
5
Inheritance

Inheritance: base and derived classes

Without inheritance, each class had to be created from scratch.Within the{ curly braces} , we had to
declare each and every member of the new class:

1 c lass newclass {
2 declaration for member 1;
3 declaration for member 2;
4 declaration for member 3;
5 / /etc.
6 } ;

With inheritance, we can create a new class with a head start.The new class will automatically have
all the members of an existing class, plus whatever additional members we’d like to add. It will therefore
have all the functionality (i.e., the ‘‘look and feel’’) of the existing class, plus more.

The existing class is called thebase class;the new one is called thederived class.(Java calls them
the superclassand subclassrespectively. But that’s confusing, because the subclass has more members
than the superclass.) In a diagram, the base class is always drawn above its derived class(es).

Pages 163−179 presented four reasons to package a chunk of code or functionality as a class.A fifth
reason is because a class is the unit of syntax from which a derived class can inherit functionality.

A tall, narr ow tree

One use of inheritance is to build up a big class in layers, gradually adding more and more members.
Consider the fossil halls on the fourth floor of the American Museum of Natural History, and their two
movies narrated by Meryl Streep. The animals in each box in the diagram have all of the features of the
ones in the boxes above it, plus more.For example, a synapsid animal has a synapsid opening in its skull.
But it also inherits an amnion, at least if it’s female, and is therefore also an amniote animal. This is the
celebrated ‘‘is-a’’ relationship between a base class and its derived class: every synapsid is an amniote.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

474 Inheritance Chapter 5

amniotebase class has amnion

synapsidderived class has amnion and synapsid opening

mammalgrandchild derived class has amnion, synapsid opening, and middle ear bones

placental has amnion, synapsid opening, middle ear bones, and placentagreat-grandchild derived class

A wide, bushy tree

Another use of inheritance is to make specialized versions of an existing class.A drawing program
might have a class for each kind of shape that can be displayed; a personnel program might have one for
each kind of employee.

shape

circletrianglerectangle

base class has color and location of center point

derived
classes

has height and width has radiushas 3 vertices

employee

managerprogrammertemporary

base class

derived
classes

has name and social security number

has hourly salary has annual evaluation has golden parachute

5.1 Inheritancewithout Virtual Functions
The following class will be our base class.It could have any name—it doesn’t hav e to be named

base .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/base/base.h

1 #ifndef BASEH
2 #define BASEH
3 #include <iostream>
4 #include "obj.h"
5 using namespace std;
6
7 c lass base {
8 obj o1;
9 obj o2;

10 public:
11 base() {
12 cout << "default construct base ";
13 print();
14 cout << "\n";
15 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

16
17 base(int initial_o1, int initial_o2): o1(initial_o1), o2(initial_o2) {
18 cout << "construct base ";
19 print();
20 cout << "\n";
21 }
22
23 ˜base() {
24 cout << "destruct base ";
25 print();
26 cout << "\n";
27 }
28
29 void f() const {}
30
31 void print() const {
32 o1.print();
33 cout << ", ";
34 o2.print();
35 }
36 };
37 #endif

The header file for a derived class must always #include the header file for its base class (line 3).
It then#include ’s the header files for the classes of its own data members (line 4). Our program would
still happen to compile even without line 4, because fortunately theobj.h in line 4 has already been
included bybase.h in line 3. But we include line 4 because a professional never relies on luck.

The keyword public in line 6 announces that we are doingpublic inheritance. In public inheri-
tance, the public members of the base class become public members of the derived class. With private
inheritance, the public members of the base class become private members of the derived class (p. 581).
For the time being, we’ll stick with public inheritance.

Theprint member function of classbase has therefore become a public member function of class
derived . But this function, while adequate to print abase , will print only 50% of the data in a
derived object. For this reason we must provide classderived with a bigger and betterprint func-
tion of its own, in line 15. And this is where all our trouble will begin.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/derived/derived.h

1 #ifndef DERIVEDH
2 #define DERIVEDH
3 #include "base.h"
4 #include "obj.h"
5
6 c lass derived: public base {
7 obj o3;
8 obj o4;
9 public:

10 derived();
11 derived(int initial_o1, int initial_o2, int initial_o3, int initial_o4);
12 ˜derived();
13
14 void g() const {}
15 void print() const;
16 };

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.1 Inheritance without Virtual Functions 475

476 Inheritance Chapter 5

17 #endif

Some of the member functions of classderived are not inline (lines 10−12 and 15 of the above
header filederived.h), so we also need the followingderived.C implementation file.

The constructor for the derived class always begins by calling the constructor for the base class.If
the latter requires arguments, they are passed with the colon in line 13. If the constructor for the base class
requires no arguments, it can be called implicitly in line 5½.

Thederived::print in lines 28−37 is commented out because it will not compile.Theo1 and
o2 members of classbase are private, so they can be mentioned only in the member functions and friends
of that class. Our workaround is the definition in lines 40−47, which begins by callingbase::print to
do half of its work. It is no sin for a member function of a derived class to call upon a member function of
the base class, if we’re happy with the member function of the base class as far as it goes. In fact, there is
no other way forderived::print to printo1 ando2 .

Without thebase:: , line 42 would callderived::print and we’d go into an infinite loop.
More about this shortly. An operator<< function for classderived will also come later.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/derived/derived.C

1 #include <iostream>
2 #include "derived.h"
3 using namespace std;
4
5 derived::derived()
6 {
7 c out << "default construct derived ";
8 print();
9 c out << "\n";

10 }
11
12 derived::derived(int initial_o1, int initial_o2, int initial_o3, int initial_o4)
13 : base(initial_o1, initial_o2), o3(initial_o3), o4(initial_o4)
14 {
15 cout << "construct derived ";
16 print();
17 cout << "\n";
18 }
19
20 derived::˜derived()
21 {
22 cout << "destruct derived ";
23 print();
24 cout << "\n";
25 }
26
27 /*
28 void derived::print() const
29 {
30 o1.print(); //won’t compile, because o1 is private member of class base
31 cout << ", ";
32 o2.print();
33 cout << ", ";
34 o3.print();
35 cout << ", ";
36 o4.print();

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

37 }
38 */
39
40 void derived::print() const
41 {
42 base::print(); //will compile, because print is a public member of class base
43 cout << ", ";
44 o3.print();
45 cout << ", ";
46 o4.print();
47 }

A movie of a derived object being constructed

When we construct aderived object, the bodies of six constructors are executed. Onceagain, we
make a series of detours before executing the body of the constructor for the derived object. Firstwe call
the constructor for the base object (steps 1 to 3), which makes two detours of its own (steps 1 and 2).Then
we call the constructors for the additional data members introduced in the derived class (steps 4 and 5).
Finally we execute the body of the constructor for the derived object (step 6).As with aggregation, the out-
ermost object is always constructed last.

o3 and o4 are constructed in the order in which they are declared in lines 7−8 of the above
derived.h . The order in whicho3 ando4 are listed after the colon in line 13 of the above derived.C
is irrelevant. Noteone peculiarity of that line:base is the name of aclass,while o3 ando4 are the names
of data members.

o1

(1)

o1

o2

(2)

o1

o2
base

(3)

o1

o2
base

o3

(4)

o1

o2
base

o3

o4

(5)

o1

o2
base

o3

o4
derived

(6)

A movie of a derived object being destructed

Six destructors are called, in exactly the reverse order, when we destruct aderived object. The
outermost object is destructed first:

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.1 Inheritance without Virtual Functions 477

478 Inheritance Chapter 5

o1

o2
base

o3

o4
derived

(1)

o1

o2
base

o3

o4

(2)

o1

o2
base

o3

(3)

o1

o2
base

(4)

o1

o2

(5)

o1

(6)

The output of lines 8 and 26 verifies the above diagrams:

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/derived/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "derived.h"
4 using namespace std;
5
6 i nt main()
7 {
8 derived d(10, 20, 30, 40);
9 c out << "\n";

10
11 d.g(); //Can use any public member of class derived.
12 d.f(); //Can also use any public member of class base.
13
14 d.print(); //Call the print member function of class derived.
15 cout << "\n";
16 d.base::print(); //Call the print member function of class base.
17 cout << "\n\n";
18
19 const derived *const p = &d; //same examples, but with p-> instead of d.
20
21 p->print(); //Call the print member function of class derived.
22 cout << "\n";
23 p->base::print(); //Call the print member function of class base.
24 cout << "\n\n";
25
26 return EXIT_SUCCESS;
27 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

construct 10 Line 8 constructsd (six lines of output).
construct 20
construct base 10, 20
construct 30
construct 40
construct derived 10, 20, 30, 40

10, 20, 30, 40 Line 14 callsderived::print .
10, 20 Line 16 callsbase::print .

10, 20, 30, 40 Line 21 callsderived::print .
10, 20 Line 23 callsbase::print .

destruct derived 10, 20, 30, 40 Line 26 destructsd (six lines of output).
destruct 40
destruct 30
destruct base 10, 20
destruct 20
destruct 10

Tw o groups of names in scope after the dot or arrow

If the name of a variable, function, enumeration, or typedef can be mentioned at a certain point in the
program, we say that the name isin scopeat that point. After thed. ’s in lines 11, 12, 14 and 16 of the
abovemain.C , and after thep-> ’s in lines 21 and 23, the following two groups of names are in scope:

(1) Themembers of the derived class.

(2) themembers of the base class.

When identifying a name after a dot or arrow, the computer considers the members of the derived
class before the members of the base class. This is significant when the base and derived classes have a
member with the same name.For example,d has the oldprint inherited from the base class, and it also
has the new print in the derived class. Sincethe members of the derived class are considered before
those of the base class, theprint member of the derived class will hide theprint member of the base
class in the above lines 14 and 21.

To prevent the hiding, we use the scope resolution operator:: in the above lines 16 and 23. It has
higher precedence than the two neighboring operators, dot and(function call) , so it need no parentheses of
its own.

d . base :: print ()

Since both groups of names are in scope after thed. ’s, we say that the objectd is of classbase as
well as of classderived : it belongs to two different data types simultaneously. Of these two types,
derived has everything thatbase has, plus more.We therefore say thatderived is themost derived
(i.e., biggest and best) type ofd.

5.2 ScopingRules for a Derived Class

Four groups of variables in scope in a member function of a derived class

In pp. 122−124, we saw that two groups of names are in scope in the body of a non-member function,
and three groups are in scope in the body of a member function. In the body of a member function of a
derived class, four groups of names are in scope:

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.2 Scoping Rules for a Derived Class 479

480 Inheritance Chapter 5

(1) Thelocal variables, typedefs, enumeraions, etc.

(2) Themembers of the derived class.

(3) Themembers of the base class.

(4) Thevariables that are neither local nor members of the derived or base classes, i.e., the globals.

When identifying a variables in the body of a member function of a derived class, the computer first
considers the locals, then the members of the derived class, then the members of the base class, and finally
the globals. If two things have the same name, the local will therefore hide the member of the derived class
(line 20), the member of the derived class will hide the member of the base class (line 23), and the member
of the base class will hide the global (line 26).We would need the scope operator:: to access the member
of the derived class (line 21), the member of the base class (line 24), or the global (line 27).

1 i nt k = 10;
2
3 c lass base {
4 public:
5 i nt j;
6 i nt k;
7 } ;
8
9 c lass derived: public base {

10 int i;
11 int j;
12 public:
13 void f() const;
14 };
15
16 void derived::f() const
17 {
18 int i = 2 0;
19
20 cout << i << "\n" //the local i in line 18
21 << derived::i << "\n"; //the i member of class derived in line 10
22
23 cout << j << "\n" //the j member of class derived in line 11
24 << base::j << "\n"; //the j member of class base in line 5
25
26 cout << k << "\n" //the k member of class base in line 6
27 << ::k << "\n"; //the global k in line 1
28 }

In the body of a member function of a ‘‘grandchild’’ derived class, five groups of variables would be
in scope. Et cetera.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

A simple example of inheritance

A cricket will tell us the temperature if we count how fast it chirps.We will then build a series of
bigger and better crickets.

cricket base class

metric_cricket derived class

kelvin_cricket grandchild derived class

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/cricket.h

1 #ifndef CRICKETH
2 #define CRICKETH
3
4 c lass cricket {
5 unsigned chirps; //per 15 seconds
6 public:
7 c ricket(unsigned initial_chirps): chirps(initial_chirps) {}
8 double fahrenheit() const {return chirps + 39;}
9 } ;

10 #endif

We now derive a class that can do everything thatcricket can do, plus more: it will give results in
Celsius as well as Fahrenheit. Becauseit is derived with public inheritance, the public member
fahrenheit of classcricket is also a public member of classmetric_cricket .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/metric_cricket.h

1 #ifndef METRIC_CRICKETH
2 #define METRIC_CRICKETH
3 #include "cricket.h"
4
5 c lass metric_cricket: public cricket {
6 public:
7 metric_cricket(unsigned initial_chirps): cricket(initial_chirps) {}
8 double celsius() const {return (fahrenheit() - 32) * 5 / 9;}
9 } ;

10 #endif

The above line 8 multiplies by5/9 because a Celsius degree is wider than a Fahrenheit degree. To
span the distance from freezing to boiling takes 180 Fahrenheit degrees (that’s 212 − 32), but only 100 Cel-
sius degrees. Butdoesn’t line 8 have a bug? Won’t the integer division5/9 truncate to zero?

No. In fact, there is no integer division in line 8.The fahrenheit function returns adouble ,
causing the subtraction to yield adouble result. Themultiplication comes next (since multiplication and
division have left-to-right associativity in C and C++), yielding adouble product. The/ therefore per-
formsdouble division, which does not truncate.

The box diagram shows that there is no5/9 subexpression of
(fahrenheit() - 32) * 5 / 9 .

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.2 Scoping Rules for a Derived Class 481

482 Inheritance Chapter 5

fahrenheit () - 32() * 5 / 9

Had5/9 been a subexpression, it would have been boxed:

5 / 9

Finally, we derive a grandchild class:

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/kelvin_cricket.h

1 #ifndef KELVIN_CRICKETH
2 #define KELVIN_CRICKETH
3 #include "metric_cricket.h"
4
5 c lass kelvin_cricket: public metric_cricket {
6 public:
7 k elvin_cricket(unsigned initial_chirps)
8 : metric_cricket(initial_chirps) {}
9

10 double kelvin() const {return celsius() + 273.15;}
11 };
12 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/main1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "kelvin_cricket.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c ricket buddy(33);
9 c out << "Fahrenheit == " << buddy.fahrenheit() << "\n\n";

10
11 metric_cricket mc(33);
12 cout << "Fahrenheit == " << mc.fahrenheit() << "\n"
13 << "Celsius == " << mc.celsius() << "\n\n";
14
15 kelvin_cricket kc(33);
16 cout << "Fahrenheit == " << kc.fahrenheit() << "\n"
17 << "Celsius == " << kc.celsius() << "\n"
18 << "Kelvin == " << kc.kelvin() << "\n";
19
20 return EXIT_SUCCESS;
21 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Fahrenheit == 72 line 9

Fahrenheit == 72 line 12
Celsius == 22.2222 line 13; defaults to six significant digits

Fahrenheit == 72 line 16
Celsius == 22.2222 line 17
Kelvin == 295.372 line 18; still six significant digits

Add an extra data member to the derived class

In the above example, each derived class got an additional member function. In the next one, each
derived class will get an additional data member. We saw the diagram on pp. 473−474.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/amniote/amniote.h

1 #ifndef AMNIOTEH
2 #define AMNIOTEH
3
4 t ypedef int amnion_t;
5
6 c lass amniote {
7 amnion_t amnion;
8 public:
9 amniote(const amnion_t& initial_amnion): amnion(initial_amnion) {}

10 };
11 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/amniote/synapsid.h

1 #ifndef SYNAPSIDH
2 #define SYNAPSIDH
3 #include "amniote.h"
4
5 t ypedef int opening_t; //synapsid opening
6
7 c lass synapsid: public amniote {
8 opening_t opening;
9 public:

10 synapsid(const amnion_t& initial_amnion, const opening_t& initial_opening)
11 : amniote(initial_amnion), opening(initial_opening) {}
12 };
13 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/amniote/mammal.h

1 #ifndef MAMMALH
2 #define MAMMALH
3 #include "synapsid.h"
4
5 t ypedef int bones_t; //middle ear bones: incus, malleus, stapes
6
7 c lass mammal: public synapsid {
8 bones_t bones;

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.2 Scoping Rules for a Derived Class 483

484 Inheritance Chapter 5

9 public:
10 mammal(const amnion_t& initial_amnion,
11 const opening_t& initial_opening,
12 const bones_t& initial_bones)
13 : synapsid(initial_amnion, initial_opening), bones(initial_bones) {}
14 };
15 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/amniote/placental.h

1 #ifndef PLACENTALH
2 #define PLACENTALH
3 #include "mammal.h"
4
5 t ypedef int placenta_t;
6
7 c lass placental: public mammal {
8 placenta_t placenta;
9 public:

10 placental(const amnion_t& initial_amnion,
11 const opening_t& initial_opening,
12 const bones_t& initial_bones,
13 const placenta_t& initial_placenta)
14
15 : mammal(initial_amnion, initial_opening, initial_bones),
16 placenta(initial_placenta) {}
17 };
18 #endif

A manipulator for output and input

On pp. 361−362, we saw that classesostream andistream have the member functions in lines 4
and 12.

1 c lass ostream {
2 / /etc.
3 public:
4 ostream& operator<<(ostream& (*p)(ostream&)) {return p(*this);}
5 ostream& operator<<(ios_base& (*p)(ios_base&)) {p(*this); return *this;}
6 / /etc.
7 } ;
8
9 c lass istream {

10 //etc.
11 public:
12 istream& operator>>(istream& (*p)(istream&)) {return p(*this);}
13 istream& operator>>(ios_base& (*p)(ios_base&)) {p(*this); return *this;}
14 //etc.
15 };

The argumentp in the above line 4 could point to a function such as the following.

16 ostream& hex(ostream& ost)
17 {
18 ost.setf(ios_base::hex, ios_base::basefield);
19 return ost;

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

20 }

The address ofhex can be passed to theoperator<< in line 4 by writing

21 cout << hex; //cout.operator<<(hex);

Similarly, thep in line 12 could point to anotherhex function.

22 istream& hex(istream& ist)
23 {
24 ist.setf(ios_base::hex, ios_base::basefield);
25 return ist;
26 }

The address of thishex can be passed to theoperator>> in line 12 by writing

27 cin >> hex; //cin.operator>>(hex);

But there is no need to write the two hex functions in lines 16 and 22.Classesostream and
istream are derived from classios_base , as we saw in our first inheritance diagram on pp. 383−385.
We can therefore define a singlehex function that accepts both types of stream.

28 ios_base& hex(ios_base& io)
29 {
30 io.setf(ios_base::hex, ios_base::basefield);
31 return io;
32 }

The address of thishex function can be passed to theoperator<< and operator>> in the
above lines 5 and 13.

33 cout << hex; //cout.operator<<(hex); the operator<< in line 5
34 cin >> hex; //cin.operator>>(hex); the operator>> in line 13

Note that theoperator<< in line 5 and theoperator>> in line 13 ignore the return value of thehex
in line 28. Thishex returns an object of the base classios_base , but theoperator<< and
operator>> must return an object of the derived class. They therefore return*this , the object they
belong to.

▼ Homework 5.2a: input a point object in either coördinate system

Our polar and cartesian i/o manipulators in pp. 362−366 can be ‘‘output’’ to an ostream .
Let them be ‘‘input’’ to an istream as well.

35 point A;
36 cin >> polar >> A >> cartesian;
37 cout << polar << A << cartesian << "\n";

Each object of classistream has the same expandable array that we had in classostream . In
fact, the array and its attendant functionsxalloc and iword are actually members of classios_base ,
and inherited by classesostream and istream . To acknowledge its origin, and to avoid favoritism,
change theostream::xalloc to ios_base::xalloc in line 6 of thepoint.C in p. 364.

Our originalpolar andcartesian friend functions took and returned anostream , just like our
original hex in the above line 16. The expressioncout << polar therefore called theoperator<< in
the above line 4. But now, polar andcartesian should accept either anistream or anostream .
Change the argument and return value ofpolar andcartesian to ios_base , the common ancestor of
ostream and istream , as we did for thehex in the above line 28. The expressioncout << polar
will now call theoperator<< in the above line 5, andcin >> polar will call the operator<< in the
above line 13.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.2 Scoping Rules for a Derived Class 485

486 Inheritance Chapter 5

Our operator>> friend of classpoint will call the iword member function of theistream
object, just as ouroperator<< called theiword member function of theostream object. To store
polar input into thex , y data members of thepoint , theoperator>> friend of classpoint should use
these conversions:

x = r cosθ

y = r sinθ

▲

5.3 Virtual Functions

Example 1: we know in advance which object is pointed to.

Thed in line 1 is both aderived and abase . Thus the expression&d in line 5 is both a pointer to
aderived and a pointer to abase . And since it is a pointer to abase , it can be stored intop.

In this simple example, it would be more natural to declarep to be a pointer to aderived . After
all, we know in advance that it points to thederived objectd. (‘‘ In advance’’ means when we write and
compile the program.)But in a more realistic example, we might not know until runtime which object is
pointed to by a pointer. In fact, we may not even know until runtime which class of object is pointed to.
Our application might create one kind of object in response to a mouse move, another kind of object in
response to a keystroke. We can’t predict what the user will do at runtime, so can’t predict which classes of
object we’ll have to deal with.

p is declared to be a pointer to abase to allow it to point to any object of classbase , or of any
class derived from base . Had p been declared to be a pointer to aderived , it could not point to an
object that was merely abase .

Will line 6 callbase::print or derived::print ? Does the nameprint in line 6 represent
base::print or derived::print ? When a name represents a function, we say that the name is
bound to the function.To which function will the nameprint in line 6 be bound?

A case could be made for either binding.Thep in line 6 is a‘‘pointer tobase ’’ , suggesting that the
nameprint in 6 should be bound tobase::print . But the pointed-to objectd in line 6 is a
derived , suggesting that theprint in 6 should be bound toderived::print .

Unfortunately, the definition of the language says that the binding of the nameprint in line 6 is
determined by the data type ofp, not the data type ofd. The nameprint is bound tobase::print ,
and line 6 calls this function. This is bad news, sincebase::print prints only half of the data ind.

In this dismal scenario, the binding—the decision as to which function is represented by the name
print —is performed when the program is compiled. It is therefore calledearly or static binding. Line 6
is held hostage to the data type ofp, and the data type ofd is ignored. Is there any way to bind the name
based on the data type ofd?

1 derived d(10, 20, 30, 40);
2 d.print(); //Calls derived::print.
3 c out << "\n";
4
5 base *p = &d;
6 p->print(); //Calls base::print, but derived::print would be better.
7 c out << "\n";
8
9 / /Exactly the same example, but with a reference instead of a pointer.

10 base& r = d ;
11 r.print(); //Calls base::print, but derived::print would be better.
12 cout << "\n";

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Virtual vs. non-virtual member functions

To make the above line 6 callderived::print , we must prefix the keyword virtual to the
declaration ofbase::print in line 31 ofbase.h on p. 475:

31 virtual void print() const {

(We will also need the keyword virtual on the destructor at line 23 ofbase.h ; see pp. 493−494.)This
will cause the binding of the nameprint in line 6 to be determined by the data type of the pointed-to
objectd, not the data type ofp. In addition, the binding will be performed at runtime, as line 6 is executed.
This is calledlate or dynamic binding. If line 6 is executed more than once, the decision will be made
afresh each time, based on the data type of whatever objectp is pointing to during each execution. We will
see this repeated execution in examples 3 and 4 below.

We could also prefix avirtual to the declaration ofderived::print in line 15 of
derived.h :

15 virtual void print() const;

but don’t—it’s not necessary and nobody does it. Since the two functions have the same name, arguments,
and return type, the second function is automaticallyvirtual too.

Example 2: we don’t know in advance which object is pointed to.

From now on, we will assume that the declaration forbase::print has the keyword virtual .

Almost every function call in C is statically bound: we can predict in advance which function will be
called.

1 printf("hello\n");

But the function call in line 9 is dynamically bound: we can’t predict which function it will call. The deci-
sion has been deferred until runtime. In C this situation would be exotic, requiring a ‘‘pointer to a func-
tion’’. In C++, however, it is standard operating procedure.Be patient a moment and you’ll see what it’s
for.

2 #include <cstdlib> //for rand
3 using namespace std;
4
5 base b(10, 20);
6 derived d(30, 40, 50, 60);
7
8 base *p = rand() % 2 == 0 ? &b : &d;
9 p->print(); //Could call base::print or derived::print.

10 cout << "\n";
11
12 //Exactly the same example, but with a reference instead of a pointer.
13 base& r = r and() % 2 == 0 ? b : d;
14 r.print(); //Could call base::print or derived::print.
15 cout << "\n";

Example 3:
we don’t know in advance which object is pointed to, and the statement is executed more than once.

Lines 9−12 construct objects of different data types.We’d l ike to store these objects in a container:
an array, vector , or list . We can’t quite do that, however, because all the items in a container must be
of the same data type.

But we can do the next best thing: lines 14−19 create acontainer of pointers to the objects.All the
pointers can be of the same data type, because as we’ve just seen, a pointer to abase can hold the address
of either abase or aderived . (By the way, we can have an array of pointers but not an array of refer-
ences. Seep. 80.)

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.3 Vi rtual Functions 487

488 Inheritance Chapter 5

The loop in lines 22−25 prints all the objects. Each time line 23 is executed, it selects the appropriate
print function for the object thata[i] points to. It will callbase::print during the first two itera-
tions, andderived::print during the next two.

When we write line 23, we may have no idea what object, or even what class of object, will be
pointed to bya[i] . But—and this is the big idea—we don’t need to know. We can rely on the ‘‘virtual’’
machinery to select the correctprint function for us. (See p. 1012 for another use of this same scenario.)

Some people think of a virtual function as a ‘‘polymorphic’’ f unction: one which automatically
changes its shape (i.e., the contents of its body) based on the class of the pointed-to object.But of course
there is no such thing.A virtual function is actually a set of functions* that share the same name, argument
types, return type, etc.:base::print andderived::print . Because of this agreement, every func-
tion in the family can be called by writing the same expression:a[i]->print() . When we write this
expression, we don’t need to know which function will be called at runtime.One member of the family
will be selected for us automatically, determined by the data type of the object thata[i] points to at run-
time.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/polymorphic3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "base.h"
4 #include "derived.h"
5 using namespace std;
6
7 i nt main()
8 {
9 base b1(10, 20);

10 base b2(30, 40);
11 derived d1(50, 60, 70, 80);
12 derived d2(90, 100, 110, 120);
13
14 base *const a[] = { //base is the "greatest common denominator"
15 &b1,
16 &b2,
17 &d1,
18 &d2
19 };
20 const size_t n = sizeof a / sizeof a[0];
21
22 for (size_t i = 0; i < n; ++i) {
23 a[i]->print();
24 cout << "\n";
25 }
26
27 cout << "\n";
28
29 //The same loop, but with a pointer p instead of a size_t i.
30 for (const base *const *p = a; p < a + n; ++p) {
31 (*p)->print();
32 cout << "\n";
33 }
34

* A template function will also be defined as a set of functions. See pp. 664−665.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

35 return EXIT_SUCCESS;
36 }

10, 20 not bothering to show output of constructors and destructors
30, 40
50, 60, 70, 80
90, 100, 110, 120

10, 20
30, 40
50, 60, 70, 80
90, 100, 110, 120

Without virtual functions, we’d hav eto write the following chain ofelse-if ’s in place of line 23
(and line 31):

37 if (a[i] points to an object that is merely of class base) {
38 //call the base::print that belongs to that object
39 a[i]->print();
40 }
41
42 else if (a[i] points to an object of class derived) {
43 //call the derived::print that belongs to that object
44 reinterpret_cast<const derived *>(a[i])->print();
45 }
46
47 else {
48 output a r untime error message;
49 }

and you’d hav eto insert anotherelse if ev ery time you derived another class from classbase .

We can’t always anticipate which member functions should be declaredvirtual ; more on this
later. So why not be on the safe side and make every member functionvirtual , as in Java? (Since
they’reall virtual in Java, there’s no keyword for ‘‘virtual’ ’ in that language.)Well, as the above list of
else-if ’s shows, a call to a virtual function does more work than a call to a non-virtual one. It is said
that a call to a virtual function takes 1.6 times as long as a normal one.We’re programming in C++
because we want speed.

Example 4: same moral as example 3.

Will line 28 (and 34) callbase::print or derived::print ? And when will the decision be
made, i.e., when will the nameprint in line 28 (and 34) be bound?

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/polymorphic4.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "base.h"
4 #include "derived.h"
5 using namespace std;
6
7 v oid f(const base *p);
8 v oid g(const base& r);
9

10 int main()
11 {

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.3 Vi rtual Functions 489

490 Inheritance Chapter 5

12 base b(10, 20);
13 derived d(30, 40, 50, 60);
14
15 f(&b);
16 f(&d);
17
18 cout << "\n";
19
20 g(b);
21 g(d);
22
23 return EXIT_SUCCESS;
24 }
25
26 void f(const base *p)
27 {
28 p->print();
29 cout << "\n";
30 }
31
32 void g(const base& r) //same function, but with a reference argument
33 {
34 r.print();
35 cout << "\n";
36 }

10, 20 line 15 (not bothering to show output of constructors and destructors)
30, 40, 50, 60 line 16

10, 20 line 20
30, 40, 50, 60 line 21

Warning: use pass-by-reference to avoid slicing

The functionf in line 22 will accept abase or a derived via pass-by-value. Butwhen line 14
gives it thederived objectd, f will be aware only of thebase that forms the core ofd. The rest ofd
will be sliced off. d itself will be undamaged, but the derived part of d will be agnored byf . To remedy
this, use the pass-by-reference in lines 28 and 34.

This kind of slicing is bad. There’s a totally different kind of slicing that is good. See pp. 901−902.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/slice.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "derived.h"
4 using namespace std;
5
6 v oid f(base b);
7 v oid g(const base *b);
8 v oid h(const base& b);
9

10 int main()
11 {
12 derived d(10, 20, 30, 40);

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

13
14 f(d);
15 cout << "\n";
16 g(&d);
17 h(d);
18
19 return EXIT_SUCCESS;
20 }
21
22 void f(base b)
23 {
24 b.print();
25 cout << "\n";
26 }
27
28 void g(const base *p)
29 {
30 p->print();
31 cout << "\n";
32 }
33
34 void h(const base& r) //same function; this time, argument is a reference
35 {
36 r.print();
37 cout << "\n";
38 }

We didn’t bother to show the output of the constructor in line 12 and the destructor in line 19.We do
show the output of the copy constructor and the destructor for thebase object in line 22.

copy construct 10 Line 14 didn’t print all of d: it calledbase::print .
copy construct 20
10, 20
destruct base 10, 20
destruct 20
destruct 10

10, 20, 30, 40 Line 16 printed all ofd: it calledderived::print .
10, 20, 30, 40 Line 17 printed all ofd: it calledderived::print .

Object-oriented programming

Object-oriented programming will help you when

(1) You are working with objects of many different classes, and expect to add new classes in the
future.

(2) When you write the program, you can’t predict the exact (i.e., ‘‘most derived’’) class that each
object will belong to.

(3) You are accessing the objects via pointers or references, rather than by name, as in the four exam-
ples. Infact, many objects have no name. Onlyobjects created by declarations have names; ones created
by new (the C++ equivalent ofmalloc) hav enone.

If all of these classes are derived from a common base class namedbase , you can declare a pointer
that can point to an object belonging to any of them:

1 base *p;

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.3 Vi rtual Functions 491

492 Inheritance Chapter 5

Then you can sayp->print() and the correct function will be selected and called.

Object-oriented programming is the use of late binding to let line 23 on p. 488 do the work of the
list of if statements in lines 37−49. Line 23 will decide as it runs which function to call:base::print ,
derived::print , etc. It could call a different function each time it is executed. Andif additional
classes are derived from the same base class, each with their own print member function, line 23 will call
these new functions even without recompilation.

Late binding in C++ is performed with inheritance and virtual functions.If you use objects without
inheritance and virtual functions, your programming is merelyobject-based,not object-oriented.Don’t
feel guilty: object-orientation is not always necessary. See the three conditions above.

Why not use aggregation instead of inheritance?

Thanks to inheritance, the expression in the celebrated line 23 above works for objects of either class
base or of classderived . But suppose we had built classderived from classbase using aggregation
instead of inheritance:

1 / /Alternative version of derived.h.
2 #ifndef DERIVED
3 #define DERIVED
4
5 #include <iostream>
6 #include "base.h"
7 #include "obj.h"
8 using namespace std;
9

10 class derived {
11 public:
12 base b; //a data member instead of a base class, public for simplicity
13 private:
14 obj o3;
15 obj o4;
16 public:
17 derived(int initial_o1, int initial_o2, int initial_o3, int initial_o4);
18 void g() const {}
19 void print() const;
20 };
21 #endif

To call theg member function of each object (line 18 of the above base.h), we’d hav eto write the two
different expressions in lines 37 and 39 below. We would therefore need the chain ofif ’s in lines 36−42
instead of the single expression in the above line 23.

22 base b1(10, 20);
23 base b2(30, 40);
24 derived d1(50, 60, 70, 80);
25 derived d2(90, 100, 110, 120);
26
27 void *const a[] = { //the greatest common denominator is now merely void *
28 &b1,
29 &b2,
30 &d1,
31 &d2
32 };
33 const size_t n = sizeof a / sizeof a[0];
34
35 for (size_t i = 0; i < n; ++i) {

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

36 if (a[i] points to an object of class base) {
37 a[i]->f(); //simplified pseudo-code
38 } else if (a[i] points to an object of class derived) {
39 a[i]->b.f(); //simplified pseudo-code
40 } else {
41 output a r untime error message;
42 }
43
44 cout << "\n";
45 }

A family of functions

A virtual function is not a function. It is a family of functions, sharing the same name, argument
types, return type, etc.One of these functions, marked with the keyword virtual , belongs to a base
class; the others belong to classes derived therefrom.

If base::print is not adequate to print a derived object, we can provide a bigger and better
print function in the derived class. That’s what the following diagram does for classderived . But if
there’s a derived class for whichbase::print is adequate, you don’t hav eto write aprint function for
that derived class. Inthe diagram, classesanother_derived and another_grandchild rely on
the originalbase::print function.

base
virtual print

derived
print

another_derived

grandchild
print

another_grandchild one_more_grandchild
print

Five requirements for a virtual function

(1) All the functions that constitute a virtual function must have the same name.

(2) All the functions that constitute a virtual function must have the same argument types, although
not necessarily the same default values for the arguments.

(3) All the functions that constitute a virtual function must either all beconst or all be non-const .
In other words, they must agree in the data type of their implicit argument, as well as their explicit argu-
ments.

(4) All the functions that constitute a virtual function must have the same return type (with the excep-
tion on p. 523). If a base class has avirtual function and a derived class has a function with the same
name, same argument types, but different return value type, you get an error message at compile time.

The functions that constitute a virtual function do not have to agree on their level of publicity. On p.
497 we will see an example where the function in the derived class is private, while the one in the base
class is not private.

(5) A base class with a virtual function must have a virtual destructor if objects of the base class or of
derived classes will be allocated dynamically. Will they be so allocated? Noone knows yet.To be on the
safe side, we prefix the keyword virtual to line 23 ofbase.h on p. 475. (There is no need for the
keyword virtual on the destructor for classderived .) If the base class has no destructor, we write an
empty one just to carry the keyword virtual .

1 v irtual ˜base() {}

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.3 Vi rtual Functions 493

494 Inheritance Chapter 5

If classbase has a virtual destructor, thedelete in line 9 will call the correct destructor, either the
one forbase or the one forderived . If classbase does not have a virtual destructor, the delete in
line 9 would always call the destructor for classbase , nev er the one for classderived . We would be
held hostage to the data type of the expressionp in line 9.

2 base *const p = rand() % 2 == 0
3 ? new base(10, 20)
4 : new derived(30, 40, 50, 60);
5
6 p->print();
7 c out << "\n";
8
9 delete p;

See pp. 501−503 for another situation in which the destructor for a base class must be virtual.

What happens if you don’t fulfill the above requirement (2)

If a base class has avirtual function and a derived class has a function with the same name, same
return type, but different argument types, you get no error message.The function in the derived class
merely hides the function in the base class because of the scoping rules.

Here’s an example. Thebase class has a functionf that accepts anint . The user wants to give the
derived class another functionf that will accept achar . A worthy goal, but line 19 ends up calling line
12. Line12 has eclipsed line 7.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/hide.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 public:
7 v irtual void f(int i) const {cout << i << "\n";} //Print in decimal.
8 } ;
9

10 class derived: public base {
11 public:
12 void f(char c) const {cout << "’" << c << "’" << "\n";} //Print a character.
13 };
14
15 int main()
16 {
17 derived d;
18 d.f(’A’); //Calls derived::f.
19 d.f(66); //I wish it called base::f, but it calls derived::f.
20
21 return EXIT_SUCCESS;
22 }

’A’ line 18
’B’ line 19

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

How to fix i t

This is the one case where youwouldn’t write the keyword virtual in front of the first of a pair of
member functions with the same names, arguments, and return values, such as the ones in lines 7 and 12.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/supplement.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 public:
7 v oid f(int i) const {cout << i << "\n";} //Print in decimal.
8 } ;
9

10 class derived: public base {
11 public:
12 void f(int i) const {base::f(i);} //call-through
13 void f(char c) const {cout << "’" << c << "’" << "\n";} //Print a character.
14 };
15
16 int main()
17 {
18 derived d;
19 d.f(’A’); //Calls the derived::f in line 13.
20 d.f(66); //Calls the derived::f in line 12, which calls base::f.
21 return EXIT_SUCCESS;
22 }

’A’ line 19
66 line 20

See the more elegant solution on pp. 1025−1026.

Protected members

We already know that a member of a class can be public or private. It can also beprotected: men-
tionable only by the member functions or friends of the class to which it belongs, and of any class derived
therefrom, including grandchildren, great-grandchildren, etc. In public inheritance, the protected members
of the base class become protected members of the derived class.

A non-const data member should never be protected, for then its value could be changed by indefi-
nitely many functions throughout the program.The only protected members should be things that are
intrinsically unchangeable: a member function, enumeration,const data member, or typedef or other data
type.

There is one subtlety in the definition of a protected member. An object of a derived class can usu-
ally mention a protected member of its base class (line 16).We can even do this when the member belongs
to a different object of the same derived class (line 18).But we cannot do this when the member belongs to
an object that isnot of the same derived class. Lines21 and 23 try to mention thef that belongs to objects
of classesderived1 andbase , but thesef ’s are unmentionable in a member function of class
derived2 . (Line 24 fails for the same reason as line 23.It’s ironic, because 24 is only doing the same
thing we did in 16.) This restriction will come back to haunt us on p. 579.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/protected.C

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.3 Vi rtual Functions 495

496 Inheritance Chapter 5

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 protected:
7 v oid f() const {cout << "base::f\n";}
8 } ;
9

10 class derived1: public base {
11 };
12
13 class derived2: public base {
14 public:
15 void g() const {
16 f(); //will compile
17 derived2 d2;
18 d2.f(); //will compile
19
20 derived1 d1;
21 //d1.f(); //won’t compile
22 base b;
23 //b.f(); //won’t compile
24 //static_cast<const base *>(this)->f(); //won’t compile
25 }
26 };
27
28 int main()
29 {
30 derived2 d2;
31 d2.g();
32 return EXIT_SUCCESS;
33 }

base::f
base::f

There are no virtual friends.

We now provide the long overdueoperator<< friend for classesbase andderived . No one
wants to have to call a member function namedprint .

Each of the following classes has different data members, so each requires a differentoperator<<
function. It sounds like they should be a family of virtual functions. But there’s a problem. Onlya mem-
ber function can be virtual, and anoperator<< is not a member function of the class that it outputs.If
the operator<< needs to mention the private members of the class, it must get that access by being a
friend, not a member, of that class.* (If theoperator<< does not need to mention the private members,
it should be neither a member function nor a friend.)

The workaround is to write one non-virtualoperator<< (lines 13−16) that will call a virtual mem-
ber function to do all its work (theprint in line 10). The derived class can then override the virtual

* Remember why? If an operator<< (or any other operator function) were a member function, the language
would require it to be a member function of its left operand.But the object that we want to output is always the right oper-
and of the<<.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

function (line 21) but it won’t hav eto override theoperator<< .

Thebase argument of theoperator<< in line 13 must be passed by reference.Were it passed by
value, it would be sliced (pp. 490−491) and line 14 would always call thebase::print in line 10, never
thederived::print in line 21.

base::print must be public or protected because it is mentioned in line 21, a point outside the
member functions and friends of classbase . But derived::print can be private even though it may
be called from line 14, a point outside the member functions and friends of classderived . Line 14 does
not actually mentionderived::print .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/virtualfriend.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 i nt i;
7 protected:
8 v irtual void print(ostream& ost) const {ost << i;}
9 public:

10 base(int initial_i): i(initial_i) {}
11 virtual ˜base() {}
12
13 friend ostream& operator<<(ostream& ost, const base& b) {
14 b.print(ost);
15 return ost;
16 }
17 };
18
19 class derived: public base {
20 int j;
21 void print(ostream& ost) const {base::print(ost); ost << ", " << j;}
22 public:
23 derived(int initial_i, int initial_j): base(initial_i), j(initial_j) {}
24 };
25
26 int main()
27 {
28 base b(10);
29 const base *p = &b;
30 cout << *p << "\n"; //operator<<(cout, *p) << "\n";
31
32 derived d(20, 30);
33 p = &d;
34 cout << *p << "\n"; //operator<<(cout, *p) << "\n";
35
36 return EXIT_SUCCESS;
37 }

10 lines 28−30
20, 30 lines 32−34

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.3 Vi rtual Functions 497

498 Inheritance Chapter 5

▼ Homework 5.3a: allocate an array of derived objects

Even if thebase class has a virtual destructor, why must the pointerp in lines 10−11 be declared as
a pointer to aderived , not a pointer to abase ? Assume that aderived object is larger than abase
object.

1 base *p = new base(10); //a base object
2 delete p; //okay
3
4 p = new base[3]; //an array of base objects
5 delete[] p; //okay
6
7 p = new derived(20, 30); //a derived object
8 delete p; //okay
9

10 p = new derived[3]; //an array of derived objects
11 delete[] p; //blows up

If we had written anoperator new[] andoperator delete[] member function for class
base , lines 4 and 5 would have called them.We didn’t, so these lines called the global
operator new[] andoperator delete[] in the C++ Standard Library.
▲

5.4 HiddenPointers I: the Virtual Function Table (vtbl)
Back on p. 488 we saw the celebrated-> operator in line 23 ofpolymorphic3.C . How can the

expressiona[i]->print() call two different member functions?How does it interrogate the target
object and decide whichprint function to call?

My platform has a typical implementation.Every class that has virtual functions (including classes
derived from those having virtual functions) has a table in memory called thevirtual table, or vtbl, for that
class. Theclassbase in line 5 has a vtbl because it has virtual functions; the classderived in line 29
has a vtbl because it has virtual functions inherited from classbase .

There is exactly one vtbl for each class that has virtual functions, and the vtbl for the class is shared
by all the objects of the class.For example, all the object of classbase share one vtbl, and all the objects
of classderived share another vtbl.

Every object that has virtual functions begins with a pointer to the vtbl for the most derived class of
that object.For example, the objectb in line 41 is merely abase ; it begins with a pointer to the vtbl for
classbase . The objectd in line 45 is both abase and aderived ; it begins with a pointer to the vtbl for
classderived . See the following diagrams ofb andd, and the value of thesizeof ’s in lines 42 and 46.

At first glance, the vtbl looks like an array of pointers. But the pointers may be of different types, so
the vtbl actually has to be a structure whose fields are pointers.For each virtual function in the class, there
is a field containing a pointer to the function that is most appropriate for the class.For example, in the vtbls
for classbase and every class derived therefrom, the third field points to functions that belong to the vir-
tual functionf . The third field of the vtbl for classbase points tobase::f , and the third field in the vtbl
for classderived points toderived::f . The fourth field in both vtbls points tobase::g , since this
function was never overridden in classderived ; see the spline in the diagram.

Now we can trace how the celebrated-> operator did its work in thea[i]->print() in line 23 of
polymorphic3.C on p. 488.We will use the simpler examplep->f() in line 54. The first time this
expression is executed,p points to thebase objectb. See the following diagram.

The -> performs three dereferences. First we dereference thep, which gets us to the objectb (or to
d, the second time this expression is executed). Thenwe dereference the pointer in the object, which gets
us to the vtbl for the most derived class of the object.Finally, we dereference the pointer in the third field
of the vtbl, the field for the virtual functionf , which gets us to eitherbase::f or derived::f .

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

p b

i

vtbl for classbase functions in memory

base::˜base

base::˜base for dynamics

base::f

base::g

base::h

d

i

j

vtbl for classderived functions in memory

derived::˜derived

derived::˜derived for dynamics

derived::f

derived::h

C++ is sufficiently low-level to let us read an object’s vtbl and manually call the functions to which
the vtbl points. The structure in line 16 shows the layout of the vtbl for classbase on my platform. We
can use the same layout for any derived class that has no additional virtual functions.Classderived , for
example, has no virtual functions other than thef , g, h, and destructor that it inherits from classbase .

The structure in line 16 describes the vtbls for classesbase andderived . It will be seen that the
first (or only) argument in lines 17−21 is declared to be a pointer tobase . In a call to a function in the
base vtbl , this argument will point to abase object. Ina call to a function in thederived vtbl , this
argument will point to aderived object. Noexplicit casting is necessary to make this work.

The four virtual functions are of different types, so the corresponding fields in thelayout structure
had to be pointers to functions of different types.For example, thebase::f in line 11 andderived::f
in 33 take a read/write pointer to abase and returnvoid , and theptr_to_f in line 19 is a pointer to
this type of function. On the other hand, thebase::g in line 12 takes a read-only pointer to a base and
returnsvoid , and theptr_to_g in line 20 is a pointer to this type of function. On my platform, a vtbl
begins with pointers to two different implementations of the destructor: one for objects that are not dynami-
cally allocated, and one for objects that are.

The structure in line 24 shows the layout of abase object in memory on my platform. Its first field
is a pointer to the vtbl for class base; its second field is the data memberi .

Thep in line 52 is a pointer to abase object (which might also be aderived object). The*p in
line 59 is the base object itself.To giv e us a clean notation for accessing the fields of the object, line 59 lets
line 60 pretend that there is alayout structure namedlay in memory exactly where the object is.(lay
is merely a reference.Had lay been an actual structure, we would have incurred the expense of copying
the imagined structure intolay .)

To giv e us a clean notation for accessing the fields of the vtbl, line 60 lets lines 63−65 pretend that
there is avtbl structure namedv in memory exactly where the vtbl is. Lines 63−65 call the functions
whose addresses are in the vtbl.They do the same thing as lines 54−56, in the sense that touching an elec-
trode to the leg of a dissected frog makes the muscles do the same thing as when a live frog jumps. To
make it easy to tally the three dereferences, we wrote them with explicit asterisks in lines 59, 60 and 63.
The last asterisk can be implicit, as in the comment in line 63.The -> operator in line 54 performs these
three dereferences.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vtbl/vtbl.C

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.4 Hidden Pointers I: the Virtual Function Table (vtbl) 499

500 Inheritance Chapter 5

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 i nt i;
7 public:
8 base(int initial_i): i(initial_i) {}
9 v irtual ˜base() {}

10
11 virtual void f() {cout << "base::f\n";}
12 virtual void g() const {cout << "base::g\n";}
13 virtual int h(int n) const {cout << "base::h\n"; return i + n;}
14 };
15
16 struct vtbl { //of a base object
17 void (*ptr_to_destructor)(base *);
18 void (*ptr_to_dynamic_destructor)(base *);
19 void (*ptr_to_f)(base *); //ptr_to_f is a pointer to a function
20 void (*ptr_to_g)(const base *);
21 int (*ptr_to_h)(const base *, int);
22 };
23
24 struct layout { //of a base object
25 const vtbl *ptr_to_vtbl;
26 int i;
27 };
28
29 class derived: public base {
30 int j;
31 public:
32 derived(int initial_i, int initial_j): base(initial_i), j(initial_j) {}
33 void f() {cout << "derived::f\n";}
34 int h(int n) const {cout << "derived::h\n"; return j + n;}
35 };
36
37 void print(base *p);
38
39 int main()
40 {
41 base b(10);
42 cout << "sizeof b == " << sizeof b << "\n";
43 print(&b);
44
45 derived d(20, 30);
46 cout << "sizeof d == " << sizeof d << "\n";
47 print(&d);
48
49 return EXIT_SUCCESS;
50 }
51
52 void print(base *p)
53 {
54 p->f();

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

55 p->g();
56 cout << p->h(40) << "\n";
57
58 //Unofficial; not portable.
59 const layout& lay = reinterpret_cast<const layout &>(*p);
60 const vtbl& v = *lay.ptr_to_vtbl;
61
62 //This is what the calls in lines 54-56 actually do.
63 (*v.ptr_to_f)(p); //v.ptr_to_f(p);
64 (*v.ptr_to_g)(p); //v.ptr_to_g(p);
65 cout << (*v.ptr_to_h)(p, 40) << "\n\n"; //v.ptr_to_h(p, 40)
66 }

sizeof b == 8 sizeof (vtbl *) + sizeof (int)
base::f Line 43 passes abase object toprint .
base::g
base::h
50
base::f
base::g
base::h
50

sizeof d == 12 sizeof (vtbl *) + sizeof (int) + sizeof (int)
derived::f Line 47 passes aderived object toprint .
base::g
derived::h
70
derived::f
base::g
derived::h
70

Of course, the computer does not always need to use the vtbl.When an object is mentioned by name,
rather than accessed through a pointer, we can see at compile time whichf we are calling. There is no
need at runtime to look up the address of the appropriatef in the object’s vtbl.

1 base b(10);
2 b.f();
3
4 derived d(20, 30);
5 d.f();

5.5 DynamicAllocation of Base and Derived Objects
In pp. 415−419 we wrote anoperator new and operator delete function for allocating

objects of one specific class.We now provide the same functions for classbase , in lines 18 and 24.Our
functions produce tracing output, but they defer the actual allocation and deallocation to the global
operator new and operator delete . To call these global functions, we need the unary scope
operator:: in lines 19 and 26.Without it, our functions would call themselves and go into an infinite loop
(p. 476).

An operator delete for a base class can have an extra argument that we didn’t hav ebefore, the
size_t n in line 24. Like the size_t n in line 18, it gives the size of the object being allocated and

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.5 Dynamic Allocation of Base and Derived Objects 501

502 Inheritance Chapter 5

deallocated. Butnow these arguments give the total size of the object, including the size of any derived
object in which it is embedded.To ensure that the correct sizes are passed to these functions, the base class
must have a virtual destructor. The output shows that on my platform, abase is eight bytes (the four-byte
i plus four bytes of overhead) and aderived is 12 (i andj , plus the overhead).

Our simple operator new and operator delete merely print these numbers.A more
sophisticated pair of functions, like the ones in pp. 415−419, could use them to perform their own alloca-
tion.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/polymorphic/new.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 using namespace std;
5
6 c onst char *progname;
7 v oid my_new_handler();
8
9 c lass base {

10 int i;
11 public:
12 base(int initial_i = 0): i(initial_i) {
13 cout << "construct base " << i << "\n";
14 }
15
16 virtual ˜base() {cout << "destruct base " << i << "\n";}
17
18 void *operator new(size_t n) {
19 void *const p = ::operator new(n);
20 cout << "base::operator new(" << n << ") returns " << p << "\n";
21 return p;
22 }
23
24 void operator delete(void *p, size_t n) {
25 cout << "base::operator delete(" << p << ", " << n << ")\n";
26 ::operator delete(p);
27 }
28 };
29
30 class derived: public base {
31 int j;
32 public:
33 derived(int initial_i = 0, int initial_j = 0)
34 : base(initial_i), j(initial_j) {
35 cout << "construct derived " << initial_i << " " << j << "\n";
36 }
37
38 ˜derived() {cout << "destruct derived " << j << "\n";}
39 };
40
41 int main(int argc, char **argv)
42 {
43 progname = argv[0];
44 set_new_handler(my_new_handler);

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

45
46 base *p = new base(10);
47 delete p;
48
49 cout << "\n";
50
51 p = new derived(10, 20);
52 delete p;
53
54 return EXIT_SUCCESS;
55 }
56
57 void my_new_handler()
58 {
59 cerr << progname << ": out of store\n";
60 exit(EXIT_FAILURE);
61 }

base::operator new(8) returns 0x22280 line 46 allocates abase object
construct base 10
destruct base 10 line 47 deallocates thebase object
base::operator delete(0x22280, 8)

base::operator new(12) returns 0x23a98 line 51 allocates aderived object
construct base 10
construct derived 10 20
destruct derived 20 line 52 deallocates thederived object
destruct base 10
base::operator delete(0x23a98, 12)

▼ Homework 5.5a: does the base class destructor have to be virtual?

Let the destructor for the above classbase in line 16 be non-virtual.Will line 52 still call the
destructor for classderived ? Are the correctn arguments still passed to
base::operator delete ?
▲

A simple example of inheritance with virtual functions

stack base class

stackt stacke derived classes

tracing error checking

Here’s a bare-bones version of the stack we saw on pp. 149−154 and 172−174.We’l l use inheritance
to build classes with additional features: tracing for debugging, and error checking.(I concede that in real
life, no one would write the base class stack without error checking.)

For the data typesize_t in lines 7 and 9, see p. 66.For the initialization of the static data member
max_size in line 7, see p. 238.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackt/stack.h

1 #ifndef STACKH

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.5 Dynamic Allocation of Base and Derived Objects 503

504 Inheritance Chapter 5

2 #define STACKH
3 #include <cstddef> //for size_t
4 using namespace std;
5
6 c lass stack {
7 s tatic const size_t max_size = 100;
8 i nt a[max_size];
9 s ize_t n; //stack pointer: subscript of next free element

10 public:
11 stack(): n(0) {}
12 virtual ˜stack() {}
13
14 virtual void push(int i) {a[n++] = i;}
15 virtual int pop() {return a[--n];}
16
17 size_t size() const {return n;}
18 static size_t capacity() {return max_size;}
19 };
20 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackt/main1.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4 #include "stack.h"
5
6 i nt main()
7 {
8 c out << "To hire a person, type their social security number.\n"
9 " To fire the most recently hired person, type a zero.\n"

10 "To quit, type a negative number.\n";
11
12 ::stack s; //Call the constructor for s with no arguments.
13
14 for (;;) {
15 int ss; //uninitialized variable
16 cin >> ss;
17 if (ss < 0) { //quit
18 break;
19 }
20
21 if (ss > 0) { //hire
22 s.push(ss);
23 } else { //fire
24 cout << "Firing number " << s.pop() << ".\n";
25 }
26 }
27
28 return EXIT_SUCCESS; //Call the destructor for s.
29 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

To hire a person, type their social security number.
To fire the most recently hired person, type a zero.
To quit, type a negative number.
10 You type the numbers in italics.
20
30
0
Firing number 30.
0
Firing number 20.
40
0
Firing number 40.
0
Firing number 10.
−1

With classesstackt and stacke we can add functionality to classstack without having to
change or duplicate the code in that class.For example, the author ofstackt has no need to agonize
again over whether the++ should be prefix or postfix.We can let this sleeping dog lie in the base class
stack .

In line 10, the constructor forstackt begins by calling the constructor forstack and passing it no
arguments. Thiswould still happen even if we didn’t write thestack(), , so cross it out.

stackt::push begins by callingstack::push . As we hav eseen, there is no stigma attached
to having a member function of the derived class call a member function of the base class to do part of its
work, if we’re happy with the member function of the base class as far as it goes.Remember, the member
functions in lines 13 and 14 would go into an infinite loop if we forget the::stack:: (p. 476.)

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackt/stackt.h

1 #ifndef STACKTH
2 #define STACKTH
3 #include <iostream>
4 #include "stack.h"
5 using namespace std;
6
7 c lass stackt: public ::stack { //stack with tracing output
8 ostream& ost;
9 public:

10 stackt(ostream& initial_ost): stack(), ost(initial_ost) {ost << "stackt()\n";}
11 ˜stackt() {ost << "˜stackt()\n";}
12
13 void push(int i) {::stack::push(i); ost << "push(" << i << ")\n";}
14 int pop() {const int i = ::stack::pop(); ost << "pop(" << i << ")\n"; return i;}
15 };
16 #endif

We can remove the following line 7 entirely. Even without it, classstacke would still have a con-
structor that takes no arguments, which would call the constructor for classstack with no arguments.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackt/stacke.h

1 #ifndef STACKEH
2 #define STACKEH
3 #include "stack.h"

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.5 Dynamic Allocation of Base and Derived Objects 505

506 Inheritance Chapter 5

4
5 c lass stacke: public ::stack { //stack with error checking
6 public:
7 s tacke(): stack() {}
8 ˜ stacke();
9

10 void push(int i);
11 int pop();
12 };
13 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackt/stacke.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stacke.h"
4 using namespace std;
5
6 s tacke::˜stacke()
7 {
8 i f (size() != 0) {
9 c err << "Warning: stack still contains " << size()

10 << " v alues.\n";
11 }
12 }
13
14 void stacke::push(int i)
15 {
16 if (size() >= capacity()) {
17 cerr << "Can’t push when size " << size() << " >= capacity "
18 << capacity() << ".\n";
19 exit(EXIT_FAILURE);
20 }
21
22 ::stack::push(i);
23 }
24
25 int stacke::pop()
26 {
27 if (size() == 0) {
28 cerr << "Can’t pop when size " << size() << " == 0.\n";
29 exit(EXIT_FAILURE);
30 }
31
32 return ::stack::pop();
33 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stackt/main2.C

1 #include <iostream>
2 #include <cstdlib>
3
4 #include "stackt.h"
5 #include "stacke.h"

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

6 using namespace std;
7
8 v oid f(::stack *p);
9 v oid g(::stack& r);

10
11 int main()
12 {
13 ::stack s;
14 stackt st(cout);
15 stacke se;
16
17 f(&s);
18 f(&st);
19 f(&se);
20
21 cout << "\n";
22
23 g(s);
24 g(st);
25 g(se);
26
27 return EXIT_SUCCESS;
28 }
29
30 void f(::stack *p)
31 {
32 p->push(10);
33 cout << p->pop() << "\n";
34 }
35
36 void g(::stack& r) //Exactly the same function, but with a reference argument.
37 {
38 r.push(20);
39 cout << r.pop() << "\n";
40 }

stackt() line 14
10 line 17
push(10) line 18
pop(10) line 18
10 line 18
10 line 19

20 line 23
push(20) line 24
pop(20) line 24
20 line 24
20 line 25
˜stackt() line 27

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.5 Dynamic Allocation of Base and Derived Objects 507

508 Inheritance Chapter 5

A pre view of multiple inheritance

I’d like to create the grandchild classstackte , which would inherit debugging from classstackt
and error checking from classstacke . Having two or more parents is calledmultiple inheritanceas
opposed tosingle inheritance. Java has only single inheritance.

To ensure that the grandchildstackte will inherit only a single copy of its grandparentstack , we
will have to letstackt andstacke bevirtual base classes.See pp. 554−557.

stack base class

stackt stacke

stackte

derived classes

grandchild class

5.6 Partition the Code into Member Functions

Which member functions need to be marked as virtual?

rocket base class

relativistic_rocket derived class

It would seem that the biggest difficulty with object-oriented programming is to decide which mem-
ber functions must be marked as virtual.We cannot always identify the member functions which are ade-
quate to service the class they belong to, but which may be inadequate to service a derived class that no one
has dreamt of yet.

The following classrocket illustrates this problem.It was written on the eve of Einstein’s Special
Theory of Relativity. No one suspected that thelength member function in line 13 would become obso-
lete in a derived class, so how could they hav eknown to mark it as virtual?

A class can’t hav ea data member and a member function with the same name.That’s why the names
of the data members have underscores.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/relative/rocket.h

1 #ifndef ROCKETH
2 #define ROCKETH
3
4 c lass rocket {
5 double _length; //in meters
6 double _v; //velocity in meters per second
7 public:
8 r ocket(double initial_length, double initial_v)
9 : _length(initial_length), _v(initial_v) {}

10
11 virtual ˜rocket() {}
12
13 virtual double length() const {return _length;}
14 double v() const {return _v;}

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

15 };
16 #endif

To complete the example, we show a class derived after the publication of relativity theory. The
speed of light is represented by the letterc (celerity); it is a member function in line 12, rather than a data
member, because I wanted it to be public. Nothing can travel faster than light, and the constructor checks
for this.

An object becomes shorter as it approaches the speed of light. The square root in thelength func-

tion, √ 1 −
v2

c2
, has the value 1 when the rocket is stationary (v == 0), and shrinks toward zero as the

rocket speeds up (v approachesc).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/relative/relativistic_rocket.h

1 #ifndef RELATIVISTIC_ROCKETH
2 #define RELATIVISTIC_ROCKETH
3 #include <cmath> //for sqrt
4 #include "rocket.h"
5 using namespace std;
6
7 c lass relativistic_rocket: public rocket {
8 public:
9 r elativistic_rocket(double initial_length, double initial_v);

10
11 //speed of light in vacuum (meters per second)
12 static double c() {return 2.99792458e8;}
13
14 double length() const {
15 return rocket::length() * sqrt(1 - v() * v() / (c() * c()));
16 }
17 };
18 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/relative/relativistic_rocket.C

1 #include <iostream> //for cerr and <<
2 #include <cstdlib> //for EXIT_FAILURE
3 #include <cmath> //for abs
4 #include "relativistic_rocket.h"
5 using namespace std;
6
7 r elativistic_rocket::relativistic_rocket(double initial_length, double initial_v)
8 : rocket(initial_length, initial_v)
9 {

10 if (abs(v()) >= c()) {
11 cerr << "Velocity " << v() << " can’t be >= the speed of light "
12 << c() << ".\n";
13 exit(EXIT_FAILURE);
14 }
15 }

At
√3

2
of the speed of light, a rocket shrinks to half of its original length.At

√15

4
of the speed of

light, it shrinks to one fourth; at
√63

8
, to one eighth.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 509

510 Inheritance Chapter 5

The C++ Standard Library has threesqrt functions, taking arguments of typefloat , double ,
andlong double . The computer would not have known which one to call had we written an argument of
type int in lines 12−14.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/relative/main.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 #include <cmath>
5 #include "relativistic_rocket.h"
6 using namespace std;
7
8 i nt main()
9 {

10 const double a[] = { //fraction of the speed of light
11 0,
12 sqrt(3.0) / 2,
13 sqrt(15.0) / 4 ,
14 sqrt(63.0) / 8 ,
15 1
16 };
17 const size_t n = sizeof a / sizeof a[0];
18
19 for (const double *p = a; p < a + n; ++p) {
20 const relativistic_rocket r(1, *p * relativistic_rocket::c());
21
22 cout << "velocity == " << scientific << r.v()
23 << resetiosflags(ios_base::floatfield) //turn off scientific
24 << ", length == " << r.length() << "\n";
25 }
26
27 return EXIT_SUCCESS;
28 }

velocity == 0.000000e+00, length == 1
velocity == 2.596279e+08, length == 0.5
velocity == 2.902728e+08, length == 0.25
velocity == 2.974411e+08, length == 0.125
Velocity 2.99792e+08 can’t be >= the speed of light 2.99792e+08.

Divide the code of a class into member functions

As shown above, there may be no way to tell in advance which member functions should be marked
as virtual. But the real difficulty is much worse. Theremay be no way to tell in advance how the code in a
class should be divided up into member functions. The correct partitioning becomes obvious only when it
is too late, after the incorrect design has been engraved in granite.

It will take a multi-part example to illustrate a problem as complicated as this.We will build up a
date class that knows which years are leap years and which are not. In real life, we would write this as a
single class. But to illustrate how to create software in layers, we will write it as a base class and a derived
class.

The classdate that we will start with does not know which years are leap.It assumes they all are.
But it is intended to be a base class for a smarter class that does know which are leap. (It would seem to
make more sense for the base class to assume by default that all years are non-leap.We’l l see why it has to

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

assume thaht all years are leap on p. 518, when we see the derived class.)

There are two constructors, with three arguments in line 30 and no arguments in line 34. Their com-
mon code has been factored out into a separate member function, theinstall in line 13.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/virtual1/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 #include <ctime> //for time and localtime
5 using namespace std;
6
7 c lass date {
8 i nt year; //Must construct data members in this order.
9 i nt month; //date::january to date::december inclusive

10 int day; //1 to length[month] inclusive
11
12 static const int length[];
13 virtual void install(int m, int d, int y);
14 public:
15 enum month_t { //indices into the length array
16 january = 1,
17 february,
18 march,
19 april,
20 may,
21 june,
22 july,
23 august,
24 september,
25 october,
26 november,
27 december
28 };
29
30 date(int initial_month, int initial_day, int initial_year) {
31 install(initial_month, initial_day, initial_year);
32 }
33
34 date();
35 virtual ˜date() {}
36
37 int get_month() const {return month;}
38 int get_day() const {return day;}
39 int get_year() const {return year;}
40
41 virtual date& operator++();
42 virtual date& operator--();
43
44 friend ostream& operator<<(ostream& o, const date& d) {
45 return o << d.month << "/" << d.day << "/" << d.year;
46 }
47 };
48 #endif

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 511

512 Inheritance Chapter 5

The biggest member functions areinstall and the prefixoperator++ operator-- .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/virtual1/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 c onst int date::length[] = {
7 0, / /dummy
8 31, //january
9 29, //february

10 31, //march
11 30, //april
12 31, //may
13 30, //june
14 31, //july
15 31, //august
16 30, //september
17 31, //october
18 30, //november
19 31 //december
20 };
21
22 void date::install(int m, int d, int y) //called by each constructor
23 {
24 year = y;
25
26 if (m < january || m > december) {
27 cerr << "bad month " << m << "/" << d << "/" << y << "\n";
28 exit(EXIT_FAILURE);
29 }
30 month = m;
31
32 if (d < 1 || d > length[month]) {
33 cerr << "bad day " << m << "/" << d << "/" << y << "\n";
34 exit(EXIT_FAILURE);
35 }
36 day = d;
37 }
38
39 date::date() //Initialize to the current date.
40 {
41 const time_t t = time(0);
42
43 if (t == static_cast<time_t>(-1)) {
44 cerr << "time failed\n";
45 exit(EXIT_FAILURE);
46 }
47
48 const tm *const s = localtime(&t);
49 install(s->tm_mon + 1, s ->tm_mday, s->tm_year + 1900);
50 }
51

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

52 date& date::operator++()
53 {
54 if (++day > length[month]) {
55 day = 1;
56 if (++month > december) {
57 month = j anuary;
58 ++year;
59 }
60 }
61
62 return *this;
63 }
64
65 date& date::operator--()
66 {
67 if (--day < 1) {
68 if (--month < january) {
69 month = december;
70 --year;
71 }
72 day = l ength[month];
73 }
74
75 return *this;
76 }

The above classdate thinks every year is a leap year.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/virtual1/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt main()
7 {
8 date d(date::february, 28, 2014);
9 c out << ++d << "\n";

10
11 return EXIT_SUCCESS;
12 }

The above line 9 behaves as if we had written

13 cout << d.operator++() << "\n";

which behaves as if we had written

14 operator<<(cout, d.operator++()) << "\n";

which behaves as if we had written

15 operator<<(operator<<(cout, d.operator++()), "\n");

As we have already seen, operator overloading gives us a nice, linear notation for deeply nested function
calls.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 513

514 Inheritance Chapter 5

2/29/2014

Reuse more of the base class

Some of the member functions of the above class are good enough to be inherited by a derived class
that is responsible for knowing about leap years. An example is the default constructor in lines 39−50 of
the above date.C : nothing in it would become obsolete when we have to handle leap years. But all three
of the biggest member functions would have to be rewritten to handle leap years.That’s why they were vir-
tual:

(1) install

(2) prefixoperator++

(3) prefixoperator--

We could easily mark these functions as virtual, and override them in the derived class with ones that
know about leap years. But these were the three biggest functions of the base class. And many more
would have had to be virtual had we bothered to write them:operator+= , operator- , etc. Theintent
of inheritance is to let usreuse the base class in the derived class, not force us tore write the base class in
the derived class. Apparentlywe have not yet achieved this goal.

Were we too hasty in resigning ourselves to rewriting the three big member functions in their entirety
down in the derived class? Canany part of them be salvaged? Infact, almost every line can be. The only
thing wrong with the prefixoperator++ in lines 52−63 of the abovedate.C is the expression
length[month] in line 54. No other part of this function would become obsolete in a derived class
responsible for knowing about leap years.Similarly, only one small would become obsolete—once again,
the length[month] —in the prefixoperator-- andinstall .

To avoid rewriting the three big member functions, we simply excise the diseased tissue—the expres-
sion length[month] —and package it as a separate member function.We can reuse more of the base
class code if we create a new member function to hold each piece of code that will become obsolete in the
derived class. Thefollowing version of the base class still thinks that every year is a leap year, but now
only one small member function (not counting the destructor) has to be virtual (line 39).It will be the only
part of the base class that will have to be rewritten in the derived class.

To minimize the code that has to be rewritten in the derived classes, keep the job of the virtual func-
tion as simple as possible.Our length function merely returns a value; theif ’s that use this value are in
the non-virtual member functions of the base class. Other examples will be on pp. 519 and 534.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/virtual2/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 #include <ctime>
5 using namespace std;
6
7 c lass date {
8 i nt year; //Must construct data members in this order.
9 i nt month; //date::january to date::december inclusive

10 int day; //1 to length[month] inclusive
11
12 void install(int m, int d, int y);
13 public:
14 enum month_t { //indices into the length array
15 january = 1,
16 february,
17 march,
18 april,

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

19 may,
20 june,
21 july,
22 august,
23 september,
24 october,
25 november,
26 december
27 };
28
29 date(int initial_month, int initial_day, int initial_year) {
30 install(initial_month, initial_day, initial_year);
31 }
32
33 date();
34 virtual ˜date() {}
35
36 int get_month() const {return month;}
37 int get_day() const {return day;}
38 int get_year() const {return year;}
39 virtual int length() const;
40
41 date& operator++();
42 date& operator--();
43
44 friend ostream& operator<<(ostream& o, const date& d) {
45 return o << d.month << "/" << d.day << "/" << d.year;
46 }
47 };
48 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/virtual2/date.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 using namespace std;
5
6 i nt date::length() const
7 {
8 s tatic const int a[] = {
9 0, / /dummy

10 31, //january
11 29, //february
12 31, //march
13 30, //april
14 31, //may
15 30, //june
16 31, //july
17 31, //august
18 30, //september
19 31, //october
20 30, //november
21 31 //december

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 515

516 Inheritance Chapter 5

22 };
23
24 return a[month];
25 }
26
27 void date::install(int m, int d, int y)
28 {
29 year = y;
30
31 if (m < january || m > december) {
32 cerr << "bad month " << m << "/" << d << "/" << y << "\n";
33 exit(EXIT_FAILURE);
34 }
35 month = m;
36
37 if (d < 1 || d > length()) {
38 cerr << "bad day " << m << "/" << d << "/" << y << "\n";
39 exit(EXIT_FAILURE);
40 }
41 day = d;
42 }
43
44 date::date() //Initialize to the current date.
45 {
46 const time_t t = time(0);
47
48 if (t == static_cast<time_t>(-1)) {
49 cerr << "time failed\n";
50 exit(EXIT_FAILURE);
51 }
52
53 const tm *const s = localtime(&t);
54 install(s->tm_mon + 1, s ->tm_mday, s->tm_year + 1900);
55 }
56
57 date& date::operator++()
58 {
59 if (++day > length()) {
60 day = 1;
61 if (++month > december) {
62 month = j anuary;
63 ++year;
64 }
65 }
66
67 return *this;
68 }
69
70 date& date::operator--()
71 {
72 if (--day < 1) {
73 if (--month < january) {
74 month = december;
75 --year;

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

76 }
77 day = l ength();
78 }
79
80 return *this;
81 }

Now we can derive a class that knows about leap years, without having to rewrite most of the base
class.

In line 8, the constructor forleapdate begins by calling the constructor fordate and passing it no
arguments. Thiswould still happen even if we don’t write the: d ate() , so don’t bother to write the it.
We still have to keep theleapdate() {} in line 8, however. The computer will not supply a default
constructor for us if we have written another constructor with arguments (line 7).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/virtual2/leapdate.h

1 #ifndef LEAPDATEH
2 #define LEAPDATEH
3 #include "date.h"
4
5 c lass leapdate: public date {
6 public:
7 l eapdate(int initial_month, int initial_day, int initial_year);
8 l eapdate(): date() {}
9

10 int length() const;
11 };
12 #endif

As we have already seen, it is no sin for a member function of a derived class to call upon a member
function of the base class (line 31).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/virtual2/leapdate.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "leapdate.h"
4 using namespace std;
5
6 l eapdate::leapdate(int initial_month, int initial_day, int initial_year)
7 : date(initial_month, initial_day, initial_year)
8 {
9 i f (initial_day > length()) {

10 cerr << "bad day " << initial_month << "/" << initial_day << "/"
11 << initial_year << "\n";
12 exit(EXIT_FAILURE);
13 }
14 }
15
16 int leapdate::length() const
17 {
18 const int y = get_year();
19
20 bool is_leap; //uninitialized; true if this is a leap year
21

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 517

518 Inheritance Chapter 5

22 if (y % 400 == 0) { //2000 and 2400 are leap years
23 is_leap = t rue;
24 } else if (y % 100 == 0) { //1700, 1800, 1900, and 2100 are not leap years
25 is_leap = f alse;
26 } else if (y % 4 == 0) {
27 is_leap = t rue;
28 } else {
29 is_leap = f alse;
30 }
31
32 return !is_leap && get_month() == february ? 28 : date::length();
33 }

To make the variableis_leap a const , and make the code run faster by putting the most common
case first, condense the above lines 20−30 to

34 const bool is_leap = y % 4 == 0 && (y % 100 != 0 || y % 400 == 0);

We now get correct output from the abovemain.C , if we change the object to aleapdate :

3/1/2014

Why does the base classdate think that every year is a leap year?Wouldn’t it hav ebeen more natu-
ral for the base class to assume that every year is non-leap?Well, suppose we declare

35 leapdate ld(date::february, 29, 2004);

The constructor forleapdate begins by passing these three arguments to the constructor for the base
classdate in the above line 7. The constructor fordate must therefore be able to accept February 29th.

Why does the constructor for the derived class have to compareinitial_day to the length of the
month in the above line 9? Wasn’t this check already performed by the constructor for the base class when
it called install ? Well, we have to do it again becauseinstall was calling date::length . The
constructor forleapdate will call leapdate::length .

Superhuman foresight and godlike omniscience

When we write a class that may later be used as a base for other classes, can we anticipate every
expression and statement that may have to be overridden in the derived classes, cut them out, and isolate
them in one or more virtual member functions?This is a much, much harder problem than merely deciding
which member functions need to be marked as virtual.

To see how hard this is, can you see any statements still in the non-virtual member functions of the
above classdate that might need to be isolated in virtual member functions because of a derived class that
no one has dreamt of yet? Please do not read farther until you have tried this.

Let’s call the last classdate the ‘‘base class’’. The base class believes there was a Year Zero
between 1B.C. and 1A.D.. Suppose we had to derive a class that was smart enough to know that there was
no Year Zero. Theinstall member function of the base class now is obsolete because of line 29 of
date.C : it has to do more to theyear data member than just theyear = y; . The prefixoperator++
member function of the base class is obsolete because of line 50: it can’t just blindly add 1 toyear . Simi-
larly, the prefixoperator-- member function is obsolete because of line 62.

With the benefit of hindsight, we should have giv en the base class the following virtual member func-
tion. It can be private since it will be called only by the member functions of the base class.

1 v irtual bool is_legal_year() const {return true;}

It always returns true since the base class believes that any number is a valid year number. It believes that
there was a Year Zero.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

In theinstall member function of the base class, line 29 should have been

2 y ear = y;
3 i f (!is_legal_year()) {
4 c err << "bad year " << m << "/" << d << "/" << year << "\n";
5 exit(EXIT_FAILURE);
6 }

In the prefixoperator++ member function of the base class, line 50 should have been

7 ++year;
8 i f (!is_legal_year()) {
9 ++year;

10 }

In the prefixoperator-- member function of the base class, line 62 should have been

11 --year;
12 if (!is_legal_year()) {
13 --year;
14 }

Finally, the derived class should have a smarter version of theis_legal_year virtual member
function. It can, and therefore should, be private, because it is called only when the member functions of
the base class call the virtual functionis_legal_year . In general, however, a virtual function in a
derived class does not necessarily have to hav ethe same level of privacy as the function in the base class.

15 bool is_legal_year() const {return get_year() != 0;}

Once again, we have simplified the job of the virtual function in order to minimize the code that has
to be rewritten in the derived classes. Thevirtual function merely returns true or false; theif ’s that use
these values are in the non-virtual member functions of the base class. See p. 514.

As a test of your perspicuity, are there any more statements still in the non-virtual member functions
of the base class that might need to be isolated in virtual member functions? Or have we caught them all?

▼ Homework 5.6a: the Julian to Gregorian switch-over

The English-speaking world switched from the Julian to the Gregorian calendar in September, 1752.
Eleven days were removed from that month to synchronize the new calendar with the seasons. It was the
Y2K problem of the Eighteenth Century.

September 1752
S M Tu W Th F S

1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Suppose we have to derive a date class that is smart enough to know about this. the install mem-
ber function of the base class is now obsolete because of line 41 ofdate.C : not every day is legal. The
prefix operator++ member function is obsolete because of line 46: it can’t blindly add 1, because the
day after September 2, 1752 was September 14th.Similarly, the prefixoperator-- member function is
obsolete because of line 59.

With the benefit of hindsight, how shall we fix this? Was the is_legal_year virtual member
function a good idea?
▲

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.6 Partition the Code into Member Functions 519

520 Inheritance Chapter 5

▼ Homework 5.6b: have we isolated all the potentially obsolete bits of code yet?

Are there any other statements still in the non-virtual member functions of the base class that might
need to be isolated in virtual member functions?
▲

5.7 AbstractBase Classes and Pure Virtual Functions

A base class for two implementations of class date

No birds were flying overhead—
There were no birds to fly.

—Lewis Carroll,Through the Looking-Glass, Chapter IV

To illustrate pure virtual functions and abstract base classes, let’s go back to a simpler classdate
that knows nothing of leap years, Julian vs. Gregorian, or the absence of a year 0.We won’t even bother
with anoperator-- or any other function to move thedate backwards.

The original classdate had three data members:

1 i nt year; //Must construct the data members in this order.
2 i nt month; //date::january to date::december inclusive
3 i nt day; //1 to length[month] inclusive

We can save space by changing them to one data member:

4 i nt day; //number of days before or after January 1, 0 A.D.

Unfortunately, the classdate with one data member is slower. Its constructor has more work to do:
it must combine its three integer arguments into one big integer. Conversely, its operator<< friend also
has more work: it must render its integer data member back into three separate integers (m/d/y).

Let’s name the two implementations after their virtues: classfastdate (with three data members)
and classsmalldate (with one data member).We will derive them from a common base classdate ,
containing the members needed by both derived classes. Butnone of these members will be data members:
the two derived classes have no data members in common. It will be our first class with no data members.

Classdate is intended only as building block for the two derived classes. Noone will ever con-
struct an object whose most derived class isdate , i.e., an object that is merely adate and nothing else.
Such an object would be hollow—it would have no data members.

date

no data members

fastdate

3 data members

smalldate

1 data member

Theprint member function on p. 497, line 10 ofvirtualfriend.C had to be public because it
was called by a function that was neither a member nor a friend of its class. But theprint member func-
tion in line 7 of the followingdate.h can be private because it is called only by a friend of its class.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <iostream>
4 using namespace std;
5

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

6 c lass date {
7 v irtual void print(ostream& ost) const;
8 public:
9 enum month_t {

10 january = 1,
11 february,
12 march,
13 april,
14 may,
15 june,
16 july,
17 august,
18 september,
19 october,
20 november,
21 december
22 };
23
24 static const int length[]; //no non-static data members
25
26 date(int initial_month, int initial_day, int initial_year);
27 virtual ˜date() {}
28
29 virtual date& operator++();
30 virtual date& operator+=(int count);
31
32 friend ostream& operator<<(ostream& ost, const date& d) {
33 d.print(ost);
34 return ost;
35 }
36 };
37 #endif

The constructor for classdate in lines 21−34 performs the error checking for all the derived classes.
But it does not initialize any data members: this class has no data members to initialize.

It would be premature to attempt to increment or print an object with no data members, so the bodies
of theoperator++ andprint in lines 45−55 contain only an error message and an exit. (Somecompil-
ers would warn you that they fail to return a value.) Mostof the other member functions would be the
same way, so I didn’t bother to define them. Oddly enough, though, there is one member function that we
can define even though we have no data members yet: theoperator+= in lines 36−43. (It’s virtual
because there will be better [i.e., faster] ones in the derived classes.) We are able to define it because it
defers most of its work to anoperator++ function in line 39. To which operator++ ? We hav en’t
written any working operator++ yet, but we will. The bestoperator++ for the object at hand will be
selected, sinceoperator++ is virtual.

But let’s go back to the ‘‘premature’’ member functionsoperator++ and print . Why did we
ev en declare them in classdate ? Primarily because we had to provide a place to hang the keyword
virtual . Without writing the keyword in this class, theoperator++ andprint member functions in
the derived classes would not be virtual.

We also had to declare anoperator++ in classdate because it is called by one of the member
functions of this class (operator+=). And we had to declare aprint in classdate because it is called
by one of the friends of this class (operator<<). Without these declarations, ouroperator+= and
operator<< would not compile.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and Pure Virtual Functions 521

522 Inheritance Chapter 5

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/date.C

1 #include <cstdlib>
2 #include "date.h"
3 using namespace std;
4
5 c onst int date::length[] = {
6 0, / /dummy entry so that january will have subscript 1
7 31, //january
8 28, //february
9 31, //march

10 30, //april
11 31, //may
12 30, //june
13 31, //july
14 31, //august
15 30, //september
16 31, //october
17 30, //november
18 31 //december
19 };
20
21 date::date(int initial_month, int initial_day, int initial_year)
22 {
23 if (initial_month < january || initial_month > december) {
24 cerr << "bad month " << initial_month << "/" << initial_day
25 << "/" << initial_year << "\n";
26 exit(EXIT_FAILURE);
27 }
28
29 if (initial_day < 1 || initial_day > length[initial_month]) {
30 cerr << "bad day " << initial_month << "/" << initial_day
31 << "/" << initial_year << "\n";
32 exit(EXIT_FAILURE);
33 }
34 }
35
36 date& date::operator+=(int count)
37 {
38 while (--count >= 0) {
39 ++*this; //(*this).operator++();
40 }
41
42 return *this;
43 }
44
45 date& date::operator++()
46 {
47 cerr << "can’t call date::operator++\n";
48 exit(EXIT_FAILURE);
49 }
50
51 void date::print(ostream& ost) const
52 {

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

53 cerr << "can’t call date::print\n";
54 exit(EXIT_FAILURE);
55 }

The only thing we can do with adate is to pass a zero to itsoperator+= member function.Any
other argument, or any other member function, will give us an error message at runtime.We can’t even
print it.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/main1.C

1 #include <cstdlib>
2 #include "date.h"
3 using namespace std;
4
5 i nt main()
6 {
7 date d(date::january, 1, 2014);
8 d += 0; //d.operator+=(0);
9

10 return EXIT_SUCCESS;
11 }

The derived classes

The virtual functions in lines 19−20 can return afastdate& ev en though the corresponding func-
tions in the base class returned adate& : a virtual function in a derived class can have a return type that is
derived from the return type of the function in the base class. This is the exception in p. 493, ¶ (4).Unfor-
tunately, Microsoft Visual C++ does not handle the exception. See‘‘ Bug C2555: On Virtual Functions with
Covariant Return Types’’ at
http://support.microsoft.com/support/kb/articles/Q240/8/
62.ASP?LN=EN-US&SD=gn&FR=0&qry=q240862&
rnk=1&src=DHCS_MSPSS_gn_SRCH&SPR=VCC

The base classdate had a working operator+= , but we can write faster ones in the derived
classes.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/fastdate.h

1 #ifndef FASTDATEH
2 #define FASTDATEH
3 #include "date.h"
4
5 c lass fastdate: public date {
6 i nt year;
7 i nt month; //date::january to date::december inclusive
8 i nt day; //1 to length[month] inclusive
9

10 void print(ostream& ost) const {
11 ost << month << "/" << day << "/" << year;
12 }
13
14 public:
15 fastdate(int initial_month, int initial_day, int initial_year)
16 : date(initial_month, initial_day, initial_year),
17 year(initial_year), month(initial_month), day(initial_day) {}
18

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and Pure Virtual Functions 523

524 Inheritance Chapter 5

19 fastdate& operator++();
20 fastdate& operator+=(int count);
21 };
22 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/fastdate.C

1 #include <cstdlib> //for div
2 #include "fastdate.h"
3 using namespace std;
4
5 f astdate& fastdate::operator++()
6 {
7 i f (++day > length[month]) {
8 day = 1;
9 i f (++month > december) {

10 month = j anuary;
11 ++year;
12 }
13 }
14
15 return *this;
16 }
17
18 fastdate& fastdate::operator+=(int count)
19 {
20 div_t d = div(count, 365);
21 if (d.rem < 0) { //Make sure remainder is non-negative.
22 d.rem += 365;
23 --d.quot;
24 }
25
26 year += d.quot;
27
28 for (day += d.rem; day > length[month];) {
29 day -= length[month];
30 if (++month > december) {
31 month = j anuary;
32 ++year;
33 }
34 }
35
36 return *this;
37 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/smalldate.h

1 #ifndef SMALLDATEH
2 #define SMALLDATEH
3 #include "date.h"
4
5 c lass smalldate: public date {
6 s tatic const int pre[];
7 i nt day; //number of days before or after January 1, 0 A.D.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

8 v oid print(ostream& ost) const;
9 public:

10 smalldate(int initial_month, int initial_day, int initial_year)
11 : date(initial_month, initial_day, initial_year),
12 day(365 * i nitial_year + pre[initial_month] + initial_day - 1)
13 {}
14
15 smalldate& operator++() {++day; return *this;}
16 smalldate& operator+=(int count) {day += count; return *this;}
17 };
18 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/smalldate.C

1 #include <cstdlib>
2 #include "smalldate.h"
3 using namespace std;
4
5 c onst int smalldate::pre[] = {
6 0, / /dummy element to give january subscript 0
7 0, / /january
8 pre[1] + length[1], //february
9 pre[2] + length[2], //march

10 pre[3] + length[3], //april
11 pre[4] + length[4], //may
12 pre[5] + length[5], //june
13 pre[6] + length[6], //july
14 pre[7] + length[7], //august
15 pre[8] + length[8], //september
16 pre[9] + length[9], //october
17 pre[10] + l ength[10], //november
18 pre[11] + l ength[11] //december
19 };
20
21 void smalldate::print(ostream& ost) const
22 {
23 div_t d = div(day, 365);
24 if (d.rem < 0) { //Make sure remainder is non-negative.
25 d.rem += 365;
26 --d.quot;
27 }
28
29 int julian = d.rem + 1; //Julian date is in range 1 to 365, not 0 to 364.
30 int month; //uninitialized variable
31
32 for (month = 1; julian > length[month]; ++month) {
33 julian -= length[month];
34 }
35
36 ost << month << "/" << julian << "/" << d.quot;
37 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/main2.C

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and Pure Virtual Functions 525

526 Inheritance Chapter 5

1 #include <iostream>
2 #include <cstdlib>
3 #include "date.h"
4 #include "fastdate.h"
5 #include "smalldate.h"
6 using namespace std;
7
8 i nt main()
9 {

10 fastdate fd(date::january, 1, 2014);
11 cout << fd << "\n";
12 fd += 280; //fd.operator+=(280);
13 cout << fd << "\n\n";
14
15 smalldate sd(date::january, 1, 2014);
16 cout << sd << "\n";
17 sd += 280;
18 cout << sd << "\n\n";
19
20 cout << "sizeof (date) == " << sizeof (date) << "\n"
21 << "sizeof (fastdate) == " << sizeof (fastdate) << "\n"
22 << "sizeof (smalldate) == " << sizeof (smalldate) << "\n";
23
24 return EXIT_SUCCESS;
25 }

The above program consists of seven source code files:

(1) date.C andterm.h

(2) fastdate.h andfastdate.C

(3) smalldate.h andsmalldate.C

(4) main2.C

On my machine, adate object contains four bytes of overhead even though it has no data members.
A fastdate has threeint data members of four bytes each, plus the four bytes of overhead. A
smalldate has oneint data member, plus the four bytes of overhead. Ineach case, the overhead is the
pointer to the virtual table (p. 498).

1/1/2014
10/8/2014

1/1/2014
10/8/2014

sizeof (date) == 4
sizeof (fastdate) == 16
sizeof (smalldate) == 8

Abstract base class and pure virtual functions

In the base classdate , most of the other member functions would be like operator++ and
print : just an error message and anexit . They must all be declared in classdate , howev er, because
they must carry the keyword virtual . Fortunately, we hav ea notation to save us the trouble of defining a
body for each one. Remove the definitions ofoperator++ andprint in lines 45−55 of the above
date.C , and change their declarations in lines 7 and 29 ofdate.h to

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

1 v irtual void print(ostream& ost) const = 0;
2 v irtual date& operator++() = 0;

The= 0’s announce that classdate is an incomplete class with two missing pieces namedprint and
operator++ . An incomplete class is called anabstract class, and the missing pieces are calledpure vir-
tual functions.

We’re not allowed to construct an object whose most derived class is an abstract class. There are
three ways of constructing an object, and all three will not compile:

3 date d(date::january, 1, 2014); //declared
4 date *const p = new date(date::january, 1, 2014); //dynamically allocated
5 c out << date(date::january, 1, 2014) << "\n"; //anonymous temporary

Objects of an abstract class can still exist, but only when embedded in a derived object. (Inthe same
way, a quark can exist only in a larger particle such as a proton). Even though we can no longer declare a
date anywhere in a program, they can still exist. A function can therefore still receive adate * or a
date & as an argument

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/main3.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "fastdate.h"
4 #include "smalldate.h"
5 using namespace std;
6
7 v oid f(date *p);
8 v oid g(date& r);
9

10 int main()
11 {
12 fastdate fd(date::january, 1, 2014);
13 f(&fd);
14 g(fd);
15
16 smalldate sd(date::january, 1, 2014);
17 f(&sd);
18 g(sd);
19
20 date *p = &fd; //perfectly okay to have a date *
21 return EXIT_SUCCESS;
22 }
23
24 void f(date *p)
25 {
26 cout << *p << "\n"; //operator<<(cout, *p) << "\n";
27 *p += 280; //(*p).operator+=(280);
28 cout << *p << "\n\n";
29 }
30
31 void g(date& r) //same function, but with the reference notation
32 {
33 cout << r << "\n"; //operator<<(cout, r) << "\n";
34 r += 280; //r.operator+=(280);
35 cout << r << "\n\n";
36 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and Pure Virtual Functions 527

528 Inheritance Chapter 5

Lines 26 and 33 call operator<< , which can call fastdate::print or
smalldate::print . Lines 27 and 34 can callfastdate::operator+= or
smalldate::operator+= .

1$ g++ main.C date.C fastdate.C smalldate.C

1/1/2014
10/8/2014

10/8/2014
7/15/2015

1/1/2014
10/8/2014

10/8/2014
7/15/2015

How long does a class stay abstract?

base

derived

grandchild

great_grandchild

Classbase is an abstract class because it has three pure virtual functions. Classesderived and
grandchild are also abstract, because they still have two virtual functions. Only class
great_grandchild is not abstract.

1 c lass base {
2 public:
3 v irtual void f() const = 0;
4 v irtual void g() const = 0;
5 v irtual void h() const = 0;
6 } ;
7
8 c lass derived: public base {
9 public:

10 void f() const {}
11 };
12
13 class grandchild: public derived {
14 public:
15 };
16
17 class great_grandchild: public grandchild {
18 public:

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

19 void g() const {}
20 void h() const {}
21 };
22
23 int main()
24 {
25 //base b; //won’t compile: base has no f, g, or h
26 //derived d; //won’t compile: derived has no g or h
27 //grandchild g; //won’t compile: grandchild has no g or h
28 great_grandchild gg; //will compile: all present and accounted for
29 }

The influence travels in both directions

The behavior of a derived class is influenced by the behavior of its base class: the derived class inher-
its the code in the member functions of its base class. But the behavior of a base class may also be influ-
enced by the behavior of its derived classes. How could this be? The base class inherits nothing from the
derived class.

We construct two objects of classbase : theb in line 24 and the anonymousbase object inside the
d in line 27. When line 25 calls theg member function of the firstbase object,g calls thebase::f in
line 10 and outputs a message. But when line 28 calls theg member function of the secondbase object,g
will call the derived::f in line 19, outputting a different message.The behavior of the second base
object has therefore been influenced by the code in line 19 of the derived class. ‘‘Insanity is hereditary: you
get it from your children.’’ (Erma Bombeck)

Warning: base::f is not overridden until we begin to construct a derived object around the base
object. Andthe overriding ceases when we finish destructing the derived object. Lines7 and 8 therefore
always callbase::f , not derived::f .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/override.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 public:
7 base() {f();} //always calls base::f
8 v irtual ˜base() {f();} //always calls base::f
9

10 virtual void f() const {cout << "base::f\n";}
11 void g() const {f();} //doesn’t necessarily call base::f
12 };
13
14 class derived: public base {
15 public:
16 derived(): base() {f();} //always calls derived::f
17 ˜derived() {f();} //always calls derived::f
18
19 void f() const {cout << "derived::f\n";}
20 };
21
22 int main()
23 {
24 base b;

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.7 Abstract Base Classes and Pure Virtual Functions 529

530 Inheritance Chapter 5

25 b.g();
26
27 derived d;
28 d.g();
29
30 return EXIT_SUCCESS;
31 }

base::f Line 24 calls line 7, which calls line 10.
base::f Line 25 calls line 11, which calls line 10.
base::f Line 27 calls line 16, which calls line 7, which calls line 10.
derived::f Line 27 executes the{ body} of line 16, which now calls line 19.
derived::f Line 28 calls line 11, which calls line 19.
derived::f Destructd: l ine 30 calls line 17, which still calls line 19.
base::f Line 30 calls line 8, which calls line 10.
base::f Destructb: l ine 30 calls line 8, which calls line 10.

Something you must never do

A program may blow up if it calls a pure virtual function that has not yet been overridden by a func-
tion in a derived class. For example, line 22 calls line 16, which calls line 7, which calls line 10, which
blows up. Will line 22 even compile on your platform?

You can remove line 16 entirely. Even without it, classderived would still have a constructor
which takes no arguments, and which would call the constructor for classbase with no arguments.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/pure/blowup.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 public:
7 base() {f();} //always calls base::f
8 v irtual ˜base() {f();} //would also call base::f if we ever got this far
9

10 virtual void f() const = 0;
11 void g() const {f();} //doesn’t necessarily call base::f
12 };
13
14 class derived: public base {
15 public:
16 derived(): base() {}
17 void f() const {cout << "derived::f\n";}
18 };
19
20 int main()
21 {
22 derived d;
23 return EXIT_SUCCESS;
24 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

blowup.C: In constructor ’base::base()’:
blowup.C:7:12: warning: abstract virtual ’virtual void base::f() const’ called
from constructor
blowup.C: In destructor ’virtual base::˜base()’:
blowup.C:8:21: warning: abstract virtual ’virtual void base::f() const’ called
from destructor
Undefined first referenced

symbol in file
base::f() const /var/tmp//ccE4aqFq.o
ld: fatal: symbol referencing errors. No output written to /dev/null
collect2: ld returned 1 exit status

5.8 Derive classeswolf and rabbit from wabbit

Inheritance in the real world

In an ideal world we would know in advance what classes we have to write. If they will be similar,
we would begin by writing a base class for them. This would give us a head start for the classes derived
from it.

In real life, your manager tells you what classes to write, one by one, in no particular order. After
defining a few of them, you notice that they hav efeatures in common.They should have been derived from
a common base class. But now it’s too late: they’ve already been written.

wolf rabbit

Now that the above classes have been implemented, we notice too late that their member functions
are largely the same and their data members are almost the same.In retrospect, it’s obvious that they
should have been derived from a common base class.

We will rewrite our classeswolf andrabbit the way they should have been written: by deriving
them from a base class. The base class will be namedwabbit , à la Bugs Bunny and Elmer Fudd.I’m
sorry we didn’t hav ethe foresight to do this from the beginning, but that’s the way it is in the real world. At
least it will now be simpler to implement additional species of animals.

wabbit

wolf rabbit

Consolidate the member functions of classes wolf and rabbit

Classeswolf and rabbit have a constructor and destructor. The rest of their code was lumped
into a member function namedmove. This seemed reasonable, sincemove’ing is the only thing that an
animal does besides birth and death. But we will now see that this was the wrong way to partition the code
into member functions.When we consolidate these classes by deriving them from a common base, we will
realize that they should have been modularized differently.

Let’s draw a diagram of the modularization. The constructor and destructor for classrabbit are
identical to those forwolf , so we draw them with the same shape: an unadorned rectangle. But themove
function of each class is different, so we draw them with two shapes: beveled and rounded corners.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.8 Derive classeswolf and rabbit from wabbit 531

532 Inheritance Chapter 5

constructor
destructor

move

rabbit

constructor
destructor

move

wolf

Since the constructors and destructors are the same in classesrabbit andwolf , we can easily con-
solidate them into a single copy up in the base classwabbit . But since the two move functions are differ-
ent, it seems they will have to be left behind in the derived classes. Themove up in classwabbit will be
a pure virtual function: a missing piece to be filled in later. We draw it with a dashed box.

constructor
destructor

v move = 0

wabbit

move

rabbit

move

wolf

Pare down the code that gets stranded in the derived classes

Half the code is still stranded down in the derived classes. How can we minimize it? Here is where
we discover that we should have modularized classesrabbit andwolf differently.

Whenrabbit was our only species of animal, no one suspected thatrabbit::move should have
been split into smaller functions.

But now we note thatrabbit::move actually does two separate jobs: it decides which way to
move by getting two random numbers, and then performs the move by updating the screen.Accordingly,
we split it into two functions, namedrabbit::decide andrabbit::move . Similarly,
wolf::move does two jobs: it decides which way to move by getting a keystroke, and then performs the
move by updating the screen.We split it the same way.

The resultingrabbit::decide and wolf::decide are very different: one gets two random
numbers, the other gets a keystroke. We therefore draw them with different shapes and leave them down in
the derived classes. Onthe other hand, the new wabbit::move andwolf::move are identical so we
draw them with the same shape:

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

constructor
destructor v move = 0

v d ecide = 0

wabbit

move

decide

rabbit

move

decide

wolf

Since they are identical, the new rabbit::move and wolf::move can be consolidated into a
singlewabbit::move , leaving a smaller chunk of code behind in each derived class.
wabbit::decide will be a pure virtual function.

constructor
destructor move

v d ecide = 0

wabbit

decide

rabbit

decide

wolf

Hunger and bitterness

Unfortunately, too much code has been moved up to the base class. The originalrabbit::move
(pp. 196−197) was hardwired to give up the ghost when it met an animal of any other species. The original
wolf::move (pp. 198−199) was hardwired to eat an animal of any species. Now that there is only a sin-
glewabbit::move function, how can it react correctly to another animal?

Recall that the member functions of a derived class can influence the behavior of the member func-
tions of the base class (pp. 529−530).Every derived class (i.e., every species of animal) will have two new
member functions telling how hungry it is and how bitter its flesh tastes. One animal will eat another if the
first animal’s lev el of hunger is greater than the second animal’s lev el of bitterness.

Since each species may have a different level of hunger and bitterness, we have to implement these
functions down in the derived classes. Upin the base class, they will be pure virtual functions:

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.8 Derive classeswolf and rabbit from wabbit 533

534 Inheritance Chapter 5

constructor
destructor vbvhmove

v d ecide = 0

wabbit

decide

bh

rabbit

decide

bh

wolf

wabbit::move will now call thehungry andbitter member functions of the derived classes. Itwill
use their return values to decide to eat, be eaten, or neither.

What we have just done to the base classwabbit is similar to what we did to the base classdate
whose derived classes had to know about leap years, the Year Zero, the Julian-to-Gregorian switchover, etc.
See pp. 514 and 519.We identified thesmallestchunks of code in the base class that would have to be
written differently in one or more of the derived classes. Thenwe a declared a separate virtual member
function of the base class for each chunk:decide , andhungry andbitter . (In the case of class
wabbit , these functions are merely pure virtual.) Each derived class can now hav eits own style of motion
and its own place in the food chain.

Consolidate the data members.

Classesrabbit andwolf have almost the same data members. The only difference is that theg
member of classrabbit is a read/write pointer. (A newbornrabbit has to put its address on itsgame’s
master list; a dyingrabbit has to remove its address from the list.)

g

x

y

rabbit

cstatic data member of classrabbit

read/write pointer g

x

y

wolf

c static data member of classwolf

read-only pointer

We will consolidate the data members into one copy in the base classwabbit . The derived classeswolf
andrabbit will be left with no data members of their own.

Some of the derived animals will be rabbit ’s, others will be wolf ’s. This means that the
wabbit ’s will no longer all contain the same character, so the data memberwabbit::c can no longer be
static. It also means that thewabbit::g must be read/write pointer, since at least some of the derived
animals will have to write into theirgame’s master list. (The initial_g argument of the constructor for
classwabbit will therefore also be a read/write pointer.)

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

g

x

y

c

read/write pointer

no longer static

wabbit

rabbit wolf

▼ Homework 5.8a:
Version 3.0 of the Rabbit Game: single inheritance: derivewolf and rabbit from wabbit

KING CLAUDIUS. Now, Hamlet, where’s Polonius?
HAMLET. At supper.
KING CLAUDIUS. At supper! Where?
HAMLET. Not where he eats, but where he is eaten:

—HamletIV, iii, 16−19

Derive classwolf and classrabbit from a base class namedwabbit . Use public inheritance.

Class wabbit and its protected members

The wabbit.h header file will be included by the implementation filewabbit.C . It will also be
included by the header files for the derived classeswolf andrabbit . But it will be included by no other
file.

The decide member function in line 17 will have to return a pair of answers: the horizontal and
vertical distances that thewabbit decided to move. But a C or C++ function can return only one value.
One workaround would be to have decide return a structure with two fields. Anotherworkaround would
be to have decide deposit values into the two signed integers to which its arguments point.We’l l choose
the latter for the time being, but a better solution will appear on pp. 985−986 when we know more about
containers, iterators, anddifference_type .

Thex andy data members in line 7 are unsigned integers, as are the arguments to the constructor in
line 32. But thedx anddy arguments ofwabbit::decide in line 17 are (pointers to) signed integers,
as were thedx anddy structure members inwolf::move on pp. 198−199 and the other structure mem-
bers on pp. 470−471. The unsigned vs. signed distinction appeared in the C Standard Library insize_t
vs.ptrdiff_t , and will reappear on pp. 450−451 assize_type vs.difference_type .

Some of the member functions of the classes derived from wabbit will need to use the members of
thegame object to which the animals belong.For example,wolf::decide andwolf::punish will
need to call thekey andbeep member functions ofg->term . But g is a private member of class
wabbit , so it cannot be mentioned bywolf::decide andwolf::punish . In addition, term is a
private member of classgame.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.8 Derive classeswolf and rabbit from wabbit 535

536 Inheritance Chapter 5

We therefore provide thekey andbeep member functions in lines 28−29, which give the derived
classes access to the member functions ofg->term . Since they are protected members of classwabbit ,
they can be called bywolf::decide andwolf::punish .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/wabbit/wabbit.h

1 #ifndef WABBITH
2 #define WABBITH
3 #include "game.h"
4
5 c lass wabbit {
6 game *const g;
7 unsigned x, y;
8 c onst char c;
9

10 //move calls these functions to decide who eats who. wabbit w1 will eat
11 //wabbit w2 if w1.hungry() > w2.bitter(), i.e., if w1’s hunger is
12 //stronger than w2’s bitterness.
13 virtual int hungry() const = 0;
14 virtual int bitter() const = 0;
15
16 //move calls this function to decide which direction to move in.
17 virtual void decide(int *dx, int *dy) const = 0;
18
19 //move calls this function if this wabbit tries to move off the screen,
20 //or bumps into another wabbit that it can neither eat nor be eaten by.
21 //(Will also be called by manual::decide.)
22 virtual void punish() const {}
23
24 wabbit(const wabbit& another); //deliberately undefined
25 wabbit& operator=(const wabbit& another); //ditto
26
27 protected:
28 char key() const {return g->term.key();} //called by wolf::decide
29 void beep() const {g->term.beep();} //called by wolf::punish
30
31 public:
32 wabbit(game *initial_g, unsigned initial_x, unsigned initial_y,
33 char initial_c);
34 virtual ˜wabbit();
35
36 bool move();
37
38 //A function that uses the x and y private data members of class wabbit.
39 friend wabbit *game::get(unsigned x, unsigned y) const;
40 };
41 #endif

Now that the data memberc is no longer static, it must be initialized by the constructor for class
wabbit just like the other data membersg, x , and y . Other than that, the four-argument constructor for
classwabbit will be just like the three-argument constructor for the original classesrabbit andwolf ,
except that the initial value ofc will be passed in as an argument.

1 / /Excerpt from the file wabbit.C.
2

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

3 wabbit::wabbit(game *initial_g, unsigned initial_x, unsigned initial_y,
4 c har initial_c)
5 : g(initial_g), x(initial_x), y(initial_y), c(initial_c)
6 {

The body of the four-argument constructor for classwabbit will begin by checking ifc is the same
as the terminal’s background character or if the initialx , y position is out of range. In each case, it will
write an error message tocerr andexit . wabbit.C must therefore include<iostream> and
<cstdlib> , as di the originalrabbit.C andwolf.C .

If there was no error, the four-argument constructor for classwabbit will put the animal’s character
on the screen and the animal’s address on the master list. The master list will therefore contain every
wabbit , not just therabbit ’s. It will now be a list of pointers towabbit .

Classwabbit will also have a destructor, that beeps, pauses, removes the animal’s address from the
master list, and draws the terminal’s background character on the screen at the animal’s location.

The following move function will move awolf or arabbit , handling any encounter with another
animal of any species. Thethis-> ’s in lines 26−27 are unnecessary. They are written only to rhetori-
cally balance theother-> ’s.

A dynamically allocated object in C++ is not allowed to commit suicide—it might crash the program
if an object saiddelete this . Instead, line 34 returns a value telling its caller that thiswabbit should
be destructed. Line 34 must comeafter line 30 because in the future we will have a species of animals that
eat each other. We will have to execute both lines when encountering an animal that will eat and be eaten
by thiswabbit .

It is only fair to warn you that this is not the final version ofwabbit::move . By the end of the
course, every line will be rewritten.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/wabbit/wabbit.C

1 / *
2 Delete any other wabbit that got eaten during the move (line 30), but do not
3 delete this wabbit. If this wabbit was eaten during the move, return false
4 (line 34); otherwise return true.
5 * /
6
7 bool wabbit::move()
8 {
9 i nt dx; //uninitialized variables

10 int dy;
11 decide(&dx, &dy);
12
13 if (dx and dy are both zero) {
14 return true;
15 }
16
17 const unsigned newx = x + dx;
18 const unsigned newy = y + dy;
19
20 if (!g->term.in_range(newx, newy)) {
21 punish();
22 return true;
23 }
24
25 if (wabbit *const other = g->get(newx, newy)) {
26 const bool I_ate_him = this->hungry() > other->bitter();

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.8 Derive classeswolf and rabbit from wabbit 537

538 Inheritance Chapter 5

27 const bool he_ate_me = other->hungry() > this->bitter();
28
29 if (I_ate_him) {
30 delete other;
31 }
32
33 if (he_ate_me) {
34 return false; //not allowed to delete myself
35 }
36
37 if (!I_ate_him) {
38 //I bumped into a wabbit that I could neither eat nor be
39 //eaten by.
40 punish();
41 return true;
42 }
43 }
44
45 g->term.put(x, y); //Erase this wabbit from its old location.
46 x = newx;
47 y = newy;
48 g->term.put(x, y, c); //Redraw this wabbit at its new location.
49
50 return true;
51 }

Why do we need separate functions for hunger and bitterness?

Why didn’t we make a single member function namedrank , and have the animal with the higher
rank eat the other one?Let’s say we want to have two animals of speciesa eat each other, while two ani-
mals of speciesb bounce off each other without either being eaten.A single function would not let us do
this. Butwith two functions, we can get any of the four possible outcomes.

1 / /a and b eat each other.
2 i nt a::hungry() const {return 30;}
3 i nt b::bitter() const {return 20;}
4 i nt b::hungry() const {return 10;}
5 i nt a::bitter() const {return 0;}

6 / /b and a bounce off each other.
7 i nt b::bitter() const {return 30;}
8 i nt a::hungry() const {return 20;}
9 i nt a::bitter() const {return 10;}

10 int b::hungry() const {return 0;}

11 //b eats a, but a doesn’t eat b.
12 int b::bitter() const {return 30;}
13 int a::hungry() const {return 20;}
14 int b::hungry() const {return 10;}
15 int a::bitter() const {return 0;}

16 //a eats b, but b doesn’t eat a.
17 int a::hungry() const {return 30;}
18 int b::bitter() const {return 20;}
19 int a::bitter() const {return 10;}

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

20 int b::hungry() const {return 0;}

Class rabbit

The three-argument constructor for the new classrabbit does nothing more than call the four-argu-
ment constructor for the base classwabbit . The copy constructor,operator= , and destructor for class
rabbit are inherited from classwabbit . Ditto for classwolf .

The INT_MIN in lines 9−10, and the correspondingINT_MAX, are macros from the standard library
header<climits> for the smallest and largestint values.

The return values ofhungry andbitter are constant values. Why, then, are they functions rather
than simple data members?Well, in a later version of the game they might have to do some computation.
For example, an animal’s lev el of hunger might depend on how many times it hasmove’d since its last
meal.

It looks like hungry and bitter can be static member functions, since they use no non-static
members. (Infact, they use no members at all.)But hungry andbitter must be virtual member func-
tions, and a static member function cannot be virtual.

Since all the member functions of classrabbit are now inline, there is no longer any rabbit.C
file.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/rabbit3/rabbit.h

1 #ifndef RABBITH
2 #define RABBITH
3 #include <cstdlib> //for rand
4 #include <climits> //for INT_MIN
5 #include "wabbit.h"
6 using namespace std;
7
8 c lass rabbit: public wabbit {
9 i nt hungry() const {return INT_MIN;}

10 int bitter() const {return INT_MIN;}
11
12 void decide(int *dx, int *dy) const {
13 *dx = r and() % 3 - 1;
14 *dy = r and() % 3 - 1;
15 }
16
17 public:
18 rabbit(game *initial_g, unsigned initial_x, unsigned initial_y)
19 : wabbit(initial_g, initial_x, initial_y, ’r’) {}
20 };
21 #endif

Class wolf

The newwolf.h file will be the same as the newrabbit.h , with four differences:

(1) A wolf ’s character is uppercase’W’ ; a rabbit ’s is lowercase’r’ . All deadly animals will be
uppercase.

(2) A wolf is at the top of the food chain. It hasINT_MAXhunger andINT_MAXbitterness.

(3) If a rabbit tries to move off the screen, or bumps into another animal that it can neither eat nor
be eaten by, it’s no one’s fault. We are therefore content to let classrabbit inherit the emptypunish
member function from classwabbit . But if a wolf tries to move off the screen or bumps into another
animal that it can neither eat nor be eaten by, there is a human being who requires chastisement. Ideally we

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.8 Derive classeswolf and rabbit from wabbit 539

540 Inheritance Chapter 5

would administer a series of gradually increasing electrical shocks, but for the present we simply give class
wolf the following inline private member function. It calls thebeep member function inherited from
classwabbit :

1 v oid punish() const {beep();}

(4) The wolf::decide function is too long to be inline.Define it in the filewolf.C . Since
wolf.h does not callrand , it does not need to include<cstdlib> .

Like rabbit::decide , wolf::decide will merely decide which direction to move in, and
then return its decision towabbit::move . Transplant the decision-making code from the original
wolf::move on pp. 198−199 intowolf::decide . Like rabbit::decide , wolf::decide
should not check for falling off the screen or colliding with arabbit : these checks are already performed
by wabbit::move .

Now that classwolf no longer has a data member namedg, wolf::decide can no longer say
g->term.key() andwolf::punish can not sayg->term.beep() . They will have to call the
key andbeep member functions inherited from classwabbit .

wolf.C will no longer includerabbit.h , since it no longer mentionsrabbit ’s. And wolf.C
will not includeiostream andcstdlib , since it no longer uses anything declared in these header files.

Here is the end of thewolf::decide function, picking up from line 35 ofwolf.C on p. 198.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/wabbit/wolf.C

1 i f (the key member function inherited from class wabbit says that
2 t he user pressed a key k) {
3
4 f or (search the array of structures using a pointer p) {
5 i f (k == p ->c) {
6 * dx = p->dx;
7 * dy = p->dy;
8 r eturn;
9 }

10 }
11
12 punish(); //Punish user who pressed an illegal key.
13 }
14
15 //Arrive here if the user pressed no key, or pressed an illegal key.
16 *dx = * dy = 0;
17 }

Changes to class game

All the animals, not just therabbit ’s, will be on the same master list.game::master will there-
fore be alist<wabbit *> , and game::get will return awabbit * . game.h will need a forward
declaration for classwabbit , not rabbit .

Want to make sure we never again have to change the return type ofgame::get ? Declare its return
value, and its local variablep, to be of data typegame::master_t::value_type . That’s what
value_type is for. Within the{ curly braces} of the declaration for classgame, and within the body of
game::get , you don’t hav eto write thegame:: at the start ofgame::master_t::value_type .

Only classwabbit will now be a friend of classgame; classesrabbit andwolf will no longer
be.

game.C will still include rabbit.h andwolf.h . I’m not happy about this, however. It means
we have to modify game.C whenever we create a new species of animal.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Thewolf will now be dynamically allocated (constructed withnew) with all the other animals in
game::game , instead of automatically allocated (constructed with a declaration) ingame::play . But
don’t construct thewolf in the loop ingame::game —construct it with anew outside the loop.

The main loop in game::play

The wolf will now be on the master list. The call toempty in line 71 on p. 470 will therefore
become themaster.size() > 1 in the following line 3, and the loop in the following lines 4−16 will
move all the animals, not just therabbit ’s. The wolf no longer requires any special handling in the
main loop, so the calls to the two move’s in lines 72 and 80 on p. 470 can be consolidated into the follow-
ing line 8. The main loop will still call amove function, andmove will call decide .

game::play

wabbit::move

wabbit::decide

returnstrue or false to game::play

returnsdx , dy to move

More precisely, the wabbit::move function will call eitherrabbit::decide or wolf::decide
thanks to the magic of virtual functions.

game::play

wabbit::move

rabbit::decide wolf::decide

returnstrue or false to game::play

returnsdx , dy to wabbit::move returnsdx , dy to wabbit::move

Themove in line 8 and thedelete in line 14 will remove elements from the master list. But a list
iterator cannot be incremented after the element to which it refers has been removed; see the ‘‘increment of
death’’ on pp. 444−445.To avoid this misdeed, the++it must come between these two lines, at line 9.

Let’s look at the previous version of this loop. On p. 470, themove in line 80 was applied only to
rabbit ’s. A rabbit not being carnivorous, this call tomove destructed no other animal on the master
list. It was therefore safe to increment the iterator in line 78 before callingmove.

But themove in the following line 8 will be applied to every animal,wolf and rabbit . When
applied to awolf , it may destruct another animal on the list. The iterator must therefore be incremented
after we callmove, in line 9. Had we incremented it before themove, the iterator might have landed on
an element that would then be destructed and removed by themove.

Thedelete in line 14 destructs the element to which the iterator in line 7 refers. The increment in
line 9 must therefore come before thedelete in line 14. Similarly, the increment in line 25 must be
executed before thedelete in line 26. For the same reason, the increment on p. 470 in line 78 had to
come before thedelete in line 81.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/game4/game.C

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.8 Derive classeswolf and rabbit from wabbit 541

542 Inheritance Chapter 5

1 / /Excerpt from game.C, showing the body of game::play.
2
3 f or (; master.size() > 1; term.wait(250)) {
4 f or (master_t::const_iterator it = master.begin();
5 i t != m aster.end();) {
6
7 wabbit *const p = *it;
8 c onst bool alive = p->move();
9 ++it;

10
11 if (!alive) {
12 //The wabbit that moved in line 8 blundered
13 //into another wabbit and was eaten.
14 delete p;
15 }
16 }
17 }
18
19 //The following lines go at the end of the destructor for class game.
20
21 //Delete any remaining wabbit’s.
22
23 for (master_t::const_iterator it = master.begin(); it != master.end();) {
24 wabbit *const p = *it;
25 ++it;
26 delete p;
27 }
28 }

List of the 12 source files that constitute the game

(1) term.h andterm.c (pp. 85−89). These are the only two written in C; the rest are C++.

(2) terminal.h andterminal.C (pp. 157−163)

(3) game.h andgame.C (pp. 540−542)

(4) wabbit.h andwabbit.C (pp. 535−538)

(5) wolf.h andwolf.C (pp. 539−540)

(6) rabbit.h (p. 539). There no longer is anyrabbit.C file.

(7) main.C (pp. 193−194)
▲

5.9 Multiple Inheritance

5.9.1 ASimple Example

cowboy bank

cowboybank

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

A C++ class can be derived from more than one base class. This is calledmultiple inheritance. Java
has only single inheritance.

Our first example will be a silly one, just to illustrate the syntax and scoping rules.We start with two
base classes to model the behavior of a cowboy and a bank.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/multiple/cowboy.h

1 #ifndef COWBOYH
2 #define COWBOYH
3 #include <iostream>
4 using namespace std;
5
6 c lass cowboy {
7 i nt i;
8 public:
9 c owboy(int initial_i): i(initial_i) {}

10
11 void chew() const {cout << this << " Gimme a chaw ’a ’baccy.\n";}
12 void draw() const {cout << this << " Put ’em up, pardner!\n";}
13 };
14 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/multiple/bank.h

1 #ifndef BANKH
2 #define BANKH
3 #include <iostream>
4 using namespace std;
5
6 c lass bank {
7 i nt j;
8 public:
9 bank(int initial_j): j(initial_j) {}

10
11 void deposit() const {cout << this << " Please take a deposit slip.\n";}
12 void draw() const {cout << this << " Your account is overdrawn.\n";}
13 };
14 #endif

Before the establishment of law and finance in the Wild West, many of the functions of banks were
performed by itinerant cowboys. We will use multiple inheritance to model the behavior of typical ‘‘cow-
boy bank’’. He can do everything that a cowboy can do, as well as everything that a bank can do.

As usual, the constructor for the derived class begins by calling the constructor for the base class.
But now there are two base classes and two constructors. Becauseof line 8, the constructor forcowboy
will be called before the constructor forbank . (The order has nothing to do with the fact that line 12 lists
the arguments forcowboy before those forbank .) Thenthe constructors will be called for the data mem-
bers introduced in classcowboybank (thek in line 9).

When the cowboybank dies, the destructors for the data members introduced in class
cowboybank will be called first. Then we will destruct thebank , and finally thecowboy .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/multiple/cowboybank.h

1 #ifndef COWBOYBANKH
2 #define COWBOYBANKH

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.1 A Simple Example 543

544 Inheritance Chapter 5

3 #include <iostream>
4 #include "cowboy.h"
5 #include "bank.h"
6 using namespace std;
7
8 c lass cowboybank: public cowboy, public bank { //say "public" twice
9 i nt k;

10 public:
11 cowboybank(int initial_i, int initial_j, int initial_k)
12 : cowboy(initial_i), bank(initial_j), k(initial_k) {}
13
14 void run() const {cout << this << " Time to clear out of town.\n";}
15 };
16 #endif

There’s no problem with the function calls in lines 10−12. But the call todraw in line 14 is ambigu-
ous and will not compile. Lines 15 and 16 disambiguate it in two directions. Seethe binary scope operator
:: in line 10 on p. 123; line 25 ofeclipse.C on p. 246; line 42 ofderived.C on p. 477.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/multiple/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "cowboybank.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c owboybank cbb(10, 20, 30);
9

10 cbb.chew(); //inherited from cowboy
11 cbb.deposit(); //inherited from bank
12 cbb.run(); //introduced in cowboybank
13
14 //cbb.draw(); //won’t compile: ambiguous
15 cbb.cowboy::draw(); //the draw inherited from cowboy
16 cbb.bank::draw(); //the draw inherited from bank
17
18 cout << "\n"
19 << &cbb << " == &cbb\n"
20 << static_cast<cowboy *>(&cbb) << " == addr of cowboy in cbb\n"
21 << static_cast<bank *>(&cbb) << " == addr of bank in cbb\n"
22 << reinterpret_cast<bank *>(&cbb) << "\n";
23
24 return EXIT_SUCCESS;
25 }

An upcast is a conversion from ‘‘pointer to derived’’ to ‘ ‘pointer to base’’. Whenthe above lines 20
and 21 upcast the address ofcbb , we get the address of thecowboy object and thebank object within the
cowboybank . On my platform, the address of thebank object issizeof (cowboy) bytes from the
start of thecowboybank . This is our first example of a cast that changes the value of a pointer.

An upcast must always be done with astatic_cast . Line 22 shows what goes wrong when we
try to do it with areinterpret_cast . For a ‘‘downcast’’, see p. 718.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Now that we have seen the addresses of the base objects inside the derived object, let’s look at the
values ofthis in the lines 10−11 and 15−16.A call to a member function of classescowboy or bank
will always receive the address of an object whose most derived class iscowboy or bank .

0xffbff1e4 Gimme a chaw ’a ’baccy. address ofcowboy object withincowboybank
0xffbff1e8 Please take a deposit slip. address ofbank object withincowboybank
0xffbff1e4 Time to clear out of town. address ofcowboybank object
0xffbff1e4 Put ’em up, pardner! address ofcowboy object withincowboybank
0xffbff1e8 Your account is overdrawn. address ofbank object withincowboybank

0xffbff1e4 == &cbb
0xffbff1e4 == addr of cowboy in cbb
0xffbff1e8 == addr of bank in cbb == &cbb + sizeof (cowboy)
0xffbff1e4 the address of thecowboybank

At this point, multiple inheritance still looks simple, doesn’t it? Theonly problem was a name colli-
sion and some pointer adjustment.

▼ Homework 5.9.1a:

Will a static_cast from a ‘‘pointer to acowboybank ’’ t o a ‘‘ pointer to abank ’’ always
change the value of the pointer? What if the pointer to acowboybank is zero?
▲

5.9.2 HiddenPointers II: a Thunk
Now let’s add virtual functions to multiple inheritance and look at a possible implementation.The

following program has three classes, two of which have a member function namedf .

mother father rudimentary f

derived bigger and better f

We would expect the program to have exactly two member functions namedf , but the output on my
platform shows that it has three. The stand-alonefather object in lines 9−19 ofmain.C has one; the
derived object in lines 21−31 ofmain.C has another; and thefather object inside thederived
object has a third (line 33−42).

We usually think of the last two f ’s as being the same function. After all, thisfather ’s f has been
overridden by thederived ’s f , hasn’t it? We can even see the namederived::f in the output of each
call to this function.

But if we look at the arguments, we can see that thef of classderived and thef of thefather in
the derived must be slightly different. Thef of classderived prints out its implicit argument
unchanged. Thef of the father in thederived begins by subtractingsizeof (mother) from its
implicit argument. Theextra code that performs the subtraction is called athunk. The thunk is necessary
becausederived::f must always have an implicit argument which is the address of aderived object,
not the address of thefather object in thederived .

I wouldn’t be surprised if thef of the father in thederived is merely the thunk, followed by a
‘‘ jump’’ to the start of thef of classderived .

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.2 Hidden Pointers II: a Thunk 545

546 Inheritance Chapter 5

fath

j

vtbl for classfather functions in memory

father::˜father

father::˜father for dynamics

father::f

d

i

j

k

vtbl for classderived
and formother in derived functions in memory

derived::˜derived

derived::˜derived for dynamics

derived::f

vtbl for father in derived functions in memory

derived::˜derived with thunk

derived::˜derived for dynamics, with thunk

derived::f with thunk

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/thunk/mother.h

1 #ifndef MOTHERH
2 #define MOTHERH
3 using namespace std;
4
5 c lass mother {
6 i nt i;
7 public:
8 mother(int initial_i): i(initial_i) {}
9 v irtual ˜mother() {} //this example simpler if every class has a vtbl

10 };
11 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/thunk/father.h

1 #ifndef FATHERH
2 #define FATHERH
3 #include <iostream>
4 using namespace std;
5
6 c lass father {
7 i nt j;
8 public:
9 f ather(int initial_j): j(initial_j) {}

10 virtual ˜father() {}
11 virtual void f() const {cout << "father::f, this == " << this << "\n";}
12
13 struct vtbl {

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

14 void (*ptr_to_destructor)(father *);
15 void (*ptr_to_dynamic_destructor)(father *);
16 void (*ptr_to_f)(const father *);
17 };
18
19 struct layout {
20 const vtbl *ptr_to_vtbl;
21 int j;
22 };
23 };
24 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/thunk/derived.h

1 #ifndef DERIVEDH
2 #define DERIVEDH
3 #include <iostream>
4 #include "mother.h"
5 #include "father.h"
6 using namespace std;
7
8 c lass derived: public mother, public father {
9 i nt k;

10 public:
11 derived(int initial_i, int initial_j, int initial_k)
12 : mother(initial_i), father(initial_j), k(initial_k) {}
13 void f() const {cout << "derived::f, this == " << this << "\n";}
14
15 struct vtbl {
16 void (*ptr_to_destructor)(derived *);
17 void (*ptr_to_dynamic_destructor)(derived *);
18 void (*ptr_to_f)(const derived *);
19 };
20
21 struct layout {
22 const vtbl *ptr_to_vtbl; //vtbl for derived & mother in derived
23 int i;
24 const father::vtbl *ptr_to_fvtbl; //vtbl for father in derived
25 int j;
26 int k;
27 };
28 };
29 #endif

The repetition inmain.C will be consolidated in two stages, on pp. 676−677 when we have tem-
plates, and on 1017 when we have Runtime Type Identification.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/thunk/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "father.h"
4 #include "derived.h"
5 using namespace std;
6

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.2 Hidden Pointers II: a Thunk 547

548 Inheritance Chapter 5

7 i nt main()
8 {
9 f ather fath(10);

10 const father::layout& flay =
11 reinterpret_cast<const father::layout &>(fath);
12
13 cout << "father at address " << &fath << " has an f whose address is "<<
14 reinterpret_cast<const void *>(reinterpret_cast<size_t>(
15 flay.ptr_to_vtbl->ptr_to_f)) << ".\n"
16 "Let’s call this function twice, passing it " << &fath << ".\n";
17 fath.f();
18 flay.ptr_to_vtbl->ptr_to_f(&fath); //low-level way to do the same thing
19 cout << "\n";
20
21 derived d(20, 30, 40);
22 const derived::layout& dlay =
23 reinterpret_cast<const derived::layout &>(d);
24
25 cout << "derived at address " << &d << " has an f whose address is " <<
26 reinterpret_cast<const void *>(reinterpret_cast<size_t>(
27 dlay.ptr_to_vtbl->ptr_to_f)) << ".\n"
28 "Let’s call this function twice, passing it " << &d << ".\n";
29 d.f();
30 dlay.ptr_to_fvtbl->ptr_to_f(&d); //low-level way to do the same thing
31 cout << "\n";
32
33 const father *const p = &d;
34 const father::layout& flay2 =
35 reinterpret_cast<const father::layout &>(*p);
36
37 cout << "father at address " << p << " has an f whose address is " <<
38 reinterpret_cast<const void *>(reinterpret_cast<size_t>(
39 flay2.ptr_to_vtbl->ptr_to_f)) << ".\n"
40 "Let’s call this function twice, passing it " << p << ".\n";
41 p->f();
42 flay2.ptr_to_vtbl->ptr_to_f(p); //low-level way to do the same thing
43
44 return EXIT_SUCCESS;
45 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

father at address 0xffbff0e8 has an f whose address is 0x11800.
Let’s call this function twice, passing it 0xffbff0e8.
father::f, this == 0xffbff0e8
father::f, this == 0xffbff0e8

derived at address 0xffbff0d4 has an f whose address is 0x119a8.
Let’s call this function twice, passing it 0xffbff0d4.
derived::f, this == 0xffbff0d4
derived::f, this == 0xffbff0d4

father at address 0xffbff0dc has an f whose address is 0x119fc.
Let’s call this function twice, passing it 0xffbff0dc.
derived::f, this == 0xffbff0d4
derived::f, this == 0xffbff0d4

5.9.3 Virtual Base Classes

A virtual base class

Now that we have multiple inheritance, a class can inherit DNA from the same ancestor along two
different bloodlines.Let’s start with a class represinting a window in a GUI. Usingsingle inheritance, we
augment it with a horizontal and vertical scrollbars. Then we use multiple inheritance to gather the two
branches together to make a window with both scrollbars.A diagram with this shape is calleddiamond
inheritance.

window
(grandparent)

window
with

horizontal
scrollbar

(mother)

window
with
vertical
scrollbar
(father)

window with
horizontal
and vertical
scrollbars
(grandchild)

Let’s giv e anthropomorphic names to the classes: thegrandparent, mother, father, andgrandchild.
The grandchild should inherit everything that its mother has: a window and a horizontal scrollbar. It should
also inherit everything that its father has: a window and a vertical scrollbar. But the grandchild must inherit
only one window. In other words, the two windows that it inherits must be the same window.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.3 Vi rtual Base Classes 549

550 Inheritance Chapter 5

To make them the same window, write the keyword virtual in lines 15 and 30.Thevirtual in
line 15 tells the mother to be prepared to share its window with another object; the one in line 30 tells the
father the same thing. Here the word has nothing to do with virtual functions. The designer of the lan-
guage just wanted to get as much mileage as possible out of the smallest number of keywords.

The virtual ’s also cause the grandparent (i.e., thewindow) in the grandchild to be constructed
and destructed only once.(How bad would it be if the same object was constructed or destructed twice?
Let’s hope we never find out.) To accomplish this, however, we will have to make an exception to one of
the principle rules of inheritance.

Until now, a constructor for a derived class has always begun by calling a constructor for the base
class, or the constructor for every base class if there is more than one (cowboybank had two.) Butnow,
for the first time, we don’t want to do this. The grandchild’s constructor will indeed call the constructors
for its two base classes, the mother and father. But if the constructors for the mother and father then both
called the constructor fortheir base class, the grandparent, we’d end up constructing the grandparent twice.

So which parent will have the privilege of constructing the grandparent?To avoid favoritism, neither
one. Theparents will be relieved of their customary duty of constructing the grandparent.It will be the
constructor for the grandchild that calls the constructor for the grandparent.Similarly, the two parents will
be relieved of the duty of destructing the grandparent. It will be the destructor for the grandchild that calls
the destructor for the grandparent.

All of this is arranged by writing the keyword virtual in lines 15 and 30.The virtual in line
15, for example, makes the constructor for the mother skip line 19 when the mother is part of a grandchild.
In this case, the grandparent in the mother has already been constructed by the grandchild, in line 54.On
the other hand, when the mother is not part of a grandchild, the constructor for the mother will execute line
19 in the normal way.

Normally a constructor can call the constructors only for its immediate parent(s). But the constructor
for our grandchild can make a direct call to the constructor for a remote ancestor in line 54 because the
ancestor is virtual.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/multiple/virtual_base.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass window { //grandparent
6 i nt i;
7 public:
8 window(int initial_i): i(initial_i) {
9 c out << "construct window " << i << "\n";

10 }
11
12 ˜window() {cout << "destruct window " << i << "\n";}
13 };
14
15 class window_with_horizontal: public virtual window { //mother
16 int j;
17 public:
18 window_with_horizontal(int initial_i, int initial_j)
19 : window(initial_i),
20 j(initial_j) {
21 cout << "construct window_with_horizontal "
22 << initial_i << " " << initial_j << "\n";
23 }
24

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

25 ˜window_with_horizontal() {
26 cout << "destruct window_with_horizontal " << j << "\n";
27 }
28 };
29
30 class window_with_vertical: public virtual window { //father
31 int k;
32 public:
33 window_with_vertical(int initial_i, int initial_k)
34 : window(initial_i),
35 k(initial_k) {
36 cout << "construct window_with_vertical "
37 << initial_i << " " << initial_k << "\n";
38 }
39
40 ˜window_with_vertical() {
41 cout << "destruct window_with_vertical " << k << "\n";
42 }
43 };
44
45 class window_with_horizontal_and_vertical: //grandchild
46 public window_with_horizontal,
47 public window_with_vertical {
48
49 int l;
50 public:
51 window_with_horizontal_and_vertical(int initial_i, int initial_j,
52 int initial_k, int initial_l)
53
54 : window(initial_i),
55 window_with_horizontal(initial_i, initial_j),
56 window_with_vertical(initial_i, initial_k),
57 l(initial_l) {
58 cout << "construct window_with_horizontal_and_vertical "
59 << initial_i << " "
60 << initial_j << " "
61 << initial_k << " "
62 << initial_l << "\n";
63 }
64
65 ˜window_with_horizontal_and_vertical() {
66 cout << "destruct window_with_horizontal_and_vertical "
67 << l << " \n";
68 }
69 };
70
71 int main()
72 {
73 window_with_horizontal_and_vertical w(10, 20, 30, 40);
74 cout << "\n";
75 return EXIT_SUCCESS;
76 }

The one copy of the grandparent is now shared by the mother, father, and grandchild:

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.3 Vi rtual Base Classes 551

552 Inheritance Chapter 5

construct window 10 Line 54 calls line 8.
construct window_with_horizontal 10 20 55 calls 18, which skips 19.
construct window_with_vertical 10 30 56 calls 33, which skips 34.
construct window_with_horizontal_and_vertical 10 20 30 40 lines 36−37

destruct window_with_horizontal_and_vertical 40 lines 66−67
destruct window_with_vertical 30 line 65 calls line 40, which skips line 12
destruct window_with_horizontal 20 line 65 calls line 25, which skips line 12
destruct window 10 line 65 calls line 12

What happens if we remove one or both of the virtual’s

To cause the grandchild to inherit only onewindow , the keyword virtual is needed on both of the
above lines 15 and 30. If we remove one or both of them, the grandchild will inherit two copies of the
grandparent.

We’l l probably never want to remove one virtual , but we’ll show what happens anyway. If we
remove the one in line 15, we get two grandparents in the grandchild. As above, we begin by constructing
the grandparent that the grandchild inherits virtually (in this case, thewindow in the father). Thenwe con-
struct the mother, including its grandparent. The (rest of the) father comes last, because of the order of the
above lines 46−47.

construct window 10 construct window shared by father and grandchild
construct window 10 construct mother’s window
construct window_with_horizontal 10 20 construct rest of mother
construct window_with_vertical 10 30 construct rest of father
construct window_with_horizontal_and_vertical 10 20 30 40 construct rest of grandchild

destruct window_with_horizontal_and_vertical 40 destruct grandchild, ’cept for its moth, fath, wind
destruct window_with_vertical 30 destruct father, except for his window
destruct window_with_horizontal 20 destruct mother, except for her window
destruct window 10 destruct mother’s window
destruct window 10 destruct window shared by father and grandchild

If we restore thevirtual in line 15 remove the one in line 30 the output changes to the following.
Again, we construct the grandparent that the grandchild inherits virtually (in this case, thewindow in the
mother). Thenwe construct the (rest of the) mother. The father comes last, because of the above lines
46−47.

construct window 10 construct window shared by mother and grandchild
construct window_with_horizontal 10 20 construct rest of mother
construct window 10 construct father’s window
construct window_with_vertical 10 30 construct rest of father
construct window_with_horizontal_and_vertical 10 20 30 40 construct rest of grandchild

destruct window_with_horizontal_and_vertical 40 destruct grandchild, ’cept for its moth, fath, wind
destruct window_with_vertical 30 destruct father, except for his window
destruct window 10 destruct father’s window
destruct window_with_horizontal 20 destruct mother, except for her window
destruct window 10 destruct window shared by mother and grandchild

Finally, here is the output with bothvirtual ’s removed. Theconstructor for a grandchild can
make a direct call to the constructor for a grandparent only when the grandparent is inherited virtually
along at least one bloodline to the grandchild.We therefore also had to remove the
window(initial_i), in line 54.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

construct window 10 construct mother’s window
construct window_with_horizontal 10 20 construct rest of mother
construct window 10 construct father’s window
construct window_with_vertical 10 30 construct rest of father
construct window_with_horizontal_and_vertical 10 20 30 40 construct rest of grandchild

destruct window_with_horizontal_and_vertical 40 destruct grandchild, ’cept for its moth, fath, wind
destruct window_with_vertical 30 destruct father, except for his window
destruct window 10 destruct father’s window
destruct window_with_horizontal 20 destruct mother, except for her window
destruct window 10 destruct mother’s window

Now that each parent in the grandchild has its own grandparent, the grandchild could be a flight sim-
ulator. The two windows could display yaw and pitch, and the two scrollbars could control them:

yaw pitch

window with
horizontal scrollbar and
window with
vertical scrollbar
(grandchild)

If we forget to remove thewindow(initial_i), from line 54, the error message on my platform
is

virtual_base.C: In constructor
int, int, int)’:
virtual_base.C:54:5: error: type ’window’ is not a direct base of

An alternati ve dag

Why not make three separate classes,window , horizontal_scrollbar , and
vertical_scrollbar , and derive the other classes from them?This would get rid of the diamond
inheritance, so there would be no more trouble with virtual base classes:

window
horizontal

scrollbar
vertical
scrollbar

window
with

horizontal
scrollbar

window
with
vertical
scrollbar

window w/
horizontal
& vertical
scrollbars

I didn’t do this because the connection between a window and its scrollbars is so intimate.Since
ev ery member function of a scrollbar would need to access the private members of its window, it would be
awkward for the scrollbars to be separate classes.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.3 Vi rtual Base Classes 553

554 Inheritance Chapter 5

Multiple inheritance with and without virtual base classes

A classnurse provides another example of multiple inheritance. Here in New York State, a
nurse_practitioner can do everything that anurse can do, plus more: he or she can prescribe
additional drugs. And anurse_midwife can do everything that anurse can do, plus more: he or she
can deliver babies. Anurse_practitioner_midwife can do everything that a
nurse_practitioner and anurse_midwife can do, plus more. But a
nurse_practitioner_midwife should inherit only onenurse .

On the other hand, consider a small medical partnership comprising two nurses: a
nurse_practitioner and anurse_midwife . (In hip medical circles, this kind of partnership is
known as ‘‘a stamp and a clamp’’.) In this case the partnership should inherit two separate nurses.

Another example: classiostream is derived from classesistream andostream . But these two
classes have a common parent,ios_base . The grandchild classiostream has only one copy of its
grandparentios_base . See the diamond diagram on pp. 383−385.

One last example: A bacon cheeseburger has only one hamburger.

Derive class stackte from classes stackt and stacke

We derived classesstackt andstacke from classstack on pp. 503−505.Now let’s derive a
grandchild that will inherit the features of both derived classes. We can keep the original grandparent class
stack unchanged.

stack grandparent class

stackt stacke

stackte

mother and father classes

grandchild class

Before we had multiple inheritance, it seemed reasonable to divide the code in the parent classes
stackt and stacke into two major member functions,push and pop . But if we kept this division,
there would be no way to write the member functions of the grandchild class correctly. For example, the
following stackte::push would accidentally callstack::push twice. (Thebinary scope operator
:: in lines 3 and 4 was last seen in lines 15−16 ofmain.C on p. 544.)

1 v oid stackte::push(int i)
2 {
3 s tacke::push(i);
4 s tackt::push(i);
5 }

before they can share a child, we will have to change the way the code in classesstackt andstacke is
partitioned into member functions.

In the new implementation of classstackt , the pop function calls its_pop after it calls
stack::pop : it must extract the number from the stack before it can print it. But in the new classs
stacke , the pop calls its_pop before it calls stack::pop : it must check for underflow before extract-
ing a number from the stack.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack2/stackt.h

1 #ifndef STACKTH
2 #define STACKTH
3 #include <iostream>
4 #include "stack.h"

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

5 using namespace std;
6
7 c lass stackt: public virtual ::stack {
8 public:
9 s tackt() {cout << "stackt()\n";}

10 ˜stackt() {cout << "˜stackt()\n";}
11
12 void _push(int i) const {cout << "push(" << i << ")\n";}
13 void _pop(int i) const {cout << "pop(" << i << ")\n";}
14
15 void push(int i) {::stack::push(i); _push(i);}
16 int pop() {const int i = ::stack::pop(); _pop(i); return i;}
17 };
18 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack2/stacke.h

1 #ifndef STACKEH
2 #define STACKEH
3 #include "stack.h"
4
5 c lass stacke: public virtual ::stack {
6 public:
7 ˜ stacke();
8
9 v oid _push() const; //no explicit argument

10 void _pop() const;
11
12 void push(int i) {_push(); ::stack::push(i);}
13 int pop() {_pop(); return ::stack::pop();}
14 };
15 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack2/stacke.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stacke.h"
4 using namespace std;
5
6 s tacke::˜stacke()
7 {
8 i f (size() != 0) {
9 c err << "stack destructed with nonzero size " << size() << "\n";

10 }
11 }
12
13 void stacke::_push() const
14 {
15 if (size() >= capacity()) {
16 cerr << "size == " << size() << ", capacity == " << capacity() << "\n";
17 exit(EXIT_FAILURE);
18 }
19 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.3 Vi rtual Base Classes 555

556 Inheritance Chapter 5

20
21 void stacke::_pop() const
22 {
23 if (size() <= 0) {
24 cerr << "can’t pop stack with size " << size() << "\n";
25 exit(EXIT_FAILURE);
26 }
27 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack2/stackte.h

1 #ifndef STACKTEH
2 #define STACKTEH
3 #include "stackt.h"
4 #include "stacke.h"
5
6 c lass stackte: public stacke, public stackt {
7 public:
8 v oid push(int i);
9 i nt pop();

10 };
11 #endif

Now we can write the member functions of the grandchild class.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack2/stackte.C

1 #include "stackte.h"
2
3 v oid stackte::push(int i)
4 {
5 s tacke::_push(); //must come before the call to ::stack::push
6 : :stack::push(i);
7 s tackt::_push(i);
8 }
9

10 int stackte::pop()
11 {
12 stacke::_pop(); //must come before the call to ::stack::pop
13 const int i = ::stack::pop();
14 stackt::_pop(i); //must come after the call to ::stack::pop
15 return i;
16 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stack2/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "stackte.h"
4 using namespace std;
5
6 i nt main()
7 {
8 s tackte s;

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

9
10 s.push(10);
11 cout << s.pop() << "\n";
12 cout << s.pop() << "\n";
13 return EXIT_SUCCESS;
14 }

stackt()
push(10)
pop(10)
10
can’t pop stack with size 0

Multiple inheritance without virtual base classes

To keep all thecowboy ’s on a linked list, eachcowboy must have anext data member. To keep
all the bank ’s on another list, eachbank must also have a next data member. The two classes can
inherit this data member from a common base class namednode . We saw how to provide an
operator<< for a base class on pp. 496−497.

A cowboybank would have to be on two separate lists, the list ofcowboy ’s and the list ofbank ’s.
It must therefore have two differentnext data members, so its parents must not be virtual.

node base class

cowboy bank

cowboybank

derived classes

grandchild class

The static data membercowboy::begin in line 21 contains the address of the firstcowboy on the
list, or zero if the list is empty. The constructor forcowboy (line 22) places the newborncowboy at the
beginning of the cowboy list, in front of any othercowboy ’s that may already be on the list.Similarly, the
constructor forbank (line 33) places the newbornbank at the beginning of the bank list.

The next data member of classnode should be private, and the user should be able to loop along
the lists without writing the arrows in lines 68−70 and 75−77.We’l l fix these problems when we do itera-
tors. Theprint member functions of classescowboy andbank are protected so that they can be called
by theprint member function of the grandchild classcowboybank .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/multiple/cowboybank.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass node {
6 v irtual void print(ostream& ost) const = 0;
7 public:
8 node *next;
9 node(node *initial_next): next(initial_next) {}

10 virtual ˜node() {}
11
12 friend ostream& operator<<(ostream& ost, const node& n) {

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.3 Vi rtual Base Classes 557

558 Inheritance Chapter 5

13 n.print(ost);
14 return ost;
15 }
16 };
17
18 class cowboy: public node {
19 int i;
20 public:
21 static cowboy *begin;
22 cowboy(int initial_i): node(begin), i(initial_i) {begin = this;}
23 protected:
24 void print(ostream& ost) const {ost << "cowboy " << i;}
25 };
26
27 cowboy *cowboy::begin = 0;
28
29 class bank: public node {
30 int j;
31 public:
32 static bank *begin;
33 bank(int initial_j): node(begin), j(initial_j) {begin = this;}
34 protected:
35 void print(ostream& ost) const {ost << "bank " << j;}
36 };
37
38 bank *bank::begin = 0;
39
40 class cowboybank: public cowboy, public bank {
41 int k;
42
43 void print(ostream& ost) const {
44 ost << "cowboybank ";
45 cowboy::print(ost);
46 ost << ", ";
47 bank::print(ost);
48 ost << ", " << k;
49 }
50
51 public:
52 cowboybank(int initial_i, int initial_j, int initial_k)
53 : cowboy(initial_i), bank(initial_j), k(initial_k) {}
54 };
55
56 int main()
57 {
58 cowboy c1 = 40;
59 bank b1 = 80;
60
61 cowboybank cb1(30, 70, 100);
62 cowboybank cb2(20, 60, 90);
63
64 cowboy c2 = 10;
65 bank b2 = 50;
66

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

67 cout << "Here are the cowboys:\n";
68 for (const node *p = cowboy::begin; p != 0; p = p->next) {
69 cout << *p << "\n";
70 }
71
72 cout << "\n";
73
74 cout << "Here are the banks:\n";
75 for (const node *p = bank::begin; p != 0; p = p->next) {
76 cout << *p << "\n";
77 }
78
79 return EXIT_SUCCESS;
80 }

cowboy::begin

bank::begin

10
20

60

90

30

70

100 cowboybank::k

40 cowboy::i

50 80 bank::j

Here are the cowboys:
cowboy 10
cowboybank cowboy 20, bank 60, 90
cowboybank cowboy 30, bank 70, 100
cowboy 40

Here are the banks:
bank 50
cowboybank cowboy 20, bank 60, 90
cowboybank cowboy 30, bank 70, 100
bank 80

5.9.4 HiddenPointers III: a Virtual Base Class Creates a Discontinuous Object
The simplest implementation of a virtual base class has one strange consequence.It may result in the

creation of a spacially discontinuous object.

Before we had virtual base classes, a base object belonged to only one derived object, or at least to
only one derived object that was not in turn part of an even larger one. The simplest way to give the
derived object access to the base object was to put the latter physically inside of the former.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.4 Hidden Pointers III: a Virtual Base Class Creates a Discontinuous Object 559

560 Inheritance Chapter 5

base

But when a base class is virtual, a base object may belong to more than one derived object. Thebase
object can no longer always be inside of the derived object to which it belongs.Instead, each of the derived
objects contains a pointer to the shared base object.

pointer to thebase object

base

Each derived object, together with its base object, is considered to be one big object.For example,
thesizeof a derived object will include thesizeof the base object, even though the latter may be some
distance away in memory. The derived object is spacially discontinuous.

The following family with three ‘‘parent’’ classes will demonstrate that two discontinuous objects of
the same class may have different distances between their parts.Derivation from a virtual base class is
dashed.

grandparent

mother father stepfather

grandchild stepgrandchild

In line 68 of main.C , the mother and the father inside of g will share the same
grandparent object. Andin line 72, themother , father , and thestepfather inside ofsg will
share the samegrandparent object.

On my platform, a derived object does not have an actual pointer to a base object of a virtual base
class. Ithas a pointer to a table of data, whose first field is the offset in bytes from the end of the derived
object to the start of its base object. This offset is of the data typeptrdiff_t (line 20), which should
always be used for a distance that could be positive or neg ative.

The mother and father in line 68 share the samegrandparent . On my platform, the
mother is separated from thegrandparent by a total of 12 bytes.The father occupies 8 bytes (a
pointer and the data memberj) , and thel data member of thegrandchild occupies 4 bytes.

Themother , father , and stepfather in line 72 share the samegrandparent . On my plat-
form, thismother is separated from itsgrandparent by 20 bytes.The father andstepfather
each occupy bytes; thel occupies 4 bytes.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/discontinuous/main.C

1 #include <iostream>

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

2 #include <iomanip>
3 #include <cstdlib>
4 using namespace std;
5
6 c lass grandparent {
7 i nt i;
8 public:
9 grandparent(int initial_i): i(initial_i) {}

10 int f() const {return i;}
11 };
12
13 class mother: public virtual grandparent {
14 int j;
15 public:
16 mother(int initial_i, int initial_j)
17 : grandparent(initial_i), j(initial_j) {}
18
19 struct table {
20 ptrdiff_t diff; //offset from end of mother to its grandparent
21 };
22
23 struct layout {
24 const table *p;
25 int j;
26 };
27 };
28
29 struct father: public virtual grandparent {
30 int k;
31 father(int initial_i, int initial_k)
32 : grandparent(initial_i), k(initial_k) {}
33 };
34
35 struct stepfather: public virtual grandparent {
36 int k2;
37 stepfather(int initial_i, int initial_k2)
38 : grandparent(initial_i), k2(initial_k2) {}
39 };
40
41 struct grandchild: public mother, public father {
42 int l;
43 grandchild(int initial_i, int initial_j, int initial_k, int initial_l)
44 : grandparent(initial_i),
45 mother(initial_i, initial_j),
46 father(initial_i, initial_k),
47 l(initial_l) {}
48 };
49
50 struct stepgrandchild: public mother, public father, public stepfather {
51 int l;
52 stepgrandchild(int initial_i, int initial_j, int initial_k,
53 int initial_k2, int initial_l)
54 : grandparent(initial_i),
55 mother(initial_i, initial_j),

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.4 Hidden Pointers III: a Virtual Base Class Creates a Discontinuous Object 561

562 Inheritance Chapter 5

56 father(initial_i, initial_k),
57 stepfather(initial_i, initial_k2),
58 l(initial_l) {}
59 };
60
61 void print(const mother *m);
62
63 int main()
64 {
65 cout << "sizeof mother, not counting its grandparent, is "
66 << sizeof (mother) - sizeof(grandparent) << ".\n\n";
67
68 grandchild g(10, 20, 30, 40);
69 cout << "mother in grandchild:\n";
70 print(&g);
71
72 stepgrandchild sg(50, 60, 70, 80, 90);
73 cout << "mother in stepgrandchild:\n";
74 print(&sg);
75
76 return EXIT_SUCCESS;
77 }
78
79 void print(const mother *p)
80 {
81 const mother::layout& lay =
82 reinterpret_cast<const mother::layout &>(*p);
83 const ptrdiff_t diff = lay.p->diff;
84 const char *const cp = reinterpret_cast<const char *>(p)
85 + sizeof (mother) - sizeof (grandparent);
86 const grandparent *const gp =
87 reinterpret_cast<const grandparent *>(cp + diff);
88
89 cout
90 << p << " == a ddress of mother\n"
91 << static_cast<const void *>(cp)
92 << " == a ddress of first byte after mother"
93 " (not counting its grandparent)\n"
94 << hex << setw(10) << diff << dec
95 << " == o ffset to mother’s grandparent (in hex)\n"
96 << gp << " == address of mother’s grandparent\n"
97 << static_cast<const grandparent *>(p)
98 << " == s tatic_cast<const grandparent *>(p)\n"
99 << "grandparent’s f returns " << gp->f() << ".\n\n";

100 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

sizeof mother, not counting its grandparent, is 8.

mother in grandchild:
0xffbff078 == address of mother
0xffbff080 == address of first byte after mother (not counting its grandparent)

c == o ffset to mother’s grandparent (in hex)
0xffbff08c == address of mother’s grandparent
0xffbff08c == static_cast<const grandparent *>(p)
grandparent’s f returns 10.

mother in stepgrandchild:
0xffbff058 == address of mother
0xffbff060 == address of first byte after mother (not counting its grandparent)

14 == offset to mother’s grandparent (in hex)
0xffbff074 == address of mother’s grandparent
0xffbff074 == static_cast<const grandparent *>(p)
grandparent’s f returns 50.

5.9.5 Mix and Match the Ancestor Classes

▼ Homework 5.9.5a:
Version 3.1 of the Rabbit Game: multiple inheritance: mix and match the ancestor classes

Classwabbit has two groups of missing pieces. It does not know what its place in the food chain is
(hungry , bitter), and it does not know how to decide which way to move (decide , with an empty
punish function that a derived class might want to override).

It seemed reasonable to derive classwolf directly from classwabbit , filling in the two missing
groups.

wabbit

wolf rabbit

But this bundled thewolf ’s rank in the food chain (wolf::hungry andwolf::bitter) with its style
of motion (wolf::decide and wolf::punish). Any derived class that inherits thewolf ’s rank
would also be forced to inherit its motion, and vice versa. Inheritancegives you all the members of the
base class, whether you want them or not.

To inherit one without the other, we will use multiple inheritance:

wabbit

victim brownian predator manual

wolfrabbit killer_rabbit

Keep classwabbit the same.Derive two new classes,manual andpredator , from it. Move the two
member functions for thewolf ’s style of motion and punishment from classwolf to classmanual .
Move the two member functions for thewolf ’s rank in the food chain from classwolf to class

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 563

564 Inheritance Chapter 5

predator . Then derive classwolf from classesmanual andpredator .

Similarly, derive two more classes namedbrownian and victim from classwabbit . (In
physics, ‘‘brownian motion’’ is random motion.)Move the member function for therabbit ’s style of
motion from classrabbit to classbrownian . (rabbit::punish happens to be the same function as
wabbit::punish , so don’t move it anywhere.) Move the two member functions for therabbit ’s rank
in the food chain from classrabbit to classvictim . Then derive classrabbit from classes
brownian andvictim .

The extra layer of classes will let us mix and match any style of motion with any rank in the food
chain. For example, we can derive a classkiller_rabbit that inherits the same motion as arabbit
and the same rank as awolf .

In fact, we will derive sixteen classes fromwabbit . The rows are styles of motion; the columns are
ranks in the food chain. Deadly species (hungry==INT_MAX) hav euppercase names.

inert victim predator halogen
hungry==INT_MIN hungry==INT_MIN hungry==INT_MAX hungry==INT_MAX
bitter==INT_MAX bitter==INT_MIN bitter==INT_MAX bitter==INT_MIN

immobile ’b’ boulder ’s’ sitting_duck ’B’ black_hole ’L’ land_mine

brownian ’g’ gnat ’r’ rabbit ’R’ killer_rabbit † ’S’ strangelove

manual ’h’ horse * ’f’ fugitive ’W’ wolf ’K’ kamikaze

visionary ’p’ pest ’d’ deer ’A’ alien ’P’ positron

*This horse is the wooden crowd barrier.

†For Monty Python’s killer rabbit (1975), see

http://us.imdb.com/Title?0071853

For the killer rabbit that attacked President Carter on April 20, 1979, see

http://en.wikipedia.org/wiki/Jimmy_Carter_rabbit_incident

The four rank classes

Derive four classes fromwabbit : inert , predator , victim , and halogen . They will over-
ridewabbit::hungry andwabbit::bitter as follows.

(1) An inert has no appetite and is unpleasant to eat.inert::hungry should returnINT_MIN
andinert::bitter should returnINT_MAXas in the following lines 7−8.

(2) A predator has a hearty appetite and is unpleasant to eat.predator::hungry and
predator::bitter should both returnINT_MAX.

(3) A victim has no appetite and is tasty. victim::hungry and victim::bitter should
both returnINT_MIN .

(4) A halogen has a hearty appetite and is tasty. halogen::hungry should returnINT_MAX
andhalogen::bitter should returnINT_MIN .

Here is classinert . The other three rank classes will be the same except for their levels of hunger
and bitterness.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/inert.h

1 #ifndef INERTH
2 #define INERTH
3 #include <climits> //for INT_MIN and INT_MAX
4 #include "wabbit.h"
5
6 c lass inert: public virtual wabbit {
7 i nt hungry() const {return INT_MIN;}

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

8 i nt bitter() const {return INT_MAX;}
9 public:

10 inert(game *initial_g, unsigned initial_x, unsigned initial_y,
11 char initial_c)
12 : wabbit(initial_g, initial_x, initial_y, initial_c) {}
13 };
14 #endif

The four rank classes will not overridewabbit::decide , and so will remain abstract classes.

The motion classes

Then derive three more classes fromwabbit : immobile , brownian , and manual . (We will do
classvisionary later.) They will overridewabbit::decide andwabbit::punish as follows.

(1) An immobile never moves. immobile::decide always returns0, 0 to wabbit::move ,
as in line 6 of the followingimmobile.h . Do not overridewabbit::punish . There will be no
immobile.C file.

(2) A brownian moves randomly around the screen.brownian::decide returns two random
values towabbit::move , as our old rabbit::decide did. brownian::decide will be inline in
the filebrownian.h , which will have to include<cstdlib> anduse namespace std for therand
function. Donot overridewabbit::punish . There will be nobrownian.C file.

(3) A manual moves when we press a legal key (and beeps when we press an illegal one). Like our
old wolf::decide , manual::decide looks up the keystroke in a table and finds the corresponding
pair of int ’s. It then returns these two int ’s to wabbit::move . manual::decide is too big to be
inline, so define it in amanual.C file. Thisfile will mention nothing that belongs to namespacestd , so it
will not need to sayusing namespace std; . For the time being, do not construct more than one
manual . Think about the machinery necessary to have sev eral of them; it will appear on pp. 799−802.

Classmanual will also need apunish function that beeps.Move thepunish from classwolf to
classmanual , keeping it private.

For example, here is classimmobile . The other motion classes will be similar.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/immobile.h

1 #ifndef IMMOBILEH
2 #define IMMOBILEH
3 #include "wabbit.h"
4
5 c lass immobile: public virtual wabbit {
6 v oid decide(int *dx, int *dy) const {*dx = *dy = 0;}
7
8 public:
9 i mmobile(game *initial_g, unsigned initial_x, unsigned initial_y,

10 char initial_c)
11 : wabbit(initial_g, initial_x, initial_y, initial_c) {}
12 };
13 #endif

The motion classes will not override wabbit::hungry and wabbit::bitter , and so will
remain abstract classes. Update the ‘‘called by’’ comments in lines 28−29 ofwabbit.h on p. 536.

The grandchildren

Finally, use multiple inheritance to create three or four of the sixteen possible ‘‘grandchild’’ classes.
For example, derive rabbit from brownian andvictim , wolf from manual andpredator , and
boulder from immobile and inert . To make both parents public, the following line 6 will have to

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 565

566 Inheritance Chapter 5

saypublic twice. Therewas no compelling reason for line 6 to construct theimmobile before the
inert . I adopted this order only because the name of each motion class is an adjective, while most of the
rank classes are nouns.

Each grandchild class will inherit itsdecide , punish , hungry , and bitter member functions
from its two parents. Infact, other than the constructor, a grandchild will have no member functions of its
own. Thedeclarations for the grandchild classes will therefore be almost identical. On pp. 695−696, this
repetition will be consolidated with a ‘‘template’’.

Here is classboulder . The immobile and theinert inside theboulder each contain a
wabbit . But it’s thesamewabbit , thanks to the magic of virtual base classes.

Line 9 calls the constructor for classwabbit , which initializes theboulder ’s wabbit . Then line
10 calls the constructor forimmobile , which would normally initialize the entireimmobile . But class
immobile is derived virtually from classwabbit , so the call in line 10 initializes only the part of the
immobile that is not contained in thewabbit . Similarly, call to the constructor for classinert in line
11 initializes only the part of theinert that is not contained in thewabbit . Thewabbit in the
boulder is initialized only once.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/boulder.h

1 #ifndef BOULDERH
2 #define BOULDERH
3 #include "immobile.h"
4 #include "inert.h"
5
6 c lass boulder: public immobile, public inert {
7 public:
8 boulder(game *initial_g, unsigned initial_x, unsigned initial_y)
9 : wabbit(initial_g, initial_x, initial_y, ’b’),

10 immobile(initial_g, initial_x, initial_y, ’b’),
11 inert (initial_g, initial_x, initial_y, ’b’)
12 {}
13 };
14 #endif

Dominance

Classboulder inherits two different versions ofdecide : the flesh-and-blooddecide inherited
from classimmobile and the ghostly, pure virtualdecide inherited from classwabbit via class
inert . Fortunately, when aboulder saysdecide , it getsimmobile::decide rather than
wabbit::decide ; the deciding factor is thatimmobile is the derived class andwabbit is the base
class. We therefore say thatimmobile::decide dominates,or hides,wabbit::decide .

You can ignore the Microsoft Visual C++ warning about dominance; it is only a warning, not an
error. If you find it annoying, disable it by saying

#pragma warning (disable: 4250)

See

http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/vccore98/HTML/c4250.asp

Why not eliminate the dominance by eliminating the multiple inheritance?We currently have a dia-
mond.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

data members g x y c;
void move();

wabbit

void decide();

immobile

int hungry();
int bitter();

inert

boulder

Why not change it to a pitchfork, eliminating the dominance?

data members g x y c;
void move();

wabbit

void decide();

immobile

int hungry();
int bitter();

inert

boulder

This would be okay for now, but might inhibit future growth. For example, an animal’s lev el of
hunger might depend on how many times it has moved since its last meal, and classwabbit will have a
new member function returning this number. Or the direction in which an animal decides to move might
depend on its distance to the nearest animal, and classwabbit will have a new member function returning
this distance. In either case, future versions of thedecide , hungry , and bitter in the derived classes
will have to call these new member functions of classwabbit .

In fact,manual::decide already calls thekey andpunish member functions ofwabbit . We
have seen how easy this is whenmanual is derived from wabbit . But if manual were not so derived,
eachmanual object would need to contain a pointer to thewabbit object whosekey andpunish func-
tions it should call.We will therefore keep the motion and rank classes derived from classwabbit .

A counting function

We will need to keep a count of the animals of each species to know when to terminate the game.
Add the following private, non-inline, non-static member function to classgame.

1 master_t::size_type count(char c) const;

It will return the number of animals in the master list whose data memberc has the given value. For exam-
ple,count(’r’) will return the number ofrabbit ’s in the game. Thefunction is named after the
count algorithm in the C++ Standard Library. But there is no name conflict, because ourcount has the
last namegame.

game::count will contain a loop similar to the one ingame::get . game::get accessed two
data members of thewabbit pointed to by*it . Your game::get probably did not dereference the iter-
ator three times:

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 567

568 Inheritance Chapter 5

2 i f ((*it)->x == x && (*it)->y == y) {
3 r eturn *it;
4 }

It was easier to store*it into a pointerp once and for all.

5 wabbit *const p = *it; //or const master_t::value_type p = *it;
6 i f (p->x == x && p->y == y) {
7 r eturn p;
8 }

But game::count will access only one data member of thewabbit pointed to by*it , so don’t bother
with a pointer. Just say(*it)->c .

To access thec data member of eachwabbit , game::count , like game::get , will have to be a
friend of classwabbit . Make sure that the friend declaration inwabbit.h correctly specifies the func-
tion’s name, arguments, return value, and whether it is aconst or non-const member function.Give it a
comment like the one in line 38 ofwabbit.h on p. 536. The comment ongame::get in wabbit.h
should now refer togame::get and togame::count .

To count the elements in agame::master_t , the return type ofcount must be
game::master_t::size_type . Inside the{ curly braces} of the class definition for classgame, and
inside the body of a member function of that class, we can refer to typegame::master_t simply by
sayingmaster_t . But outside these two places, we must refer to it by its full namegame::master_t .
See lines 3 and 5 ofclinton2.C on p. 423.

Instead of recounting the animals on demand, it would be faster to hold the count of each species in a
separate data member of classgame. But I don’t want to have to add a new member to classgame when-
ev er a new class is derived:

9 / /hypothetical private data members of class game:
10 //a maintenance nightmare
11
12 master_t::size_type count_of_rabbits;
13 master_t::size_type count_of_wolves;
14 master_t::size_type count_of_boulders;
15 //etc.

Could each count be a data member (static or otherwise) of the corresponding grandchild class?No,
because we may want the program to run multiple games. Eachgame object will needs its own count of
rabbit ’s, its own count ofwolf ’s, etc. If a count were a data member ofgame, it would have to be non-
static.

We’l l get the speed of data members, but without their proliferation, when we domap’s on pp.
795−796. Ourcounting code has yet to reach its final form.

The constructor for class game

Create enoughboulder ’s to giv e the screen some texture, and throw in somemine ’s. Or make a
maze whose walls are made ofboulder ’s, with awolf and asitting_duck .

The most programmer-friendly way to create many animals of many species at many places is to
draw the rectangular picture in lines 8−14.The data type of an array subscript should always besize_t
(lines 6, 16, 18, 19); see p. 66. Get rid of thestruct location and the array oflocation ’s on pp.
470−471.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/game5/game.C

1 / /Excerpt from game.C
2
3 game::game(char initial_c)

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

4 : term(initial_c)
5 {
6 s tatic const size_t xmax = 8; //number of columns in the picture
7 s tatic const char a[][xmax + 1] = { //plus 1 for terminating ’\0’
8 " bbbbbbbb", //a maze of boulders
9 " b......b",

10 "b.bbbb.b",
11 "b..s.b.b", //The ’s’ is a sitting duck.
12 "bbbbbb.b",
13 "W......b", //The ’W’ is a wolf.
14 "bbbbbbbb"
15 };
16 static const size_t ymax = sizeof a / sizeof a[0];
17
18 for (size_t y = 0; y < ymax; ++y) {
19 for (size_t x = 0; x < xmax; ++x) {
20 if (term.in_range(x, y)) {
21 switch (a[y][x]) { //sorry the y comes before the x
22 case ’.’:
23 break;
24
25 case ’b’:
26 new boulder(this, x, y);
27 break;
28
29 case ’s’:
30 new sitting_duck(this, x, y);
31 break;
32
33 case ’W’:
34 new wolf(this, x, y);
35 break;
36
37 default:
38 cerr << "bad character ’" << a[y][x]
39 << "’ at (" << x << ", " << y << ")\n";
40 exit(EXIT_FAILURE);
41 }
42 }
43 }
44 }
45 }

Theswitch statement will be replaced with a ‘‘map’’ on pp. 797−798.

The game::play function

Compare the diagrams on p. 541.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.9.5 Mix and Match the Ancestor Classes 569

570 Inheritance Chapter 5

game::play

wabbit::move

manual::decidebrownian::decide

returnstrue or false to game::play

returnsdx , dy to wabbit::move returnsdx , dy to wabbit::move

You decide when the game should be over. A reasonable choice would be to end the game when
there are no more animals of any edible species (i.e., those derived from classesvictim or halogen). If
you have amanual animal and another animal hungry enough to eat it, you might also want to end the
game when themanual animal is gone. At that point, the user would have nothing left to do.

There may still be many surviving wabbit ’s when the game is over, so move the test from the outer
loop (line 3 ofgame.C on p. 542) to the inner loop (lines 19−27 below). Remove the message from
game::˜game and replace it with messages like those in lines 19−27.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/game5a/game.C

1 / /Excerpt from game.C, showing the body of the function game::play.
2
3 f or (;; term.wait(250)) {
4 f or (master_t::const_iterator it = master.begin();
5 i t != m aster.end();) {
6
7 wabbit *const p = *it;
8 c onst bool alive = p->move();
9 ++it;

10
11 if (!alive) {
12 //The wabbit that moved in line 8 blundered into
13 //another wabbit and was eaten.
14 delete p;
15 }
16
17 //Change lines 19-27 to fit your game.
18
19 if (count(’r’) <= 0) {
20 term.put(0, 0, "No more rabbits.");
21 return;
22 }
23
24 if (count(’W’) <= 0) {
25 term.put(0, 0, "No more wolves.");
26 return;
27 }
28 }
29 }

▲

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 5.9.5b:
Version 3.2 of the Rabbit Game: mass extinction

The destructor for classgame now destructs and deallocates all the surviving wabbit ’s. If every
one of these animals performed a beep and pause, it would drive you crazy.

Remove the beep and pause from the destructor for classwabbit . A wabbit will now beep and
pause only when it is killed in an encounter with anotherwabbit .

Make these three changes:

(1) Remove theg->term.beep(); andg->term.wait(1000); from the destructor for class
wabbit .

(2) To make awabbit beep and pause when another animal runs into it and eats it, insert
other->beep(); and other->g->term.wait(1000); at line 29½ ofwabbit.C on p.
538.

(3) To make awabbit beep and pause when it runs into an animal that eats it, insertbeep(); and
g->term.wait(1000); at line 33½ ofwabbit.C on p. 538.

We inserted two different beeps, theother->beep() and the plain beep() (i.e.,
this->beep()), to make each sound issue from the correct source. Our audio is currently monophonic,
but it might become stereo.
▲

5.10 AnAlternati ve to Inheritance
The above animals cannot change from one species to another. But the following scheme would

allow a rabbit to turn into akiller_rabbit and back again. Oran animal could become sluggish
after a big meal by temporarily turning into aninert .

The alternative scheme would no longer have any class rabbit or classkiller_rabbit . In
fact, there would no longer be any classes derived from wabbit . Instead, eachwabbit will have pointers
to two other objects that know how to move and eat: amotion object and arank object.

This new scheme is an example of adesign pattern.In particular, it’s the ‘‘strategy’’ design pattern
in the well-known Erich GammaDesign Patternsbook, pp. 315−323.

These lines represent inheritance:

motion

immobile brownian manual visionary

All four motion objects are static data members of classes derived from classmotion . An object
can be a static data member of its own class; our first example was theorigin member of classpoint
on p. 239. (Of course, an object cannot be a non-static data member of its own class; the object would blow
up to infinite size.) Letting an object be a static data member of its own class ensures that at least one
object of that class will be constructed.In our case, no additional ones should be constructed. This is the
‘‘ singleton’’ design pattern in Gamma pp. 127−134.

1 c lass motion {
2 public:
3 v irtual void decide(int *dx, int *dy) const = 0;
4 v irtual void punish() const = 0;
5 } ;
6
7 c lass immobile: public motion {
8 v oid decide(int *dx, int *dy) const {*dx = *dy = 0;}

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.10 An Alternati ve to Inheritance 571

572 Inheritance Chapter 5

9 public:
10 static const immobile imm;
11 };
12
13 class brownian: public motion {
14 void decide(int *dx, int *dy) const {
15 *dx = r and() % 3 - 1;
16 *dy = r and() % 3 - 1;
17 }
18 public:
19 static const brownian brown;
20 };
21
22 class manual: public motion {
23 void decide(int *dx, int *dy) const;
24 void punish() const;
25 public:
26 static const manual man;
27 };
28
29 class visionary: public motion {
30 void decide(int *dx, int *dy) const;
31 public:
32 static const visionary vis;
33 };

All four rank objects are static data members of classrank .

34 class rank {
35 const int h;
36 const int b;
37 public:
38 rank(int initial_h, int initial_b): h(initial_h), b(initial_b) {}
39
40 static const rank inert(INT_MIN, INT_MAX);
41 static const rank victim(INT_MIN, INT_MIN);
42 static const rank predator(INT_MAX, INT_MAX);
43 static const rank halogen(INT_MAX, INT_MIN);
44
45 int hungry() const {return h;}
46 int bitter() const {return b;}
47 };

These arrows represent pointers.We saw on p. 253 that a normal pointer (lines 52−53) can point to a
static data member (lines 80−84).

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

g

x

y

c

m

r

wabbit object

term

master

game object

hungry

bitter

rank::victim

rank::predator

hungry

bitter

decide

punish

brownian::brown

motion objectsmotion objects rank objects

decide

punish

manual::man

48 class wabbit {
49 game *const g;
50 unsigned x, y;
51 char c; //no longer const
52
53 const rank *r;
54 const motion *m;
55 public:
56 bool move();
57 //etc.
58 };
59
60 bool wabbit::move()
61 {
62 int dx; //uninitialized variables
63 int dy;
64 m->decide(&dx, &dy);
65
66 //etc.
67 if (there is another wabbit) {
68 const bool I_ate_him = this->r->hungry() > other->r->bitter();
69 const bool he_ate_me = other->r->hungry() > this->r->bitter();
70
71 //etc.
72
73 if (neither ate the other) {
74 m->punish();
75
76 //etc.
77
78 //One percent of the time, change the species of the object.
79 if (rand() % 100 == 0) {

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.10 An Alternati ve to Inheritance 573

574 Inheritance Chapter 5

80 r = either &rank::inert or &rank::victim or &rank::predator
81 or &rank::halogen;
82
83 m = either &immobile::imm or &brownian::brown or &manual::man
84 or &visionary::vis;
85
86 c = t he character for the species we just turned into;
87 }
88 }

5.11 Classvisionary

Class visionary

Classvisionary will be another motion class, likeimmobile , brownian , andmanual . A
visionary ’s range of vision extends three units in every direction. The following diagram has a heavy
line around the squares within visual range of avisionary in the center location.Each square is labeled
with the distance from its center to the center of the square that holds thevisionary .

4√2 5 2√5 √17 4 √17 2√5 5 4√2

5 3√2 √13 √10 3 √10 √13 3√2 5

2√5 √13 2√2 √5 2 √5 2√2 √13 2√5

√17 √10 √5 √2 1 √2 √5 √10 √17

4 3 2 1 0 1 2 3 4

√17 √10 √5 √2 1 √2 √5 √10 √17

2√5 √13 2√2 √5 2 √5 2√2 √13 2√5

5 3√2 √13 √10 3 √10 √13 3√2 5

4√2 5 2√5 √17 4 √17 2√5 5 4√2

With each move, a visionary animal will take one step away from an enemy within visual range.
If there are several enemies, it will arbitrarily pick one. If there are no enemies close enough to see, the
visionary will have the luxury of taking one step towards food. If there is no food either, the
visionary will be lethargic and not move.

To test classvisionary , we can derive visionary victim , known as adeer , and trap it
between a pair ofimmobile predator ’s, known asblack_hole ’s. A deer is a lowercased, a
black_hole is an uppercaseB; the latter are subscripted for ytour convenience in the following dia-
grams.

If two or more enemies are in visual range, it would be hard to predict what our simplevisionary
will do. It will arbitrarily pick one enemy and recoil from it, ignoring the other. Similarly, if there are no
enemies and two or more pieces of food, ourvisionary will arbitrarily pick one and head toward it,
ignoring the other. To make the following deer ’s behave predictably, we hav eonly oneblack_hole in
visual range of thedeer at any giv en time.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

The deer in our first two examples are driven back and forth between two black_hole ’s. It
bounces to and from the location marked with a1. A smartervisionary would escape at right angles
instead of vibrating forever; an even smarter one would know that ablack_hole is immobile and can
be approached safely as long as we don’t touch it.

B
0

B
1

d 1

B
0

B
1

d

1

Thesedeer ’s will be driven around and around the numbered paths:

B
0

B
1

B
2

B
3

d1

2 3

B
0

B
1

B
2

B
3

d

1

2

3

We can use a carrot as well as a stick. Our carrot will be animmobile victim , known as a
sitting_duck with a lowercases . The next two examples assume a genetically-engineereddeer
whose hunger has been increased so that it can eat asitting_duck , but whose bitterness is unchanged
so it can still be eaten by ablack_hole . Implement this by giving classdeer the following public
inline member function, overriding thehungry function thatdeer inherits fromvictim :

1 i nt hungry() const {return INT_MIN + 1;} //hungry enough to eat a victim

If an enemy and a meal are within visual range at the same time, thevisionary will flee from the
former and ignore the latter. For example, thedeer at the starting position in the left diagram will flee
from B

0
and ignores

1
.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.11 Classvisionary 575

576 Inheritance Chapter 5

B
0

B
1

B
2

B
3

s
0

s
1

d

1

2

3

4

5

B
0

B
1

B
2

B
3

s
0

s
1

s
2

s
3

d

1

2

34

5

6

7

A smart player would have thewolf corner thedeer in a corner of the screen. Could analien (a
visionary predator) chase adeer across the board? Could adeer lure analien into a
black_hole ?

▼ Homework 5.11a:
Version 3.3 of the Rabbit Game: a friend of classwabbit

It would seem natural to write the visual logic invisionary::decide . But we can’t. Thecode
will need to use the animal’sx andy data members, and these are private members of classwabbit .

One possibility would be to expose the values ofx andy to the derived classes. We can do this by
making them public or protected, or giving classwabbit the following public or protected member func-
tions.

1 unsigned get_x() const {return x;}
2 unsigned get_y() const {return y;}

But exposing the values is a dangerous narcotic. If a derived class becomes addicted to x, y coördinates, it
will be hard to change the base class to polar coördinates.

Another possibility would be to write all the visionary logic in classwabbit . (Code follows the
data members, p. 467.) But the logic doesn’t belong there. It belongs in classvisionary .

What would be thesmallestpiece of code we could add to classwabbit that would allow
visionary::decide to do what it has to do? All we need is thedifference friend of class
wabbit in line 9. It will return the offset that would move us from the location ofwabbit w1 to the
location ofwabbit w2 . For example, ifw1 was at (10, 10) andw2 was to the upper right ofw1 at (13, 6),
the return value would be (3, −4): three units to the right and four units up.

difference needs to use the private membersx andy of classwabbit , so it must be a member
function or a friend of that class.I made it a friend because it deals evenhandedly with two wabbit ’s.
Had it dealt with only one, or had one of them played a starring rôle, I would have made it a member func-
tion.

It doesn’t matter whether a friend function is declared in the public, private, or protected section of its
class. Butas documentation, please declare it with the protected members ofwabbit since
difference is intended for use by a derived class.

difference begins by verifying that the two animals belong to the same game. Itmakes no sense
to measure the distance and direction between animals in different games.

The subtractions in lines 15 and 16 must be able to yield positive, neg ative, or zero results.To get
these signed results, both operands must be signed.The data membersx andy are unsigned, so we cast
them toint before the subtraction.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

The cast would yield ‘‘implementation defined’’ results ifx or y were greater than the maximum
integer valueINT_MAX. But a check for this would have been grim professionalism.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/visionary/wabbit.C

1 / /Excerpt from wabbit.C.
2
3 / *
4 Return the offset that would move us from the location of w1 to the
5 l ocation of w2. For example, if w1 was at (10, 10) and w2 was at (13, 6),
6 t he return value would be (3, -4), i.e., 3 units to the right and 4 units up.
7 * /
8
9 v oid difference(const wabbit *w1, const wabbit *w2, int *dx, int *dy)

10 {
11 if (w1->g != w2->g) {
12 cerr and exit with EXIT_FAILURE;
13 }
14
15 *dx = static_cast<int>(w2->x) - static_cast<int>(w1->x);
16 *dy = ditto: the vertical offset between the two wabbit’s.
17 }

I’m sorry thatdifference , like wabbit::decide , returns its pair of answers through a pair of
read/write pointer arguments. Seethe two workarounds, neither of them satisfactory, on p. 535. Eventu-
ally, howev er, difference will have a single return value, called adifference_type , which is why
this function is nameddifference .
▲

▼ Homework 5.11b:
Version 3.4 of the Rabbit Game: three functions that are neither members nor friends

visionary::decide will need three more functions that deal with distances and directions:
signum , step , and dist . They do not need to be member functions or friends of any class. Sincethey
will be called only by each other and byvisionary::decide , define them in the filevisionary.C
and let them be static to ensure that they can be called from no other file. Do not declare them in any
header file. Here are the first lines of their definitions:

18 //Excerpts from visionary.C.
19
20 /*
21 Return 1 if the argument is positive, -1 if the argument is negative, 0 if 0.
22 */
23 static int signum(int i)
24 {
25
26 /*
27 Return the offset that would take one step from the location of w1 to the
28 location of w2. For example, if w1 was at (10, 10) and w2 was at (13, 6), the
29 return value would be (1, -1), i.e., one step diagonally to the upper right.
30 */
31 static void step(const wabbit *w1, const wabbit *w2, int *dx, int *dy)
32 {
33
34 /*
35 Return the distance between w1 and w2. For example, if w1 was at (10, 10) and

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.11 Classvisionary 577

578 Inheritance Chapter 5

36 w2 was at (13, 6), the return value would be 5 == sqrt(3*3 + 4*4).
37 */
38 static double dist(const wabbit *w1, const wabbit *w2)
39 {

signum means ‘‘sign’’ in L atin. If the function is small enough, let it be inline.In that case, you
won’t need the keyword static : an inline non-member function is static by default.

step will begin by callingdifference . It will then callsignum twice, to reduce the horizontal
and vertical components of the offset to integers in the range −1 to 1 inclusive.

Thedist function is so named to avoid conflict and confusion with thedistance function in the
C++ Standard Library. Like step , dist will begin by calling difference . It will then use the

Pythagorean theorem√ x2 + y2 to discover the length of the offset. Themultiplication and addition should
be int , not double , becauseint arithmetic is faster. Square each number by multiplying it by itself;
this is faster than calling thepow function in the C++ Standard Library.

The C Standard Library has only one square root function:

40 /* Excerpt from <math.h> */
41
42 double sqrt(double);

The C++ Standard Library has three, not counting the one that takes avalarray .

43 //Excerpt from <cmath>
44
45 float sqrt(float);
46 double sqrt(double);
47 long double sqrt(long double);

You will therefore have to say whichsqrt function you want. Dothis by casting the sumx2 + y2 to
double before passing it tosqrt . (Write a C++static_cast , not a C(double) cast.)
visionary.C will include cmath and sayusing namespace std; for thesqrt function.
▲

▼ Homework 5.11c:
Version 3.5 of the Rabbit Game: allow the derived classes to loop through the master list

visionary::decide will have to loop through the master list, searching for enemies and food.
But this is currently impossible, since the master list is a private data member of another class.To giv e
visionary::decide read-only access to the master list, add the following three protected members to
classwabbit . The name of the data typeconst_iterator in lines 3−4 is created by thetypedef in
line 2.

1 / /used by visionary::decide
2 t ypedef game::master_t::const_iterator const_iterator;
3 c onst_iterator begin() const {return g->master.begin();}
4 c onst_iterator end() const {return g->master.end();}

▲

▼ Homework 5.11d:
Version 3.6 of the Rabbit Game: classvisionary : step away from enemies and towards food

Derive class visionary from class wabbit , overriding wabbit::decide . Giv e class
visionary no member functions except the constructor anddecide . visionary will not override
wabbit::hungry andwabbit::bitter , and so it will remain an abstract class.visionary will
not overridewabbit::punish either.

Since every visionary animal has the same radius of vision, and since the radius is used only in
one function, we can make it a local static variable in line 5. But if the radius of each animal were

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

different, it would have to be a non-static data member of classvisionary .

Theconst_iterator , begin , and end in line 9 are the three new members of classwabbit in
the previous Homework. They allow visionary::decide to loop through the master list without
knowing that its name ismaster or even that it is alist .

No animal should be afraid of itself, and no animal should contemplate eating its own flesh. Accord-
ingly, line 12 verifies that theother animal is not the same one asthis one. To verify that two objects
are not the same object, we compare their addresses.But this andother are pointers to different data
types:this is a pointer to avisionary , while other is merely a pointer to a basicwabbit . To avoid
any warning about comparing pointes to different types, we castthis to the greatest common denomina-
tor. Since we’re inside aconst member function, we must castthis to a read-only pointer.

The this-> in line 14 is merely for rhetorical symmetry; it balances theother-> in the same line.
To get thethis->bitter() to compile,bitter could be a protected or public member of class
wabbit . But to get theother->hungry() to compile,hungry must be apublic member of class
wabbit . In a member function of classvisionary , protected isn’t good enough when theother
object is not a visionary; see p. 495. By the time you have also coded the opposite relation, in lines 27−30,
both functions will have to be public members of classwabbit . Update the comments inwabbit.h to
explain whyhungry andbitter must now be public.

In the rank classes derived from wabbit (inert , victim , etc.), thehungry andbitter func-
tions can remain private.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/visionary/visionary.C

1 / /Excerpt from visionary.C.
2
3 v oid visionary::decide(int *dx, int *dy) const
4 {
5 s tatic const unsigned radius = 3; //of vision
6
7 / /Move one step away from a wabbit that could eat me.
8
9 f or (const_iterator it = begin(); it != end(); ++it) {

10 const wabbit *const other = *it;
11
12 if (other != static_cast<const wabbit *>(this) &&
13 dist(this, other) <= radius &&
14 other->hungry() > t his->bitter()) {
15
16 step(other, this, dx, dy);
17 return;
18 }
19 }
20
21 /*
22 Arrive here if there were no enemies within the visual radius.
23 Now see if there’s any food I could eat within the visual radius.
24 If so, take one step towards it.
25 */
26
27 for (const_iterator it =
28 do almost the same loop, ending with a step in the opposite
29 direction: step(this, other, ...
30 }
31

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.11 Classvisionary 579

580 Inheritance Chapter 5

32 //Arrive here if there were neither enemies nor food nearby:
33 //lethargic (or random, if you wish) in the absence of stimulation.
34 *dx = * dy = 0;
35 }

▲

5.12 Private Inheritance and its Variants
—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/cricket.h

1 #ifndef CRICKETH
2 #define CRICKETH
3
4 c lass cricket {
5 unsigned chirps; //per 15 seconds
6 public:
7 c ricket(unsigned initial_chirps): chirps(initial_chirps) {}
8 double fahrenheit() const {return chirps + 39;}
9 } ;

10 #endif

A metric_cricket can do everything that acricket can do, plus more.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/metric_cricket.h

1 #ifndef METRIC_CRICKETH
2 #define METRIC_CRICKETH
3 #include "cricket.h"
4
5 c lass metric_cricket: public cricket {
6 public:
7 metric_cricket(unsigned initial_chirps): cricket(initial_chirps) {}
8 double celsius() const {return (fahrenheit() - 32) * 5 / 9;}
9 } ;

10 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/main2.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "metric_cricket.h"
4 using namespace std;
5
6 i nt main()
7 {
8 metric_cricket mc(33);
9 c out << "celsius == " << mc.celsius() << "\n";

10 cout << "fahrenheit == " << mc.fahrenheit() << "\n";
11
12 cricket *p = &mc;
13 cout << "fahrenheit == " << p->fahrenheit() << "\n";
14
15 cricket& r = mc;

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

16 cout << "fahrenheit == " << r.fahrenheit() << "\n";
17
18 return EXIT_SUCCESS;
19 }

celsius == 22.2222
fahrenheit == 72
fahrenheit == 72
fahrenheit == 72

More precisely, the keyword public in line 5 ofmetric_cricket.h does two things:

(1) It lets the public members ofcricket become public members ofmetric_cricket . For
example, that’s why line 10 ofmain2.C can use thefahrenheit member ofmc.

(2) It lets a pointer to acricket point to ametric_cricket (line 12 ofmain2.C) and lets a
reference to acricket refer to ametric_cricket (line 15 ofmain2.C) without needing a cast.A
pointer to a base class can always point to an object of a (publicly) derived class.

But if we changed thepublic to private in line 5 of metric_cricket.h , the above two
things would change:

(1′) The public members ofcricket would now be private members ofmetric_cricket .
Thus thefahrenheit member of classcricket could no longer be called for the objectmc in line 10
of main2.C , although it still could be called by thecelsius member function in line 8 of
metric_cricket.h .

(2′) A pointer to acricket could no longer point to ametric_cricket (line 12 ofmain2.C),
and a reference to acricket could no longer refer to ametric_cricket (line 15 ofmain2.C). It
would be a secret that classmetric_cricket is derived from classcricket .

Interface inheritance vs. implementation inheritance

A class’s public members are called itsuser interface. With this definition we can state the two rea-
sons we build a derived class from a base class:

(1) We want to endow the derived class with the same user interface as the base class, plus more.In
this case, we usepublic inheritance, also calledinterface inheritanceor type inheritance.

(2) We want to endow the derived class with all of the functionality of the base class (e.g., the ability
to compute the temperature from the chirping speed), but we want to force the user to use a totally different
interface. Inthis case, we useprivate inheritance, also calledimplementation inheritance. (Note that
public derivation actually gives us implementation inheritance as well as interface inheritance.)

Protected inheritance

There is alsoprotected inheritance, in which the public members of the base class become protected
members of the derived class. Thefollowing table shows how accessible a member of a base class would
be in each kind of derived class. For example, in public inheritance, the public members of the base class
become public members of the derived class. Andin every kind of inheritance, the private members of the
base class are mentionable only by the base class.

member of base class is
public protected private

base class ispublic public protected unmentionable

base class isprotected protected protected unmentionable

base class isprivate private private unmentionable

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.12 Private Inheritance and its Variants 581

582 Inheritance Chapter 5

▼ Homework 5.12a:
Version 3.7 of the Rabbit Game: private inheritance

There is no reason to derive each grandchild class publicly from its two parents. Derive them pri-
vately by changing the twopublic keywords toprivate in each grandchild class.

We would also like to derive the motion and rank classes privately, e.g., deriving brownian and
victim privately from classwabbit . But if we did this, no other class would know thatbrownian and
victim are derived from wabbit . In particular, a grandchild class such asrabbit would be unaware
of its own wabbit ancestry, and the constructor forrabbit would be unable to make the direct call the
constructor for its grandparentwabbit .

To permit the constructor for a grandchild to call the constructor forwabbit , we must give every
grandchild at least one parent that is derived publicly or protectedly from classwabbit . We arbitrarily
decide to derive the motion classes (immobile , brownian , manual , visionary) protectedly from
wabbit , and the rank classes (inert , victim , predator , halogen) privately from wabbit .
(Alternatively, we could have derived the motion classes privately and the rank classes protectedly.) As
long as the grandchild knows that at least one parent is derived from wabbit , the grandchild will be able
to mentionwabbit .

Now that the inheritance is no longer public, we are guaranteed that the member functions of class
game (other thanget andcount , which are friends of classwabbit) will never be able to make direct
calls todecide and the other non-public member functions ofwabbit .
▲

Partial inheritance

A derived class can inherit all of the implementation but only part of the interface of a base class.To
do this, use private inheritance and theusing declaration in line 13. By writing the declaration in the pub-
lic section of classderived , we hav emadebase::f a public member ofderived . base::g is also
present in classderived , but only as a private member.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cricket/using.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 c lass base {
6 public:
7 v oid f() const {cout << "base::f\n";}
8 v oid g() const {cout << "base::g\n";}
9 } ;

10
11 class derived: private base {
12 public:
13 using base::f; //using declaration
14 };
15
16 int main()
17 {
18 derived d;
19 d.f(); //will compile
20 //d.g(); //won’t compile
21 return EXIT_SUCCESS;
22 }

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

base::f

A using declaration is also used in a ‘‘namespace’’; see p. 1023.

printed 4/8/14
8:51:31 AM

All rights
reserved ©2014 Mark Meretzky

Section 5.12 Private Inheritance and its Variants 583

