;

37 obj auto8 = 80;

38 static obj static9 = 90;

39 obj *const p = new 0bj(100);
40

41 90;

42 delete p; [/lLine 50 prevents this from being executed.
43}

44

45 void g() throw (bad)

46 {

a7 obj autoll =110;

48 obj autol2 =120;

49

50 throw bad();

51}

The stack is unwound as the exception flies from theealbwe 50 up to 27.The output produced by
the unwinding is displayed between the pair of horizontal lines. The static and dynamic objects in the
above lines 38-39 are not destructed as part of the unwindiing static object isventually destructed
when line 31 returns frommain . The dynamic object is mer destructed.

The dynamic object could be destructed after the unwinding by makigpbal and inserting
anotherdeletep; at line 27%. Alternatively, it could be destructed during the unwinding, by means of
theauto_ptr on pp. 611-612 or tharow without an operand on p. 621.

The error message in the aboiine 28 would normally be written toerr , not cout . But this
would confuse the sequence akets. cerr is unhuffered, which would allew the message to elaoits
way ahead of the other output.

R hesenea ©2014 Mark Meretzky

610 Exceptions Chapter 6

construct 10 Lines 11-12 construct two global static objects.
construct 20

construct 30 Lines 17-18 construct two automatic objects locaiiain .
construct 40

construct 50 Lines 21-22 construct two automatic objects locakyo blodk in main .
construct 60

construct 70 Lines 36—37 construct two automatic objects locdl to
construct 80

construct 90 Line 38 constructs one static object locaf to

construct 100 Line 39 constructs one dynamic object; never destructed.
construct 110 Lines 47-48 construct two automatic objects locajto
construct 120

destruct 120 Line 50 unwinds the stack.

destruct 110

destruct 80

destruct 70
destruct 60
destruct 50
caught bad in main

destruct 40 Line 31 destructs the remaining automatic objects locedam .
destruct 30
destruct 90 Line 31 destructs the three static objects.

destruct 20
destruct 10

If we change théhrowbad() in the abwe line 50 to a call t@xit , the stack will no longer be
unwound. Theoutput belav the line is produced after the callewit

construct 10
construct 20
construct 30
construct 40
construct 50
construct 60
construct 70
construct 80
construct 90
construct 100
construct 110
construct 120
destruct 90 Only the static objects ardill destructed.
destruct 20
destruct 10

If we change théhrowbad() in the abwe line 50 toterminate() orabort() , no dyject will
be destructed, notven the static ones.

PSS hesenea ©2014 Mark Meretzky

Section 6.7 Backtracking 611

construct 10
construct 20
construct 30
construct 40
construct 50
construct 60
construct 70
construct 80
construct 90
construct 100
construct 110
construct 120

auto_ptr

The abwe program left its dynamically allocated object undestructed and undeleted. gantelay
to take care of this is with aauto_ptr object.

The dynamic object, lwveng no name, is referenced by means of a poirtiare is line 39 of the
abore unwind.C on p. 609.

=

/ IThe "const" keeps p pointing to the same object.
2 obj *const p = new obj(100);

An auto_ptr object contains a pointer to a dynamic object; we say thautwe ptr points to
the latter Like the vector in the standard librapyclassauto_ptr is a ‘template’ (Chapter 7). The
name of the data type to which theto_ptr points is plugged into theangle brac&ts>; the address of
the dynamic object to which tleuto_ptr points is passed as an argument to the constructor.

3 / IThe "const" keeps p pointing to the same object.
4 const auto_ptr<obj> p(new obj(100));

This constructor igxplicit , so ts argument mustwabys be in parenthese3he abee line 4 could not
be written

5 const auto_ptr<obj> p = new obj(100); /lwon’t compile

When anauto_ptr is destructed, it applies tlielete operator to the pointer it containhis
operator calls the destructor for the dynamic objéct.example, we can change the functioof
unwind.C to the following, removing the hapledsletep; in the abwoe line 42. Include the header
file <memory> for auto_ptr

6 void f() throw (bad)
7
8 obj auto7 = 70;
9 obj auto8 = 80;
10 static obj static9 = 90;
11 const auto_ptr<obj> p(new obj(100));
12
13 90;
14}

The objectsauto7 , auto8 , and p are automatically allocated. Their destructors wiasls be
called when we lag the { curly brace} of f, whether or nog throws an &ception. Thealestructor foip
will delete the object to whiclp points, fixing the memory leak.

Thanks to the magic of operatoredoading, amauto_ptr can be dereferenced with the same syn-
tax as a plain old pointefFor example, thé&p in line 19 is the dynamic object to whiptpoints, and the
p-> in line 21 lets us access a member of the dynamic object. But there isferend#. Theinadorned

PSse A hesenea ©2014 Mark Meretzky

612 Exceptions Chapter 6

p in line 24 is not the address of the dynamic obj&atget the address, we V&b call theget in line 25.
(Theoperator-> in line 21 actually returns the same valuges.)

15 void f()

16 {

17 const auto_ptr<obj> p(new obj(100));

18

19 cout <<*p; /loperator<<(cout, p.operator*());
20 cout <<"\n"

21 p->print(); /Ip.operator->()->print();

22 cout <<"\n"

23

24 /[cout << "Address of dynamic object: " << p <<"\n"; //won’t compile
25 cout << "Address of dynamic object: " << p.get() << "\n";

26} /lobj is deleted here

Even in the absence of exceptionsaamo_ptr is a general mechanism for ensuring that a dynam-
ically allocated variable does not oudlithe pointer that points to itFor example, the following block
deleted the dynamically allocated nodes in a linked list; see lines 524iBKeaf.C on p. 399. The
const at the start of line 29 gés doomed read-only access to the dynamic object.

27 for (const node *p = first; p;) {

28 cout <<*p<<"\n%;

29 const node *const doomed = p;
30 p = p->next;

31 delete doomed;

32 }

We @an let arauto_ptr do thedelete for us. Theconst in the angle brackets in line 35/gé
doomed read-only access to the dynamically allocated objéResist the temptation to insert line 36 into
the end of line 33.)

33 for (const node *p = first; p;) {

34 cout <<*p<<"\n“

35 const auto_ptr<const node> doomed(p);
36 p = p->next;

37 }

A similar auto_ptr can be used in the block in lines 23-27 of the destruct@afior in p. 542.
Two warnings abouauto_ptr

(1) The pointer in thauto_ptr must alays point to a scalanot to an array The destructor for
auto_ptr always applies thalelete operator not the delete[] operatoy to this pointer And, of
course, the pointed-to variable must be dynamically allocated.

(2) A dynamically allocated variable can tbelete 'd only once. This means we mustveehave
two auto_ptr ’s pointing to the same objeclo prevent this, the cop constructor andperator= for
classauto_ptr set the internal pointer of the right-hasagto _ptr to zero. We sy that these functions
transfer owneship of the dynamic variable from the rightito_ptr to left one.

38 auto_ptr<obj> pl(new obj(10));

39

40 /i pl were destructed at this point,

41 /Ipl’'s destructor would delete the obj.

42

43 auto_ptr<obj> p2 = pl; /[copy constructor
44

45 IIf pl and p2 were destructed at this point,

46 /Ip2’'s destructor would delete the obj

PSsa A hesenea ©2014 Mark Meretzky

47
48
49
50
51
52
53

54
55
56
57
58

59
60
61
62
63
64

O©CoOo~NOOOUTA, WNPE

B
(N}

12

[N
w

Section 6.7 Backtracking 613

/land pl’s destructor would do nothing.
pl = p2; /lpl.operator=p2();
/If pl and p2 were destructed at this point,

/lthe p2’'s destructor would do nothing
/land pl’s destructor would delete the obj.

The *algorithms’ in Chapter 8 assume that an element of a container can be copied without damage

to the original. But anauto_ptr has a cop constructor aneperator= that drain their ggument. Do
not attempt to store aauto_ptr into avector or list

Finally, an auto_ptr can also yield its responsibility to a plain old pointer.

auto_ptr<obj> p(new obj(10));
obj *plain = p.release();

/If p was destructed at this point, p’'s destructor would do nothing.
delete plain; /Imust remember to delete the dynamic object by hand.

An auto_ptr can also be reset:

auto_ptr<obj> p(new obj(10));

p.reset(new obj(10)); IIp deletes 1st obj, takes ownership of 2nd obj
p.reset(); /Ip deletes 2nd obj

/If p was destructed at this point, its destructor would do nothing.

Destruction is a privilege.

Does ®ery automatic object get destructed when an exceptioredem Hock? Doesevey static
object get destructed when an exceoption is thrown but not caligieépends what we mean bgbject”.

A completely constructeabject is one from whose constructor wevéhaeturned, either by a
return statement or by reaching the closing curly brhca the end of the constructertiody. Only a

completely constructed object is eligible for the privilege of destruction. An example is the data member

el in the program bele.

If an exception escapes from an objctnstructoy the object will nger be completely constructed.
It is therefore ineligible for the piilege of destruction. Such is the case of the still@#neven though
part of its constructor has beexeeuted. Infact, such is also the case of the surrounding object

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/exception/privilege.C

#include <iostream>
#include <cstdlib>
using namespace std;

class even {
i nti;
public:
even(int initial_i) throw (int): i(initial_i) {
cout << "constructor for even " <<i << " started ";
if (%2!=0)({
throw i

}

cout << "and finished.\n";

RSse A hesenea ©2014 Mark Meretzky

14
15
16
17}
18

614 Exceptions Chapter 6

}

“even() {cout << "\ndestruct even " << i << "\n";}

19 class big {

20
21
22

even el;
even e2;
even e3;

23 public:

24
25
26
27
28
29
30}
31

big(int initial_e1, int initial_e2, int initial_e3) throw (int)
el(initial_el), e2(initial_e?2), e3(initial_e3) {
cout << "construct big\n";

}

“big() {cout << "destruct big\n";}

32 int main()

33{
34
35
36
37
38
39
40
41
42
43
44}

1
2
3
4
5

try {
big b(10, 21, 30);
}

catch (inti){
cerr << "main caught the integer " <<i<<"\n";
return EXIT_FAILURE;

}

return EXIT_SUCCESS;

constructor for even 10 started and finished.
constructor for even 21 started

destruct even 10

main caught the integer 21.

We can’t have two exceptions in the air simultaneously

An exception cannot escape from a function while another exception remains undaorgétam-
ple, an exception cannot escape from a destructor that was triggered by an exception escaping from a block.
If this happens, the functiderminate will be called. To prove it, | wrote aterminate function that
prints a message.

Line 22 throws anxxeption which destructs thpt in line 21 as it escapes from the block in lines
20-23. Butbefore this exception is caught in line 25, the destructpitoftries to thravs another xcep-
tion. Thiscalls theterminate function.

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/exception/airl.C

#include <iostream>

#include <cstdlib>

#include <exception> //for set_terminate
using namespace std;

PeSse A hesenea ©2014 Mark Meretzky

Section 6.7 Backtracking 615

6 class pitcher {
7 public:
8 ~ pitcher() throw (int) {
9 cout << ""pitcher about to throw 20.\n";
10 throw 20;
11 }
12}
13
14 void my_terminate();
15
16 int main()
174
18 set_terminate(my_terminate);
19
20 try |
21 pitcher pit;
22 throw 10;
23 }
24
25 catch (inti){
26 cout << "main caughtint" <<i<<"\n"
27 }
28
29 return EXIT_SUCCESS;
30}
31
32 void my_terminate()
33
34 cerr << "my_terminate has been called.\n";
35 exit(EXIT_FAILURE);
36}

“pitcher about to throw 20.
my_terminate has been called.

A destructorcan throw an eception, but we hae © be areful. If another exception has been
thrown hut not yet caught, the destructor must catghexgeption that it threys. Theexception thrown by
the destructor would terminate the program if it escaped from the destructor.

Line 9 shows he a destructor can tell if there is an exception that has been thrown but not yet

caught. Aghe exception thrown in line 30 escapes from the block in lines 28-31, we call the destructor for

the objectpit in line 29. In this call, theif in line 9 is true, so the destructor catches the exception it
throws in line 11.To verify that the program has

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/exception/air2.C

#include <iostream>

#include <cstdlib>

#include <exception> //for uncaught_exception and set_terminate
using namespace std;

class pitcher {
public:
~ pitcher() throw (int) {
i f (uncaught_exception()) {

O©CoOoO~NOOOUTA,WNPE

s hesenea ©2014 Mark Meretzky

616 Exceptions Chapter 6

10 try {

11 throw 20; //This exception will not escape from the destructor.
12 }

13 catch (inti){
14 cout <<
15 }

16 } else{

17 throw 30; /[This exception will escape from the destructor.
18 }

19 }

20}

21

22 void my_terminate();

23

24 int main()

25

26 set_terminate(my_terminate);

27

28 try |

29 pitcher pit;

30 throw 10;

31 }

32

33 catch (inti){

34 cout << "main caughtint" <<i<<"\n"

35 }

36

37 return EXIT_SUCCESS;

38}

39

40 void my_terminate()

41 {

42 cerr << "my_terminate has been called.\n";

43 exit(EXIT_FAILURE);

44}

pitcher caught int " << i << ".\n";

“pitcher caught int 20.
main caught int 10.

Recall that there is one other thing a destructor must not do: caktithefunction. See. 184.

6.8 CatchExceptions at wo or M ore Levds

A trivial error requires the dismantling of only avfebjects; a more sere one may require the dis-
mantling of mag. We can arrange this by declaring the objects in layers. The foundations will be laid in
the functionf , the walls are raised i, and the roof is put on ih.

PSS hesenea ©2014 Mark Meretzky

Section 6.8 Catch Exceptions at Tvo or M ore Levds 617

main

f constructdoundations

g constructswalls

h constructgoof

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/exception/levell.C

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

class foundation {
public:
~ foundation() {cerr << "destruct the foundation\n";}

O©CoOoO~NOOOUOTPA,WNPE

b

10

11 class walls {

12 public:

13 “walls() {cerr << "destruct the walls\n";}

14}

15

16 class roof {

17 public:

18 “roof() {cerr << "destruct the roof\n";}

19}

20

21 //Data types of the exceptions:

22 class trivial {}; //handling this requires the destruction of only the roof
23 class medium {}; /lrequires destruction of roof and walls

24 class severe {}; /Irequires destruction of roof, walls, and foundations
25

26 void f() throw (severe);

27 void g() throw (severe, medium);

28 void h() throw (severe, medium, trivial);

29

30 int main()

31{

32 srand(static_cast<unsigned>(time(0)));
33

34 try |

35 fQ);

36 }

37

38 catch (severe) {

39 cerr << "main caught a severe exception.\n";

PSS hesenea ©2014 Mark Meretzky

618 Exceptions Chapter 6

40 return EXIT_FAILURE;
41 }

42

43 return EXIT_SUCCESS;
44}

45

46 void f() throw (severe)

47 {

48 foundation found;

49

50 try |

51 90

52 }

53

54 catch (medium) {

55 cerr << "f caught a medium exception.\n";
56 }

57}

58

59 void g() throw (severe, medium)
60 {

61 walls w;

62

63 try |

64 h();

65 }

66

67 catch (trivial) {

68 cerr << "g caught a trivial exception.\n";
69 }

70}

71

72 void h() throw (severe, medium, trivial)
73

74 roof ;

75

76 switch (rand() % 3) {

77 case O:

78 throw trivial();

79 break; /lthis statement currently unnecessary
80

81 case 1:

82 throw medium();

83 break;

84

85 case 2:

86 throw severe();

87 break;

88

89 default:

90 break;

91 }

92}

PSS hesenea ©2014 Mark Meretzky

Section 6.8.1 Catch and Re-thow 619

To handle atrivial exception, all we he t dismantle is theroof . The walls and
foundation are destructed latewhen we return frong andf .

destruct the roof

g caught a trivial exception.
destruct the walls

destruct the foundation

But to handle anedium exception, we hae o dismantle theoof and thewalls

destruct the roof

destruct the walls

f ¢ aught a medium exception.
destruct the foundation

To handle asevere exception, we must dismantle theof , walls , andfoundation

destruct the roof

destruct the walls

destruct the foundation

main caught a severe exception.

6.8.1 Catchand Re-throw

The operatothrow can be written with no operand inside of an exception hantlerill re-throw
the exception that the handler caught. See lines 71-76.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exception/level2.C

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

class foundation {
public:
~ foundation() {cerr << "destruct the foundation\n";}

©CoOo~NOOOUTA, WNPE

b

10

11 class walls {

12 public:

13 “walls() {cerr << "destruct the walls\n";}

14}

15

16 class roof {

17 public:

18 “roof() {cerr << "destruct the roof\n";}

19}

20

21 //Data types of the exceptions:

22 class trivial {}; //handling this requires the destruction of only the roof
23 class medium {}; /lrequires destruction of roof and walls

24 class severe {}; /Irequires destruction of roof, walls, and foundations
25

PSS e A hesenea ©2014 Mark Meretzky

620 Exceptions Chapter 6

26 void f() throw (severe);

27 void g() throw (severe, medium);

28 void h() throw (severe, medium, trivial);

29

30 int main()

31

32 srand(static_cast<unsigned>(time(0)));

33

34 try |

35 f0);

36 }

37

38 catch (severe) {

39 cerr << "main caught a severe exception.\n";
40 return EXIT_FAILURE;

41 }

42

43 return EXIT_SUCCESS;

44}

45

46 void f() throw (severe)

47 {

48 foundation found;

49

50 try |

51 90

52 }

53

54 catch (medium) {

55 cerr << "f caught a medium exception.\n";
56 }

57}

58

59 void g() throw (severe, medium)

60 {

61 walls w;

62

63 try |

64 h();

65 }

66

67 catch (trivial) {

68 cerr << "g caught a trivial exception.\n";
69 }

70

71 catch (..){

72 cerr <<"g caught a non-trivial exception.\n"
73 "Don’t worry about having scratched the walls when destructing\n"
74 "the roof--we’re about to destruct the walls too.\n";
75 throw;

76 }

77}

78

79 void h() throw (severe, medium, trivial)

PSS hesenea ©2014 Mark Meretzky

Section 6.9 Exceptions in the C++ Standard Library 621

80 {

81 roof r;

82

83 switch (rand() % 3) {
84 case O:

85 throw trivial();

86 break;

87

88 case 1.

89 throw medium();
90 break;

91

92 case 2:

93 throw severe();
94 break;

95

96 default:

97 break;

98 }

99}

If the abare line 89 throws anedium exception,

destruct the roof

g caught a non-trivial exception.

Don’t worry about having scratched the walls when destructing
the roof--we’re about to destruct the walls too.

destruct the walls

f ¢ aught a medium exception.

destruct the foundation

v Homework 6.8.1a: catch and rethow

The programunwind.C on p. 609 4ils to destruct the dynamically allocated object in line B&
it by changing lines 39-42 to

1 obj *const p = new obj(100);
2
3 try{
4 a0
5 }
6
7 catch (...) {
8 delete p;
9 t hrow;
10 }
11
12 delete p;

It was a lot simpler with thauto_ptr on pp. 611-612, asnt it? We ddn’t haveto write the
deletep; twice.
A

PSS e A hesenea ©2014 Mark Meretzky

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16

622 Exceptions Chapter 6

6.9 Exceptionsn the C++ Standard Library

Many functions in the C++ Standard Library will thvan eception if something goes wrondhll
of these exceptions are dexd from the base clagxception on p. 628, declared in the header file
<exception> . There are often tavways of doing a @en job, one that throws an exception and one that
returns an error code. In addition to the examples in §86.9, there will be another on pp. 1014-1015.

6.9.1 Containers:ivector,string, andbi tset

[C. A. R. Hoare] points out quite correctly that the current practice of compiling
subscript range checks into the machine code while a program is being tested, then
suppressing the checks during production runs, & dilgilor who wears a life
preserer while training on land but lees it behind when he sailsDn the other

hand, the sailor ish’'so foolish if life vests arexremely expensve, and if he is

such an cellent swimmer that the chance of needing one is quite small compared
with the other risks he is taking.

—Donald Knuth Structured Pogramming with go to Statements

Any value read from input is suspicious. Theriablei in line 14 will be a subscript for aegtor.
Since line 15 reads its value from input, line 18 calls the member furattitmsee if it is in range. If not,
at throws theout_of_range exception declared in the header flstdexcept> . (Thein_range
member function of clagerminal was named after this class; see line 3tayfinal.h on p. 160.)

Every class devied from classexception has thevhat function in line 22, returning a stringVe
print it to see ha helpful it is.

If the at in line 18 throws a different exception dexd from classexception , it will be caught at
line 26. If theat throws an exception not deed from this class, it will be caught at line 31.

We ae confident (i.e., willing to @mble) that the loop in line 36 will keep the subscript within the
legd range for the ector Line 37 therefore calls the member functmperator(] instead ofat . It
does the same job as but without the error checkingoperator(] is faster tharat , but could blav
up if the subscript is out of range. So could the loop in lines 40-42.

Classstring has a member functicat that does subscript checkingu¢ of range), and an
operator(] that does not.Classbitset has member functiorfip , set , reset , andtest that
do subscript checkingp(t_of range), and aroperator|] that does not. The member function
to_ulong of classhitset will throw an overflow_error if the bitset ’s value cannot fit into a
longunsigned

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exception/out_of range.C

#include <iostream>

#include <cstdlib>

#include <vector>

#include <stdexcept> //for out_of range
using namespace std;

i nt main()
{
i nta[] = {10, 20, 30},
const size_t n = sizeof a / sizeof a[0];
vector<int> v(a, a + n);

cout << "Please input a subscript: ";

vector<int>::size_type i; /ldata type for a vector subscript
cin >>i;

PSS hesenea ©2014 Mark Meretzky

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45}

Section 6.9.2 Classi stream 623

try {
cout << "Element number " <<i<<"is" << v.at(i) <<".\n";
}

catch (const out_of range& out) {
cerr << "caught out_of range exception " << out.what() << "\n";
return EXIT_FAILURE;

}

catch (const exception& e) {
cerr << '"caught another exception " << e.what() << "\n";
return EXIT_FAILURE;

}

catch (..){
cerr << "caught unexpected exception\n®;
return EXIT_FAILURE;

}

for (vector<int>:size typei=0;i < v.size(); ++i) {
cout << vJ[i] <<"\n"; /lcout << v.operator[](i) << "\n";

}

for (vector<int>::const_iterator it = v.begin(); it 1= v.end(); ++it) {
cout << *it<<"\n"; /lcout << jt.operator*() << "\n";

}

return EXIT_SUCCESS;

Please input a subscript: 4
Element number 4 is caught out_of range exception vector::_M_range_check

6.9.2 Class stream

Before thg invented exceptions, the conscientious programmer had to write a complicagtdte-
ment after gery attempt at input. See lines 11-32wdfy.C on pp. 330-331.

But naw, the>> in the following line 13 can thm an ecception if anything goes wrondlo ask it to,
simply call the input streamimember functiorexceptions in line 7.

On my platform, the gument in line 7 has the value 7. But think of it as “yes, yes; ged When
Harry Met Sally Each bit position of the gument represents a condition for which wantcin to throw
an ception. Thesnumerations of clages_base provide a comenient name for each position, and we
combine them with “bitwise or”.

ios_base::badbit 00000100
ios_base::failbit 00000010
| i os base:eofbit 00000001
00000111

Theinti in line 9 must be declared outside the block in lines 12-14 if it is to be mentioned in line
35 outside the block.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/exception/failure.C

PSS hesenea ©2014 Mark Meretzky

624 Exceptions Chapter 6

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4
5 i nt main()
6 {
7 cin.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
8
9 i nti; /luninitialized variable
10 cout <<"Please input an integer: ";
11
12 try |
13 cin >>j;
14 }
15
16 catch (constios_base::failure& fail) {
17 cerr << "caught ios_base::failure exception " << fail.what()
18 << "\n";
19
20 if (cin.eof()) {
21 cerr << "encountered end of input\n";
22 } elseif (cin.bad()) {
23 cerr << "couldn’t input characters from outside world\n";
24 } elseif (cin.fail()) {
25 cerr << "the first non-whitespace characters read\n"
26 "from input were not one or more consecutive\n"
27 "digits optionally preceded by a minus sign\n";
28 } else{
29 cerr << "unknown error\n;
30 }
31
32 return EXIT_FAILURE;
33 }
34
35 cout << "The numberwas " <<i<<"\n";
36 return EXIT_SUCCESS;
37}
Please input an integer: 10

The number was 10.

Please input an integer: hello

caught ios_base::failure exception basic_ios::clear
the first non-whitespace characters read

from input were not one or more consecutive
digits optionally preceded by a minus sign

Please input an integer: control-d (the end-of-file &ystroke)
caught ios_base::failure exception basic_ios::clear same retval fromvhat
encountered end of input

The abee line 7 will also cause exceptions to be thrown byp@rator>> or operator<< that
we wrote ourseks. Inthedate.C on p. 338, for example, a failure of the operator in lines 10 or 16

R hesenea ©2014 Mark Meretzky

Section 6.9.3 newanddel ete 625

will throw an exception. Thecall tosetstate in line 21 will also thrar an exception.

6.9.3 newanddel et e

Theoperator new functions in the standard libary will thwoan exception of typebad_alloc
if they cannot allocate the requested memand if nonew_handler has been established. Here are
their declarations, together with the matchiledete ’s.

void *operator new(size_t n) throw (bad_alloc);
void operator delete(void *p) throw ();

void *operator new[](size_t n) throw (bad_alloc);
v oid operator delete[](void *p) throw ();

ab~hwWwNRE

The standard library has an empty clasthrow_t , and one object nameatbthrow of that class.

/ [Excerpt from <new>

struct nothrow_t {};
extern const nothrow_t nothrow;

©O© oo~NO

The only purpose afiothrow is to let us hee an dternatve sries of functions that do not thweexcep-
tions. Theoperator new s in this series simply return zero if theannot allocate the memoryrhe
operator delete 's will be discussed bela

10 void *operator new(size_t n, const nothrow_t&) throw ();
11 void operator delete(void *p, const nothrow_t&) throw ();
12

13 void *operator new[](size_t n, const nothrow_t&) throw ();
14 void operator delete[](void *p, const nothrow_t&) throw ();

We row havethree ways to respond to an allocation erdoine 33 and 34 call aew_handler
function; line 25 throws an exception; and line 17 returns z¥oo. probably want to thne and catch an
exception.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exception/new.C

#include <iostream>

#include <cstdlib>

#include <new> [lfor nothrow, bad_alloc, set_new_handler
using namespace std;

const char *progname;
void my_new_handler();

O©CoOo~NOOOUTA, WNPE

i nt main(int argc, char **argv)

10{

11 progname = argv[0];

12

13 cout << "How many bytes do you want to allocate? ";
14 size t n,

15 cin >>n;

16

17 char *const p1 = new(nothrow) char [n]; [Ireturn O on error
18 if (pl==0){

19 cerr << progname << ": out of store\n";

20 return EXIT_FAILURE;

PSS hesenea ©2014 Mark Meretzky

626 Exceptions Chapter 6

21 }

22 delete(] pl;

23

24 try |

25 char *const p2 = new char [n]; /lthrow exception on error
26 delete]] p2;

27 }

28 catch (const bad_alloc& bad) {

29 cerr << progname << ": out of store: " << bad.what() << "\n";
30 return EXIT_FAILURE;

31 }

32

33 set_new_handler(my_new_handler);

34 char *const p3 = new char [n]; /[call my_new_handler on error
35 delete(] p3;

36

37 return EXIT_SUCCESS;

38}

39

40 void my_new_handler()

41 {

42 cerr << progname << ": out of store\n";

43 exit(EXIT_FAILURE);

44}

45

How many bytes do you want to allocate? 4294967296
new: out of store

The abee line 17 showed o to passnothrow to anoperator new . How do we pass it to an
operator delete ? We don’'t—the computer does. Assume thateav operator calls an
operator new or operator new[] function, with or without anothrow , followed by a construc-
tor. If the constructor throws an exception, tissv operator will call the corresponding
operator delete or operator delete[] function, with or without anothrow . This is the only
way that thenothrow version ofoperator delete or operator delete][] can be called.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exception/nothrow.C

#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;

i nline void *operator new(size_t n) throw (bad_alloc) {
cout << "operator new without nothrow\n";
i f (void *const p = malloc(n)) {
r eturn p;

O©CoOoO~NOOOUTA,WNPE

10 }

11 throw bad_alloc();

12}

13

14 inline void operator delete(void *p) throw () {

15 cout << "operator delete without nothrow\n";
16 free(p);

PSS hesenea ©2014 Mark Meretzky

Section 6.9.3

17}

18

19 inline void *operator new(size_t n, const nothrow_t&) throw () {
20 cout << "operator new with nothrow\n";
21 return malloc(n);

22}

23

24

25 inline void operator delete(void *p, const nothrow_t&) throw () {
26 cout << "operator delete with nothrow\n";
27 free(p);

28}

29

30 class obj {

31 public:

32 obj() throw (int) {throw 10;}

33}

34

35 int main()

36 {

37 try |

38 obj *const pl1 = new obj;

39 }

40 catch (inti){

41 cout <<"caught" <<i<<"\n"

42 }

43 catch (..){

44 cout << "caught exception other than int\n";
45 }

46

a7 try |

48 obj *const p2 = new(nhothrow) obj;
49 }

50 catch (inti){

51 cout <<"caught" <<i<<"\n"

52 }

53 catch (..){

54 cout << "caught exception other than int\n";
55 }

56

57 return EXIT_SUCCESS;

58}

newanddel ete 627

operator new without nothrow
operator delete without nothrow
caught 10

operator new with nothrow
operator delete with nothrow
caught 10

printed 4/8/14
8:55:29 AM

All rights
reserved

©2014 Mark Meretzky

628 Exceptions Chapter 6

v Homework 6.9.3a: let life::operator- catch bad_alloc

Our life::operator- on pp. 441-442 kept callingector<life>::push_back with wild
abandon. Ipush_back throws abad_alloc exception, letoperator- catch it and return
INT_MAX
A

v Homework 6.9.3b:
Version 3.8 of the Rabbit Game: thow exceptions

At the first sign of trouble, the game writes an error messagerto and therexit ’'s. But calling
exit means that the terminal will mer be poperly destructed. Our screen could be left in graphics mode
or with a derelict window—a different outcome on each platform.

To ensure that eery object is destructed, we will terminate the game by throwing an exception if
arything goes wrong. The exception will carry an error message omito. exit will no longer be
called anywhere, except in the C codéeirnm.c . The files that includedcstdlib> only forexit and
EXIT_FAILURE will no longer need to do so.

The C++ Standard Library has a class naregdeption , containing the follaving members
(among others).

1 / /Excerpt from <exception>

2

3 class exception {

4 public:

exception() throw () {}

exception(const exception& other) throw ();

virtual “exception() throw ();

exception& operator=(const exception& another) throw ();

0o ~NO O

9
10 virtual const char *what() const throw ();
11}

Like the objectout , classexception has the last nanstd (p. 20). We rrust therefore either call it
std::exception or sayusingnamespacestd;

The exceptions that we tlwowill be of the following clasexcept , publicly derved from the
abore © we @n catch them togetheiThe base class destructor can whmothing, so the dered dass
destructor must be declared to throo more than nothing.That's the only reason the deed destructor
had to be declared.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/exception/except.h

1 #ifndef EXCEPTH

2 #define EXCEPTH

3 #include <sstream> /ffor ostringstream

4 #include <exception> //for exception

5 #include <string>

6 using namespace std,;

7

8 class except: public exception {

9 const string s;
10 public:
11 “except() throw () {}
12 except(const string& initial_s) throw () : s(initial_s) {}
13 except(const ostringstream& ost) throw () : s(ost.str()) {}
14 const char *what() const throw () {return s.c_str();}
15}

PSse A hesenea ©2014 Mark Meretzky

Section 6.9.3 newanddel ete 629

16 #endif

Don'’t bother writing an exception specification for each function in #m@ey Justonstruct and
throw an except if anything goes wrong. Here is aragnple. V¢ saw the double cast in line 12 in line
15 of static_cast on p. 65.terminal.C will no longer include<cstdlib> since it no longer calls
exit

1 / /Excerpt from terminal.C.

2 #include <sstream> /ffor ostringstream

3 #include "terminal.h"

4 #include "except.h"

5 using namespace std;

6

7 void terminal::put(unsigned x, unsigned y, char c)

8 {

9 i f (isprint(static_cast<unsigned char>(c)) == 0) {
10 ostringstream ost;
11 ost << 'unprintable character "
12 << static_cast<unsigned>(static_cast<unsigned char>(c))
13 << " at | ocation ("<<x<<","<<y<<")"
14 throw except(ost);
15 }
16
17 check(x, y);
18 term_put(x, Yy, C);
19}

A

O~NO O WNPE

v Homework 6.9.3c:
Version 3.9 of the Rabbit Game: catch the exceptions

The wabbit 's are constructed ingame::game ; the surviving ones are destructed in
game::"game . But suppose an exception escapes framabbit 's constructor and from the
game::game which called it. The game object, neer having been completely constructed, will be ineli-
gible for the priilege of destruction.The game's destructor will neer be alled; the surwiing wabbit ’'s
will never be destructed.

Our solution is simpleBefore aiy exception escapes from tigame's constructof the game's con-
structor will destruct anwabbit ’s that hae been constructedThe game's destructor will still not be
called. Butthis is nav harmless because there is nothing thatigstructor needs to do.

(1) Put the code that destructs tlvabbit ’'s into a separate functionit will be called by the
destructor for clasgame, which will now be $iort enough to be inline.

/ /A new non-static, private member function of class game.

void game::depopulate()

{
/ IDestruct and deallocate all the wabbit’s that exist at this point.
/ IUse the delete loop that was in game::"game
/ I(lines 23-27 of game.C on p. 542).

}

(2) The constructor fogame will catch ary exception thrown by a constructor foryawabbit . It
will delete aly wabbit's that hare dready been constructed up to this point, and then revttive excep-
tion.

game::game(char initial_c)

PSS hesenea ©2014 Mark Meretzky

630 Exceptions Chapter 6

10 : term(initial_x)

11 {

12 try |

13 /lcode to construct all the wabbit’s, e.g.,
14 new rabbit(this, /* etc. */);
15 }

16

17 catch (..){

18 depopulate();

19 throw;

20 }

21}

(3) The re-thrown exceptions, and all others, will be caughtaim . The filemain.C will have ©
include <new> for classbad_alloc in line 12, andexception> for classexception in line 16.
We ro longer call the functioset_new_handler

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/game6/main.C
1 i nt main(int argc, char **argv)
2 {
3 i nt status = EXIT_FAILURE; //guilty until proven innocent
4 srand(static_cast<unsigned>(time(0)));
5
6 try{
7 game g;
8 g.play();
9 status = EXIT_SUCCESS;
10 }
11
12 catch (const bad_alloc& bad) {
13 cerr << argv[0] << " new failed: " << bad.what() << "\n";
14 }
15
16 catch (const exception& e) {
17 cerr << argv[0] << ™ " << e.what() << "\n";
18 }
19
20 catch (..){
21 cerr << argv[0] << " main caught unexpected exception.\n";
22 }
23
24 return status;
25}
A

v Homework 6.9.3d: wty did this solution crash the program?

In an early version of the game, the master list contanénl ptr ’s.

1 | ist<auto_ptr<wabbit> > master;
Thegame's constructor constructed thherminal and the master list and then started to construct
the wabbit ’s. If an exception escaped from thewaabbit ’s constructor it was also allowed to escape

from thegame’s constructor In this case, thgame was reve completely constructed, and hencevare
destructed.

PSse A hesenea ©2014 Mark Meretzky

Section 6.9.3 newanddel ete 631

Although thegame wqas neer completely constructed, thgame’s terminal andmaster data
members were. Th&abbit ’'s were destructed by thmaster ’s destructor.

Or so | hoped. What actually happeneHint: why must thegame object outlve its wabbit ’'s?
See p. 613 for another reasonyvehantainer ofauto_ptr ’s is dangerous.
A

PSse A hesenea ©2014 Mark Meretzky

