
4
Operations Expressed by Overloaded Operators

4.1 Input and Output

4.1.1 Formatted I/O with Manipulators
Each data type is output or input in a different format.An int appears as a series of digits; achar

as a single character; adouble has a decimal point.

In C, the format of each value had to be specified as a conversion character after each%given to
printf andscanf . In C++, the format is determined by the data type of the value. We saw this on pp.
27−28 and 30−31.

In both languages, the format can be fine-tuned. In C, theprintf function can print an integer in
three different bases, round adouble to a desired number of digits, and justify a string to the left or right.
In C++ we do the same formatting, but with very different machinery: function name overloading and i/o
manipulators.

int and char output

Integer and character output is produced by calling two functions with the same name. In line 8, the
expressioni is of typeint . When we write

cout << i

the computer behaves as if we had written a call to theoperator<< function whose argument is anint .

cout.operator<<(i)

This function outputs theint in decimal, like the%dformat ofprintf .

In the next line, the expressionstatic_cast<char>(i) is of typechar . We call a different
operator<< , one whose argument is achar . This function outputs thechar as one ASCII character
like the%cformat ofprintf .

Lines 8−9 output the integer i in both formats; lines 12−13 do the same for the characterc . For the
double cast in line 13, see line 14 ofstatic_cast.C on p. 65.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/intchar.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

350 OperationsExpressed by Overloaded Operators Chapter 4

7 i nt i = 65;
8 c out << i << "\n" //printf("%d", i);
9 << static_cast<char>(i) << "\n"; //printf("%c", i);

10
11 char c = ’ A’;
12 cout << c << "\n" //printf("%c", c);
13 << static_cast<unsigned>(static_cast<unsigned char>(c))
14 << "\n"; //printf("%u", (unsigned)(unsigned char)c);
15
16 return EXIT_SUCCESS;
17 }

65 line 8
A line 9
A line 12
65 line 13

In C, theprintf function decides at runtime which format to use; see p. 29. In C++, the compiler
decides at compile time whichoperator<< function to call. (In the jargon, an overloaded function name
is resolvedat compile time.)

Here are simplified definitions for theoperator<< functions that take an integer and a character.
The latter happens not to be a member function because it can do its work by calling a member function of
classostream , theput on pp. 329−330.

1 c lass ostream {
2 / /etc.
3 public:
4 ostream& operator<<(int i) {output i in decimal; return *this;}
5 / /etc.
6 } ;
7
8 i nline ostream& operator<<(ostream& ost, char c) {return ost.put(c);}

Bases, manipulators, and format flags

Most changes of format in C++ are performed by ‘‘outputting’’ or ‘‘inputting’’ i nvisible things called
i/o manipulators to a stream such ascout . The simplest examples are theoct , hex , and dec in lines
12−14. Nocharacters are output when we ‘‘output’’ the oct . But outputting theoct makes a change to
the stream, causing all subsequent integers output there to be written in octal. In other words, a C++ stream
can ‘‘remember’’ a format for output, and we can even copy this format into another stream object (line 17).
In C, on the other hand, a C file pointer such asstdout has no memory. It must to be given a format
ev ery time we callprintf .

There is also asetbase manipulator in line 15, but its only arguments are 8, 10, or 16.A manipu-
lator with an argument needs the header file<iomanip> ; those without arguments do not.

Lines 9 and 18 save and restore the base of a stream.Saving the base is unnecessary here, because
the initial base of a stream is always 10. Restoring it is also unnecessary, because the program is about to
end. Butcode in the middle of a larger program might want to restore a base it had changed.

A stream object has an integer whose bits are flags describing its current format, including three for
octal, hex, and decimal.A variable that holds format flags must be of data typefmtflags , a typedef for
the appropriate type of integer (line 9). This data type has the last nameios_base (ios in older versions
of the C++ Standard), just as the variablecout had the last namestd on p. 20. (Pages 419−422 will
show what it means for a data type to have a last name; for now, don’t worry about it.)

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

The setf function in line 18 restores only the three flags that govern the base.(To restore all the
flags, see line 42 of the next program.) The other flags of the stream remain unchanged because of the
ios_base::basefield argument. Thisis an enumeration that belongs to a class, like our
date::january on pp. 223−228.We’l l look at it more closely in the next section.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/base.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt main()
7 {
8 i nt i = 10;
9 i os_base::fmtflags save = cout.flags(); //Save all the format flags.

10
11 cout << i << "\n" //Decimal by default: printf("%d", i)
12 << oct << i << "\n" //printf("%o", i);
13 << hex << i << "\n" //printf("%x", i);
14 << dec << i << "\n" //printf("%d", i);
15 << setbase(16) << i << "\n"; //printf("%x", i);
16
17 cerr.copyfmt(cout); //Copy the entire format of cout into cerr.
18 cout.setf(save, ios_base::basefield); //Restore the base.
19 cout << i << "\n"; //same base as line 11
20 return EXIT_SUCCESS;
21 }

10 line 11: decimal
12 line 12: octal afteroct
a line 13: hexadecimal afterhex
10 line 14: decimal afterdec
a line 15: hexadecimal aftersetbase(16)
10 line 19: same as line 11

▼ Homework 4.1.1a: inconsistent format flags

To see the format flags, call theflags function with no arguments in line 8.To see the meaning of
each flag within the integer of flags, print the enumerations in lines 12−14.(The actual values may be dif-
ferent on each platform.)Like thebasefield in the previous program, these enumerations are members
of classios_base . basefield , by the way, is a combination of the flags for all three bases (line 15).

Lines 17−19 use ‘‘bitwise and’’ to print the value of an individual flag.

Theoct , hex , and dec manipulators turn the flags on and off. We can also do this directly by call-
ing the member functions and manipulators in lines 21−40, taking arguments of type
ios_base::fmtflags . If l ine 24 is too drastic for you, do 28 instead.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/flags.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 using namespace std;
5

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 351

352 OperationsExpressed by Overloaded Operators Chapter 4

6 i nt main()
7 {
8 i os_base::fmtflags save = cout.flags();
9

10 cout << hex
11 << "cout.flags() == " << save << "\n"
12 << "ios_base::dec == " << ios_base::dec << "\n"
13 << "ios_base::hex == " << ios_base::hex << "\n"
14 << "ios_base::oct == " << ios_base::oct << "\n"
15 << "ios_base::basefield == " << ios_base::basefield << "\n";
16
17 if (cout.flags() & ios_base::hex) {
18 cout << "The hex flag is set.\n";
19 }
20
21 ios_base::fmtflags myflags = ios_base::dec | ios_base::hex;
22
23 //Turn on myflags; turn off all others.
24 cout.flags(myflags);
25
26 //Outside of the basefield, leave all flags unchanged.
27 //Within the basefield, turn on myflags and turn off the others.
28 cout.setf(myflags, ios_base::basefield);
29
30 //Turn on myflags; leave the others unchanged.
31 cout.setf(myflags);
32
33 //Turn on myflags; leave the others unchanged.
34 cout << setiosflags(myflags);
35
36 //Turn off myflags; leave the others unchanged.
37 cout.unsetf(myflags);
38
39 //Turn off myflags; leave the others unchanged.
40 cout << resetiosflags(myflags);
41
42 cout.flags(save); //restore all the format flags, not just 3 base flags
43 return EXIT_SUCCESS;
44 }

cout.flags() == 1002 line 11: binary001000000000010
ios_base::dec == 2 line 12: binary000000000000010
ios_base::hex == 8 line 13: binary000000000001000
ios_base::oct == 40 line 14: binary000000001000000
ios_base::basefield == 4a line 15: binary000000001001010
The hex flag is set. line 20: same as line 11

What will setbase do to the three flags if its argument is neither 8, 10, or 16? Can you turn on
more than one of the three base flags by saying

45 cout << dec << hex;

or would you have to resort tosetf or setiosflags ? If more or less than one of the three base flags
are set, in what base will the output be?
▲

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Three trivial manipulators

Negative numbers have a neg ative sign. Positive numbers will have a positive sign if we output the
showpos manipulator in line 11. This works only in base 10.

Theshowbase manipulator in line 12 will output a0 (zero) before an octal integer, and a0x before
a hexadecimal integer. (This works only if the integer is non-zero.) It will also output the currency symbol
in certain locales (p. 1040). If you’re showing the base and padding a hex integer with zeroes, specify the
internal padding on p. 357.uppercase makes the numbers uppercase.

The three manipulators in line 15 turn these features off. This is unnecessary since lines 8 and 17
save and restore the base and the three trivial flags. This in turn is unnecessary since the program is about
to end.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/trivial.C

1 #include <iostream> //don’t need <iomanip>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt i = 10;
8 i os_base::fmtflags save = cout.flags();
9

10 cout << i << "\n"
11 << showpos << i << "\n" //printf("%+d", i)
12 << hex << i << "\n" //printf("%x", i)
13 << showbase << i << "\n" //printf("%#x", i)
14 << uppercase << i << "\n" //printf("%#X", i)
15 << nouppercase << noshowbase << noshowpos;
16
17 cout.setf(save, ios_base::showpos | ios_base::showbase |
18 ios_base::uppercase | i os_base::basefield);
19
20 cout << i << "\n"; //same base and format as line 10
21 return EXIT_SUCCESS;
22 }

10 line 10: decimal
+10 line 11: aftershowpos , positive sign
a line 12: afterhex , hexadecimal
0xa line 13: aftershowbase , shows the base prefix0x
0XA line 14: afteruppercase
10 line 20: same as line 10

The width evaporates after one use

The ‘‘set width’’ manipulatorsetw , with the argument3 in line 11, causes the next item to be output
with at least three characters.That item,bond , is only a single-digit number, so it will be padded with two
blanks for a total of three characters. The comment shows the equivalentprintf .

Unlike the other manipulators,setw evaporates after one use. (See p. 1048 for how this is imple-
mented.) Nopadding is applied to the items after thebond : the"\n" at the end of line 11, the next bond
in line 12, etc.To pad another item, we would have to output anothersetw .

In C, the only padding characters are blank and zero, in theprintf ’s in lines 11 and 15 respec-
tively. In C++, thesetfill manipulator in line 15 will let us request any padding character. Lines 14

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 353

354 OperationsExpressed by Overloaded Operators Chapter 4

and 16 save and restore the padding character, even though it is unnecessary here.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/width.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip>
4 using namespace std;
5
6 i nt main()
7 {
8 i nt bond = 7;
9

10 cout << bond << "\n" //printf("%d")
11 << setw(3) << bond << "\n" //printf("%3d", i);
12 << bond << "\n"; //printf("%d", i)
13
14 char save = cout.fill();
15 cout << setw(3) << setfill(’0’) << bond << "\n"; //printf("%03d", bond);
16 cout.fill(save); //or cout << setfill(save);
17
18 cout << setw(3) << bond << "\n"; //same padding character as line 11
19 return EXIT_SUCCESS;
20 }

7 line 10
7 line 11: padded with two spaces

7 line 12:setw evaporated after one use
007 line 15: padded with two zeroes

7 line 18: same as line 11

Output a bool

By default, abool is output as the number1 or 0. Lines 11 and 12 turn verbal output on and off.
Lines 8 and 14 save and restore thebool format, even though it is unnecessary here.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/bool.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 bool b = true;
8 i os_base::fmtflags save = cout.flags();
9

10 cout << b << " " << !b << "\n"
11 << boolalpha << b << " " << !b << "\n"
12 << noboolalpha << b << " " << !b << "\n";
13
14 cout.setf(save, ios_base::boolalpha); //Restore only the bool format.
15 cout << b << " " << !b << "\n"; //same format as line 10
16 return EXIT_SUCCESS;
17 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

1 0 line 10
true false line 11: afterboolalpha
1 0 line 12: afternoboolalpha
1 0 line 15

Output a double

As in C, the default precision for adouble is six digits. Line 9 outputs thedouble rounded to this
number of digits, just like the%gformat ofprintf . The precision is thetotal number of digits, some to
the left of the decimal point and some to the right.

To change the precision, call the manipulatorsetprecision in line 14. The double is now
rounded to three significant digits; the equivalent format ofprintf is in the comment.

The maximum precision isDBL_DIG, a macro defined the header file<cfloat> . On my platform
it is 15 digits, and line 8 takes full advantage of it.We will eventually discard this macro in favor of the
‘‘ template’’numeric_limits<double>::digits10 . See pp. 745−747.

To use the precision as the number of digits to the right of the decimal point, rather than the number
of significant digits, switch to thefixed or scientific formats in lines 15−16.As usual, the value is
rounded, not truncated.fixed will display every digit to the left of the decimal point; see line 17 of
max.C on p. 748 for an example.

Unfortunately, there are no manipulators to turn off fixed and scientific . To reset the two
flags, line 17 must use theresetiosflags manipulator on p. 352.

Lines 10 and 18 save and restore the precision.A variable that holds the precision must be of data
typestreamsize , the type for counting characters that are output or input.

Lines 9 and 20 save and restore the format:fixed , scientific , or neither.

If a double value happens to be a whole number, it normally does not display a decimal point and
fractional digits.You can change this with theshowpoint manipulator. Also applicable todouble out-
put areshowpos and, if the format isscientific , uppercase .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/double.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip>
4 using namespace std;
5
6 i nt main()
7 {
8 double d = 6.66666666666666; //15 digits, including 1 to left of decimal
9 i os_base::fmtflags save = cout.flags();

10 streamsize prec = cout.precision();
11 cout << "The default precision is " << prec << ".\n";
12
13 cout << d << "\n" //printf("%g", d);
14 << setprecision(3) << d << "\n" //printf("%.3g", d);
15 << fixed << d << "\n" //printf("%.3f", d);
16 << scientific << d << "\n" //printf("%.3e", d);
17 << resetiosflags(ios_base::floatfield)<<d<<"\n" //printf("%.3g",d);
18 << setprecision(prec) << d << "\n"; //printf("%g", d);
19
20 cout.setf(save, ios_base::floatfield);
21 cout << d << "\n"; //same format as line 13
22 return EXIT_SUCCESS;
23 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 355

356 OperationsExpressed by Overloaded Operators Chapter 4

The default precision is 6.
6.66667 line 13: total of six digits
6.67 line 14: total of three digits
6.667 line 15: fixed format, three digits to the right of the decimal point
6.667e+00 line 16: scientific format, three digits to the right of the decimal point
6.67 line 17: back to non-fixed, non-scientific format, still a total of three digits
6.66667 line 18: back to default precision
6.66667 line 21: same as line 13

Output an array of characters

Thes in line 8 is an eight-character string, not counting its terminating’\0’ . Lines 14−15 output it
with a width of ten, padding it with two characters (asterisks for visibility).

By default, the padding characters are output before the string, right-justifying it within its ten-char-
acter field. The manipulatorsleft andright in lines 17 and 20 let us control the justification.We can
ev en specify internal padding in line 23, which inserts the padding character between the sign and the
rest of the number.

Lines 10 and 26 save and restore the three justification flags,left , right , and internal .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/justify.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip>
4 using namespace std;
5
6 i nt main()
7 {
8 c har s[] = "John Doe";
9 double d = 10.00;

10 ios_base::fmtflags save = cout.flags();
11
12 cout << "Pay to the order of " << s << " the amount of\n"
13
14 << "Pay to the order of " << setfill(’*’) << setw(10) << s
15 << " t he amount of\n"
16
17 << "Pay to the order of " << left << setw(10) << s
18 << " t he amount of\n"
19
20 << "Pay to the order of " << right << setw(10) << s
21 << " t he amount of\n"
22
23 << internal << fixed << showpos << setprecision(2)
24 << setfill(’ ’) << setw(7) << d << "\n";
25
26 cout.setf(save, ios_base::adjustfield); //restore only the 3 flags
27 cout << "Pay to the order of " << setw(10) << s << " the amount of\n";
28 return EXIT_SUCCESS;
29 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Pay to the order of John Doe the amount of line 12
Pay to the order of **John Doe the amount of lines 14−15: right justified by default
Pay to the order of John Doe** the amount of lines 17−18: afterleft
Pay to the order of **John Doe the amount of lines 20−21: afterright
+ 10.00 lines 23−24: afterinternal
Pay to the order of John Doe the amount of line 27: same as lines 14−15

Another use ofinternal padding is to insert the padding character between a base indicator and a
number.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/internal.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 i nt i = 10;
9

10 cout << hex << showbase << setfill(’0’)
11 << setw(10) << i << "\n"
12 << internal << setw(10) << i << "\n";
13
14 return EXIT_SUCCESS;
15 }

00000000xa line 11: wrong
0x0000000a line 12: correct

Input manipulators

istream objects such ascin have the same format flags asostream objects. istream ’s hav e
input manipulators, which are ‘‘input’’ w ith the>> operator.

By default, integers are input in decimal because anistream is born with theios_base::dec
flag on. Line 12 will accept a number with a leading0, but the zero will be ignored. Line 12 will reject a
number with a leading0x , but we didn’t bother with error checking.We should have.

To permit octal input, the familiar oct appears in lines 15−17 as an input manipulator. When we
‘‘ input’’ the oct from an istream , no characters are actually input. But inputting theoct makes a
change tocin , causing all subsequent integers input from that stream to be read in octal. (Line 16 will
reject a number with a leading0x .)

Line 20 does hex input (it will accept and ignore a leading zero), and 24 goes back to decimal.Line
29 resets the flags for the three bases.With all three turned off, we can now accept integer input in any
base.

As before, lines 9 and 34 save and reset the three base flags.Input error checking omitted for brevity.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/input.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip>
4 using namespace std;
5

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 357

358 OperationsExpressed by Overloaded Operators Chapter 4

6 i nt main()
7 {
8 i nt i, j, k; //uninitialized variables
9 i os_base::fmtflags save = cin.flags();

10
11 cout << "Input an integer in decimal: ";
12 cin >> i;
13 cout << "In decimal, the integer is " << i << ".\n\n";
14
15 cout << "Input two integers in octal; leading 0 optional: ";
16 cin >> oct >> i >> j;
17 cout << "In decimal, the integers are " << i << ", " << j << ".\n\n";
18
19 cout << "Input two integers in hexadecimal; leading 0x optional: ";
20 cin >> hex >> i >> j;
21 cout << "In decimal, the integers are " << i << ", " << j << ".\n\n";
22
23 cout << "Input an integer in decimal: ";
24 cin >> dec >> i;
25 cout << "In decimal, the integer is " << i << ".\n\n";
26
27 cout << "Input 3 integers in any base.\n"
28 "Leading 0 f or octal, 0x for hex, are now mandatory: ";
29 cin >> resetiosflags(ios_base::basefield) >> i >> j >> k;
30
31 cout << "In decimal, the integers are "
32 << i << ", " << j << ", " << k < <".\n";
33
34 cin.setf(save, ios_base::basefield);
35 return EXIT_SUCCESS;
36 }

Input an integer in decimal: 10
In decimal, the integer is 10.

Input two integers in octal; leading 0 optional: 10 010
In decimal, the integers are 8, 8.

Input two integers in hexadecimal; leading 0x optional: 10 0x10
In decimal, the integers are 16, 16.

Input an integer in decimal: 10
In decimal, the integer is 10.

Input 3 integers in any base.
Leading 0 for octal, 0x for hex, are now mandatory: 10 010 0x10
In decimal, the integers are 10, 8, 16.

Skip white space

By default, the>> operators discard any leading whitespace encounted before the value they are
looking for. For example, the character that line 11 inputs intoc is the first non-whitespace character. To
get a fresh start we then ignore the rest of the input line: the next newline or 1000 characters, whichever
comes first. (What if the line is longer than 1000?We will fix this with

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

numeric_limits<streamsize>::max() on pp. 747−748.)

Thenoskipws manipulator in line 18 will prevent us from skipping white space. In this casec will
be the very next character read.(noskipws works only if the value to be input is a character or string, not
a number. White space is always skipped before numerical input.) Line 24 turns skipping back on.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/skip.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i os_base::fmtflags save = cin.flags();
8
9 c out << "Input a line:"; //no space after colon

10 char c; //uninitialized variable
11 cin >> c;
12 cin.ignore(1000, ’\n’);
13
14 cout << "The first non-whitespace character was ’" << c
15 << "’; ignoring rest of line.\n\n";
16
17 cout << "Input another line:";
18 cin >> noskipws >> c;
19 cin.ignore(1000, ’\n’);
20 cout << "The first character was ’" << c
21 << "’; ignoring rest of line.\n\n";
22
23 cout << "Input yet another line:";
24 cin >> skipws >> c;
25 cin.ignore(1000, ’\n’);
26 cout << "The first non-whitespace character was ’" << c
27 << "’; ignoring rest of line.\n";
28
29 cin.setf(save, ios_base::skipws);
30 return EXIT_SUCCESS;
31 }

Input a line: This line begins with three spaces.
The first non-whitespace character was ’T’; ignoring rest of line.

Input another line: This line begins with three spaces.
The first character was ’ ’; ignoring rest of line.

Input yet another line: This line begins with three spaces.
The first non-whitespace character was ’T’; ignoring rest of line.

Output a pointer

A pointer to any type of variable can be implicitly converted to a pointer tovoid . Therefore there is
only oneoperator<< , taking aconst void * , for printing a pointer. Thep in line 13 and the&i in
line 14 are passed to thisoperator<< . The pointer is output in the platform’s conventional format, hexa-
decimal on mine.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 359

360 OperationsExpressed by Overloaded Operators Chapter 4

When line 16 tries to print the address of a function, we get a nasty surprise: it prints as the number
1. Line 17 shows where the1 come from: it is actually the representation of thebool value true . Why
was the pointer converted to abool ? A pointer to any variable can be implicitly converted into a pointer
to void , but a pointer to a function cannot be. The only type to which a pointer to a function can be
implicitly converted, and for which there is anoperator<< , is bool . Since the pointer was non-zero it
was converted totrue , which prints out as the digit1 or the wordtrue .

We could print the address off if we could convert it to avoid * , but neitherstatic_cast nor
reinterpret_cast will convert a pointer to a function into a pointer to a non-function. Line 18 will
not compile. Paradoxically, we can convert a pointer to a function into a non-pointer (line 19).I selected
the data typesize_t because it should be as wide as a pointer. Since size_t is an integer, it prints in
decimal. We convert it into a pointer in line 20 to print it in hex.

We already saw this double cast in line 24 ofreinterpret_cast.C on p. 67.We could avoid it
by writing the primitive C cast in line 22. But don’t succumb to this temptation. There is no way to search
the program to find all the C casts.

Tw o types of pointers have their own operator<< function. Thepointerq in line 25 is a pointer to
const char , so we call theoperator<< whose argument is a pointer tochar . This function outputs
the characters to which the pointer points, not the value of the pointer. A pointer to asigned or
unsigned char is treated the same way.

To output the actual value of the pointer (the address of the pointed-to character), line 29 casts the
pointer into a pointer to a different type of variable.void * is the only non-arbitrary choice.

The other type of pointer that has its own operator<< is a pointer to the specific type of function
shown in line 6: one that takes and returns a reference to anostream . This operator<< does not out-
put the value of the pointer. It calls the function that the pointer points to.We will see the reason for this
oddity on pp. 361−362.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iomanip/pointer.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline void f() {cout << "typical function\n";}
6 i nline ostream& g(ostream& ost) {return ost << "g is called, not printed\n.";}
7
8 i nt main()
9 {

10 int i = 1 0;
11 int *p = &i;
12
13 cout << "The value of p is " << p << ".\n" //printf("%p", p)
14 "The address of i is " << &i << ".\n\n";
15
16 cout << f << "\n"
17 << boolalpha << f << "\n"
18 //<< reinterpret_cast<const void *>(f) << "\n" //won’t compile
19 << reinterpret_cast<size_t>(f) << "\n"
20 << reinterpret_cast<const void *>(reinterpret_cast<size_t>(f))
21 << "\n"
22 << (const void *)f //depricated
23 << "\n\n";
24
25 const char *q = "hello";
26

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

27 cout << "q points at the characters \"" << q //printf("%s", q)
28 << "\".\n"
29 "The value of q is " << static_cast<const void *>(q) << ".\n\n";
30
31 cout << g;
32
33 return EXIT_SUCCESS;
34 }

The value of p is 0xffbff174. line 13: may be octal or decimal on other platforms
The address of i is 0xffbff174. line 14: the same address

1 line 16: the address off , converted tobool
true line 17: the address off , converted tobool
70288 line 19: the address off , converted tosize_t
0x11290 line 20: the same address, formatted as avoid *
0x11290 line 22: the same address, produced by a C-style cast

q points at the characters "hello". line 27: a pointer to a character
The value of q is 0x113f0. line 29: the address of theh in hello

g is c alled, not printed line 31

Here are simplified definitions for the threeoperator<< functions that take pointers. Theone that
takes a pointer to a function (line 5) is short enough to be inline.The one that takes a pointer to achar
(line 9) happens not to be a member function because it can do its work by calling a member function
(write) of classostream .

1 c lass ostream {
2 / /etc.
3 public:
4 ostream& operator<<(const void *) {output the value of p; return *this;}
5 ostream& operator<<(ostream& (*p)(ostream&)) {return p(*this);}
6 / /etc.
7 } ;
8
9 i nline ostream& operator<<(ostream& ost, const char *p)

10 {
11 ost.write(p, strlen(p)); //output the characters to which p points
12 return ost;
13 }

How a manipulator works

The hex output manipulator is actually a function declared in the header file<iostream> . Like
anoperator<< function, its argument and return value is anostream —the sameostream , since it is
passed and returned by reference. Recall that theostream argument of anoperator<< is implicit,
since theoperator<< is member function of classostream . The ostream argument ofhex is
explicit, sincehex is not a member of any class.

1 ostream& hex(ostream& ost)
2 {
3 ost.setf(ios_base::hex, ios_base::basefield);
4 r eturn ost;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 361

362 OperationsExpressed by Overloaded Operators Chapter 4

5 }

The name of a function, with no argument list after it, stands for the address of that function.The
expressionhex is a therefore a pointer to a function that takes and returns anostream . This function is
like a tiny, time-release capsule: it lies dormant until it is fed to theoperator<< that ‘‘outputs’’ i t. When
we write

6 c out << hex

we are therefore calling theoperator<< function that takes a pointer to this particular type of function.

7 c out.operator<<(hex)

As we saw on pp. 360−361, thisoperator<< does not output the value of the pointer. It calls the func-
tion to which the pointer points, in this case thehex function.

We could also define ahex input manipulator as follows.

8 i stream& hex(istream& ist)
9 {

10 ist.setf(ios_base::hex, ios_base::basefield);
11 return ist;
12 }

If we wrote

13 cin >> hex

the computer would behave as if we hav esaid

14 cin.operator>>(hex)

calling the function

15 class istream {
16 //etc.
17 public:
18 istream& operator>>(istream& (*p)(istream&)) {return p(*this);}
19 //etc.
20 };

But when we have inheritance it will be unnecessary to define the same manipulator twice. See pp.
484−485.

Our first example of an i/o manipulator was theendl on p. 26. Here is a simplified definition for it.

21 ostream& endl(ostream& ost)
22 {
23 ost << ’\n’;
24 ost.flush();
25 return ost;
26 }

Extend the format of an ostream

The classpoint in pp. 201−204 had aprint member function for output only tocout . We will
replace it by anoperator<< friend for output to any ostream . We will also invent two i/o manipula-
tors,cartesian andpolar , to output apoint in these two coördinate systems.A demonstration is in
lines 10−12 ofmain.C on p. 365; the default in line 10 is Cartesian.

Eachostream object already contains data members to keep track of whether it should output in
decimal or hex, justified left or right, padded with blanks or zeroes, etc.Can we add another data member
to hold its choice of coördinate system?No. Thenumber of data members of a class is fixed, once and for

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

all, by the declaration for that class.

But classostream has a special feature that gives us the effect of an extra data member. Each
ostream object contains an expandable array oflong ’s. Although each object has its own array, the
arrays are all the same length.To add a new element to the array of every ostream object simultaneously,
we call thexalloc static member function of classostream in line 6 ofpoint.C . In each array the
new element has the same subscript, which is returned byxalloc .

The new element must be added to the array of eachostream before any point object is output to
anyostream . To ensure this, the call toxalloc is used to initialize a static data member of class
point . The static data members of a class are always initialized before any object of that class is ever
constructed, let alone output. (This static data member cannot be initialized in its declaration in line 10 of
point.h , even though it is integral and constant, because its initial value is not a constant expression. See
p. 238.)

The new element of each array is initialized to zero, which is why we chose zero to represent the
default format, Cartesian, in the element. The arrays have no name. To access an element of an
ostream ’s array, we pass its subscript to theostream ’s member functioniword in line 10 of
point.C . Note thatxalloc is a static member function that affects all theostream ’s simultaneously,
while iword is a non-static member function that accesses the array of theostream of which it is a
member function. The call toiword is in anoperator<< with familiar arguments and return value, but
also with aswitch statement and a light dusting of trigonometry.

The manipulatorscartesian and polar in main.C are actually two functions, the friends of
classpoint in lines 16 and 21 ofpoint.h . Like the hex function, they take an ostream object and
return the same object. Along the way, they assign a value to the new element of theostream . We can
use the return value ofiword as an lvalue in lines 17 and 22 because it is a read/write reference to the ele-
ment. Seepp. 12−13.

cartesian andpolar mention the private membersubscript of classpoint , so they must
be member functions or friends of that class. If they were member functions, they could be static because
they need no implicit pointer argument. Infact, they would have to be static because the pointer argument
p of the operator<< in line 5 on p. 361 can point only to a free function.A different type of pointer
would be needed to point to a non-free function.See p. 113 for free and non-free functions; p. 242 for
static member functions as free functions; pp. 255−257 for pointers to non-free functions.

Hadcartesian andpolar been static member functions, we would have had to write
point::cartesian and point::polar in lines 11−14 ofmain.C . We therefore define them as
friends, to eliminate the last name. Since they are defined in the class definition and have no arguments of
type point or compounded therefrom, they must also be declared outside the class at lines 6−7.See p. 206.

We are on a first-name basis with the members of a class within the curly braces of the class declara-
tion. That’s why lines 17 and 22 ofpoint.h can mention thesubscript . We are also on a first-name
basis with the members of a class within the definition of a member function of the class. But the
operator<< in line 8 ofpoint.C is not a member function, so its line 10 must say
point::subscript .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point_polar/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 using namespace std;
5
6 ostream& cartesian(ostream& ost);
7 ostream& polar(ostream& ost);
8
9 c lass point {

10 static const int subscript; //subscript of new element in iword "array"
11 double x, y;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 363

364 OperationsExpressed by Overloaded Operators Chapter 4

12 public:
13 point(double initial_x = 0, double initial_y = 0)
14 : x(initial_x), y(initial_y) {}
15
16 friend ostream& cartesian(ostream& ost) {
17 ost.iword(subscript) = 0; / /Cartesian coordinates
18 return ost;
19 }
20
21 friend ostream& polar(ostream& ost) {
22 ost.iword(subscript) = 1; / /polar coordinates
23 return ost;
24 }
25
26 friend ostream& operator<<(ostream& ost, const point& p);
27 };
28 #endif

On my platform, theatan2 function might set the ‘‘error number’’ variableerrno if both of its
arguments are zero.To avoid this, we callatan2 only if at least one argument is not zero. Line 19 must
output its zeroes as numbers, rather than as the string"(0, 0)" , to respond to thefixed ,
scientific , andsetprecision manipulators,

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point_polar/point.C

1 #include <cstdlib> //for exit, EXIT_FAILURE
2 #include <cmath> //for sqrt and atan2
3 #include "point.h"
4 using namespace std;
5
6 c onst int point::subscript = ostream::xalloc();
7
8 ostream& operator<<(ostream& ost, const point& p)
9 {

10 switch (ost.iword(point::subscript)) {
11
12 case 0:
13 //Cartesian coordinates.
14 return ost << "(" << p.x << ", " << p.y << ")";
15
16 case 1:
17 //Polar coordinates.
18 if (p.x == 0.0 && p.y == 0.0) {
19 return ost << "(" << 0.0 << ", " << 0.0 << ")";
20 } else {
21 return ost << "(" << sqrt(p.x * p.x + p.y * p.y) << ", "
22 << atan2(p.y, p.x) << ")";
23 }
24
25 default:
26 cerr << "iword(" << point::subscript << ") == "
27 << ost.iword(point::subscript)
28 << " is n either 0 (Cartesian) nor 1 (polar).\n";
29 exit(EXIT_FAILURE);
30 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

31 }

x

y

180° =π radians

A(-1, 0)

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point_polar/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "point.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c onst point A(-1, 0);
9

10 cout << A << "\n" //operator<<(cout, A)
11 << polar << A << "\n"
12 << cartesian << A << "\n";
13
14 cerr << polar << A << "\n";
15
16 return EXIT_SUCCESS;
17 }

When we write the above line 14, the computer behaves as if we had written

18 operator<<(operator<<(operator<<(cerr, polar), A), "\n");

When we write the above lines 10−12, the computer behaves as if we had written

19 operator<<(
20 operator<<(
21 operator<<(
22 operator<<(
23 operator<<(
24 operator<<(
25 operator<<(
26 operator<<(
27 cout,
28 A),
29 "\n"),
30 polar),
31 A),
32 "\n"),
33 cartesian),

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 365

366 OperationsExpressed by Overloaded Operators Chapter 4

34 A),
35 "\n");

(-1, 0) line 10: cartesian by default
(1, 3.14159) line 11: radius == 1,θ == π radians
(-1, 0) line 12: back to cartesian
(1, 3.14159) line 14: standard error output

A more general version ofcartesian andpolar , applicable to input as well as output, will be
presented on pp. 485−486 after we have inheritance.

36 point A;
37 cin >> polar >> A >> cartesian;

For another pair of user-defined i/o manipulators, see p. 989.

To output apoint in different formats was easy: we simply wrote a smartoperator<< for class
point . To output anint as a Roman or Arabic numeral would be harder: theoperator<< for type
int has already been written and engraved in granite in the Standard Library. We will need a different
approach; see pp. 1047−1050.

▼ Homework 4.1.1b: output a date in French Revolutionary format

Define two manipulators to switch the output of adate to and from French Revolutionary format.
This artificial calendar is simpler than any traditional calendar. Also define two public, static member func-
tions of classdate to save and restore the political format of anostream .

1 date first(date::september, 22, 1792); //Republic proclaimed
2
3 bool save = date::get_format(cout);
4
5 c out << first << "\n"
6 << r evolutionary << first << "\n"
7 << norevolutionary << first << "\n\n";
8
9 date last(date::july, 27, 1794); //Robespierre arrested

10
11 cout << last << "\n"
12 << revolutionary << last << norevolutionary << "\n";
13
14 date::set_format(cout, save);

9/22/1792
1 Vendémiaire de l’Année I de la Républic
9/22/1792

7/27/1794
9 Thermidor de l’Année II de la Républic

Each month in this calendar is the same length, 30 days.The first month,Vendémiaire, begins on
September 22. (That date in 1792 was the autumnal equinox and the day after the proclamation of the
Republic.) TheYear I of this calendar therefore begins

1791 × 365 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 22 − 1

days after year 1 of the normal calendar. Ignore leap years.Don’t bother with the accent marks or Roman
numerals until we get to p. 1050.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

name translation equivalent

1 Vendémiaire Vintage September−October

2 Brumaire Mist October−November

3 Frimaire Frost November−December

4 Nivôse Snow December−January

5 Pluviôse Rain January−February

6 Ventôse Wind February−March

7 Germinal Seed March−April

8 Floréal Blossom April−May

9 Prairal Meadow May−June

10 Messidor Harvest June−July

11 Thermidor Heat July−August

12 Fructidor Fruits August−September

The twelve months total 360 days. The last five days of the year (thesans-culottides,those without
knee breeches) have special names.

name translation equivalent

Fete de la vertu Festival of Virtue September17

Fete du génie Festival of Talent September18

Fete du travail Festival of Industry September19

Fete de l’opinion Festival of Ideas September20

Fete des recompenses Festival of Rew ards September21

Aux armes, citoyens! Formez vos bataillons!
▲

Define a manipulator with an argument

We hav eseen a number of manipulators that take arguments:setbase , setw , setfill , and
setprecision . We now create one of our own.

Theset_life_foreground manipulator in line 24 ofmain.C on p. 370 will change the format
in which alife object is output. It takes an argument giving the character with which each occupied loca-
tion should be drawn. Thisregains half of the functionality lost when theprint member function of class
life became anoperator<< friend on p. 341.

To concentrate on the new features of this class, we have stripped away most of the overloaded opera-
tors. TheThree Laws have been compressed into the single expression in line 42 oflife.C .

For convenience, the same header file contains classesset_life_foreground and life ; we
would never use the former without the latter. The expressionset_life_foreground(’O’) in line
24 of main.C calls the constructor for an anonymous object of this class and passes it an argument. The
object stores the argument in itsc data member (line 13 oflife.h) and then lies dormant.

Theset_life_foreground objects awakens when it is fed to itsoperator<< in line 57 of
life.C . Long before this happens, however, line 4 oflife.C has calledxalloc to add a new element
to the expandable array in every ostream object. Theaw akened set_life_foreground object
stores its character data member into the new element in line 59 and plays no further rôle.Some time later,
when alife object is fed toits operator<< in line 63 of life.C , the character is fetched from the
array element and is used to display thelife object.

There is no guarantee that aset_life_foreground object will be ‘‘output’’ before alife
object is. Line 66 therefore defaults to’X’ if no foreground character has been established.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iword/life.h

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 367

368 OperationsExpressed by Overloaded Operators Chapter 4

1 #ifndef LIFEH
2 #define LIFEH
3 #include <iostream> //defines size_t
4 using namespace std;
5
6 c onst size_t life_ymax = 10;
7 c onst size_t life_xmax = 10;
8
9 t ypedef bool life_matrix_t[life_ymax][life_xmax];

10 typedef bool _life_matrix_t[life_ymax + 2][life_xmax + 2];
11
12 class set_life_foreground {
13 const char c;
14 public:
15 set_life_foreground(char initial_c): c(initial_c) {}
16 friend ostream& operator<<(ostream& ost, const set_life_foreground& f);
17 };
18
19 class life {
20 static const int subscript; //subscript of new element in iword array
21
22 int g; //generation number
23 _life_matrix_t matrix;
24 public:
25 life(const life_matrix_t initial_matrix);
26 int generation() const {return g;}
27 life& operator++();
28
29 friend ostream& operator<<(ostream& ost, const life& li);
30 friend ostream& operator<<(ostream& ost, const set_life_foreground& f);
31 };
32 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iword/life.C

1 #include "life.h"
2 using namespace std;
3
4 c onst int life::subscript = ostream::xalloc();
5
6 l ife::life(const life_matrix_t initial_matrix)
7 : g(0)
8 {
9 / /Copy initial_matrix into matrix.

10 for (size_t y = 1; y <= life_ymax; ++y) {
11 for (size_t x = 1; x <= life_xmax; ++x) {
12 matrix[y][x] = i nitial_matrix[y - 1][x - 1];
13 }
14
15 //left and right edges
16 matrix[y][0] = matrix[y][life_xmax + 1] = false;
17 }
18
19 //top and bottom edges

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

20 for (size_t x = 0; x < life_xmax + 2; ++x) {
21 matrix[0][x] = matrix[life_ymax + 1][x] = false;
22 }
23 }
24
25 life& life::operator++()
26 {
27 _life_matrix_t newmatrix; //uninitialized variable
28
29 for (size_t y = 1; y <= life_ymax; ++y) {
30 for (size_t x = 1; x <= life_xmax; ++x) {
31
32 //How many of the 8 neighbors of element x, y are on?
33 int count = -matrix[y][x];
34
35 for (size_t y1 = y - 1; y1 <= y + 1; ++y1) {
36 for (size_t x1 = x - 1; x1 <= x + 1; ++x1) {
37 count += matrix[y1][x1];
38 }
39 }
40
41 // Laws of Survival, Birth, and Death
42 newmatrix[y][x] = count==2 ? matrix[y][x] : count == 3;
43 }
44 }
45
46 //Copy newmatrix into matrix.
47 for (size_t y = 1; y <= life_ymax + 1; ++y) {
48 for (size_t x = 1; x <= life_xmax + 1; ++x) {
49 matrix[y][x] = newmatrix[y][x];
50 }
51 }
52
53 ++g;
54 return *this;
55 }
56
57 ostream& operator<<(ostream& ost, const set_life_foreground& f)
58 {
59 ost.iword(life::subscript) = f .c;
60 return ost;
61 }
62
63 ostream& operator<<(ostream& ost, const life& li)
64 {
65 const long character = ost.iword(life::subscript);
66 const char full = character == 0 ? ’X’ : character;
67
68 for (size_t y = 1; y <= life_ymax; ++y) {
69 for (size_t x = 1; x <= life_xmax; ++x) {
70 cout << (li.matrix[y][x] ? full : ’.’);
71 }
72 cout << "\n";
73 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 369

370 OperationsExpressed by Overloaded Operators Chapter 4

74
75 return ost;
76 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/iword/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "life.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c onst life_matrix_t glider_matrix = {
9 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

10 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
11 {0, 0, 1, 1, 0, 0, 0, 0, 0, 0},
12 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0},
13 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
14 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
15 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
16 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
17 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
18 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
19 };
20
21 life glider = glider_matrix;
22
23 cout << glider << "\n"
24 << set_life_foreground(’O’) << ++glider; //uppercase letter O
25
26 return EXIT_SUCCESS;
27 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

.......... line 23: foreground character defaults toX

.X........

..XX......

.XX.......

..........

..........

..........

..........

..........

..........

.......... line 24

..O.......

...O......

.OOO......

..........

..........

..........

..........

..........

..........

▼ Homework 4.1.1c: improvements to set_life_format

(1) What happens if we say

1 c out << set_life_foreground(’\0’);

Have the constructor for classset_life_foreground disallow this by checking that its argument is a
printable character. (Call theisprint function in the standard library and include the header file
<cctype> .) Onthe other hand, should we allow ’\0’ as a special value that sets the foreground charac-
ter back to its default? Inthis case, we would still disallow all other nonprintable characters.

(2) Make it possible for the user to save the foreground character for later restoration.

2 / /a public static member function of class life
3 c har save = life::get_foreground(cout);
4
5 . ..
6
7 c out << set_life_foreground(save); //restore the previous foreground

(3) We could create another array element to hold the background character. Should we have sepa-
rate manipulators for the foreground and background characters,

1 c out << set_life_foreground(’F’) << set_life_background(’b’);

or a single constructor whose manipulator takes two arguments? Thesecond argument could be optional.

2 c out << set_life_format(’F’, ’b’);

▲

An argument that will not fit into a long integer

Let’s remove thecartesian andpolar manipulators from the classpoint on pp. 362−366, and
invent a new manipulator for scaling apoint . Thescale in lines 11−12 ofmain.C on p. 374 will take
an argument giving the factor by which the coördinates of eachpoint should be multiplied.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 371

372 OperationsExpressed by Overloaded Operators Chapter 4

Long before any point object is output or even constructed, line 6 ofpoint.C will call xalloc
to add a new element to the expandable array in every ostream object. Eachostream actually has a
pair of arrays, always agreeing in their number of elements.We hav eseen the array oflong ’s accessed by
the iword member function of theostream ; a parallel array ofvoid * ’s is accessed by thepword
member function.Like iword , pword returns a read/write reference to an array element. This lets us
store a new value into the element. If a format value is integral or an enumeration, it can be stored in an
element of theiword array. Otherwise, the address of the value can be stored in an element of thepword
array.

The expressionscale(2.54) in line 11 ofmain.C calls the constructor for an anonymous object
of classscale , passing it one argument. Thescale object stores the argument in itsfactor data mem-
ber and then lies dormant. It awakens when it is fed to theoperator<< function in line 15 ofpoint.C .
Line 27 of this function copies the data member into the new element of thepword array; more precisely,
into the block of memory to which the new element points.

Where did this block come from?For convenience, line 17 ofpoint.C creates a referencep to the
new element. Theelement is a pointer tovoid ; p is a reference to a pointer tovoid . The initial value of
each element in thepword array is a zero pointer, just as the initial value of each element in theiword
array was a zerolong . If l ine 19 finds that we have nev er assigned a value to the new element, line 20 will
store the address of a block of memory there.To permit this assignment to be made throughp, p had to be
a read/write reference to the array element. If we removed the& from line 17,p would be merely a copy of
the array element, not a reference thereto. The assignment top in line 20 would then put a value only into
p, leaving the array element unchanged. Line 24 is discussed below.

Could themalloc somehow go up in the static initialization in line 6?No. Line 6 is performed
only once, but themalloc must be called for eachostream object to which we output ascale . The
malloc , by the way, is only temporary. It will be superseded by the C++ operatornew.

To output apoint , we call the operator<< function in line 8 ofpoint.C . For convenience,
line 10 creates a copy of the new element of thepword array. This p can be a copy, not a reference,
because thisoperator<< has no interest in changing the value of the new array element. If line 11 finds
that we have nev er assigned a value to the new element, it means that noscale object has been output to
this ostream yet. In that case, line 11 assumes a default scale of1.0 ; otherwise, it fetches the factor
stored by line 27. Finally, thex andy data members are output with a light dusting of multiplication.

If line 20 successfully allocates a block of memory, line 24 arranges to have it deallocated when the
ostream is destructed. The first argument of theregister_callback function in line 24 is the
address of acallback function to be called at some future event. Thesecond argument of
register_callback will be passed to the callback function when the callback function is called.

The callback function will be called on three types of occasions, represented by the three enumera-
tions in lines 37, 41, and 53. If we recieve an illegal enumeration (lines 56−57), we do not attempt to out-
put an error message because the streams are messed up so badly. Our concern here is with line 37, the
case in which theostream is destructed. Line 38 frees the block of memory that was allocated in line 20.

The callback function is also called after all the formatting information of a stream is copied into
another stream, including the pointers in thepword array. We do not want two different streams to have
pointers to the same block of memory. Line 43 saves a pointer to the block, line 44 creates a new block for
thisostream , and lines 48−49 copy the contents of the old block into the new one.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point_scale/point.h

1 #ifndef POINTH
2 #define POINTH
3 #include <iostream>
4 #include <cstdlib>
5 using namespace std;
6
7 c lass scale {
8 c onst double factor;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

9 public:
10 scale(double initial_factor): factor(initial_factor) {}
11 friend ostream& operator<<(ostream& ost, const scale& s);
12 };
13
14 class point {
15 static const int subscript; //subscript of new element in pword array
16 static void callback(ios_base::event e, ios_base& ost, int i);
17
18 double x, y;
19 public:
20 point(double initial_x = 0, double initial_y = 0)
21 : x(initial_x), y(initial_y) {}
22
23 friend ostream& operator<<(ostream& ost, const point& pt);
24 friend ostream& operator<<(ostream& ost, const scale& s);
25 };
26 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point_scale/point.C

1 #include <iostream>
2 #include <cstdlib> //for malloc, exit, EXIT_FAILURE
3 #include "point.h"
4 using namespace std;
5
6 c onst int point::subscript = ostream::xalloc();
7
8 ostream& operator<<(ostream& ost, const point& pt)
9 {

10 const void *const p = ost.pword(point::subscript);
11 const double factor = p == 0 ? 1.0 : *static_cast<const double *>(p);
12 return ost << "(" << factor * pt.x << ", " << factor * pt.y << ")";
13 }
14
15 ostream& operator<<(ostream& ost, const scale& s) //friend of two classes
16 {
17 void *& p = ost.pword(point::subscript); //a reference to a pointer
18
19 if (p == 0) { //if the pointer is 0
20 if ((p = malloc(sizeof (double))) == 0) {
21 cerr << "scale operator<< out of store\n";
22 exit(EXIT_FAILURE);
23 }
24 ost.register_callback(point::callback, point::subscript);
25 }
26
27 *static_cast<double *>(p) = s.factor;
28 return ost;
29 }
30
31 void point::callback(ios_base::event e, ios_base& ost, int i)
32 {
33 void *& p = ost.pword(i);

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 373

374 OperationsExpressed by Overloaded Operators Chapter 4

34
35 switch (e) {
36
37 case ios_base::erase_event:
38 free(p);
39 break;
40
41 case ios_base::copyfmt_event:
42 if (p != 0) {
43 const void *const q = p;
44 if ((p = malloc(sizeof (double))) == 0) {
45 cerr << "point::callback out of store\n";
46 exit(EXIT_FAILURE);
47 }
48 *static_cast<double *>(p) =
49 *static_cast<const double *>(q);
50 }
51 break;
52
53 case ios_base::imbue_event:
54 break;
55
56 default:
57 exit(EXIT_FAILURE);
58 }
59 }

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/point_scale/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "point.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c onst point A(1, 2); //in inches
9

10 cout << A << "\n"
11 << scale(2.54) << A << "\n" //1 inch == 2.54 centimeters
12 << scale(1) << A << "\n";
13
14 return EXIT_SUCCESS;
15 }

(1, 2) line 10: display thepoint in inches
(2.54, 5.08) line 11: centimeters
(1, 2) line 12: back to inches

▼ Homework 4.1.1d: make a typedef

The data typedouble appears many times throught classespoint andscale . Make a typedef
for double namedvalue_type at line 6 of the abovepoint.h .
▲

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 4.1.1e: move the multiplication to the correct place

We should never hav eburied the double-barreled multiplication in a place like line 12 of the above
point.C . This multiplication should be written once and for all in anoperator*= for classpoint .

1 c lass point {
2 / /etc.
3 public:
4 point& operator*=(double d) {x *= d; y *= d; return *this;}

Now that we can multiply apoint by adouble , we should change theoperator<< function to
the following.

5 ostream& operator<<(ostream& ost, point pt) //point now passed by value
6 {
7 i f (const void *const p = ost.pword(point::subscript)) {
8 pt *= * static_cast<const double *>(p);
9 }

10 return ost << "(" << pt.x << ", " << pt.y << ")";
11 }

It may be objected that we are now constructing a new object, since thepoint must be passed to the
operator<< by value. Butthe same object was constructed piecemeal in line 12 of the above point.C .
Each multiplication there created adouble anonymous temporary to hold the product, so we were con-
structing the equivalent of a two-data-member object. It’s clearer to make the object official.
▲

▼ Homework 4.1.1f: copyfmt

We can copy the format (base, justification, precision, etc.) of one stream to another:

1 c out << scale(2.54);
2 c err.copyfmt(cout); //Copy the format of cout to cerr.
3 / /Now cerr has scale 2.54 too.

When this happens, theiword andpword arrays are copied fromcout to cerr , and then the callback
function ofcout is called with the argumentios_base::copyfmt_event .

What does the following fragment output?

1 c onst point A(1, 2);
2 c out << scale(2.54);
3 c err.copyfmt(cout);
4 c out << scale(1);
5 c err << A << "\n"; //should output with scale 2.54

How does the output change when we remove lines 41−51 of the abovepoint.C ?
▲

4.1.2 FileI/O with Classesostream and istream

Class ofstream is derived from class ostream

The C functionprintf is quite capable of outputting to a file: just run the program from the com-
mand line using the file output symbol>.

prog > outfile

Why, then, did they inv ent the trio of functionsfopen , fprintf , and fclose ? For two reasons:

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.2 File I/O with Classesostream and istream 375

376 OperationsExpressed by Overloaded Operators Chapter 4

(1) All the printf ’s and putchar ’s in a C program send their output to thesame destination,
which may be a file. But to send output to two or more different destinations, e.g., two output files, we
must use thefprintf trio. Thefollowing program is an example.

(2) Even if there is only one output file, we might still want to use thefprintf trio. printf gives
the program no control over the name of the output file, the name of the directory that will hold the file, or
whether the file will be opened in overwrite or append mode. All of these things can be specified with the
fprintf trio.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/fprintf.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3
4 i nt main(int argc, char **argv)
5 {
6 FILE *out1;
7 FILE *out2;
8
9 / * Open two output files.

10 Clobber them if they already exist; create them if they don’t. */
11
12 out1 = f open("outfile1", "w");
13 if (out1 == NULL) {
14 fprintf(stderr, "can’t open outfile1.\n");
15 return EXIT_FAILURE;
16 }
17
18 out2 = f open("outfile2", "w");
19 if (out2 == NULL) {
20 fprintf(stderr, "can’t open outfile2.\n");
21 return EXIT_FAILURE;
22 }
23
24 fprintf(out1, "hello\n"); /* Output 6 char’s. Do not output ’\0’. */
25 fprintf(out2, "goodbye\n");
26
27 fclose(out1);
28 fclose(out2);
29 return EXIT_SUCCESS;
30 }

hello This file isoutfile1 .

goodbye This file isoutfile2 .

We saw the above scenario in pp. 164−166: a pair of events, with data (the variableout1) that per-
sists from the first event to the second. In C++, we tie this all together by constructing and destructing an
object of classofstream , for ‘‘output file stream’’. The constructor opens an output file, and the destruc-
tor closes it. As usual, the destructors are called implicitly.

Construct an object of classofstream to perform file output. An object of classofstream (such
asout1 andout2) can do everything that an object of classostream (such ascout andcerr) can do:
<<, hex , precision , etc.; line 33 demonstratessetw . This is becauseofstream is derived from
ostream . Furthermore, an object of classofstream can domore than an object of classostream : it

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

lets us specify the name and directory of the destination file, and whether we’re overwriting or appending to
it.

See p. 327 for the use of! in the tests in lines 21 and 27.The if in line 21 is true when the con-
structor called in line 20 failed to openoutfile1 successfully. In this case,out1 requires no destruc-
tion.

But our program still has a bug. Supposethat line 20 constructed the objectout1 , but line 26 failed
to construct the objectout2 . In this caseout2 requires no destruction, but out1 does. Unfortunately,
theexit in line 29 will terminate the program without destructingout1 . We’ll fix this bug when we do
exceptions.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/ofstream.C

1 #include <iostream> //C++ example
2 #include <fstream> //for ofstream
3 #include <iomanip> //for setw
4 #include <cstdlib>
5 using namespace std;
6
7 v oid f();
8
9 i nt main(int argc, char **argv)

10 {
11 f();
12 return EXIT_SUCCESS;
13 }
14
15 void f()
16 {
17 //The constructors called in lines 20 and 26 open two output files.
18 //Clobber the files if they already exist; create them if they don’t.
19
20 ofstream out1("outfile1");
21 if (!out1) { //if (out1.operator!()) {
22 cerr << "can’t open outfile1.\n";
23 exit(EXIT_FAILURE);
24 }
25
26 ofstream out2("outfile2");
27 if (!out2) {
28 cerr << "can’t open outfile2.\n";
29 exit(EXIT_FAILURE);
30 }
31
32 out1 << "hello\n"; //Output 6 char’s. Do not output ’\0’.
33 out2 << setw(8) << "goodbye" << "\n";
34 } //Call destructors for out2 and out1.

hello This file isoutfile1 .

goodbye This file isoutfile2 .

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.2 File I/O with Classesostream and istream 377

378 OperationsExpressed by Overloaded Operators Chapter 4

A constructor with a default argument

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/append.c

1 #include <stdio.h> /* C example: K&R C book, pp. 160-161, 242 */
2 #include <stdlib.h>
3
4 i nt main()
5 {
6 FILE *out1;
7 FILE *out2;
8
9 out1 = fopen("outfile1", "w"); /* overwrite */

10 if (out1 == NULL) {
11 fprintf(stderr, "can’t open outfile1\n");
12 return EXIT_FAILURE;
13 }
14
15 out2 = f open("outfile2", "a"); /* append */
16 if (out2 == NULL) {
17 fprintf(stderr, "can’t open outfile2\n");
18 return EXIT_FAILURE;
19 }
20
21 fprintf(out1, "hello\n");
22 fprintf(out2, "goodbye\n");
23
24 fclose(out1);
25 fclose(out2);
26 return EXIT_SUCCESS;
27 }

The constructor for classofstream has an optional second argument, which is an integer whose
bits specify in greater detail how to open the file.Each bit has an enumeration that provides a convenient
name for it; the value of the enumeration is a number with that bit turned on and the rest turned off.

For example, the default value for the second argument is the enumerationios_base::out , caus-
ing the constructor to open the file as an output file. When no other bits in the argument are turned on, this
also truncates the file as it is opened. Another possible argument is theios_base::app in line 14,
which appends to the file instead of truncating it.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/append.C

1 #include <iostream> //C++ example
2 #include <fstream>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt main()
7 {
8 ofstream out1("outfile1"); //overwrite
9 i f (!out1) { //if (out1.operator!()) {

10 cerr << "can’t open outfile1\n";
11 return EXIT_FAILURE;
12 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

13
14 ofstream out2("outfile2", ios_base::app); //append
15 if (!out2) {
16 cerr << "can’t open outfile2\n";
17 return EXIT_FAILURE;
18 }
19
20 out1 << "hello\n";
21 out2 << "goodbye\n";
22 return EXIT_SUCCESS; //Call destructors for out2 and out1.
23 }

Class ifstream is derived from class istream

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/fscanf.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3
4 i nt main(int argc, char **argv)
5 {
6 FILE *in1;
7 FILE *in2;
8 i nt i;
9 i nt j;

10
11 /* Open two input files. */
12
13 in1 = f open("infile1", "r");
14 if (in1 == NULL) {
15 fprintf(stderr, "can’t open infile1.\n");
16 return EXIT_FAILURE;
17 }
18
19 in2 = f open("infile2", "r");
20 if (in2 == NULL) {
21 fprintf(stderr, "can’t open infile2.\n");
22 return EXIT_FAILURE;
23 }
24
25 fscanf(in1, "%d", &i);
26 fscanf(in2, "%d", &j);
27
28 printf("%d %d\n", i, j);
29
30 fclose(in1);
31 fclose(in2);
32 return EXIT_SUCCESS;
33 }

In C++, we open and close two input files by making two objects of classifstream , for ‘‘input file
stream’’. An object of classifstream (such asin1 andin2) can do everything that an object of class
istream (such ascin) can do (plus more):>>, ! , etc. Thisis becauseifstream is derived from
istream .

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.2 File I/O with Classesostream and istream 379

380 OperationsExpressed by Overloaded Operators Chapter 4

ostream andistream are both derived from ios_base .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/ifstream.C

1 #include <iostream> //C++ example
2 #include <fstream>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 / /The constructors called in lines 10 and 16 open two input files.
9

10 ifstream in1("infile1");
11 if (!in1) { //if (in1.operator!()) {
12 cerr << "can’t open infile1.\n";
13 return EXIT_FAILURE;
14 }
15
16 ifstream in2("infile2");
17 if (!in2) {
18 cerr << "can’t open infile2.\n";
19 return EXIT_FAILURE;
20 }
21
22 int i; //uninitialized variable
23 in1 >> i;
24
25 int j; //uninitialized variable
26 in2 >> j;
27
28 cout << i << " " << j << "\n";
29 return EXIT_SUCCESS;
30 }

Class fstream is derived from both ifstream and ofstream

To open a file for both reading and writing in C, the second argument of thefopen in line 12 must
be either"r+" and"w+" . "w+" destroys the file’s previous contents, if any;"r+" doesn’t.

The fprintf in line 18 writes the word hello at the beginning of the file; thefscanf in line 43
reads the word from the file. Between these two lines, we need thefseek in line 31 to rewind the file
back to the beginning. Thecalls toftell before and after thefseek , in lines 24 and 36, display our cur-
rent position in the file.

The long variableposition in line 9 holds our current position in the file.ftell gets the posi-
tion and stores it into this variable;fseek sets the position from this variable. If the number of bytes in
the file is too big to store in along , we will have to upgrade to a variable of data typefpos_t and the
pair of functionsfgetpos andfsetpos .

The third argument offseek in line 31 must be one of the following macros, defined instdio.h :

SEEK_SEToffset from start of file
SEEK_CURoffset from current position
SEEK_ENDoffset from end of file

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/fseek.c

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include <errno.h> /* for errno */
4 #include <string.h> /* for strerror */
5
6 i nt main(int argc, char **argv)
7 {
8 FILE *fp;
9 l ong position;

10 char buffer[256];
11
12 fp = f open("file", "w+");
13 if (fp == NULL) {
14 fprintf(stderr, "can’t open file: %s\n", strerror(errno));
15 return EXIT_FAILURE;
16 }
17
18 fprintf(fp, "hello\n");
19 if (fflush(fp) != 0) {
20 fprintf(stderr, "can’t fflush: %s\n", strerror(errno));
21 return EXIT_FAILURE;
22 }
23
24 position = f tell(fp);
25 if (position == -1) {
26 fprintf(stderr, "can’t ftell: %s.\n", strerror(errno));
27 return EXIT_FAILURE;
28 }
29 printf("position %ld\n", position);
30
31 if (fseek(fp, 0, SEEK_SET) != 0) { /* rewind file back to beginning */
32 fprintf(stderr, "can’t fseek: %s.\n", strerror(errno));
33 return EXIT_FAILURE;
34 }
35
36 position = f tell(fp);
37 if (position == -1) {
38 fprintf(stderr, "can’t ftell: %s.\n", strerror(errno));
39 return EXIT_FAILURE;
40 }
41 printf("position %ld\n", position);
42
43 if (fscanf(fp, "%s", buffer) != 1) {
44 fprintf(stderr, "can’t fscanf\n");
45 if (ferror(fp)) {
46 fprintf(stderr, ": %s", strerror(errno));
47 }
48 fprintf(stderr, ".\n");
49 }
50
51 printf("%s\n", buffer);
52
53 if (fclose(fp) != 0) {
54 fprintf(stderr, "can’t fclose: %s.\n", strerror(errno));

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.2 File I/O with Classesostream and istream 381

382 OperationsExpressed by Overloaded Operators Chapter 4

55 return EXIT_FAILURE;
56 }
57
58 return EXIT_SUCCESS;
59 }

The standard output is

position 6 line 29
position 0 line 41
hello line 51

The filefile will contain

hello

To open a file for both reading and writing in C++, construct an object of classfstream . Its con-
structor, like those for classesofstream and ifstream , has an optional second argument which is an
integer whose bits specify in greater detail how to open the file. The second argument in line 10 is the
value 19. But don’t think of it as nineteen—think of it as10011 : ‘‘yes, no, no yes, yes’’. It contains the
answers to several independent yes/no questions:

name of enum value in binary
ios_base::in 00000000 00000001
ios_base::out 00000000 00000010

| i os_base::trunc 00000000 00010000
00000000 00010011

If in is specified, the file will be truncated only if we also specifytrunc . If in is not specified, the file
will be truncated even without thetrunc . For example, the default value is
ios_base::in | ios_base::out , which would not truncate the file.

C has only one pair of tell and seek functions, but C++ has two. Call tellg (line 18) andseekg
(line 24) to get and set the position for reading; theg stands for ‘‘get’’. Call tellp andseekp to get and
set the position for writing; thep stands for ‘‘put’’.

The optional second argument ofseekg or seekp must be one of the enumerations

ios_base::beg offset from start of file (the default)
ios_base::cur offset from current position
ios_base::end offset from end of file

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/stream/fstream.C

1 #include <iostream> //C++ example
2 #include <fstream>
3 #include <cstdlib>
4 #include <cerrno> //for errno
5 #include <cstring> //for strerror
6 using namespace std;
7
8 i nt main(int argc, char **argv)
9 {

10 fstream fstr("file", ios_base::in | ios_base::out | ios_base::trunc);
11 if (!fstr) { //if (fstr.operator!()) {
12 cerr << "can’t open file: "<< strerror(errno) << ".\n";
13 return EXIT_FAILURE;
14 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

15
16 fstr << "hello\n" << flush;
17
18 cout << "input position == " << fstr.tellg() << "\n";
19 if (!fstr) {
20 cerr << "can’t tellg: " << strerror(errno) << ".\n";
21 return EXIT_FAILURE;
22 }
23
24 fstr.seekg(0); //rewind file back to beginning
25 if (!fstr) {
26 cerr << "can’t seekg: " << strerror(errno) << ".\n";
27 return EXIT_FAILURE;
28 }
29
30 cout << "input position == " << fstr.tellg() << "\n";
31 if (!fstr) {
32 cerr << "can’t tellg: " << strerror(errno) << ".\n";
33 return EXIT_FAILURE;
34 }
35
36 char buffer[256]; //uninitialized variable
37 if (!(fstr >> buffer)) {
38 cerr << "can’t read from file.\n";
39 return EXIT_FAILURE;
40 }
41
42 cout << buffer << "\n";
43 return EXIT_SUCCESS;
44 }

input position == 6 line 18
input position == 0 line 30
hello line 42

The filefile will contain

hello

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.1.3 File I/O as a Preview of Inheritance 383

384 OperationsExpressed by Overloaded Operators Chapter 4

4.1.3 FileI/O as a Preview of Inheritance

class ios_base
//hex, oct, dec
//setf
//eofbit, badbit

class basic_ios<char>
//i/o buffering, fill
//eof, bad, fail, good
//operators void * and !

class istream
//e.g., cin
//input, but no control
//over the source

class ostream
//e.g., cout, cerr, clog
//output, but no control
//over the destination

class iostream
//input from and output
//to same place, but no
//control over where

class ifstream
//input from a place
//that we choose

class ofstream
//output to a place that
//we choose

class fstream
//input from and output
//to a place that we
//choose

base class for all of the following

Classostream is the right shoulder of the following diagram. The easiest way to remember what
this class does is to think of its most famous objects:cout andcerr . An ostream object lets us per-
form output, but it gives us no control over the destination of the output.

Below classostream is classofstream . It provides all the functionality of classostream , plus
more. Anofstream lets us specify the name of the output file, and the name of the directory that holds
the file. It also lets us specify the mode in which the file is opened: overwrite vs. append.

Classofstream could have been written by copying and pasting most of the source code of class
ostream into classofstream . But it is never a good idea to have two copies of the same code. The day
will come when someone fixes a bug in one copy and forgets to make the same fix in the other.

C++ gives us a better way to endow classofstream with all the functionality of classostream .
There is a simple declaration, which we will see later, that lets us build a class with a head start.This

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

declaration states that classofstream should begin by having all the members of classostream , plus
additional members. This method of building a bigger class from a smaller one is calledinheritance.The
smaller class (ostream) is called thebase class;the bigger and better one (ofstream) is called the
derived class.In a diagram, the base class is always drawn above the derived class.

Classesistream andifstream are another example of inheritance.An istream object such as
cin lets us perform input, but it gives us no control over the source of the input.An ifstream provides
all the functionality of classistream , plus more. It lets us specify the name of the input file, and the
name of the directory that holds the file. In fact, anifstream object is an improved istream object.
This is the celebrated ‘‘is-a’’ relationship between a derived class and a base class.

C++ allows us to derive a class from more than one base; this is calledmultiple inheritance. Its
absence in Java is one of the big differences between the two languages. For example, classiostream
lets us perform input and output, although it gives us no control over the source of the input or the destina-
tion of the output.To offer this control, classfstream has been derived from iostream .

It would seem that the two shoulders,istream andostream , are total opposites. But in fact, they
have a lot in common.Both perform buffering; both let apply the! operator to check for error; they share
manipulators such asdec , oct , and hex . The code that would be common to these two classes has been
factored out and written once and for all in a base classbasic_ios<char> andits base class
ios_base . We’ve even seen some members of these ancestral classes: the enumerations
ios_base::failbit in line 10 offail.C on p. 332, andios_base::floatfield in line 18 of
double.C on p. 355.

The i/o classes are built in layers. The base classios_base does not know what type of characters
we are dealing with,char or whar_t . This knowledge is added in the next layer, basic_ios<char> .
The<angle brackets> whow that this is a ‘‘template class’’.

Until now, our classes have been unrepresentative because they were created individually. In real life
we often create a whole family of related classes. This family is our first example. Althoughwe do not yet
know how to create our own classes by means of inheritance, we can start using these stream classes that
were created for us.

Why couldn’t we build the above family using aggregation?

We can apply the same operators to anofstream that we apply to anostream ; see lines 4−5.

1 ostream cout(argument(s), if any, for constructor); //in <iostream>
2 ofstream out("outfile");
3
4 c out << "hello"; //exactly the same operators
5 out << "hello";

But if we had built classofstream using aggregation,

6 c lass ofstream {
7 public:
8 ostream os;
9 / /etc.

then we’d always need to mention the data memberos :

10 cout << "hello"; //all you need is <<
11 out.os << "hello"; //need .os in addition to <<

4.2 DynamicMemory Allocation with new and delete

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.1 When is Dynamic Allocation Necessary? 385

386 OperationsExpressed by Overloaded Operators Chapter 4

4.2.1 Whenis Dynamic Allocation Necessary?
The most common way to create a variable in C and C++ is with a declaration that is also a defini-

tion.

1 i nt i = 10;

But in three situations the variable cannot be created this way.

(1) A variable constructed with a declaration has one of only two possible lifespans. If statically allo-
cated, it is destructed when the program ends; if automatically allocated, it is destructed when we leave the
block of statements in which it was defined.For these two storage classes and the definition of a ‘‘block’’,
see pp. 180−185.

The following program has examples of these lifespans. The static variables are constructed once
and for all in lines 5 and 18 and are destructed when the program ends in line 12. The automatic variable is
constructed each time we arrive in line 17 and destructed each time we reach the closing curly brace in line
19.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/lifespan.C

1 #include <cstdlib>
2 #include "obj.h"
3 using namespace std;
4
5 obj static_global = 10; //static: destructed in line 12
6 v oid f();
7
8 i nt main()
9 {

10 f();
11 f();
12 return EXIT_SUCCESS;
13 }
14
15 void f()
16 {
17 obj automatic_local = 20; //automatic: destructed in line 19
18 static obj static_local = 30; //static: destructed in line 12
19 }

construct 10 line 5 constructs the global
construct 20 line 10 callsf , constructing the automatic at line 17
construct 30 line 18 constructs the static local
destruct 20 } in line 19 destructs the automatic
construct 20 line 11 callsf , constructing the automatic again at line 17
destruct 20 } in line 19 destructs the automatic again
destruct 30 return frommain in line 12 destructs the statics
destruct 10

But we might need to give a different lifespan to a variable, perhaps constructing it in one function
and destructing it in another. Such a variable could not be created with a declaration.

(2) A series of variables constructed with declarations, either all global or all defined in the same
block, are always destructed in the reverse order. This discipline is called ‘‘last hired, first fired’’.

1 obj o1 = 10; //constructed first, destructed third
2 obj o2 = 20; //constructed second, destructed second
3 obj o3 = 30; //constructed third, destructed first

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

But we might need to destruct the variables in an order that cannot be predicted in advance. ‘‘In
advance’’ means atcompile time:when the program is written and compiled.For example, the current
version of the rabbit game halts as soon as any rabbit is killed; the next version will continue until all of
them are killed.We cannot predict in advance which rabbit the user will kill first, so they cannot be created
with declarations. Not untilruntime—when the program runs—will we know what order to destruct them
in.

(3) An array can be constructed with a declaration only if we know at compile time how many ele-
ments it will have. But the following fragment does not know this number until runtime, so the array decla-
ration will not compile.

4 #include <iostream>
5 #include <cstddef> //for size_t
6 using namespace std;
7
8 s ize_t n; //uninitialized variable
9

10 cout << "How many char’s do you want to allocate? ";
11 cin >> n;
12
13 char a[n]; //won’t compile: number of elements can’t be variable

Is there a way to create a variable without a declaration?Well, we can create it as an anonymous
temporary. Here is one that holds the sum ofi andj :

14 cout << i + j << "\n";

But a temporary cannot outlive the expression in which it is created (unless it is referred to by a reference).
As before, a variable needing a different lifespan must be created in a different way.

Tw o examples that do not need dynamic allocation

But let’s not go overboard. Thereare still plenty of situations in which variables can be created with
declarations. For example, it is widely though erroneously believed that dynamic allocation is necessary
when creating an unpredictable number of variables (unpredictable at compile time, that is). But the fol-
lowing program does this without dynamic allocation.Each time around the loop, it creates an object at
line 13 and destructs the object at the closing curly brace in line 14.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/unpredictable.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 i nt main()
7 {
8 c out << "How many variables do you want to create?\n";
9 i nt n;

10 cin >> n;
11
12 for (int i = 0; i < n; ++i) {
13 obj ob(i);
14 }
15
16 return EXIT_SUCCESS;
17 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.1 When is Dynamic Allocation Necessary? 387

388 OperationsExpressed by Overloaded Operators Chapter 4

How many variables do you want to create?
4
construct 0 first time we arrive at line 13
destruct 0 first time we arive at line 14
construct 1 second time we arrive at line 13
destruct 1 second time we arrive at line 14
construct 2 third time we arrive at line 13
destruct 2 third time we arrive at line 14
construct 3 fourth time we arrive at line 13
destruct 3 fourth time we arive at line 14

The variables in the above program exist one at a time.It may be objected that dynamic allocation
would still be necessary to create an unpredictable number of variables that exist simultaneously. But the
following program can do this with recursion, not dynamic allocation. On the way down, the program con-
structs an unpredictable number of objects which all exist during the last call to the function.On the way
back up, the objects are destructed.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/recursion.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std;
5
6 i nt f(int n);
7
8 i nt main()
9 {

10 cout << "How many variables do you want to create?\n";
11 int n;
12 cin >> n;
13
14 f(n);
15 return EXIT_SUCCESS;
16 }
17
18 int f(int n)
19 {
20 obj ob(n);
21
22 if (n > 1) {
23 f(n - 1);
24 }
25 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

How many variables do you want to create?
4
construct 4 first time we arrive at line 20
construct 3 second time we arrive at line 20
construct 2 third time we arrive at line 20
construct 1 fourth time we arrive at line 20
destruct 1 first time we arive at line 25
destruct 2 second time we arrive at line 25
destruct 3 third time we arrive at line 25
destruct 4 fourth time we arive at line 25

The above two programs did construct an unpredictable number of variables, but each variable was
destroyed when we left the block of statements in which it was declared.To destroy a variable at another
point, we must resort to the other way of creating it: bydynamic memory allocation.Dynamic means ‘‘as
the program is running’’. We ask the operating system at runtime for a block of memory to hold the vari-
able, and give the block back to the operating system when we are done with it.

A block of memory is allocated dynamically in C by calling the functionsmalloc and free . We
tell them how many bytes we need, but not the data type of the variables that will occupy the block. Since
these functions do not know what the block will be used for, they cannot initialize it for us. And when we
relinquish the block,free does nothing except give it back to the operating system.

A block of memory is allocated dynamically in C++ by executing thenew anddelete operators.
This time, we tell them the data type of the variables that will occupy the block. Since thenew operator
knows what the block will be used for, it can call the constructors for the variables in the block and give us
a block full of initialized variables. Andwhen we relinquish the block,delete calls the corresponding
destructors before giving it back to the operating system.

4.2.2 Allocatea Scalar

Allocate a scalar in C

The following program reviews dynamic memory allocation in C, pointing out its shortcomings.The
struct node that we allocate and deallocate is like the C++ classnode in pp. 212−217, but stripped of
its member functions and friends.We will allocate a linked list of these nodes in the next program. A
node , by the way, is an example of ascalar—a variable that is not an array.

We call the functionmalloc in line 12 to get a block of memory which can be treated as a variable,
in this case as astruct node . (Remember that C needs thestruct keyword in line 12; C++ will not.)
The argument ofmalloc tells it the number of bytes we want. If successful, the return value ofmalloc
will be the address of the allocated block.

malloc was nev er told the data type of variable that will occupy the block. This means that
malloc cannot initialize the block with any useful value. Even if it performs flawlessly, the most we can
hope for frommalloc is the address of a block of garbage. Let’s hope the program never tries to read this
garbage.

Always store the return value ofmalloc into a pointer andkeep it there until the block is deallo-
cated. To ensure that we do, line 12 declaredp to be a*const : a pointer that always points to the same
place. Ifthe pointer were to point elsewhere, we would no longer be able to access the block or deallocate
it. This painful situation called amemory leak.

Incidentally, the = in line 12 performs an implicit conversion. Thereturn value ofmalloc is a
pointer tovoid , while p is a pointer to astruct node . This one special case of pointer conversion,
between avoid * and another type of pointer, is the only one that C will do implicitly. I don’t expect
anything will go wrong with the conversion. Butas we shall see, the corresponding= in C++ will avoid the
conversion entirely.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 389

390 OperationsExpressed by Overloaded Operators Chapter 4

If unsuccessful,malloc returnsNULL. The conscientious C programmer will therefore have to
write the follow-up if in lines 13−17 after every call tomalloc . We will see that his or her equally con-
scientious C++ colleague will write the error checking only once.The message in line 14, by the way, is
not portable because of the%u. sizeof yields asize_t , which is a typedef forunsigned on my
machine. Yoursize_t might be a typedef forlong unsigned (%lu).

Since a successfulmalloc delivers a block full of garbage, we need lines 19−20 to assign values to
the fields in the block.Permitting these assignments is one reason why the p in line 12 must be a
read/write pointer. In C++, the assignments will be unnecessary andp will be read-only. To verify that the
assignments worked, line 22 uses the%pformat to output each pointer field in the structure.

When we are done with the block, we give it back to the operating system by passing its address to
the free function in line 29. But even if it performs flawlessly,free never calls the destructors for the
variables in the block. Let’s hope the program remembered to call them.

The only argument we should ever giv e to free is the address of a block obtained from a previous
malloc , realloc , or calloc . If we mess up, there is no return value fromfree that we could check
for error. The argument offree is a void * , not a const void * , which is another reason why p
can’t be read-only.

The free function will do nothing if its argument isNULL. This means that if themalloc in line
12 does returnNULL, and if we forget theif in lines 13−17,and if we somehow get through lines 19−27,
thefree in line 29 will be harmless and not blow up.

If we forget to callfree , the block will be freed anyway when the program ends in line 30. But be a
good citizen of the global community andfree the block as soon as you’re done with it. Other people
might be waiting for memory.

To ensure thatp will never reference the block after it is deallocated, we could try to insert the state-
ment

1 p = 0;

at line 29½. But p is a *const and this assignment will not compile. Instead of zeroing it, the C++
approach is to prevent a dangling pointer from outliving the block to which it points.This p, for example,
is destructed in the very next line, before it can do any mischief. Andon pp. 466−467 we will see a pointer
that is elegantly destructed by the destructor for the object that occupies the block. The complementary
goal, to prevent a block from outliving the pointer that points to it, will be achieved on p. 612 with an
auto_ptr .

Let’s poke around in memory to see how malloc records the number of bytes thatfree must free.
The hidden machinery is completely unofficial and will be different on each platform. But looking at a typ-
ical implementation will show us how the heap (the pool of dynamically allocatable memory) could
become corrupted in C++ if we deallocate incorrectly. It will also show us why writing our own allocation
and deallocation functions may be advantageous in C++.

On my platform, a dynamically allocated block of memory is actually eight bytes longer than the size
we ask for. malloc takes the number of bytes in the block, rounds it up to a multiple of 8 and adds 1, and
stores the result in the first four bytes of the block (a slot of typesize_t). It stores another number, usu-
ally zero, in the next four bytes, and returns the address of the ninth byte. The user is unaware of the eight-
byte prefix before the official start of the block.

The following diagram shows what happens when we allocate thestruct node in line 4. On my
machine each field of the structure is four bytes, for a total of 12.To display the two numbers in the prefix,
line 27 castsp to a pointer tosize_t and then slaps on a negative subscript. We need parentheses to
apply the cast top before the subscript.

The free function in line 29 takes the address of the block and backpedals eight bytes to get to the
hidden number. This number tellsfree how many bytes to free.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/scalar.c

1 #include <stdio.h> /* C example */

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

2 #include <stdlib.h> /* for malloc and free */
3
4 s truct node { /* a node on a doubly linked list */
5 i nt value;
6 s truct node *prev;
7 s truct node *next;
8 } ;
9

10 int main(int argc, char **argv)
11 {
12 struct node *const p = malloc(sizeof (struct node));
13 if (p == NULL) {
14 fprintf(stderr, "%s: can’t allocate %u bytes\n", /* not portable */
15 argv[0], sizeof (struct node));
16 return EXIT_FAILURE;
17 }
18
19 p->value = 10;
20 p->prev = p->next = NULL;
21
22 printf("value == %d, prev == %p, next == %p.\n",
23 p->value, p->prev, p->next);
24
25 printf("A struct node occupies %u bytes.\n", sizeof (struct node));
26 printf("The hidden numbers are %u and %u.\n", /* unofficial; not portable */
27 ((size_t *)p)[-2], ((size_t *)p)[-1]);
28
29 free(p);
30 return EXIT_SUCCESS;
31 }

The above lines 12−13 can be rewritten

32 struct node *p;
33 if ((p = malloc(sizeof (struct node))) == NULL) {

But why would you want to? The pointerp could then no longer be*const .

value == 10, prev == 0, next == 0.
A struct node occupies 12 bytes.
The hidden numbers are 17 and 0. 17 = 2× 8 + 1

17 0 10 NULL NULL

size usually zero value prev next

p The return value ofmalloc is the address of the ninth byte.

▼ Homework 4.2.2a: examine the hidden number on your platform

Is the hidden number on your platform at location((size_t *)p)[-1] or
((size_t *)p)[-2] or elsewhere?
▲

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 391

392 OperationsExpressed by Overloaded Operators Chapter 4

Scalars that must be allocated dynamically

We hav ejust created one structure; now we will create unpredictably many. But that by itself is not
the reason why we must now allocate them dynamically. The above structure was created in a block of
statements (the body of themain function) and destroyed in the same block. It could therefore have been
created by a declaration that was also a definition. But the following structures are created in one block
(the while loop in lines 19−58) and destructed in another (thefor loop in lines 62−68).They must be
allocated dynamically.

The program builds a doubly linked list of nodes, sorted in increasing numerical order by their
value ’s. The return value of thescanf in line 19 is the number of variables that were successfully read
from input. It breaks us out of thewhile loop when we encounter end-of-file or garbage, and we return
EXIT_SUCCESSor EXIT_FAILURE respectively.

I’m sorry that so much of this program, lines 28−48, is just a bunch of special cases. At least in the
C++ version, some of the cases will be hidden in the member functions and friends of a class.

I’m also sorry that thep = p->next in line 66 can’t be in its expected place, after the second
semicolon in line 63. But thep = p->next must comebefore thefree(doomed) in line 67, since the
free might then wipe out the value of the pointer fieldp->next . This is an early example of the ‘‘incre-
ment of death’’ on pp. 444−445.

doomed must be a read/write pointer because the argument offree is a void * , not a const
void * . In C++, doomed can be read-only.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/linked.c

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 s truct node { /* a node on a doubly linked list */
5 i nt value;
6 s truct node *prev;
7 s truct node *next;
8 } ;
9

10 int main(int argc, char **argv)
11 {
12 struct node *first = NULL; /* List initially empty. */
13 struct node *last = NULL;
14 int i;
15 struct node *p;
16
17 printf("Type a s eries of integers, EOF (control-d) to quit.\n");
18
19 while (scanf("%d", &i) == 1) {
20 struct node *const n = malloc(sizeof (struct node));
21 if (n == NULL) {
22 fprintf(stderr, "%s: can’t allocate %u bytes\n", /* not portable */
23 argv[0], sizeof (struct node));
24 return EXIT_FAILURE;
25 }
26 n->value = i ;
27
28 if (first == NULL) {
29 /* Insert n into an empty list. */
30 n->next = n->prev = NULL;
31 first = l ast = n;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

32 continue;
33 }
34
35 if (i <= first->value) {
36 /* Insert n before the first node on the list. */
37 n->prev = NULL;
38 n->next = f irst;
39 first = f irst->prev = n;
40 continue;
41 }
42
43 if (i > last->value) {
44 /* Insert n after the last node on the list. */
45 n->prev = l ast;
46 n->next = NULL;
47 last = l ast->next = n;
48 continue;
49 }
50
51 for (p = first; i > p->value; p = p->next) {
52 }
53
54 /* Insert n between p->prev and p. */
55 n->prev = p->prev;
56 n->next = p;
57 p->prev = p->prev->next = n;
58 }
59
60 printf("\nHere are the integers in increasing order:\n");
61
62 for (p = first; p;) {
63 struct node *const doomed = p;
64 printf("%d\n", p->value);
65
66 p = p->next;
67 free(doomed);
68 }
69
70 return feof(stdin) && !ferror(stdin) ? EXIT_SUCCESS : EXIT_FAILURE;
71 }

The above lines 30−31 may be combined to

72 (first = l ast = n)->next = n->prev = NULL;

But the original is clearer.

Line 39 must not be rewritten as follows

73 first->prev = f irst = n;

We would be unable to predict whether the leftfirst was evaluated before or after the rightfirst was
assigned to. Ditto for lines 47 and 57. See pp. 14−16.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 393

394 OperationsExpressed by Overloaded Operators Chapter 4

Type a series of integers, EOF (control-d) to quit.
30 Insert first node into empty list (lines 28−33).
10 Insert before first node (lines 35−41).
40 Insert after last node (lines 43−49).
20 Insert between two existing nodes (lines 51−58).
control-d

Here are the integers in increasing order:
10
20
30
40

Allocate a scalar in C++

C allocates memory by calling two functions,malloc andfree . C++ allocates memory by execut-
ing two operators,new anddelete , in lines 8 and 19 of the following program.

Operators may be unary or binary, prefix or postfix. new anddelete are unary prefix operators.
Here are a few familiar examples. Mostof them are written as punctuation marks, but at least one of them
(sizeof) is written as a keyword. Mostof them require an expression as their operand, but at least one of
them (again,sizeof) can take the name of a data type.

1 - a
2 &a
3 ++a
4 s izeof a
5 s izeof (int)

Despite the parentheses,sizeof is not a function.Its (int) is an operand, not an argument list.
Recall that a function is something that has a{ body} somewhere.sizeof does not have a body.

new is a unary prefix operator like sizeof . It is not a function. Do not confuse it with the function
operator new that we will see on p. 410.

An operand ofnew is always the name of a data type.It is similar to a data type operand of
sizeof . The latter always has surrounding parentheses, but an operand ofnew almost never needs them.
See pp. 407−410.

In the following program, the name of the data type is the single word node in line 8. (The keyword
struct is not needed here in C++, as it was in line 12 of the above scalar.c .) In preparation for the
more complex examples that follow, we show how the name is composed. Start with a declaration for a fic-
titious variable of the desired type. Then erase the name of the fictitious variable and the semicolon.What
remains will be the name of the data type, which we can give to thenew operator. For example, to allocate
annode ,

6 node n; //declaration for fictitious variable
7 node //name of data type
8 c onst node *const p = new node; //dynamically allocate memory in line 8

Like malloc , new gives us the address of a block of memory. But unlike malloc , new knows
what the block will be used for. The operandnode in line 8 tellsnew the data type of the variable that will
occupy the block, sonew can initialize the variable by calling its constructor. We pass the argument10 to
the constructor; there could be more than one argument in the parentheses for constructors that accept them.
The constructor initializes the data membersvalue , prev , and next , so there is no need for the assign-
ment statements in lines 19−20 of the above scalar.c . This means that the pointerp in our line 8 can
now be read-only.

The next example will check if thenew operator is successful in allocating the block of memory for
us. For the time being, we are merely hoping it will be. If it isn’t, no attempt will be made to construct the

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

object in the block, because there is no block.new will abort the program by calling theabort function
from the C Standard Library. A more detailed description of how this happens is in p. 590 and pp.
625−628; it involves ‘‘throwing an uncaught exception’’ of data typebad_alloc .

In C the return type ofmalloc is always void * , so the = in line 12 of the above C program
scalar.c performed an implicit conversion. InC++, the value ofnew is a pointer to whatever data type
has been allocated.Thenew in line 8, for example, returns a pointer to anode , so our = performs no con-
version.

When we’re done with the block we give its address to another unary prefix operator, thedelete in
line 19, with a more traditional kind of operand.The operand ofnew is the name of a data type; the oper-
and ofdelete is the address of a block to be deleted. It must be the address of a block that we got from a
previousnew, just as the argument of the C functionfree had to be the address of a block that we got
from a previousmalloc realloc , or calloc .

Like free , delete will do nothing if its operand is a zero pointer. But if the operand is non-zero,
delete will do more thanfree does. Thedata type of the pointer operand tellsdelete what type of
variable occupied the block;delete will call the destructor for that type of variable and then return the
block to the operating system.

If we forget to write thedelete , the block will be freed anyway when the program ends in line 20.
But be a good citizen of the global community anddelete the block as soon as you’re done with it: other
people may be waiting for memory.

As in C, the number of bytes in a dynamically allocated block is (unofficially) stored in a hidden
number at the start of the block, tellingdelete how many bytes to delete. Once again, we castp to a
pointer to asize_t in lines 16−17 before slapping on the subscripts. In C++, the casts must be
reinterpret_cast ’s to make the conversion between different pointer types more conspicuous. A
static_cast would not compile here.

Classnode was in pp. 212−217.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/scalar.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "node.h"
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 c onst node *const p = new node(10);
9

10 cout << "value == " << *p << ", prev == " << p->prev
11 << ", next == " << p->next << ".\n"
12
13 << "A node occupies " << sizeof (node) << " bytes.\n"
14
15 << "The hidden numbers are " //unofficial
16 << reinterpret_cast<const size_t *>(p)[-2] << " and "
17 << reinterpret_cast<const size_t *>(p)[-1] << ".\n";
18
19 delete p;
20 return EXIT_SUCCESS;
21 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 395

396 OperationsExpressed by Overloaded Operators Chapter 4

value == 10, prev == 0, next == 0.
A node occupies 12 bytes.
The hidden numbers are 17 and 0. 17 = 2× 8 + 1

17 0 10 0 0

size usually zero value prev next

p The value ofnew is the address of the ninth byte.

▼ Homework 4.2.2b: allocate an obj

Allocate and deallocate anobj (pp. 179−180) instead of anode . The output will prove that new
calls a constructor anddelete calls the destructor. If you remove the delete , will the obj still be
destructed?
▲

▼ Homework 4.2.2c: allocate a variable of a built-in data type

Verify that you can allocate and initialize anint just like an object, even though anint has no con-
structor:

1 c onst obj *const p1 = new obj(10);
2 c out << "The obj is " << *p1 << ".\n";
3 delete p1;
4
5 c onst int *const p2 = new int(10);
6 c out << "The int is " << *p2 << ".\n";
7 delete p2;

▲

▼ Homework 4.2.2d: call the default constructor

Verify that the default constructor is called when you omit the arguments. You don’t even need the
empty parentheses:

1 c onst obj *p1 = new obj(10); //call one-arg constructor
2 c out << "The object is " << *p1 << ".\n";
3 delete p1;
4
5 p1 = new obj(); //call default constructor
6 c out << "The object is " << *p1 << ".\n";
7 delete p1;
8
9 p1 = new obj; //call default constructor

10 cout << "The object is " << *p1 << ".\n";
11 delete p1;

When allocating a variable of a built-in type, the variable behaves as if it has a default constructor
that puts zero into the newborn variable. Butto call this constructor, you must write the empty parentheses
in line 16. Without them, no attempt is made to initialize the variable (line 20).

12 const int *p2 = new int(10); //Put 10 into the int.
13 cout << "The int is " << *p2 << ".\n";

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

14 delete p2;
15
16 p2 = new int(); //Put zero into the int.
17 cout << "The int is " << *p2 << ".\n";
18 delete p2;
19
20 p2 = new int; //Put garbage into the int.
21 cout << "The int is " << *p2 << ".\n";
22 delete p2;

When allocating and default-constructing a variable whose type is unknown, we must therefore write
the empty parentheses.

23 //Suppose this typedef was off in another file where we can’t see it.
24 typedef int T;
25
26 const T * p3 = new T();

The type will certainly be unknown when we have ‘‘templates’’. Seep. 660.
▲

Check for allocation failure in C++

Let’s check for allocation failure instead of allowing the program to abort itself.To check for error in
C, we had to follow every malloc with anif . In C++, we can make thenew operator check itself.

First, in lines 30−34, write a separate function containing the code to be executed upon allocation
failure. Thefunction can have any name, but it must have no arguments and no return value. For the time
being, it must end with anexit .

In C and C++, the name of a function all by itself, with no parenthesized argument list after it, stands
for the address of the function.For example, the namemy_new_handler in line 13 is the address of that
function. To tell the computer that this is the function to be called upon allocation failure, we pass its
address to another function, the C++ Standard Library functionset_new_handler . The header file
<new> in line 3 is whereset_new_handler is declared.

Our my_new_handler function must be declared (line 7) before its name can be otherwise men-
tioned (line 13). And we must pass the address ofmy_new_handler to set_new_handler (line 13)
before our first attempt at allocation (line 15).

If the new operator cannot allocate a block of memory, it will now call my_new_handler . No
attempt will be made to construct the object in the block, because there is no block.

There are other ways of checking for allocation failure; we will talk about them in pp. 625−628 after
we cover ‘‘exceptions’’. Until then, we will always call set_new_handler before any attempt at
dynamic allocation.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/set_new_handler.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new> //for set_new_handler
4 #include "node.h"
5 using namespace std;
6
7 v oid my_new_handler(); //function declaration
8 c onst char *progname; //uninitialized variable
9

10 int main(int argc, char **argv)
11 {

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 397

398 OperationsExpressed by Overloaded Operators Chapter 4

12 progname = argv[0];
13 set_new_handler(my_new_handler);
14
15 const node *const p = new node(10);
16
17 cout << "value == " << *p << ", prev == " << p->prev
18 << ", next == " << p->next << ".\n"
19
20 << "A node occupies " << sizeof (node) << " bytes.\n"
21
22 << "The hidden numbers are " //unofficial
23 << reinterpret_cast<const size_t *>(p)[-2] << " and "
24 << reinterpret_cast<const size_t *>(p)[-1] << ".\n";
25
26 delete p;
27 return EXIT_SUCCESS;
28 }
29
30 void my_new_handler() //function definition
31 {
32 cerr << progname << ": out of store\n";
33 exit(EXIT_FAILURE);
34 }

value == 10, prev == 0, next == 0.
A node occupies 12 bytes.
The hidden numbers are 17 and 0. 17 = 2× 8 + 1

In archaic versions of Microsoft Visual C++, yourmy_new_handler function must have one argu-
ment of data typesize_t and a return type ofint __cdecl . The return type is two separate words, the
second one starting with two underscores and ending with lowercase L. The function
_set_new_handler starts with an underscore, and the header file is<new.h> .

Scalars that must be allocated dynamically

Here is the linked list example in C++. Once again, the allocation must now be dynamic because the
objects are constructed in one block (thewhile loop in lines 21−47) and destructed in another (thefor
loop in lines 51−57).

Note that the operand ofdelete can be a read-only pointer, unlike the argument of the C function
free .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/linked.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 #include "node.h"
5 using namespace std;
6
7 v oid my_new_handler();
8 c onst char *progname; //uninitialized variable
9

10 int main(int argc, char **argv)
11 {
12 progname = argv[0];

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

13 set_new_handler(my_new_handler);
14
15 node *first = 0; //List initially empty.
16 node *last = 0;
17
18 cout << "Type a series of integers, EOF (control-d) to quit.\n";
19
20 value_type i;
21 while (cin >> i) { //while (cin.operator>>(i).operator void *()) {
22 node *const n = new node(i);
23
24 if (first == 0) {
25 //Insert n i nto an empty list.
26 first = l ast = n;
27 continue;
28 }
29
30 if (i <= *first) { //if (i <= (*first).operator value_type()) {
31 n->insert_this_before(first);
32 first = n;
33 continue;
34 }
35
36 if (i > *last) {
37 n->insert_this_after(last);
38 last = n;
39 continue;
40 }
41
42 node *p = first;
43 for (; i > *p; p = p->next) { //i > (*p).operator value_type();
44 }
45
46 n->insert_this_before(p);
47 }
48
49 cout << "\nHere are the integers in increasing order:\n";
50
51 for (const node *p = first; p;) {
52 cout << *p << "\n"; //cout << (*p).operator value_type() << "\n";
53
54 const node *const doomed = p;
55 p = p->next;
56 delete doomed;
57 }
58
59 return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
60 ? EXIT_SUCCESS : EXIT_FAILURE;
61
62 }
63
64 void my_new_handler()
65 {
66 cerr << progname << ": out of store\n";

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 399

400 OperationsExpressed by Overloaded Operators Chapter 4

67 exit(EXIT_FAILURE);
68 }

Type a series of integers, EOF (control-d) to quit.
30 Insert first node into empty list (lines 17−21).
10 Insert before first node (lines 23−27).
40 Insert after last node (lines 29−33).
20 Insert between two existing nodes (lines 35−39).
control-d

Here are the integers in increasing order:
10
20
30
40

4.2.3 Allocatean Array

Allocate an array in C

The allocated variable in the following programs is an array, not a scalar. We made it an array of a
built-in data type,char , to avoid the complication of calling constructors and destructors. The number of
elements of the array is not known until runtime, so it must be allocated dynamically.

In C and C++, a variable that holds the number of elements in an array, or the number of bytes in a
block of memory, should always be of data typesize_t (line 6). On my machine,size_t is another
name forunsigned , so thescanf in line 10 has the%uformat. Onother machinessize_t might be
long unsigned so the format would have to be%lu . This portability problem will go away in C++.

The malloc in line 12 returns the address of a block of memory which can then be treated as an
array, in this case ofchar ’s. The multiplication bysizeof (char) is unnecessary sincesizeof
(char) is always 1. But I wanted to remind you that the argument ofmalloc is the number of bytes we
need, not the number of array elements.malloc is never told that the block will hold an array, let alone
the number of elements.

To avoid memory leaks, we always want to store the address of an allocated block into a*const
pointer: one that always points to the same place.I wish that line 7 could have definedp this way.

1 c har *const p;

But we can’t do this: a definition for a constant will not compile without an initial value. Somy second
wish is to move the definition down to line 12, where we have an initial value to put into it.

2 c har *const p = malloc(n * sizeof(char));

But we can’t do this either: C demands that local variables be declared immediately after the opening curly
brace of the enclosing block of statements, in line 5.Forced to dangle up at line 7,p will have to remain a
non-*const in C. In C++, we will do better.

Again, the= in line 12 performs an implicit conversion. Thereturn value ofmalloc is a pointer to
void , while p is a pointer tochar . The corresponding= in line 11 of the C++ program
no_destructor.C will avoid the conversion entirely.

As with all arrays, the subscripts start at zero.Since there aren elements, the highest subscript is
n - 1 (line 22). Don’t go beyond it.

The following diagram shows what happens when we allocate an array of 12char ’s. The first
size_t in the eight-byte prefix is one more than a multiple of eight; the secondsize_t is zero.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/no_destructor.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3
4 i nt main(int argc, char **argv)
5 {
6 s ize_t n;
7 c har *p;
8
9 printf("How many char’s do you want to allocate? ");

10 scanf("%u", &n); /* not portable */
11
12 p = malloc(n * sizeof (char));
13 if (p == NULL) {
14 fprintf(stderr, "%s: can’t allocate %u char’s\n", argv[0], n);
15 return EXIT_FAILURE;
16 }
17
18 p[0] = ’ A’; /* or *p = ’A’; */
19 p[1] = ’ B’;
20 p[2] = ’ C’;
21 /* etc. */
22 p[n - 1] = ’ \0’; /* Warning: the subscripts only go up to n - 1. */
23
24 printf("The hidden numbers are %u and %u.\n", /* unofficial; not portable */
25 ((size_t *)p)[-2], ((size_t *)p)[-1]);
26
27 free(p);
28 return EXIT_SUCCESS;
29 }

The above lines 12−13 can be combined to

30 if ((p = malloc(n * sizeof(int))) == NULL) {

But don’t do it. We would just have to uncombine them in C++.

How many char’s do you want to allocate? 12
The hidden numbers are 17 and 0. 17 = 2× 8 + 1

17 0 ’A’ ’B’ ’C’ ’D’ ’E’ ’F’ ’G’ ’H’ ’I’ ’J’ ’K’ ’\0’

hidden number usually zero

p The return value ofmalloc is the address of the ninth byte.

If we ask for too much,malloc returnsNULL. Let’s ask for the biggest number that would fit into the
argument ofmalloc , which is asize_t . On my platform, this number is 232 − 1 = 4, 294, 967, 295.

How many char’s do you want to allocate? 4294967295
no_destructor: can’t allocate 4294967295 char’s

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 401

402 OperationsExpressed by Overloaded Operators Chapter 4

▼ Homework 4.2.3a: examine the hidden number on your platform

Run the above C program several times on your platform, asking for different amounts of memory. Is
the hidden number at location((size_t *)p)[-1] or ((size_t *)p)[-2] or elsewhere? Doyou
see any pattern in the values of the hidden number? Is it the number of bytes we asked for, rounded up to a
multiple of 8 and incremented?
▲

Allocate an array of variables with no destructors in C++

To compose the name of the data type ‘‘array ofn c har ’s’’ g iv en to the new in line 18, we once
again begin by writing a declaration for a fictitious variable of this type. In this declaration, the first (or
only) dimension of an array can be a variable, although all subsequent dimensions (if any) must be con-
stants. Thenerase the name of the fictitious variable and the semicolon.What remains will be the name of
the data type, which we can give to thenew operator.

char a[n]; //declaration for fictitious variable
char [n] //name of data type

char *const p = new char [n]; //dynamically allocate memory in line 18

When we’re done with memory that held a scalar, we giv e it back to the unary prefix operator
delete . When we’re done with memory that held an array, we giv e it back to a different unary prefix
operator, the delete[] in line 30. It is up to the programmer to write the correct form ofdelete ; the
next example will show why the heap will be corrupted if the programmer does it wrong.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/no_destructor.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 using namespace std;
5
6 v oid my_new_handler();
7 c onst char *progname; //uninitialized variable
8
9 i nt main(int argc, char **argv)

10 {
11 progname = argv[0];
12 set_new_handler(my_new_handler);
13
14 cout << "How many char’s do you want to allocate? ";
15 size_t n;
16 cin >> n; //portable
17
18 char *const p = new char [n];
19
20 p[0] = ’ A’;
21 p[1] = ’ B’;
22 p[2] = ’ C’;
23 //etc.
24 p[n - 1] = ’ \0’; //Warning: subscripts only go up to n - 1.
25
26 cout << "The hidden numbers are " //unofficial
27 << reinterpret_cast<size_t *>(p)[-2] << " and "
28 << reinterpret_cast<size_t *>(p)[-1] << ".\n";
29
30 delete[] p;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

31 return EXIT_SUCCESS;
32 }
33
34 void my_new_handler()
35 {
36 cerr << progname << ": out of store\n";
37 exit(EXIT_FAILURE);
38 }

How many char’s do you want to allocate? 12
The hidden numbers are 17 and 0. 17 = 2× 8 + 1

17 0 ’A’ ’B’ ’C’ ’D’ ’E’ ’F’ ’G’ ’H’ ’I’ ’J’ ’K’ ’\0’

hidden number always zero

p The value ofnew is the address of the ninth byte.

If we ask for too much,new callsmy_new_handler .

How many char’s do you want to allocate? 4294967295
no_destructor: out of store

▼ Homework 4.2.3b: how many bytes can you allocate?

How many bytes is the biggest block of memory you can allocate in C++? Is it always the same
number?
▲

▼ Homework 4.2.3c: a new_handler that doesn’t end with exit

If our my_new_handler didn’t end with exit , it would return to thenew operator that failed.
Thenew would then try to allocate memory again. Whatwould happen if we remove theexit from our
my_new_handler and ask for more memory than is available?
▲

Allocate an array of objects with destructors

Thenew in line 19 allocates and constructs an array of objects. The operand of thenew tells it the
data type of each element and the number of elements we want. Thenew attempts to allocate memory,
and, if successful, calls the constructor for each object in the array in order of ascending subscript.

Similarly, thedelete[] in line 30 destructs and deallocates the array. It will call the destructor for
each object in order of descending subscript, and then deallocates the memory occupied by the array. The
data type of the operand of thedelete[] tells it the data type of each element; the value of the operand
tells it the address of the first element. But how doesdelete[] know how many elements there are?

On my platform, whennew allocates an array of objects with destructors, it stores the number of ele-
ments in the array at subscript[-1] in the hidden prefix.delete[] calls this number of destructors; it is
printed at line 28.

As usual,new also stores the total number of bytes.But when allocating an array of objects with
destructors,new stores the total at subscript[-3] , not [-2] . It is printed at line 26.

Now we can see why we must choose the correctdelete operator. The delete without the
square brackets always expects to find the number of bytes to deallocate at subscript[-2] . The
delete[] with square brackets expects to find the number of bytes at subscript[-3] if the array

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 403

404 OperationsExpressed by Overloaded Operators Chapter 4

elements have destructors, or at[-2] if they do not. Of course, the layout of the hidden machinery will be
different on each platform.But on any platform, choosing the wrongdelete , or passing it a pointer to the
wrong data type, will result in calling the wrong number of destructors and deallocating the wrong number
of bytes.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/destructor.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 #include "obj.h"
5 using namespace std;
6
7 v oid my_new_handler();
8 c onst char *progname; //uninitialized variable
9

10 int main(int argc, char **argv)
11 {
12 progname = argv[0];
13 set_new_handler(my_new_handler);
14
15 cout << "How many obj’s do you want to allocate? ";
16 size_t n;
17 cin >> n;
18
19 obj *const p = new obj [n]; //Call the default constructor n times.
20
21 for (size_t i = 0; i < n; ++i) {
22 cout << p[i] << "\n";
23 }
24
25 cout << "The hidden numbers are " //unofficial
26 << reinterpret_cast<size_t *>(p)[-3] << ", "
27 << reinterpret_cast<size_t *>(p)[-2] << ", and "
28 << reinterpret_cast<size_t *>(p)[-1] << ".\n";
29
30 delete[] p;
31 return EXIT_SUCCESS;
32 }
33
34 void my_new_handler()
35 {
36 cerr << progname << ": out of store\n";
37 exit(EXIT_FAILURE);
38 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

How many obj’s do you want to allocate? 3
default construct 0
default construct 0
default construct 0
0
0
0
The hidden numbers are 17, 0, and 3. 17 = 2× 8 + 1
destruct 0
destruct 0
destruct 0

How many obj’s do you want to allocate? 1
default construct 0
0
The hidden numbers are 9, 0, and 1. 9 = 1 × 8 + 1
destruct 0

How many obj’s do you want to allocate? 0
The hidden numbers are 9, 0, and 0. 9 = 1 × 8 + 1

▼ Homework 4.2.3d: use the wrong delete

What happens, and what fails to happen, if we allocate and construct oneobj and attempt to destruct
and deallocate it with thedelete with [square brackets] ? Does the object get destructed?

What happens, and what fails to happen, if we allocate and construct an array ofobj ’s and attempt
to destruct and deallocate them with thedelete without [square brackets] ? How many of the objects get
destructed?

Is there an error message?In both cases, confine yourself to observing the destructors that are called
or not called. There is no easy way to observe the damage to the heap.
▲

Allocate and initialize an array of objects with a constructor with arguments

We hav epassed arguments to the constructor for a dynamically allocated scalar; see line 15 of the
above set_new_handler.C . But C++ does not allow us to pass arguments to the constructors for the
elements in a dynamically allocated array. It forces us to call the default constructor for each element, as in
line 19 of the abovedestructor.C .

We can use a surprising workaround to prevent thenew from calling the default constructor for each
element. For symmetry, we will use the same workaround to prevent the delete[] from calling the
destructor for each element.In between, we will manually call a constructor with arguments for each ele-
ment, and manually call the destructor for each element.

Under normal circumstances,new allocates memory and calls a constructor. But thenew in the fol-
lowing line 19 will allocate memory without calling a constructor; thenew in line 26 will call a constructor
without allocating memory.

Line 19 deliberately misinformsnew that what we are allocating is an array ofchar ’s, not an array
of objects.Since achar has no constructor, line 19 calls no constructor. But the array ofchar ’s occupies
exactly the same number of bytes as an array ofn date ’s. (The number of bytes must be written as
n * s izeof (date) , not sizeof (date[n]) , because a data type operand ofsizeof cannot
contain a variable-sized array.)

The value of thenew in line 19 is a pointer to achar , but p i s declared to be a pointer to adate .
A reinterpret_cast must be used when converting between pointers to different non-void types.
Note thatp is initialized to the address of a chunk of memory that is not yet occupied by adate object.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 405

406 OperationsExpressed by Overloaded Operators Chapter 4

The chunk will be converted to adate in line 26.

The cast in line 43 deliberately misinformsdelete[] that what it is deallocating is an array of
char ’s. Since achar has no constructor, line 43 calls no constructor.

Since the constructors and destructors for thedate ’s were not called by lines 19 and 43, it is up to
us to call them. Usually thenew operator performs memory allocation followed by construction. But the
new in line 19 performs allocation without construction; the one in line 26 performs construction without
allocation.

Thenew in line 19 is the one that we have been using all along.It allocates a block of memory, and,
if successful, it calls the constructor for each object in the block. At least it would call them, if the vari-
ables in this block had constructors. But our variables are merelychar ’s.

The new in line 26 is different. It allocates no memory. It merely constructs adate object at
addressq. The constructor receives the three explicit arguments, as well as the implicit argumentq. This
use ofnew is called theplacement syntax;it makes an object out of the the raw memory to whichq
points. Theimplicit pointerq passed to the constructor must be read/write.As usual, the value of thenew
operator is the address of the newly constructed object. This value is ignored in line 26.

The placementnew in line 26 allocated no memory, so there is no need for a corresponding
delete . But it did call a constructor, so we hav eto call the corresponding destructor (if there is one).We
never wrote a destructor for classdate , but we can demonstrate the call to the destructor anyway. This is
because the computer behaves as if classdate had a destructor that does nothing; see p. 310.

For an object constructed with the placementnew, the destructor must be called explicitly. In no
other case in C++ is a destructor called explicitly. See the syntax in line 40, and pp. 662−663 for another
example. Ofcourse, line 40 is needed only for a class whose destructor actually does something.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/placement.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 #include "date.h"
5 using namespace std;
6
7 v oid my_new_handler();
8 c onst char *progname;
9

10 int main(int argc, char **argv)
11 {
12 progname = argv[0];
13 set_new_handler(my_new_handler);
14
15 cout << "How many date’s do you want to allocate? ";
16 size_t n;
17 cin >> n;
18
19 date *const p = reinterpret_cast<date *>(new char[n * sizeof (date)]);
20
21 //Call the constructor for each date in the array.
22 for (date *q = p; q < p + n; ++q) {
23 cout << "Month, day, year for date " << q - p << ": ";
24 int month, day, year; //uninitialized variables
25 cin >> month >> day >> year;
26 new(q) date(month, day, year); //the placement syntax
27 }
28

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

29 for (const date *q = p; q < p + n; ++q) {
30 cout << *q << "\n";
31 }
32
33 cout << "The hidden numbers are " //unofficial
34 << reinterpret_cast<size_t *>(p)[-2] << " and "
35 << reinterpret_cast<size_t *>(p)[-1] << ".\n";
36
37 //Call the destructor for each date in the array.
38 //(Required if class date has a destructor; does nothing otherwise.)
39 for (const date *q = p + n - 1; q >= p; --q) {
40 q->˜date();
41 }
42
43 delete[] reinterpret_cast<char *>(p);
44 return EXIT_SUCCESS;
45 }
46
47 void my_new_handler()
48 {
49 cerr << progname << ": out of store\n";
50 exit(EXIT_SUCCESS);
51 }

How many date’s do you want to allocate? 5
Month, day, year for date 0: 7 4 1776
Month, day, year for date 1: 10 29 1929
Month, day, year for date 2: 12 7 1941
Month, day, year for date 3: 7 20 1969
Month, day, year for date 4: 9 11 2001
7/4/1776
10/29/1929
12/7/1941
7/20/1969
9/11/2001
The hidden numbers are 65 and 0. 65 = 8× 8 + 1

Parentheses around the operand of new

Parentheses are always needed around a data type argument ofsizeof .

sizeof (int)

On two rare occasions, parentheses are also needed around the operand ofnew.

(1) If the name of the data type contains(parentheses) not enclosed in a pair of[square brackets] ,
we must surround the entire name with another pair of parentheses before we give it to new. Don’t
worry—this is not likely to happen. In fact, it took some effort to come up with the following example.

The simplest data type whose name contains parentheses is the data type of a function:

1 v oid f(); //declaration for a function
2 v oid () //the name of the data type of this function

But new is used only to allocate memory for variables, not for functions.

The next simplest data types containing parentheses are ‘‘pointer to function’’ and ‘‘pointer to array’’:

3 v oid (*p)(); //declaration for a pointer to a function

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 407

408 OperationsExpressed by Overloaded Operators Chapter 4

4 v oid (*)() //the name of the data type of this pointer
5
6 i nt (*p)[10]; //declaration for a pointer to an array
7 i nt (*)[10] //the name of the data type of this pointer

But malloc andnew are never used to allocate memory for one pointer. It would gain us nothing, since
another pointer, of equal size, would be needed to hold the address of the allocated pointer.

We therefore allocate an array of pointers to functions.As usual, we start with a declaration for a fic-
titious variable, this time an array of pointers to functions:

8 v oid (*a[n])(); //declaration for fictitious variable
9 v oid (* [n])() //name of data type

10 void (**const p)() = new (void (* [n])()); //dynamically allocate memory

The above line 10 (and the following line 19) has a double asterisk because anew that allocates an
array yields a pointer to the first element of the array. The elements of this array are pointers, so the value
of thisnew is a pointer to a pointer. See the double asterisk in line 19 oflanguage.C in p. 53.

Theconst in line 19 will keep the pointerp pointing to the same place.But aconst immediately
after the leftmost asterisk would make p a read-only pointer. It would prevent the assignment in line 20
from compiling.

Lines 22 and 23 are two ways to call the function thatp[0] points to. If we do write the dereferenc-
ing operator* (line 22), we need the surrounding parentheses to execute it before the function call operator
() .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/parentheses.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 using namespace std;
5
6 v oid my_new_handler();
7 c onst char *progname; //uninitialized variable
8 i nline void f() {cout << "f()\n";}
9

10 int main(int argc, char **argv)
11 {
12 progname = argv[0];
13 set_new_handler(my_new_handler);
14
15 cout << "How many pointers to functions do you want to allocate? ";
16 size_t n;
17 cin >> n;
18
19 void (**const p)() = new (void (*[n])());
20 p[0] = f ;
21
22 (*p[0])(); //call f
23 p[0](); //call f
24
25 delete[] p;
26 return EXIT_SUCCESS;
27 }
28
29 void my_new_handler()

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

30 {
31 cerr << progname << ": out of store\n";
32 exit(EXIT_FAILURE);
33 }

(2) Even more unlikely, the name of the data type must also be surrounded by parentheses if it is fol-
lowed immediately by tokens that could be part of a longer data type:* , &, or [] . new is greedy. It tries
to appropriate to itself the longest series of tokens that could possibly be the name of a data type.

In line 14, the name of the data type is theint to the right of the word new. The value of the
expressionnew (int) is a pointer; we cast it toint so that it can be bitwise and’ed with anotherint . I
wrote the C-style cast(int) in front of it because a C++ cast would have required parentheses around the
expressionnew (int) , which then would no longer be followed immediately by the&:

1 i f (reinterpret_cast<int>(new (int)) & 1) {

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/odd.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 using namespace std;
5
6 v oid my_new_handler();
7 c onst char *progname; //uninitialized variable
8
9 i nt main(int argc, char **argv)

10 {
11 progname = argv[0];
12 set_new_handler(my_new_handler);
13
14 if ((int)new (int) & 1) {
15 cout << "The allocated block is at an odd address.\n";
16 } else {
17 cout << "The allocated block is at an even address.\n";
18 }
19
20 //memory leak: never deallocated
21 return EXIT_SUCCESS;
22 }
23
24 void my_new_handler() //function definition
25 {
26 cerr << progname << ": out of store\n";
27 exit(EXIT_FAILURE);
28 }

The allocated block is at an even address.

Without the parentheses in the expressionnew (int) , the above line 14 would try to allocate mem-
ory for an ‘‘ int & ’’ , a reference to anint . But we can’t do this. A reference has no memory address, so
it would not compile. On my platform, the error message would be

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 409

410 OperationsExpressed by Overloaded Operators Chapter 4

odd.C: In function ’int main(int, char**)’:
odd.C:14:19: error: new cannot be applied to a reference type
odd.C:14:21: error: expected ’)’ before numeric constant

4.2.4 AllocationFunctions: operator new and operator delete

Allocation and deallocation functions for scalars

The new operator allocates and constructs a scalar; thedelete operator destructs and deallocates
the scalar. This pair of operators calls a pair of functions to perform the allocation and deallocation.There
is never any need to call these functions directly, but here are their declarations anyway. The declarations
are not actually written in the source code anywhere, not even in a header file. Like the declaration for the
main function, they are built into the language.

1 v oid *operator new(size_t n);
2 v oid operator delete(void *p);

Do not confuse the operators with the functions.An operator is something that takes operands; a
function is something that takes arguments and has a{ body} . We will refer to the operators as ‘‘the new
operator’’ and ‘‘the delete operator’’, with the English word ‘‘operator’’ second and in Roman type.We
will refer to the functions as the function ‘‘operator new ’’ and the function ‘‘operator delete ’’ ,
with the keyword ‘‘operator’’ fi rst and incomputer type .

Thenew anddelete operators do much more than just call the functionsoperator new and
operator delete . When we say

3 obj *const p = new obj(10); //apply the new operator to an operand

and

4 delete p; //apply the delete operator to an operand

the computer behaves as if we had said

5 / /call the allocation function
6 obj *const p = static_cast<obj *>(operator new(sizeof (obj)));
7 i f (p == 0) {
8 c all the function whose address was passed to set_new_handler;
9 } else {

10 new(p) obj(10); //call the constructor
11 }

and

12 if (p != 0) {
13 p->˜obj(); //call the destructor
14 operator delete(p); //call the deallocation function
15 }

When we have ‘‘exceptions’’, we will see that thenew anddelete operators do even more. Seep.
626.

Let’s consider thenew operator that allocates and initializes a scalar. The operator determines the
number of bytes the scalar will occupy, and passes this number as an argument of typesize_t to the
functionoperator new . This function assumes that the block will be occupied by a scalar, but is other-
wise similar in its ignorance to the C functionmalloc . It tries to allocate a block of memory of the
requested size, and if successful, returns the address of the block as a pointer tovoid . Thenew operator
converts this to a pointer to the data type of the scalar, and calls the constructor, if there is one, for the
scalar-to-be. Thevalue of thenew operator is the converted pointer, which is the address of the newborn

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

scalar.

If the function operator new cannot allocate the memory we requested, it calls the function
whose address was passed toset_new_handler . If there was no such function, the function
operator new ‘‘ throws a exception’’ of typebad_alloc , triggering a series of events which may end
in a call to theabort function (p. 590).

Thedelete operator calls the scalar’s destructor, if there is one. It then calls the function
operator delete , passing it the address of the block. The functionoperator delete backpedals,
at least on my platform, to discover the number of bytes to deallocate. It is similar in its ignorance to the C
function free ; It knows it is deallocating a block that held a scalar, but it does not know the data type of
the scalar.

Let’s summarize the responsibilities of the operators and functions.

(1) Thenew anddelete operators know the data type of the variable in the block. The functions
operator new and operator delete know that they are allocating and deallocating a scalar, but
they do not know its data type.

(2) The constructor and destructor for the variable in the block are called by thenew anddelete
operators.

(3) The function designated byset_new_handler is called by the functionoperator new if
the memory cannot be allocated. The functionoperator new might also ‘‘throw an exception’’, pp.
625−628.

The functionsoperator new andoperator delete have already been written for us in the
C++ Standard Library. We could write our own version of them, if we thought we could do better our-
selves. All we have to do is write two functions with the same name, arguments, and return type as the
original functionsoperator new andoperator delete . The new operator that allocates and ini-
tializes a scalar, and its correspondingdelete operator, would then call the functionsoperator new
andoperator delete that we wrote.

Let’s write a simple functionoperator new andoperator delete that produce tracing out-
put. Anticlimacticly, they rely on malloc and free to perform the actual allocation and deallocation.
Stubbornly, our functionoperator new keeps looping as long as the call tomalloc keeps failing (line
25).

If malloc has failed, line 27 checks to see if a handler has been established by a previous call to
set_new_handler . Each call toset_new_handler returns the address of the previous handler
function, or zero if there was no previous one. (The variablef is a pointer to a function.An if whose
parentheses contain a variable declaration is true if the variable is non-zero; see pp. 38−39.) An unfortunate
side effect of line 27 is to disestablish the handler function, so we need line 28 to re-establish it.If there
was no handler function, line 31 constructs and throws an ‘‘exception’’.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/redefine_scalar.C

1 #include <iostream>
2 #include <cstdlib> //for malloc and free, exit, EXIT_SUCCESS, EXIT_FAILURE
3 #include <new> //for set_new_handler, bad_alloc
4 #include "obj.h"
5 using namespace std;
6
7 v oid my_new_handler();
8 v oid *operator new(size_t n); //declaration for function in line 21
9 v oid operator delete(void *p); //declaration for function in line 39

10
11 int main()
12 {
13 set_new_handler(my_new_handler);
14

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.4 Allocation Functions:operator new and operator delete 411

412 OperationsExpressed by Overloaded Operators Chapter 4

15 const obj *const p = new obj(10); //calls operator new in line 21
16 delete p; //calls operator delete in line 39
17
18 return EXIT_SUCCESS;
19 }
20
21 void *operator new(size_t n)
22 {
23 void *p; //uninitialized variable
24
25 while ((p = malloc(n)) == 0) {
26 cerr << "operator new(" << n << ") out of store.\n";
27 if (void (*const f)() = set_new_handler(0)) {
28 set_new_handler(f);
29 (*f)(); //call the handler function
30 } else {
31 throw bad_alloc();
32 }
33 }
34
35 cout << "operator new(" << n << ") returns " << p << "\n";
36 return p;
37 }
38
39 void operator delete(void *p)
40 {
41 cout << "operator delete(" << p << ")\n";
42 free(p);
43 }
44
45 void my_new_handler()
46 {
47 cerr << "out of store\n";
48 exit(EXIT_FAILURE);
49 }

operator new(4) returns 0x21c00
construct 10
destruct 10
operator delete(0x21c00)

An operator new function that does nothing

Any arguments written after anew operator will be passed along, after thesize_t argument, to the
functionoperator new that thenew operator calls.For example, we have already seen the expression

1 new(q) date(day, month, year)

in line 26 ofplacement.C in p. 406. This calls a standard library functionoperator new that returns
its second argument. Thefirst argument is unused, so it has no name (pp. 289−290).

2 v oid *operator new(size_t, void *p)
3 {
4 r eturn p;
5 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

See pp. 625−628 for another extra argument foroperator new ; pp. 625−628 and pp. 501−503 for an
extra argument foroperator delete .

Allocation and deallocation functions for arrays

A new operator that allocates and initializes an array, and the correspondingdelete[] operator,
call a different pair of functions to allocate and deallocate the memory for the array. The assumption is that
bigger blocks are required for arrays, which might have to be allocated using a different strategy than for
scalars.

1 v oid *operator new[](size_t n);
2 v oid operator delete[](void *p);

The argument of the functionoperator new[] tells it how many bytes we want. Itassumes that
the block will be occupied by an array, but is otherwise similar in its ignorance to the C functionmalloc .
It does not know the data type of the elements of the array. The argument of the function
operator delete[] is the address of the block to be deallocated.

These two functions,operator new[] and operator delete[] have already been written
for us in the C++ Standard Library. We could write our own version of them, if we wanted to perform the
allocation ourselves. All we have to do is write two functions with the same name, arguments, and return
type as the original functionsoperator new[] and operator delete[] . A new operator that
allocates and initializes an array, and the correspondingdelete[] operator, would then call the functions
operator new[] andoperator delete[] that we wrote.

Here is a simple version of the functionsoperator new[] andoperator delete[] that pro-
duce tracing output. Instead of writing our own memory allocator, we rely onmalloc andfree to allo-
cate and deallocate.

Thenew operator in line 15 allocates an array whose elements have no destructor. It asks the func-
tion operator new[] for a block that is the same size as the array. The value of thenew operator is the
address it received from the functionoperator new[] , converted to the proper pointer type. The ele-
ments have no constructor either, so we get a block of garbage.

Thenew operator in line 32, on the other hand, allocates an array whose elements have a destructor.
It asks the functionoperator new[] for a block that issizeof(size_t) bytes bigger than the
array. Thenew operator stores the number of array elements in this slot. The value of thenew operator is
the address of the byte after this slot, converted to a pointer to the data type of an array element.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/new/redefine_array.C

1 #include <iostream>
2 #include <cstdlib> //for malloc and free
3 #include "obj.h"
4 using namespace std;
5
6 v oid *operator new[](size_t n);
7 v oid operator delete[](void *p);
8
9 i nt main()

10 {
11 cout << "How many elements do you want to allocate? ";
12 size_t n;
13 cin >> n;
14
15 int *const p1 = new int [n]; //calls operator new[] in line 48
16
17 for (size_t i = 0; i < n; ++i) {
18 cout << "The int at address " << p1 + i

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.4 Allocation Functions:operator new and operator delete 413

414 OperationsExpressed by Overloaded Operators Chapter 4

19 << " h olds " << p1[i] << ".\n";
20 }
21
22 cout << "The hidden numbers are " //unofficial
23 << reinterpret_cast<size_t *>(p1)[-2] << " and "
24 << reinterpret_cast<size_t *>(p1)[-1] << ".\n";
25
26 delete[] p1; //calls operator delete[] in line 62
27
28 cout << "\nAn obj is " << sizeof (obj) << " bytes, an array of " << n
29 << " of t hem is " << n * sizeof (obj)
30 << " b ytes, and a size_t is " << sizeof (size_t) << " bytes.\n";
31
32 obj *const p2 = new obj [n]; //calls operator new[] in line 48
33
34 for (size_t i = 0; i < n; ++i) {
35 cout << "The obj at address " << p2 + i
36 << " h olds " << p2[i] << ".\n";
37 }
38
39 cout << "The hidden numbers are "
40 << reinterpret_cast<size_t *>(p2)[-3] << ", "
41 << reinterpret_cast<size_t *>(p2)[-2] << ", and "
42 << reinterpret_cast<size_t *>(p2)[-1] << ".\n";
43
44 delete[] p2; //calls operator delete[] in line 62
45 return EXIT_SUCCESS;
46 }
47
48 void *operator new[](size_t n)
49 {
50 if (void *const p = malloc(n)) {
51 cout << "operator new[](" << n << ") returns " << p
52 << " w ith hidden numbers "
53 << reinterpret_cast<size_t *>(p)[-2] << " and "
54 << reinterpret_cast<size_t *>(p)[-1] << ".\n";
55 return p;
56 }
57
58 cerr << "operator new[](" << n << ") out of store.\n";
59 exit(EXIT_FAILURE);
60 }
61
62 void operator delete[](void *p)
63 {
64 cout << "operator delete[](" << p << ") with hidden numbers "
65 << reinterpret_cast<size_t *>(p)[-2] << " and "
66 << reinterpret_cast<size_t *>(p)[-1] << ".\n";
67
68 free(p);
69 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

How many elements do you want to allocate? 3
operator new[](12) returns 0x220f0 with hidden numbers 17 and 0.
The int at address 0x220f0 holds 139520. threeint ’s of garbage
The int at address 0x220f4 holds 0.
The int at address 0x220f8 holds 0.
The hidden numbers are 17 and 0.
operator delete[](0x220f0) with hidden numbers 17 and 0.

An obj is 4 bytes, an array of 3 of them is 12 bytes, and a size_t is 4 bytes.
operator new[](16) returns 0x220f0 with hidden numbers 17 and 0.
default construct 0
default construct 0
default construct 0
The obj at address 0x220f4 holds 0. 4 bytes after return value ofoperator new[]
The obj at address 0x220f8 holds 0.
The obj at address 0x220fc holds 0.
The hidden numbers are 17, 0, and 3.
destruct 0
destruct 0
destruct 0
operator delete[](0x220f0) with hidden numbers 17 and 0.

Reduce the overhead with class-specific allocation functions

SIR THOMAS MORE.
A dispensation was granted so that the King [Henry VIII] might marry Queen
Catherine [daughter of Ferdinand and Isabella], for state reasons.Now we are to
ask the Pope to—dispense with his dispensation, also for state reasons?

—Robert Bolt,A Man for All Seasons, Act One

The functionsoperator new and operator delete in the C++ Standard Library will be
called to allocate variables of any data type. So will the ones we substituted for them above, and the ones
in lines 38 and 49 of the following main.C . They must be flexible enough to allocate blocks of any
requested size.

But the member functionsoperator new andoperator delete of classcookie , in lines 9
and 26 ofcookie.C , will be called to allocate and deallocate objects of only that one class.They can
assume that each block will be exactly the same size (namely, sizeof (cookie)), letting us reduce the
overhead on each block.The cookie ’s, incidentally, are so called because they are all the same size,
stamped out with a cookie cutter.

A functionoperator new andoperator delete that are member functions are always static,
ev en without the keyword static . They hav e to be—no object exists when the allocation function is
called or when the deallocation function returns. Not even the memory for the object exists at these times.
Were the functions non-static, there would be nothing for their implicit pointers to point to.

The member functionsoperator new and operator delete of class cookie allocate
blocks of memory from thebuffer of characters in line 8, which is big enough to holdn c ookies . We
are not allowed to mentionsizeof (cookie) until after the} that ends the class in line 25, so we can-
not declare the size of the buffer here. But we can get away with the empty[square brackets] in line 8
because thebuffer data member is static. The number of characters can wait until the buffer is defined in
line 6 ofcookie.C .

The array ofbool ’s in line 9 keeps track of which blocks in thebuffer are currently allocated.
Each block has onebool , which is a smaller overhead than the eight-byte prefix. But eachbool still
occupies at least one byte. What we really want is an array of bits, such as thebitset in the C++ Stan-
dard Library. We will retrofit it here on pp. 461−463.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.4 Allocation Functions:operator new and operator delete 415

416 OperationsExpressed by Overloaded Operators Chapter 4

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cookie/cookie.h

1 #ifndef COOKIEH
2 #define COOKIEH
3 #include <iostream>
4 using namespace std;
5
6 c lass cookie {
7 s tatic const size_t n = 1000; //can allocate this many cookies
8 s tatic char buffer[];
9 s tatic bool b[n]; //true if this slot is currently allocated

10
11 int i;
12 public:
13 cookie(int initial_i): i(initial_i) {
14 cout << "construct cookie " << i << "\n";
15 }
16
17 cookie(): i(0) {
18 cout << "default construct cookie " << 0 << "\n";
19 }
20
21 ˜cookie() {cout << "destruct cookie " << i << "\n";}
22
23 void *operator new(size_t);
24 void operator delete(void *p);
25 };
26 #endif

The function operator new assumes that every cookie is the same size
(sizeof (cookie)), so it never uses thesize_t argument in line 9.To avoid the ‘‘unused argument’’
warning, we give it no name.

But thecookie ’s will not always be the same size.When we have inheritance, some of the objects
of a class will be bigger variants called ‘‘derived objects’’. Think of them as heavier isotopes of a chemical
element. Themember functionoperator new of classcookie will then need to use itssize_t argu-
ment, and the member functionoperator delete will get an extra argument, also of typesize_t ,
giving the size of the object to be deallocated. See pp. 501−503.

The casts of thevoid *p in lines 29 and 36 can bestatic_ . A cast to or from any other pointer
type, in lines 15 and 37, must be areinterpret_cast . See p. 389.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cookie/cookie.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "cookie.h"
4 using namespace std;
5
6 c har cookie::buffer[n * sizeof (cookie)];
7 bool cookie::b[n];
8
9 v oid *cookie::operator new(size_t)

10 {
11 for (size_t i = 0; i < n; ++i) {
12 if (!b[i]) {

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

13 b[i] = t rue;
14 cookie *const p =
15 reinterpret_cast<cookie *>(buffer) + i;
16 cout << "cookie::operator new() returns " << p
17 << " [block " << i << "].\n";
18 return p;
19 }
20 }
21
22 cerr << "cookie::operator new out of store\n";
23 exit(EXIT_FAILURE);
24 }
25
26 void cookie::operator delete(void *p)
27 {
28 if (p < buffer || p >= buffer + sizeof buffer ||
29 (static_cast<char *>(p) - buffer) % sizeof (cookie) != 0) {
30
31 cerr << "cookie::operator delete: " << p
32 << " n ot from previous cookie::operator new.\n";
33 exit(EXIT_FAILURE);
34 }
35
36 const size_t i = static_cast<cookie *>(p) -
37 reinterpret_cast<cookie *>(buffer);
38
39 if (!b[i]) {
40 cerr << "cookie::operator delete: " << p << " [block " << i
41 << "] not currently allocated.\n";
42 exit(EXIT_FAILURE);
43 }
44
45 cout << "cookie::operator delete(" << p << ") [block " << i << "].\n";
46 b[i] = f alse;
47 }

The operators in lines 12 and 13 call the general-purpose allocation functions in lines 38 and 49
because we wrote no functions specifically for classobj . Lines 17 and 18 call the allocation functions that
are members of classcookie . Lines 22 and 23 call the functionsoperator new[] and
operator delete[] in the C++ Standard Library because we did not write them ourselves, either as
members ofcookie or as non-members. Lines 25 and 26 revert to the general-purpose functions in lines
38 and 49 because of the unary scope resolution operator:: we saw in pp. 122−124. Lines 32 and 33 call
mismatching functions.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/cookie/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 #include "cookie.h"
5 using namespace std;
6
7 v oid *operator new(size_t n);
8 v oid operator delete(void *p);
9

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.2.4 Allocation Functions:operator new and operator delete 417

418 OperationsExpressed by Overloaded Operators Chapter 4

10 int main(int argc, char **argv)
11 {
12 const obj *const pd = new obj(10); //call operator new in line 38
13 delete pd; //call operator delete in line 49
14
15 cout << "\n";
16
17 cookie *const pc1 = new cookie(10); //call cookie::operator new
18 delete pc1; //call cookie::operator delete
19
20 cout << "\n";
21
22 cookie *const pc2 = new cookie[3]; //call standard lib operator new[]
23 delete[] pc2; //call standard lib operator delete[]
24
25 cout << "\n";
26
27 cookie *const pc3 = ::new cookie(30); //call operator new in line 38
28 ::delete pc3; //call operator delete in line 49
29
30 cout << "\n";
31
32 cookie *const pc4 = ::new cookie(40); //call operator new in line 38
33 delete pc4; //deliberate mismatch: call cookie::operator delete
34
35 return EXIT_SUCCESS;
36 }
37
38 void *operator new(size_t n)
39 {
40 if (void *const p = malloc(n)) {
41 cout << "operator new(" << n << ") returns " << p << ".\n";
42 return p;
43 }
44
45 cerr << "operator new(" << n << ") out of store.\n";
46 exit (EXIT_FAILURE);
47 }
48
49 void operator delete(void *p)
50 {
51 cout << "operator delete(" << p << ")\n";
52 free(p);
53 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

operator new(4) returns 0x23948. lines 12−13
construct 10
destruct 10
operator delete(0x23948)

cookie::operator new() returns 0x22490 [block 0]. lines 17−18
construct cookie 10
destruct cookie 10
cookie::operator delete(0x22490) [block 0].

operator new(16) returns 0x25d60. lines 22−23
default construct cookie 0
default construct cookie 0
default construct cookie 0
destruct cookie 0
destruct cookie 0
destruct cookie 0
operator delete(0x25d60)

operator new(4) returns 0x23948. lines 27−28
construct cookie 30
destruct cookie 30
operator delete(0x23948)

operator new(4) returns 0x23948. lines 32−33
construct cookie 40
destruct cookie 40
cookie::operator delete: 0x23948 not from previous cookie::operator new.

▼ Homework 4.2.4a:

Write member functionsoperator new[] and operator delete[] for classcookie . It
will be easier to search the array ofbool ’s when we have the ‘‘algorithms’’ find (p. 861) and
search_n (p. 949).

A harried programmer may choose to defineoperator new[] andoperator delete[] first.
The scalar functionsoperator new andoperator delete can then be implemented by allocating
an array of one element.
▲

4.3 Vectors and Lists

4.3.1 Endow a Data Type with a Last Name
A container is a big object that contains little objects. The little objects don’t even hav e to be

objects. They can be pointers, structures, or merely values of the built-in data types. And the big object
doesn’t hav eto be an object, either. It could be an array, which is the most rudimentary type of container.

This chapter will introduce better types of containers, includingvector , list , and string .
First, however, we will need two preliminary techniques: how to giv e a last name to a data type, and how to
loop through a container with an ‘‘iterator’’.

So far, we’ve seen three kinds of class members: data members (line 7), member functions (lines 9
and 19), and enumeration members (lines 12−14). But a member can also be a data type.For example, the
month_type in line 11, thehillary_t in line 17, and thebill in line 21 are all public members of

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.1 Endow a Data Type with a Last Name 419

420 OperationsExpressed by Overloaded Operators Chapter 4

the classclinton in line 6. First we will say what this does not mean, and then what it does mean.
Finally, we will show why you would want to do this.

It does not mean that aclinton object contains amonth_type , a hillary_t , or abill . In
fact, we have already seen that the only data member in aclinton object is thei in line 7. By making
month_type , hillary_t , and bill members ofclinton , we hav emerely endowed the names of
these three data types with the last nameclinton . For example, the full name of the data type
hillary_t is clinton::hillary_t . bill , by the way, is called anested classbecause its decla-
ration is inside the declaration for another class. Recall that we have already seen a variable with a last
name: thestd::cout in p. 20.

We already know that we are on a first-name basis with all the members of a class within the{ curly
braces} of the class declaration (lines 6 and 27 ofclinton.h), and within the{ curly braces} of the body
of a member function of the class. That’s why inside the body of the member functionf in line 19 of
clinton.h , the i , january , andhillary_t needed nothing in front of them. But outside these
{ curly braces} , we hav eto identify which class the members of classclinton belong to. That’s why in
main.C , january in line 9, thehillary_t in line 10, and thebill in line 12 all need the
clinton:: . Of course,january , hillary_t , andbill all have to be public members of class
clinton merely to appear inmain .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/clinton/clinton.h

1 #ifndef CLINTONH
2 #define CLINTONH
3 #include <iostream>
4 using namespace std;
5
6 c lass clinton {
7 i nt i;
8 public:
9 c linton(int initial_i): i(initial_i) {}

10
11 enum month_type {
12 january = 1,
13 february,
14 march
15 };
16
17 typedef unsigned hillary_t;
18
19 void f() const {cout << i << " " << january << " " << sizeof (hillary_t) << "\n";}
20
21 class bill {
22 int j;
23 public:
24 bill(int initial_j): j(initial_j) {}
25 void g() const {cout << j << "\n";}
26 };
27 };
28 #endif

We giv e a last name to a data type so that we can have a different data type with the same name in the
same program.Classvector will provide our first real example of two data types with the same name.
In the meantime, here is another classbill .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/clinton/gates.h

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

1 #ifndef GATESH
2 #define GATESH
3 #include <iostream>
4 using namespace std;
5
6 c lass gates {
7 public:
8 c lass bill {
9 double d;

10 public:
11 bill(double initial_d): d(initial_d) {}
12 void g() const {cout << d << "\n";}
13 };
14 };
15 #endif

The only purpose of classgates was to giv e the last namegates to its classbill . Classgates
has no other members.If you feel that thebill inside it makesgates appear distended, here is another
way to do the same thing. Now the curly braces ofgates are close to each other (lines 6 and 9).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/clinton/gates2.h

1 #ifndef GATESH
2 #define GATESH
3 #include <iostream>
4 using namespace std;
5
6 c lass gates {
7 public:
8 c lass bill; //declaration for class gates::bill
9 } ;

10
11 class gates::bill { //definition for class gates::bill
12 double d;
13 public:
14 bill(double initial_d): d(initial_d) {}
15 void g() const {cout << d << "\n";}
16 };
17 #endif

To giv e bill a last name by means of a ‘‘namespace’’, see pp. 1024−1025.

The variablebc in line 12 is not aclinton object or a data member of aclinton object. Infact,
we haven’t constructed anyclinton objects at all.bc is merely of a data type whose last name is
clinton .

Similarly, the variablebg in line 15 is not agates object or a data member of agates object. In
fact, we haven’t constructed any gates objects at all, and even if we did, agates object would have no
data members.bg is merely of a data type whose last name isgates .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/clinton/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "clinton.h"
4 #include "gates.h"
5 using namespace std;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.1 Endow a Data Type with a Last Name 421

422 OperationsExpressed by Overloaded Operators Chapter 4

6
7 i nt main()
8 {
9 c out << clinton::january << "\n"; //The last name of january is clinton.

10 clinton::hillary_t n = 10; //The last name of hillary_t is clinton.
11
12 clinton::bill bc = 20; //The last name of bill is clinton.
13 bc.g();
14
15 gates::bill bg = 3.14159265358979323846;
16 bg.g();
17
18 return EXIT_SUCCESS;
19 }

1 line 9
20 line 13
3.14159 line 16

Where can we call hillary_t by her first name?

The following example underlines all the territory where we are on a first-name basis with
hillary_t . Both ways of defining a member function, inline and non-inline, are shown.

As mentioned above, we are on a first-name basis with all the members of class anywhere within the
{ curly braces} of the body of a member function of that class. Therefore we don’t need anything in front
of the thirdhillary_t in line 10 ofclinton2.h and thehillary_t in line 5 ofclinton2.C .

We’re also on a first-name basis with all the members of a class anywhere within the parentheses of
the argument list of a member function of that class. Therefore we don’t need anything in front of the sec-
ondhillary_t in lines 10 and 11 ofclinton2.h or in front of the secondhillary_t in line 3 of
clinton2.C .

We’re also on a first-name basis with all the members of a class anywhere within the{ curly braces}
of the class declaration for that class (lines 4−12 ofclinton2.h). Thereforewe don’t need anything in
front of the firsthillary_t ’s in lines 10 and 11 ofclinton2.h .

But outside of these three places, we are not on a first-name basis withhillary_t . That’s why we
need aclinton2:: in front of the firsthillary_t in line 3 ofclinton2.C , and why we needed a
clinton:: in front of thehillary_t in line 10 of the abovemain.C .

At the start of line 3 ofclinton2.C , the clinton2::hillary_t is the return type of the
member function. Then theclinton2::g is the name of the member function.

1 #ifndef CLINTON2H //This file is clinton2.h.
2 #define CLINTON2H
3
4 c lass clinton2 {
5 i nt i;
6 public:
7 c linton2(int initial_i): i(initial_i) {}
8
9 t ypedef int hillary_t;

10 hillary_t f(hillary_t h) const {return sizeof(hillary_t);}
11 hillary_t g(hillary_t h) const;
12 };
13 #endif

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

1 #include "clinton2.h" //This file is clinton2.C.
2
3 c linton2::hillary_t clinton2::g(hillary_t h) const
4 {
5 r eturn sizeof(hillary_t);
6 }

▼ Homework 4.3.1a: make a typedef member

We had typedefs floating near classesstack , life , and employee , but we didn’t know where to
put them. Now we hav ea place for them to go.

Let the typedefvalue_type on pp. 153−154 be a public member of classstack . The typedef
must be in thepublic section of the class declaration, but it also has to come before it is used in line 6 of
theprivate section. Thepublic andprivate sections must therefore alternate

1 c lass stack {
2 public:
3 t ypedef int value_type; //must come before line 6
4 private:
5 s tatic const size_t max_size = 100; //must come before line 6
6 v alue_type a[max_size];
7 s ize_t n;
8 public:
9 s tack(): n(0) {}

10 ˜stack();
11
12 void push(value_type i);
13 value_type pop();
14 size_t size() const {return n;}
15 };

Do the same for thevalue_type of classnode in node.h on p. 214, and thess_t of class
employee on p. 259.
▲

▼ Homework 4.3.1b: make a typedef member

You can do this homework only with a version of C++ that permits the initialization of a static data
member in line 30 on p. 238.

In ¶ (2) of the homework on p. 239, we thought about letting letlife_xmax and life_ymax be
private static data members of the classlife on pp. 144−147. Do it now, and rename themxmax and
ymax. Initialize the new static data members as in line 30 on p. 238.

Then let the typedefs_life_matrix_t andlife_matrix_t be members of classlife (as
hillary_t is a public member of classclinton), and shorten their names to_matrix_t and
matrix_t .

1 c lass life {
2 s tatic const size_t xmax = 10; //must come before lines 4 and 7
3 s tatic const size_t ymax = 10;
4 t ypedef bool _matrix_t[ymax + 2][xmax + 2];//must come before line 5
5 _matrix_t matrix;
6 public:
7 t ypedef bool matrix_t[ymax][xmax]; //must come before line 8
8 l ife(const matrix_t initial_matrix);

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.1 Endow a Data Type with a Last Name 423

424 OperationsExpressed by Overloaded Operators Chapter 4

_life_matrix_t can become_matrix_t within the{ curly braces} of the class declaration for
classlife , and within the bodies and argument lists of the member functions of classlife . Similarly,
life_matrix_t can becomematrix_t within the{ curly braces} of the class declaration for class
life , and within the bodies and argument lists of the member functions of classlife . For example, the
first argument of the constructor can become amatrix_t in the above line 8; and we saw hillary_t in
line 10 ofclinton2.h .

But outside of these places,life_matrix_t will have to becomelife::matrix_t , just like
clinton::hillary_t in line 10 of the above main.C . For example, in themain function that plays
the game of life, you will have to change

9 l ife_matrix_t glider_matrix = {

to

10 life::matrix_t glider_matrix = {

▲

4.3.2 Iterators

Looping through a container

A container is a big object that contains smaller objects.The smaller objects don’t even hav eto be
objects: they can be values of a built-in data type such asint . And the big object doesn’t hav eto be an
object, either: it can even be a plain, old array.

The values held in a container are called itselements.The elements of a container, like the elements
of an array, can be pointers but not references.A reference has no memory address, so it cannot be con-
tained in anything.

An array is only the most rudimentary type of container. As we are about to see, it lacks some of the
standard features of a C++ container. Vectors and the standard librarystack in pp. 155−157 are better
containers because they are safer and easier to use.These and other container classes belong to a part of
the C++ Standard Library called the Standard Template Library, or STL.

When looping through a container, we always need a loop variable to keep track of how far we have
progressed. Ifthe container is an array or vector, the variable could be the pointer toint in lines 4−6:

1 i nt a[] = {10, 20, 30};
2 c onst size_t n = sizeof a / sizeof a[0];
3
4 f or (const int *p = a; p < a + n; ++p) {
5 c out << *p << "\n";
6 }

But a different type of container would need a different type of loop variable. If the container is a
linked list, the variable would have to be the pointer to each element in the list in lines 18−20:

7 s truct node {
8 i nt value;
9 node *next;

10 };
11
12 node c = { 30, 0};
13 node b = { 20, &c};
14 node a = { 10, &b};
15
16 node *begin = &a; //point to 1st node in list, or 0 if list empty
17

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

18 for (const node *p = begin; p != 0; p = p->next) {
19 cout << p->value << "\n";
20 }

a

10

b

20

c

30

0

value

next

The loops in the above examples were quite different. Now let’s contemplate something that is rarely
attempted in C.To make it easy to switch from one type of container to another, we would like to be able
to loop through any container by writing the same looping code.To switch containers, we will have to hide
the different loop variables, with their names and data types: theint *p in the above line 4 vs. thenode
*p in line 18. We will also have to hide three pieces of code:

(1) thedifferent pieces of code that use the variable to access each item in the container: the*p in line 5
vs. thep->value in line 19;

(2) thedifferent pieces of code that advance the variable: the++p in line 4 vs. thep = p->next in line
18;

(3) thedifferent pieces of code that test the variable: thep < a + n in line 4 vs. thep != 0 in line 18.

Iterators

In C++, a variable’s name and data type are hidden by making it a private data member of some
object. Anobject that hides a loop variable is called aniterator. We say that the iteratorrefers to one of
the elements in the container through which we are looping.

Code is hidden by putting it into the body of a function.The three functions of a C++ iterator are
conventionally namedoperator* , operator++ , andoperator!= . Most iterators also have an
operator-- .

Each container class requires a different class of iterator. For example, an iterator for looping
through the above array would contain the pointer to anint in line 5. We could also have made a postfix
operator++ , and a corresponding pair ofoperator-- ’s.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/array_iterator.h

1 #ifndef ARRAY_ITERATORH
2 #define ARRAY_ITERATORH
3
4 c lass array_iterator {
5 i nt *p;
6 public:
7 array_iterator(int *initial_p): p(initial_p) {}
8 i nt& operator*() const {return *p;}
9 array_iterator& operator++() {++p; return *this;}

10
11 friend bool operator!=(const array_iterator& it1,
12 const array_iterator& it2) {
13 return it1.p != it2.p;
14 }
15 };
16 #endif

If we also create the two functionsbegin andend in lines 9−10, returning iterators that refer to the begin-
ning and end of the array, we can rewrite the loop as follows.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.2 Iterators 425

426 OperationsExpressed by Overloaded Operators Chapter 4

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/array1.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "array_iterator.h"
4 using namespace std;
5
6 i nt a[] = {10, 20, 30};
7 c onst size_t n = sizeof a / sizeof a[0];
8
9 i nline array_iterator begin() {static const array_iterator it(a); return it;}

10 inline array_iterator end() {static const array_iterator it(a+n); return it;}
11
12 int main()
13 {
14 for (array_iterator it = begin(); it != end(); ++it) {
15 cout << *it << "\n"; //cout << it.operator*() << "\n";
16 }
17
18 return EXIT_SUCCESS;
19 }

10
20
30

On the other hand, an iterator for looping through the linked list would contain the pointer to anode
in line 10.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/list_iterator.h

1 #ifndef LIST_ITERATORH
2 #define LIST_ITERATORH
3
4 s truct node {
5 i nt value;
6 node *next;
7 } ;
8
9 c lass list_iterator {

10 node *p;
11 public:
12 list_iterator(node *initial_p): p(initial_p) {}
13 int& operator*() const {return p->value;}
14 list_iterator& operator++() {p = p->next; return *this;}
15
16 friend bool operator!=(const list_iterator& it1,
17 const list_iterator& it2) {
18 return it1.p != it2.p;
19 }
20 };
21 #endif

If we also create the two functionsbegin andend in lines 10 and 16, returning iterators that refer to the

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

beginning and end of the linked list, we can rewrite the loop as follows.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/list.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "list_iterator.h"
4 using namespace std;
5
6 node c = {30, 0};
7 node b = {20, &c};
8 node a = {10, &b};
9

10 inline const list_iterator& begin()
11 {
12 static const list_iterator it(&a);
13 return it;
14 }
15
16 inline const list_iterator& end() {
17 static const list_iterator it(0);
18 return it;
19 }
20
21 int main()
22 {
23 for (list_iterator it = begin(); it != end(); ++it) {
24 cout << *it << "\n"; //cout << it.operator*() << "\n";
25 }
26
27 return EXIT_SUCCESS;
28 }

10
20
30

Our loops are now identical, except for the name of the data type of the iterator. (We will eventually
use a ‘‘template’’ to switch this name.) All three iterators have the outward appearance of a pointer toint .
In fact, a much simpler implementation is possible for one of the iterators.Thearray_iterator can be
the typedef in line 8 for a plain old pointer to anint :

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/array2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt a[] = {10, 20, 30};
6 c onst size_t n = sizeof a / sizeof a[0];
7
8 t ypedef int *array_iterator;
9 i nline array_iterator begin() {return a;}

10 inline array_iterator end() {return a + n;}
11

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.2 Iterators 427

428 OperationsExpressed by Overloaded Operators Chapter 4

12 int main()
13 {
14 for (array_iterator it = begin(); it != end(); ++it) {
15 cout << *it << "\n";
16 }
17
18 return EXIT_SUCCESS;
19 }

10
20
30

The iterators we will use in real life have two improvements over our array_iterator and
list_iterator . First, each class of iterator will have the same name, simplyiterator . To make
this possible, each one will have a different last name. The name will always be that of the container class
through which the iterator loops.Unfortunately, we could not illustrate this with ourarray_iterator
and list_iterator . The array and linked list were not objects, so they belonged to no class. But we
will soon see a container class with the strange namevector<int> , and will use a
vector<int>::iterator to loop through an object of this class.

Second, each container class already has two public member functions,begin and end , which
return the initial and final values for an iterator that will loop through the container. The return value of
begin is an iterator that refers to the first element of the container, provided, of course, that the container
has a first element. Some containers are empty.

On the other hand, the return value ofend doesnot refer to the last element of the container. It
refers to the empty location just beyond the last element. If the container is empty, the return value of
begin will also refer to this location:begin andend will be the same.

Unfortunately, we had to illustrate ourarray_iterator andlist_iterator with begin and
end functions that were not member functions. The array and linked list were not classes, so they couldn’t
have member functions.

The operators* , ++, and != were chosen to make every iterator look like a pointer looping through
an array. In fact, an iterator is sometimes thought of as any variable to which we can repeatedly apply these
three operators to get data from somewhere or to put data to somewhere. The‘‘ somewhere’’ is called a
container. By these definitions, there are many kinds of containers besides arrays and vectors.

Thanks to these operators, we can now use exactly the same notation to loop through any kind of
container: array, vector, list, stack, queue, deque (double-ended queue), etc.The consistency of the notation
will eventually make our templates applicable to more types of containers.

4.3.3 Classvector

Three drawbacks of an array

A C++ vector is an improved array. To motivate its introduction, we list the drawbacks of a C or C++
array.

(1) There is no way to make an array grow or shrink atruntime, as the program runs. Even if the size
of the array is fixed, there is no way to determine the size at runtime.

1 #include <iostream>
2 #include <cstddef> //for size_t
3 using namespace std;
4
5 c out << "How many array elements do you need?\n";
6 s ize_t n; //use this data type for the number of elements in an array

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

7 c in >> n;
8 i nt a[n]; //won’t compile: can’t use a variable as the dimension

The number of elements must be fixed atcompile time, when the program is written.To allocate a block
of memory whose size may be set and changed at runtime, C programmers must resort to the functions
malloc , realloc , and free . C++ programmers have a better alternative which we are about to see.

(2) An array performs no subscript checking.If a subscript is out of bounds, the program will blow
up. If we’re lucky.

9 i nt a[] = {10, 20, 30};
10 cout << a[3] << "\n"; //subscript out of range

(3) To copy and compare arrays, we have to write loops:

11 int a[] = {10, 20, 30};
12 int b[3];
13
14 //Copy a i nto b.
15 for (size_t i = 0; i < 3; ++i) {
16 b[i] = a[i];
17 }
18
19 //Compare a and b.
20 for (size_t i = 0; i < 3; ++i) {
21 if (a[i] != b[i]) {
22 cout << "The arrays are unequal.\n";
23 goto done;
24 }
25 }
26 cout << "The arrays are equal.\n";
27 done:;

I wish that arrays could be copied and compared likescalars, i.e., variables that are not arrays:

28 int s = 1 0; //s and t are scalars
29 int t = s ; / /s can be copied with an =
30
31 if (s == t) { //s and t can be compared with an ==

Line 35 will compile, but it does the wrong thing.

32 int a[] = {10, 20, 30};
33 int b[3] = a; //won’t compile: a cannot be copied with an =
34
35 if (a == b) { //compares the addresses, not the contents

Class vector

A vector is an improved array. Classvector is a template class: one whose name contains the
name of another data type, inserted into<angle brackets>. The vector of classvector<int> in line 8
will store and retrieve int ’s, as will the stack of classstack<int> in pp. 155−157.

A vector acts as a one-dimensional array. If more than one dimension is needed, use a slice of a
valarray . This kind of slice has nothing to do with the bad kind of slicing.

The template classvector is declared in the header file<vector> . The following program shows
five constructors for classvector<int> , in lines 8−10, 14, and 16. The one-argument constructor in line
9 initializes eachint in the vector to zero because it calls the no-argument constructor for the data type
int . In line 19 ofmain.C on p. 142, we saw that this no-argument constructor creates anint whose

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.3 Classvector 429

430 OperationsExpressed by Overloaded Operators Chapter 4

value is zero.

Lines 9 and 16 call two different one-argument constructors for classvector<int> . The argu-
ment in line 9 has parentheses to emphasize that a function is being called; the one in line 16 has an equal
sign to emphasize that the objectv4 is being copied. This is the conventional notation for calling the copy
constructor.

A vector has three advantages over an array.

(1) A vector can grow as the program runs, which we will demonstrate shortly. Instead of growing a
block of memory by calling the functionsmalloc , realloc , and free , we will call the member func-
tions of a vector object. The number of elements currently in use is called the vector’ssize; the number of
elements for which there is room is called the vector’scapacity.To get the size and capacity, call thesize
and capacity member functions in lines 19−20.The output of these lines show that the vector v5 is
born filled to capacity.

Do not attempt to get the current number of elements in a vectorv by saying

sizeof v / sizeof v[0]

Thesizeof a variable never changes as the program runs. It is determined once and for all when the pro-
gram is compiled.

The member functionempty in line 18 returns abool , true if the size of the vector is zero.By
default, abool prints as a1 or 0. To change this, see line 30 ofint.C on p. 354.

(2) A vector will give us a civilized error message in response to a bad subscript.We won’t be able
to do this until we cover exceptions. Butlet’s begin to look at what happens when we apply a subscript to a
vector.

When we write line 22, the computer behaves as if we had written the code in the comment beside it.
We are really calling the member functionoperator[] , and the number we wrote in the square brackets
is passed as an argument to this function. The subscripts start at zero, so thev5[1] in line 22 is the second
element of the vector.

The member functionoperator[] performs no subscript checking: it lives fast and dangerously.
But another member function,at , will perform subscript checking. When we do exceptions, we will
change the expressionv5[1] in line 22 tov5.at(1) .

(3) A vector can be compared to another vector with the< in line 26, and copied into another vector
with the= in line 27. To compare and copy arrays, we would have to write for loops.

The comparison in line 26 works the same way as string comparison. It loops through the two vec-
tors in tandem, searching for the first mismatching pair of elements.In the case ofv3 andv4 , the first mis-
match is at subscript 1 (the second element).Sincev3[1] is less thanv4[1] , the comparison in line 26
yields the value true . If no mismatch is encounted, the vectors count as equal if they are the same size;
otherwise, the shorter one counts as being smaller.

Warning: the two arguments in line 10 would be in the opposite order ifv3 were avalarray . See
line 10 ofsieve.C on p. 902.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/vector.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 v ector<int> v1; //born empty, but we can insert int’s later
9 v ector<int> v2(3); //born containing 0, 0, 0

10 vector<int> v3(3, 10); //born containing 10, 10, 10

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

11
12 const int a[] = {10, 20, 30};
13 const size_t n = sizeof a / sizeof a[0];
14 vector<int> v4(a, a + n); //born containing 10, 20, 30
15
16 vector<int> v5 = v4; //born containing 10, 20, 30: copy constructor
17
18 cout << "v5.empty() == " << v5.empty() << "\n"
19 << "v5.size() == " << v5.size() << "\n"
20 << "v5.capacity() == " << v5.capacity() << "\n\n";
21
22 cout << v5[1] << "\n"; //cout << v5.operator[](1) << "\n";
23 v5[1] = 21; //Change the 20 to 21: v5.operator[](1) = 21;
24 cout << v5[1] << "\n"; //cout << v5.operator[](1) << "\n";
25
26 if (v3 < v4) { //Compare two vectors: if (operator<(v3, v4)) {
27 v1 = v5; //assignment: v1.operator=(v5);
28 }
29
30 return EXIT_SUCCESS;
31 }

By default, abool is output as1 or 0. To change this, see p. 354.

v5.empty() == 0
v5.size() == 3
v5.capacity() == 3

20
21

Make a vector larger by calling push_back

We can add an extra element to the end of a vector by calling itspush_back member function.For
avector<int> , the argument ofpush_back will be anint .

Each call topush_back adds 1 to the size of the vector. If the new size exceeds the capacity, the
latter is automatically increased.On my platform, the call topush_back in line 15 doubles the capacity
from 3 to 6. Line 22 doubles it again, from 6 to 12.

My vector behaves this way because the more the size increases, the more probable it is that a fur-
ther increase is coming. The C++ Standard doesn’t actually say that the capacity has to be doubled each
time it is increased. But let’s see what would go wrong if the capacity was merely increased by 1.

An increase in capacity has to do more than just allocate a bigger block of memory. It must also
copy the existing elements into the new block. For example, imagine that we started with an empty vector
and calledpush_back n times. Thesecond call topush_back would copy the one existing element
into a new block. Thethird call topush_back would copy two existing elements.The n calls would
copy a total of

1 + 2 + 3 + . . . + n − 1 =
(n − 1)n

2
=

1

2
n2 −

1

2
n

elements. Thetime it would take is therefore proportional to thesquare of the number of elements.But
this ‘‘quadratic’’ behavior is too slow for the C++ Standard, which demands ‘‘amortized constant time’’.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/push_back.C

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.3 Classvector 431

432 OperationsExpressed by Overloaded Operators Chapter 4

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 c onst int a[] = {10, 20, 30};
9 c onst size_t n = sizeof a / sizeof a[0];

10 vector<int> v(a, a + n); //born containing 10, 20, 30
11
12 cout << "v.size() == " << v.size()
13 << ", v.capacity() == " << v.capacity() << "\n";
14
15 v.push_back(40);
16
17 cout << "v.size() == " << v.size()
18 << ", v.capacity() == " << v.capacity() << "\n";
19
20 v.push_back(50);
21 v.push_back(60);
22 v.push_back(70);
23
24 cout << "v.size() == " << v.size()
25 << ", v.capacity() == " << v.capacity() << "\n";
26
27 return EXIT_SUCCESS;
28 }

v.size() == 3, v.capacity() == 3 lines 12−13
v.size() == 4, v.capacity() == 6 lines 17−18
v.size() == 7, v.capacity() == 12 lines 24−25

Make a vector larger by calling reserve

The capacity of a vector can be changed manually by calling thereserve member function.Do
this before callingpush_back to avoid the automatic doubling.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/reserve.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 c onst int a[] = {10, 20, 30};
9 c onst size_t n = sizeof a / sizeof a[0];

10 vector<int> v(a, a + n); //born containing 10, 20, 30
11
12 cout << "v.size() == " << v.size()
13 << ", v.capacity() == " << v.capacity() << "\n";
14

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

15 v.reserve(7); //Prevent the push_back’s from increasing the capacity.
16
17 cout << "v.size() == " << v.size()
18 << ", v.capacity() == " << v.capacity() << "\n";
19
20 v.push_back(40);
21 v.push_back(50);
22 v.push_back(60);
23 v.push_back(70);
24
25 cout << "v.size() == " << v.size()
26 << ", v.capacity() == " << v.capacity() << "\n";
27
28 return EXIT_SUCCESS;
29 }

v.size() == 3, v.capacity() == 3 lines 12−13
v.size() == 3, v.capacity() == 7 lines 17−18
v.size() == 7, v.capacity() == 7 lines 25−26

Tw o data types with the same first name and different last names

The above programs printed the return value of thesize andcapacity member functions of class
vector . Now we would like to store these values into a variable. Whatdata type should it be?

The C++ Standard Library contains a typedefsize_type for the data type of a variable that holds
thesize or capacity member function of any vector. But there is a complication.

Suppose our machine has 1,000,000 bytes of memory. If sizeof (int) == 4 , the biggest possible
vector<int> would have 250,000 elements.A variable that holds the return value of
vector<int>::size would have to be big enough to hold the number 250,000.Anything bigger
would be wasteful.

1 v ector<int> vi(3, 10); //born containing 10, 10, 10
2 s ize_type s = vi.size();

If sizeof (char) == 1 , the biggest possiblevector<char> would have 1,000,000 elements.
A variable that holds the return value ofvector<char>::size would have to be big enough to hold
the number 1,000,000. Again, anything bigger would be wasteful.

3 v ector<char> vc(3, ’A’); //born containing ’A’, ’A’, ’A’
4 s ize_type s = vc.size();

To let us use the same name,size_type , for these two different data types, they hav ebeen given
two different last names:

5 v ector<int> vi(3, 10);
6 v ector<int>::size_type s = vi.size(); //variable big enough to hold 250,000

7 v ector<char> vc(3, ’A’);
8 v ector<char>::size_type s = vc.size(); //variable big enough to hold 1,000,000

Often the name of a container is used as the last name of a data type that helps us loop through the con-
tainer. The other examples we have seen arevalue_type anddifference_type :

9 v ector<int> v(3, 10);
10 vector<int>::size_type s = v .size();
11 vector<int>::value_type i = v [0];

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.3 Classvector 433

434 OperationsExpressed by Overloaded Operators Chapter 4

12 vector<int>::difference_type d = v .end() - v.begin();

(In the above line 11, why not say a simpleint instead ofvector<int>::value_type ? We will
return to this when we know more about templates.)

Loop through a vector with an iterator

We now discard thesize_type i in line 15 in favor of the iteratorit in line 26. If the data type
vector<int>::iterator is a typedef forint * , the operators!= , * , and ++ in lines 26−28 will be
the built-in ones that operate on pointers.If the data typevector<int>::iterator is a class, lines
26−28 will make the computer behave as if we had written lines 20−23.Think of lines 20−23 as an
‘‘ exploded view’’ of 26−28.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/iterator.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 c onst int a[] = {10, 20, 30};
9 c onst size_t n = sizeof a / sizeof a[0];

10 vector<int> v(a, a + n); //born containing 10, 20, 30
11
12 const vector<int>::size_type s = v.size();
13 cout << "size == " << s << "\n\n";
14
15 for (vector<int>::size_type i = 0; i < s; ++i) {
16 cout << v[i] << "\n"; //cout << v.operator[](i) << "\n";
17 }
18 cout << "\n";
19
20 for (vector<int>::iterator it = v.begin(); operator!=(it, v.end());
21 it.operator++()) {
22 cout << it.operator*() << "\n";
23 }
24 cout << "\n";
25
26 for (vector<int>::iterator it = v.begin(); it != v.end(); ++it) {
27 cout << *it << "\n";
28 }
29 cout << "\n";
30
31 return EXIT_SUCCESS;
32 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

size == 3 lines 12−13

10 lines 15−17
20
30

10 lines 20−23
20
30

10 lines 26−28
20
30

Warning. Whena vector ’s capacity is increased, the elements are copied into a bigger block of
memory. This means that an iterator referring to an element in the original block will behave unpredictably
when dereferenced or incremented.

1 v ector<int> v(argument(s) for constructor);
2 v ector<int>::iterator it = v.begin();
3 c out << *it << "\n"; //can dereference it here
4
5 v .push_back(10); //might increase the capacity
6 v .reserve(v.size() + 10); //definitely increases the capacity
7 / /cout << *it << "\n"; //can no longer dereference it here
8
9 i t = v .begin();

10 cout << *it << "\n"; //can dereference new value of it

Tw o ways to make a pointer const

p1 always points to the same variable. p2 gives us read-only access toa. We saw this in pp. 50−52.

1 #include <cstdlib>
2
3 i nt main()
4 {
5 i nt a[] = {10, 20, 30};
6
7 i nt *const p1 = a;
8 ++p1; //won’t compile: p1 must always point to a[0]
9

10 const int *p2 = a;
11 ++*p2; //won’t compile: can’t use p2 to change a[0] from 10 to 11
12
13 const int *const p3 = a; //both of the above
14 ++p3; //won’t compile: p3 must always point to a[0]
15 ++*p3; //won’t compile: can’t use p3 to change a[0] from 10 to 11
16
17 a[0] = 11; //a is not a const array.
18 return EXIT_SUCCESS;
19 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.3 Classvector 435

436 OperationsExpressed by Overloaded Operators Chapter 4

Tw o ways to make an iterator const

An iterator can be made constant in the same two ways, but the syntax is different. it1 always
refers to the same element.it2 gives us read-only access tov .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/const_iterator.C

1 #include <cstdlib>
2 #include <vector>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt a[] = {10, 20, 30};
8 s ize_t n = sizeof a / sizeof a[0];
9 v ector<int> v(a, a + n);

10
11 const vector<int>::iterator it1 = v.begin();
12 //++it1; //won’t compile: it1 must always refer to v[0]
13
14 vector<int>::const_iterator it2 = v.begin();
15 //++*it2; //won’t compile: can’t use it2 to change v[0] from 10 to 11
16
17 const vector<int>::const_iterator it3 = v.begin(); //both of the above
18 //++it3; //won’t compile: it3 must always refer to v[0]
19 //++*it3; //won’t compile: can’t use it3 to change v[0] from 10 to 11
20
21 v[0] = 11; //v.operator[](0) = 11
22 return EXIT_SUCCESS;
23 }

A vector of objects

Classobj is in pp. 179−180. It will let us ‘‘x-ray’’ a vector to see exactly how manyobj ’s the vec-
tor constructs and destructs, and in what order. These statistics may be different on each platorm.

I thought line 11 would construct threeobj ’s by calling the default constructor for classobj three
times. Butthe output shows that it constructedfour obj ’s: one by the default constructor and three by the
copy constructor. The author of classvector must have assumed that for most classes, the copy construc-
tor is less expensive than the default constructor. This is certainly the case for classdate : its default con-
structor calls system functions to get and parse the current date, while its copy constructor merely copies
the integer data member(s).

The choice of constructors is not only a performance issue.The calls to the copy constructor ensure
that the three objects in the array will be as identical as the copy constructor can make them. If these
objects had been constructed by three calls to the default constructor, they might not have been identical.
Different constructors can do different things.

Line 14 can be used only for objects whose constructor takes exactly one argument. Ifthe construc-
tor needs more than one argument we must use line 17, which would allow more than one argument in the
innermost parentheses.

On some platforms line 14 constructs fewer objects than line 17, and is therefore to be preferred.But
a superficial work-around would let us use line 14 even for objects whose constructor takes more than one
argument. Simplydefine a one-argument constructor whose argument is a structure containing more than
one field.

Similarly, lines 20−26 can be used only for objects whose constructor takes one argument. Ifthere is
more than one argument (or with archaic versions of Microsoft Visual C++) we must use lines 29−36,

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

which would allow more than one argument in the parentheses in lines 30−32.On some platforms lines
20−26 construct fewer objects than lines 29−36, and are therefore to be preferred. But we can apply the
same workaround.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/vector_obj.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include "obj.h"
5 using namespace std;
6
7 i nt main()
8 {
9 v ector<obj> v1; //born empty

10
11 vector<obj> v2(3);
12 cout << "\n";
13
14 vector<obj> v3(3, 10);
15 cout << "\n";
16
17 vector<obj> v4(3, obj(20));
18 cout << "\n";
19
20 const int a[] = {
21 30,
22 40,
23 50
24 };
25 const size_t na = sizeof a / sizeof a[0];
26 vector<obj> v5(a, a + na);
27 cout << "\n";
28
29 const obj b[] = {
30 obj(60),
31 obj(70),
32 obj(80)
33 };
34 cout << "\n";
35 const size_t nb = sizeof b / sizeof b[0];
36 vector<obj> v6(b, b + nb);
37 cout << "\n";
38
39 for (vector<obj>::const_iterator it = v6.begin(); it != v6.end(); ++it) {
40 cout << *it << "\n"; //can also say (*it).print() or it->print()
41 }
42 cout << "\n";
43
44 return EXIT_SUCCESS;
45 }

The objects defined inmain are destructed when we return frommain in line 44. The vectors are
destructed from youngest to oldest, and so are theobj ’s in b.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.3 Classvector 437

438 OperationsExpressed by Overloaded Operators Chapter 4

The destructor for a vector calls the destructor for each object in the vector. But we get another
shocker: the elements in a vector are not necessarily destructed from youngest to oldest.We can see this in
v6 andv5 , because their elements have distinct values. Infact, the elements are not even destructed in
order of descending subscripts.They are always destructed from front to back because internally, the
destructor for a vector may call ‘‘algorithms’’ whose arguments are merely ‘‘forward’’ i terators (pp.
839−840).

When we write the above line 40, the computer behaves as if we had written line 46:

46 operator<<(operator<<(cout, it.operator*()), "\n");

(Line 46 assumes thatit is an object.If it is merely a pointer, then line 46 would merely have *it in
place of theit.operator*() .) Theit in line 39 is an iterator for looping through a vector that holds
obj ’s, so the expression*it in lines 40 and 46 is of data typeobj . This causes the rightoperator<<
in line 46 to be the one whose second argument is anobj . This function is a friend of classobj ; we saw
its definition in line 18 ofobj.h in p. 180.

I also want to demonstrate how to call a member function of an object retrieved from a vector with an
iterator. Unfortunately, our classobj has only the member functionprint , rendered obsolete by the
friend operator<< . But we’ll call it anyway, just to demonstrate the syntax.Change line 40 to lines
47−48.

47 (*it).print(); //Don’t write this: line 49 is simpler.
48 cout << "\n";

Line 47 calls theprint member function of the anonymousobj *it . It must first retrieve theobj from
the vector before it can call theprint member function of theobj . That’s why the * must be applied to
the it before the.print() is applied to the*it . To make this happen even though the* has lower
precedence than the dot, line 47 needs the parentheses around the expression*it . Without them, the com-
puter would attempt to apply the.print() to the iterator first. That would be totally wrong: we want to
call theprint member function of anobj , not of the iterator.

But line 47 was for pedagogical purposes only. Change it to 49. In C and C++, the single operator
-> can do the work of a* followed by a dot. And now that there is only one operator, we no longer need
the parentheses around the*it in line 47.

49 it->print();
50 cout << "\n";

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

default construct 0 Line 11 constructsv2 .
copy construct 0 Line 11 constructsv2 .
copy construct 0 Line 11 constructsv2 .
copy construct 0 Line 11 constructsv2 .
destruct 0 Line 11 constructsv2 .

construct 10 Line 14 constructsv3 .
copy construct 10 Line 14 constructsv3 .
copy construct 10 Line 14 constructsv3 .
copy construct 10 Line 14 constructsv3 .
destruct 10 Line 14 constructsv3 .

construct 20 Line 17 constructsv4 .
copy construct 20 Line 17 constructsv4 .
copy construct 20 Line 17 constructsv4 .
copy construct 20 Line 17 constructsv4 .
destruct 20 line 17 constructsv4 : destruct the firstobj .

construct 30 Lines 20−26 constructv5 .
construct 40 Lines 20−26 constructv5 .
construct 50 Lines 20−26 constructv5 .

construct 60 Lines 29−33 construct the arrayb.
construct 70 Lines 29−33 construct the arrayb.
construct 80 Lines 29−33 construct the arrayb.

copy construct 60 Line 36 constructsv6 .
copy construct 70 Line 36 constructsv6 .
copy construct 80 Line 36 constructsv6 .

60 Lines 39−41
70 Lines 39−41
80 Lines 39−41

destruct 60 Line 44 destructs the threeobj ’s in v6 in an unexpected order.
destruct 70 Line 44 destructs the threeobj ’s in v6 in an unexpected order.
destruct 80 Line 44 destructs the threeobj ’s in v6 in an unexpected order.
destruct 80 Line 44 destructs the threeobj ’s in the arrayb in the expected order.
destruct 70 Line 44 destructs the threeobj ’s in the arrayb in the expected order.
destruct 60 Line 44 destructs the threeobj ’s in the arrayb in the expected order.
destruct 30 Line 44 destructs the threeobj ’s in v5 in an unexpected order.
destruct 40 Line 44 destructs the threeobj ’s in v5 in an unexpected order.
destruct 50 Line 44 destructs the threeobj ’s in v5 in an unexpected order.
destruct 20 Line 44 destructsv4 ; we can’t tell in what order.
destruct 20 Line 44 destructsv4 .
destruct 20 Line 44 destructsv4 .
destruct 10 Line 44 destructsv3 .
destruct 10 Line 44 destructsv3 .
destruct 10 Line 44 destructsv3 .
destruct 0 Line 44 destructsv2 .
destruct 0 Line 44 destructsv2 .
destruct 0 Line 44 destructsv2 ; thenv1 is destructed silently.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.3 Classvector 439

440 OperationsExpressed by Overloaded Operators Chapter 4

Append an object to a vector of objects

The following program appears to construct and destruct only oneobj , in lines 10 and 17.The out-
put shows, however, that it actually constructs and destructs two. Theunderlined lines of output betray the
presence of the secondobj , constructed when the argumentob in line 11 is passed by value.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/copy.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include "obj.h"
5 using namespace std;
6
7 i nt main()
8 {
9 v ector<obj> v;

10 obj ob = 10;
11 v.push_back(ob);
12
13 for (vector<obj>::const_iterator it = v.begin(); it != v.end(); ++it) {
14 cout << *it << "\n";
15 }
16
17 return EXIT_SUCCESS; //Destruct ob and v, in that order.
18 }

construct 10 Line 10 constructsob .
copy construct 10 line 11
10 line 14
destruct 10 Line 17 destructsob .
destruct 10 Line 17 destructs theobj within v , and then destructsv .

I’m not telling you not topush_back onto a vector of objects. But you must understand the price
to be paid: every object that youpush_back into the vector will be duplicated.Is there a way to avoid
this?

Av oid the unwanted copying

To avoid making an unwanted copy of each object inserted into a vector, let the vector be a vector of
pointers to objects in line 10. Thepush_back function of this vector takes a pointer to anobj (line 11).

As usual, the destructor for a vector calls the destructor for each item in the vector. But the items in
this vector are merely pointers, and a pointer has no destructor. (Or we can pretend that a pointer has a
destructor that does nothing.) The destructor for the vectorv will therefore not call the destructor for the
objectob .

We constructob beforev to ensure that line 18 will destructob afterv . Wereob destructed first,v
would momentarily be left holding a pointer to the place whereob used to be. This is harmless, sincev is
destructed in the next moment. But it is potentially dangerous for a pointer to outlive the variable to which
it points.

A vector can hold pointers, but not references. See p. 80.

The it in line 13 is an iterator for looping through a vector that holds pointers toobj ’s. The expres-
sion*it in lines 14 and 15 is therefore of data type ‘‘pointer toobj ’’ , and the**it is of typeobj .

I also want to demonstrate how to call a member function of one of these objects.Unfortunately, our
classobj has only the member functionprint , rendered obsolete by the friendoperator<< . But line

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

15 shows how to call it anyway, just to demonstrate the syntax.

The (**it).print() calls theprint member function of the anonymous object**it . The
first (i.e., rightmost)* retrieves a pointer to theobj from the vector. The second (i.e., leftmost)* derefer-
ences the pointer to get theobj itself. Finally, the dot calls theprint member function of theobj . To
apply the two * ’s to the it before the dot is applied to the**it , line 15 needs the parentheses around the
expression**it . Without them, the computer would attempt to apply the dot to the iterator. That would
be totally wrong: we want to call theprint member function of theobj , not of the iterator. The iterator
has noprint .

The (*it)->print() in line 15 would do the same thing. In C and C++, the single operator->
can do the work of a* followed by a dot. Does this make the code easier to read?

When we have inheritance, we will see another reason why vectors and other containers usually con-
tain pointers to objects, rather than the objects themselves. Seep. 487.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/vector/vector_obj_ptr.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 #include "obj.h"
5 using namespace std;
6
7 i nt main()
8 {
9 obj ob = 10;

10 vector<obj *> v;
11 v.push_back(&ob);
12
13 for (vector<obj *>::const_iterator it = v.begin(); it != v.end(); ++it){
14 cout << "The obj at address " << *it << " is " << **it << ".\n";
15 //Can also say (**it).print() or (*it)->print()
16 }
17
18 //Destruct v a nd ob, in that order.
19 //Do not allow v to even momentarily hold a pointer to a destructed obj.
20 return EXIT_SUCCESS;
21 }

construct 10 Line 9 constructsob .
The obj at address 0xffbff0b0 is 10. Lines 13−16
destruct 10 Line 18 destructsv and thenob .

▼ Homework 4.3.3a: define anoperator- to measure the distance between two life objects

Define anoperator<= that would returntrue if the first life object would evolve into the sec-
ond one, and anoperator- that would tell us how many generations it would take. Sinceour playing
board is of finite size, we don’t hav e to worry about these functions going into an infinite loop.They
should ignore theg data member of classlife .

1 i f (g1 <= g2) { //if (operator<=(g1, g2)) {
2 c out << "g1 will evolve into g2 after "
3 << g2 - g 1 / /<< operator-(g2, g1)
4 << " g enerations.\n";
5 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.3 Classvector 441

442 OperationsExpressed by Overloaded Operators Chapter 4

Theoperator- in the above line 3 will create a copy of g1 and move the copy forward one gener-
ation at a time until one of the following happens, whichever comes first.

(1) Thecopy contains the same picture asg2 .

(2) Thecopy contains the same picture as in an earlier generation;

(3) anint can’t count any higher.

In the latter two cases,operator- should returnINT_MAX to show thatg1 will never evolve into
g2 , at least not in any number of generations that can be counted with anint . INT_MAX is a macro for
the largestint value, defined in the header file<climits> .

operator- will push_back each generation ofg1 into a local vector<life> . For the
present, we will assume (i.e., pray) that eachpush_back will be successful; on p. 628 we will check if it
‘‘ throws an exception’’. For the present, we will search thevector with a for loop; on p. 861 we will
search it with thefind algorithm.

operator<= can do almost all of its work by callingoperator- . Also define anoperator< ,
returningtrue if the objects are unequal and the left one can evolve into the right one. Note that for a sin-
gle life object we can easily have a < a . For two life objects, we can have a < b andb < a . For
three, we can have a < b andb < c without also having a < c ; for example, the total distance froma to c
may add up to more thanINT_MAX. These nonstandard behaviors will make our operator< ineligible
for most of the expected applications of an< in the Standard Template Library (pp. 776−777). Maybe we
should have named itcan_evolve_into instead ofoperator< .
▲

4.3.4 Classlist

vector vs. list

A vector is like a CD and alist is like a tape. We can jump around in avector but we must
wind and rewind alist .

Use avector to access the elements in a non-consecutive order, i.e., for random access. Use a
list to perform many insertions and deletions quickly. Although classvector does have the member
functionsinsert anderase , they’re slower than the ones of classlist .

There’s another problem with theinsert anderase member functions of classvector . All the
elements after the insertion or deletion point get moved to new locations. Thisinvalidatesany iterator that
refers to one of these elements.It’s even worse when the capacity of avector is changed: all the ele-
ments may be moved, and all the iterators are invalidated.

The words in the circles are names of public members of classesvector andlist . Most of them
are members that are member functions; the[] is a shorthand foroperator[] . Four of them are mem-
bers that are data types (like thehillary_t member of classclinton): iterator ,
const_iterator , size_type , andvalue_type .

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

vector list

iterator
const_iterator

begin
end

size
resize

size_type
value_type

empty
clear

push_back
pop_back

capacity
reserve

[]
at

insert
erase

remove

push_front
pop_front

sort

Construct a list of int’s

The constructors for classlist take the same arguments as those for classvector .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/list/list.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 #include <vector>
5 using namespace std;
6
7 i nt main()
8 {
9 l ist<int> li1; //born empty, but we can insert int’s later

10 list<int> li2(3); //born containing 0, 0, 0
11 list<int> li3(3, 10); //born containing 10, 10, 10
12
13 const int a[] = {10, 20, 30};
14 const size_t n = sizeof a / sizeof a[0];
15 list<int> li4(a, a + n); //born containing 10, 20, 30
16
17 vector<int> v(a, a + n); //born containing 10, 20, 30
18 list<int> li5(v.begin(), v.end()); //born containing 10, 20, 30
19
20 list<int> li6 = li5; //born containing 10, 20, 30: copy constructor
21
22 for (list<int>::const_iterator it = li6.begin(); it != li6.end(); ++it) {
23 cout << *it << "\n";
24 }
25
26 return EXIT_SUCCESS;
27 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.4 Classlist 443

444 OperationsExpressed by Overloaded Operators Chapter 4

10
20
30

Three ways to insert an element into a list

We must construct an iterator before we can call theinsert in line 15. It must be a plain
iterator , not aconst_iterator .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/list/insert.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 using namespace std;
5
6 i nt main()
7 {
8 l ist<int> li; //born empty
9

10 li.push_back(30); //Class vector has the same push_back function,
11 li.push_front(10); //but not a push_front function.
12
13 list<int>::iterator it = li.begin(); //it refers to the 10.
14 ++it; //Now it refers to the 30.
15 li.insert(it, 20); //Insert a 20 b efore the 30.
16
17 for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
18 cout << *it << "\n";
19 }
20
21 return EXIT_SUCCESS;
22 }

A more complicated way to do line 11 would be

23 li.insert(li.begin(), 10);

We can combine lines 14−15 to

24 li.insert(++it, 20);

10
20
30

▼ Homework 4.3.4a: the increment of death

Theerase in line 14 removes the element to which the iterator refers. There are no bugs up to and
including line 14.

But after of theerase , the++ in line 15 will behave unpredictably. We cannot increment a list iter-
ator that refers to an element that has been erased. This is because each list element contains a pointer to
the next element, which theoperator++ function uses to find the next element. If an element has been
erased, the pointer inside it will also be erased, cutting the ground out from under any iterator that referred
to the element. Itsoperator++ will not be able to navigate to the next element.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

The++ in line 15 will therefore leave the iterator referring to an unpredictable location.Line 16 will
then blow up—if you are lucky. Otherwise, it will output the wrong answer. How lucky are you?

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/list/increment.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 using namespace std;
5
6 i nt main()
7 {
8 c onst int a[] = {10, 20, 30};
9 c onst size_t n = sizeof a / sizeof a[0];

10 list<int> li(a, a + n);
11 list<int>::iterator it = li.begin();
12
13 cout << "The first element of the list is " << *it << ".\n";
14 li.erase(it);
15 ++it;
16 cout << "The second element of the list is " << *it << ".\n";
17
18 return EXIT_SUCCESS;
19 }

The first element of the list is 10.
The second element of the list is 0. Should have been20 .

▲

Continue looping after an erasure

Theerase function in line 19 removes one element each time it is called.The remove function in
line 25 removes every element that is equal to30 . Theclear function in line 33 removes every element,
period. If the elements have destructors (which these don’t), all three functions will call the destructor for
each element removed from the list.

The argument oferase is an iterator referring to the element to be removed; the argument of
remove is thevalue of each element to be removed. remove contains a searching loop which applies the
operator== to each element in the list. Before callingremove for a list of objects, we must therefore
write anoperator== function for that class of object.

I’m sorry that the++i is not at the traditional place in thefor loop, at the end of line 17.But as we
just saw, we cannot increment a list iterator referring to an element that has been erased.Fortunately, the
erase function returns an iterator referring to the element after the one that was erased. (If there is no ele-
ment after the one that was erased,erase will return the same value as theend function.) Unfortunately,
the++i had to be buried in anelse .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/list/erase.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 using namespace std;
5
6 i nt main()
7 {

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.4 Classlist 445

446 OperationsExpressed by Overloaded Operators Chapter 4

8 c onst int a[] = {30, 20, 30, 10, 20, 10};
9 c onst size_t n = sizeof a / sizeof a[0];

10 list<int> li(a, a + n);
11
12 for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
13 cout << *it << "\n";
14 }
15 cout << "\n";
16
17 for (list<int>::iterator it = li.begin(); it != li.end();) {
18 if (*it == 20) {
19 it = l i.erase(it); //Get rid of one 20.
20 } else {
21 ++it;
22 }
23 }
24
25 li.remove(30); //Get rid of every 30.
26
27 for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
28 cout << *it << "\n";
29 }
30 cout << "\n";
31
32 cout << "size == " << li.size() << "\n";
33 li.clear();
34 cout << "size == " << li.size() << "\n";
35 return EXIT_SUCCESS;
36 }

30 lines 12−14
20
30
10
20
10

10 lines 27−29
10

size == 2 line 32
size == 0 line 34

A l ist of objects

On my platform, line 11 constructs and destructs almost twice as many objects as the analogous line
26 ofvector_obj.C on p. 437. What does your platform do? Is there documentation?

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/list/list_obj.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 #include "obj.h"

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

5 using namespace std;
6
7 i nt main()
8 {
9 c onst int a[] = {20, 30, 40};

10 const size_t n = sizeof a / sizeof a[0];
11 list<obj> li(a, a + n);
12
13 obj o1 = 10;
14 li.push_front(o1);
15
16 obj o2 = 50;
17 li.push_back(o2);
18
19 for (list<obj>::const_iterator it = li.begin(); it != li.end(); ++it) {
20 cout << *it << "\n"; //or (*it).print() or it->print()
21 }
22
23 for (list<obj>::iterator it = li.begin(); it != li.end();) {
24 if (*it == 20) { //if ((*it).operator int() == 20) {
25 it = l i.erase(it); //Calls the object’s destructor.
26 } else {
27 ++it;
28 }
29 }
30
31 for (list<obj>::const_iterator it = li.begin(); it != li.end(); ++it) {
32 cout << *it << "\n";
33 }
34
35 return EXIT_SUCCESS;
36 }

Lines 14 and 17 construct copies of the pushed object; the evidence is underlined.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.4 Classlist 447

448 OperationsExpressed by Overloaded Operators Chapter 4

construct 20 line 11
copy construct 20 line 11
destruct 20 line 11
construct 30 line 11
copy construct 30 line 11
destruct 30 line 11
construct 40 line 11
copy construct 40 line 11
destruct 40 line 11
construct 10 line 13
copy construct 10 line 14
construct 50 line 16
copy construct 50 line 17
10 lines 19−21
20 lines 19−21
30 lines 19−21
40 lines 19−21
50 lines 19−21
destruct 20 line 25
10 lines 31−33
30 lines 31−33
40 lines 31−33
50 lines 31−33
destruct 50 Line 35 destructso2 .
destruct 10 Line 35 destructso1 .
destruct 10 Line 35 destructsli .
destruct 30 Line 35 destructsli .
destruct 40 Line 35 destructsli .
destruct 50 Line 35 destructsli .

A l ist of pointers to objects

The erase member function of alist will call the destructor for the element erased from the
list . For example, the above line 25 called the destructor for the second object in thelist . But each
item in the following list is merely a pointer, and a pointer has no destructor. (Or we can pretend that a
pointer has a destructor which does nothing.) Therefore theerase in the following line 23 calls no
destructor, so the twoobj ’s survive to line 33.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/list/list_obj_ptr.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 #include "obj.h"
5 using namespace std;
6
7 i nt main()
8 {
9 obj o1 = 10;

10 obj o2 = 20;
11
12 list<obj *> li;
13 li.push_front(&o1);
14 li.push_back(&o2);
15

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

16 for (list<obj *>::const_iterator it = li.begin(); it != li.end(); ++it) {
17 cout << "The obj at address " << *it << " is " << **it << ".\n";
18 //Can also say (**it).print() or (*it)->print()
19 }
20
21 for (list<obj *>::iterator it = li.begin(); it != li.end();) {
22 if (**it == 20) { //if ((**it).operator int() == 20) {
23 it = l i.erase(it);
24 } else {
25 ++it;
26 }
27 }
28
29 for (list<obj *>::const_iterator it = li.begin(); it != li.end(); ++it) {
30 cout << **it << "\n";
31 }
32
33 return EXIT_SUCCESS;
34 }

construct 10 line 9
construct 20 line 10
The obj at address 0xffbff148 is 10. lines 16−19
The obj at address 0xffbff144 is 20. lines 16−19
10 lines 29−31
destruct 20 line 33 destructsv and theno2 .
destruct 10 line 33 destructso1 .

Sorting a vector vs. sorting a list

The functions in the STL are calledalgorithms. Most of their arguments are pairs of iterators.To
sort a vector, for example, pass its beginning and end to thesort algorithm.

1 #include <vector> //for vector
2 #include <algorithm> //for sort
3
4 v ector<int> v(argument(s) for constructor);
5 s ort(v.begin(), v.end());

But not every pair of iterators can be given to thesort algorithm. Thearguments ofsort must be
random accessiterators: ones to which we can add a large number (greater than 1) in a single operation.
For example, line 7 demonstrates that a vector iterator is random access:

6 v ector<int>::iterator it = v.begin();
7 i t += 3 ; / /okay: means it = it + 3

Thesort algorithm adds large numbers to the pair of iterators that it receives as arguments, so they must
be random access iterators.

On the other hand, lines 9 and 10 demonstrate that alist iterator is not random access. The best
we can do is to increment it in lines 12−14:

8 l ist<int>::iterator it = li.begin();
9 i t += 3 ; / /Won’t compile.

10 it += 1; //Even this won’t compile.
11
12 ++it; //This is how we have to move it forward.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.4 Classlist 449

450 OperationsExpressed by Overloaded Operators Chapter 4

13 ++it;
14 ++it;

Therefore we cannot give a pair of list iterators to thesort algorithm. Instead,we’ll have to call the
sort member function in line 18, which eventually gets the job done by repeated increments instead of by
adding large numbers. Thissort is slower than thesort algorithm, but it’s the best we can do.

15 #include <list>
16
17 list<int> li(argument(s) for constructor);
18 li.sort();

It might be worthwhile to copy a long list into a vector for sorting, and then copy it back again:

1 #include <vector>
2 #include <list>
3 #include <algorithm>
4
5 l ist<int> li(argument(s) for constructor);
6
7 v ector<int> v(li.begin(), li.end());
8 s ort(v.begin(), v.end());
9 c opy(v.begin(), v.end(), li.begin());

4.3.5 Datatypes for pointer and iterator arithmetic

array STLcontainer
unsigned size_t size_type

signed ptrdiff_t difference_type

The data typesize_t is used for the number of elements in an array, or the number of bytes in a
variable or dynamically allocated block of memory. It is the data type of the value of thesizeof operator,
the argument of the C functionmalloc , and the return value of the C functionstrlen . See the follow-
ing line 9. We also usesize_t for an array subscript.

Similarly, a data typesize_type is used for the number of elements in an STL container. For
example, asize_type is the return type of thesize member function of every container in the STL.In
classvector , size_type is also as the return type of the member functioncapacity , and the argu-
ment of the member functionsresize , reserve , operator[] , andat . See line 17.

We can subtract any two pointers that point to elements in the same array, yielding a result of data
typeptrdiff_t (line 13). A ptrdiff_t is also what we add to a pointer to make the pointer point to a
neighboring array element (line 14).ptrdiff_t is signed (it is another name forint or long),
size_t is unsigned (it is another name forunsigned or long unsigned), but they are the same size.

Similarly, we can often subtract any two iterators that refer to elements in the same STL container,
yielding a result of data typedifference_type (line 21). A difference_type is also what we add
to an iterator to make the iterator refer to a neighboring item (line 22). Iterators that permit these opera-
tions are called ‘‘random access’’ (p. 841). Pointers andvector iterators are random access, but alist
iterator is not. An attempt to add alist<nt>::difference_type to a list<int>::iterator
would not compile.

The only difference between adifference_type and a size_type is that
difference_type is signed, whilesize_type is unsigned.

size_t andptrdiff_t are typedefs in the C Standard Library, so they hav eno last name.Noth-
ing in C has a last name, so there can be only one data type namedsize_t and only one named
ptrdiff_t .

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

But size_type anddifference_type are the names of many typedefs in the C++ Standard
Library, one for each type of container. What makes this possible is that each one has a different last name.
For example, avector<int>::size_type holds the number of elements in avector<int> , and a
vector<char>::size_type holds the number of elements in avector<char> . They might have
to be different data types because avector<char>::size_type might have to hold a much larger
number than avector<int>::size_type .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/size_type.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>
4 using namespace std;
5
6 i nt main()
7 {
8 i nt a[] = {10, 20, 30, 40, 50};
9 s ize_t n = sizeof a / sizeof a[0]; //n is 5

10
11 int *p1 = a; //point to the 10
12 int *p2 = a + 4; //point to the 50
13 ptrdiff_t d1 = p2 - p1; //d1 is 4
14 p1 += d1; //Now p1 points to the 50.
15
16 vector<int> v(a, a + n);
17 vector<int>::size_type s = v .size(); //s is 5
18
19 vector<int>::iterator it1 = v.begin(); //refer to the 10
20 vector<int>::iterator it2 = v.begin() + 4; //refer to the 50
21 vector<int>::difference_type d2 = it2 - it1; //d2 is 4
22 it1 += d2; //Now it1 refers to the 50.
23
24 return EXIT_SUCCESS;
25 }

4.3.6 Classstring

Classstring

A C program holds a string in an array of characters; a C++ program holds a string in an object of
classstring .

Lines 8 and 16 show two constructors for classstring . Line 17 inputs a one-word string, expand-
ing thestring object to hold it.To do the job of line 17 in C, without astring object, we would need
all the code in the following C program.

The C++ Standard Library has three header files with similar names:

<string> declaration for the C++ classstring
<string.h> declarations belonging to no namespace for the C string functionsstrlen , strcat , etc.
<cstring> declarations belonging to namespacestd for the C string functionsstrlen , strcat , etc.

A group of functions and variables sharing the same last name is called a namespace.The version of the
string functions declared instring.h belong to no namespace; that incstring belong to the standard
namespacestd . The objectscin andcout also belong to namespacestd ; see p. 20. Ditto for the C++
Standard Library classesvector , list , andstack .

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.6 Classstring 451

452 OperationsExpressed by Overloaded Operators Chapter 4

Instead of thestr - functionsstrlen , strcat , etc., in the C Standard Library, we now call the
member functions and friends of astring object. Seelines 10, 19, 23, 24, and 32. There are member
functions for searching for substrings and individual characters, forwards from the start or backwards from
the end. As in avector or list , there are also member functions toinsert anderase .

Occasionally we need to load the characters of astring into consecutive memory addresses, add a
’\0’ after the last one, and get a pointer to the first one.For example, we may need to pass the characters
to an older function whose argument is aconst char * . (Tw o such functions are the constructors for
classesofstream and locale .) Lines 46−47 show how not to get this pointer. The pointer must be
read-only as in line 48: it cannot be used to change the characters in thestring .

Unlike a C array of characters, a C++string object has no terminating’\0’ . This means that a
string object can hold the character’\0’ (line 50), making it possible for astring object to hold
arbitrary binary data. Of course, we would never want to call thec_str member function of astring
that contained a’\0’ .

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/string.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <string> //for class string
4 using namespace std;
5
6 i nt main()
7 {
8 s tring s = "Hello there"; //one-argument constructor
9

10 cout << "s.size() == " << s.size() << "\n" //instead of strlen
11 << "The 1st character is ’" << s[0] << "’.\n" //s.operator[](0)
12 << "The next 3 characters are \"" << s.substr(1, 3) << "\".\n"
13 << "The last character is ’" << s[s.size() - 1] << "’.\n\n";
14
15 cout << "Please type your name and press RETURN: ";
16 string word; //No-argument constructor puts null string into object.
17 cin >> word; //Input 1 word like scanf(%s; string expands to hold it.
18
19 string line = s + ", " + word + "! ";
20 line += "How are you?"; //instead of strcat: line.operator+=("How RU?");
21 cout << line << "\n\n";
22
23 if (s < line) { //instead of strcmp: if (operator<(s, line)) {
24 line = s; / /instead of strcpy: line.operator=(s);
25 }
26
27 for (string::const_iterator it = s.begin(); it != s.end(); ++it) {
28 cout << *it;
29 }
30 cout << "\n\n";
31
32 string::size_type i = s .find(’l’); //instead of strchr
33 if (i == string::npos) { //"no position"
34 cout << "The string \"" << s << "\" does not contain ’l’.\n";
35 } else {
36 cout << "Found the first ’l’ at position " << i << ".\n";
37 }
38

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

39 i = s .find("lo"); //instead of strstr
40 if (i == string::npos) { //"no position"
41 cout << "The string \"" << s << "\" does not contain \"lo\".\n";
42 } else {
43 cout << "Found the first \"lo\" at position " << i << ".\n";
44 }
45
46 //char *p = s; //won’t compile
47 //char *p = s.c_str(); //won’t compile
48 const char *p = s.c_str(); //will compile: pointer must be read-only
49
50 s[0] = ’ \0’;
51 return EXIT_SUCCESS;
52 }

The above line 19 behaves as if we had written the nested function calls

53 string line = operator+(operator+(operator+(s, ", "), word), "! ");

s.size() == 11 no terminating’\0’ at end ofHello
The 1st character is ’H’.
The next 3 characters are "ell".
The last character is ’e’.

Please type your name and press RETURN: Mark
Hello there, Mark! How are you? line 21

Hello there lines 27−30

Found the first ’l’ at position 2. lines 32−37
Found the first "lo" at position 3. lines 39−44

To do the job of the above lines 16−17, a C program would need a loop withmalloc and
realloc .

The first time we arrive at line 10,malloc allocates a block of one byte.Even if the user never
inputs any non-whitespace characters, we will still need one byte to hold the terminating’\0’ . Line 26
places each incoming character at the end of the block.Therealloc in line 10 then makes the block one
byte bigger, because even if the user never inputs any more non-whitespace characters, we will still need
one more byte to hold the terminating’\0’ .

Line 22 unreads the whitespace character so that line 35 can read it again. For the cast in line 21, see
pp. 63−64.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/string.c

1 #include <stdio.h> /* for getchar, ungetc, stdin, EOF */
2 #include <stdlib.h> /* for malloc, realloc, free, size_t */
3 #include <ctype.h> /* for isspace */
4
5 i nt main(int argc, char **argv)
6 {
7 s ize_t n;
8 c har *p;
9

10 for (p = malloc(n = 1);; p = realloc(p, ++n)) {

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.6 Classstring 453

454 OperationsExpressed by Overloaded Operators Chapter 4

11 int c;
12 if (p == NULL) {
13 fprintf(stderr, "%s: out of store\n", argv[0]);
14 return EXIT_FAILURE;
15 }
16
17 if ((c = getchar()) == EOF) {
18 break;
19 }
20
21 if (isspace((unsigned char)c)) {
22 ungetc(c, stdin);
23 break;
24 }
25
26 p[n - 1] = c ;
27 }
28 p[n - 1] = ’ \0’;
29
30 printf("The word \"%s\" was terminated by the ", p);
31 if (feof(stdin)) {
32 printf("end of file.\n");
33 } else {
34 printf("whitespace character ’\\x%02x’.\n",
35 (unsigned char)getchar());
36 }
37
38 free(p);
39 return feof(stdin) && !ferror(stdin) ? EXIT_SUCCESS : EXIT_FAILURE;
40 }

Mark
The word "Mark" was terminated by the whitespace character ’\x0a’.

▼ Homework 4.3.6a: let a terminal display a string object

Add a public member function to classterminal declared as

void put(unsigned x, unsigned y, const string& s) const;

This function will simply pass the return value ofc_str to theterminal::put whose third argument
is aconst char * . The function will therefore be short enough to be inline.

terminal.h will now hav eto include the header filestring and use namespacestd .
▲

String output

To demonstrate the versatility of our new operator<< andoperator>> , we will write a date
to three different destinations of output, and read one from three different sources of input.One of these
destinations and sources will be astring of characters in memory. See Lippman pp. 1108−1112, Strous-
trup pp. 640−641.

Here’s how to write output to a string in C. The ‘‘string’’ is merely the array of charactersa in line
12; it’s up to us to create this array and remember how long it is. Thesnprintf in line 13 writes at most
N characters (including the terminating’\0’) to the array. This demonstrates what string output is good
for: pasting together strings, numbers, characters, etc., into one big string for later use.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/snprintf.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3
4 #define N 100 /* number of characters in string */
5
6 i nt main(int argc, char **argv)
7 {
8 c onst char word[] = "size";
9 c onst int i = 38;

10 const char c = ’L’;
11
12 char a[N]; /* uninitialized variable */
13 if (snprintf(a, N, "%s %d%c", word, i, c) < 0) {
14 fprintf(stderr, "%s: snprintf failed\n", argv[0]);
15 return EXIT_FAILURE;
16 }
17
18 printf("The string contains \"%s\".\n", a);
19 return EXIT_SUCCESS;
20 }

The string contains "size 38L".

To write output to a string in C++, we construct theostringstream object in line 12.It’s a desti-
nation for output (line 13), just like cout , but the characters do not go to the standard output.They are
written into a string in memory, making it longer and longer. We don’t hav eto create or lengthen the string
ourselves: it’s all done automatically by theostringsteam object.

To ‘‘harvest’’ the characters stored in the growing string, line 20 calls thestr member function of
theostringstream . It returns a C++string object containing the string of characters.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/ostringstream.C

1 #include <iostream>
2 #include <sstream> //for ostringstream; includes <string>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt main(int argc, char **argv)
7 {
8 c onst string word = "size";
9 c onst int i = 38;

10 const char c = ’L’;
11
12 ostringstream ost;
13 ost << word << " " << i << c;
14
15 if (!ost) { //if (ost.operator!()) {
16 cerr << argv[0] << ": write to ostringstream failed\n";
17 return EXIT_FAILURE;
18 }
19
20 cout << "The string contains \"" << ost.str() << "\".\n";

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.6 Classstring 455

456 OperationsExpressed by Overloaded Operators Chapter 4

21 return EXIT_SUCCESS;
22 }

The above lines 13−15 may be combined to

23 if (!(ost << word << " " << i << c)) {

The string contains "size 38L".

String input

Here’s how to read input from a string in C. The ‘‘string’’ is merely the’\0’ -terminated array of
charactersa in line 6. This demonstrates what string input is good for: breaking a big string into sub-
strings, numbers, characters, etc.

The return value ofsscanf , like the return value of plain oldscanf , is the number of variables
that were assigned new values. Inthis case, it should be three.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/sscanf.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3
4 i nt main(int argc, char **argv)
5 {
6 c onst char a[] = "size 38L";
7
8 c har word[100];
9 i nt i;

10 char c;
11
12 if (sscanf(a, "%s%d%c", word, &i, &c) != 3) {
13 fprintf(stderr, "%s: sscanf failed\n", argv[0]);
14 return EXIT_FAILURE;
15 }
16
17 printf("word == \"%s\"\n", word);
18 printf("i == %d\n", i);
19 printf("c == ’%c’\n", c);
20
21 return EXIT_SUCCESS;
22 }

word == "size"
i == 3 8
c == ’ L’

To read input from a string in C++, we construct theistringstream object in line 8. It’s a
source of input (line 14), just likecin , but the characters do not come from the standard input.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/istringstream.C

1 #include <iostream>
2 #include <sstream> //for istringstream
3 #include <cstdlib>
4 using namespace std;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

5
6 i nt main(int argc, char **argv)
7 {
8 i stringstream ist("size 38L");
9

10 string word;
11 int i;
12 char c;
13
14 ist >> word >> i >> c;
15 if (!ist) {
16 cerr << argv[0] << ": the istringstream failed\n";
17 return EXIT_FAILURE;
18 }
19
20 cout << "word == \"" << word << "\"\n"
21 << "i == " << i << "\n"
22 << "c == ’" << c << "’\n";
23
24 return EXIT_SUCCESS;
25 }

The above lines 14−15 may be combined to

26 if (!(ist >> word >> i >> c)) {

word == "size"
i == 3 8
c == ’ L’

operator<< and operator>> can take any destination or source

The originalprint member function of classdate was hardwired to send output to only one desti-
nation: the standard outputcout . See lines 99−107 on pp. 116−117.Our new operator<< friend of
classdate can send output to any destination. We demonstrate three of them: the standard output (line
11), an output file (line 19), and a string of characters (line 26).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/destination.C

1 #include <iostream>
2 #include <fstream> //for ofstream
3 #include <sstream>
4 #include <cstdlib>
5 #include "date.h"
6 using namespace std;
7
8 i nt main(int argc, char **argv)
9 {

10 const date d;
11 cout << d << "\n"; //operator<<(cout, d).operator<<("\n");
12
13 ofstream ofstr("outfile");
14 if (!ofstr) {
15 cerr << argv[0] << ": couldn’t open outfile\n";
16 return EXIT_FAILURE;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.6 Classstring 457

458 OperationsExpressed by Overloaded Operators Chapter 4

17 }
18
19 ofstr << d << "\n"; //operator<<(ofstr, d).operator<<("\n");
20 if (!ofstr) {
21 cerr << argv[0] << ": couldn’t write to outfile\n";
22 return EXIT_FAILURE;
23 }
24
25 ostringstream os;
26 os << d; //operator<<(os, d);
27 if (!os) {
28 cerr << argv[0] << ": couldn’t write to string\n";
29 return EXIT_FAILURE;
30 }
31
32 cout << "The string contains \"" << os.str() << "\".\n";
33
34 return EXIT_SUCCESS;
35 }

The standard output is

4/8/2014
The string contains "4/8/2014".

The fileoutfile contains

4/8/2014

Similarly, our operator>> friend of classdate can read adate from any source. We demon-
strate three of them: the standard input (line 13), an input file (line 26), and a string of characters (line 35).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/source.C

1 #include <iostream>
2 #include <fstream> //for ifstream
3 #include <cstdlib>
4 #include <sstream>
5 #include "date.h"
6 using namespace std;
7
8 i nt main(int argc, char **argv)
9 {

10 date d;
11
12 cout << "Please type a date.\n";
13 cin >> d; //operator>>(cin, d);
14 if (!cin) {
15 cerr << argv[0] << ": couldn’t read date from standard input\n";
16 return EXIT_FAILURE;
17 }
18 cout << "Read " << d << " from standard input.\n";
19
20 ifstream ifstr("infile");
21 if (!ifstr) {

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

22 cerr << argv[0] << ": couldn’t open infile\n";
23 return EXIT_FAILURE;
24 }
25
26 ifstr >> d; //operator>>(ifstr, d);
27 if (!ifstr) {
28 cerr << argv[0] << ": couldn’t read date from infile\n";
29 return EXIT_FAILURE;
30 }
31 cout << "Read " << d << " from infile.\n";
32
33 istringstream is("12/31/2014");
34
35 is >> d; //operator>>(is, d);
36 if (!is) {
37 cerr << argv[0] << ": couldn’t read date from string\n";
38 return EXIT_FAILURE;
39 }
40 cout << "Read " << d << " from string.\n";
41
42 return EXIT_SUCCESS;
43 }

Given an infile containing

4/8/2014

the program’s output will be

Please type a date.
1/1/2014 The user types this line.
Read 1/1/2014 from standard input.
Read 4/8/2014 from infile.
Read 12/31/2014 from string.

Convert an object to a string

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/date.h

1 #ifndef DATEH
2 #define DATEH
3 #include <sstream> //for ostringstream
4 #include <ctime>
5 using namespace std;
6
7 c lass date {
8 i nt year;
9 i nt month;

10 int day;
11 public:
12 date(int initial_month, int initial_day, int initial_year)
13 : year(initial_year), month(initial_month), day(initial_day) {}
14
15 date() {
16 const time_t t = time(0);

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.6 Classstring 459

460 OperationsExpressed by Overloaded Operators Chapter 4

17 const tm *const p = localtime(&t);
18
19 year = p->tm_year + 1900;
20 month = p->tm_mon + 1;
21 day = p->tm_mday;
22 }
23
24 friend ostream& operator<<(ostream& ostr, const date& d) {
25 return ostr << d.month << "/" << d.day << "/" << d.year;
26 }
27
28 operator string() const {
29 ostringstream ost;
30 ost << *this; //calls line 24: operator<<(ost, *this);
31 return ost.str();
32 }
33 };
34 #endif

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/main.C

1 #include <iostream>
2 #include <string>
3 #include <cstdlib>
4 #include "date.h"
5 using namespace std;
6
7 i nt main()
8 {
9 c onst date d;

10 const string s = d; //string s = d.operator string();
11
12 cout << "\"" << s << "\"\n"
13 << "\"" << static_cast<string>(d) << "\"\n";
14
15 return EXIT_SUCCESS;
16 }

"4/8/2014"
"4/8/2014"

▼ Homework 4.3.6b: fix the operator<< friend of class date

There’s a bug in theoperator<< we wrote for classdate on p. 338. The following line 11 tries
to print adate in a field of width 12. Unfortunately, it prints only the month number in the field.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/string/justify.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 #include "date.h"
5 using namespace std;
6

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

7 i nt main()
8 {
9 date d(date::december, 31, 2014);

10 cout << "123456789012\n"
11 << setw(12) << d << "\n";
12
13 return EXIT_SUCCESS;
14 }

123456789012
12/31/2014

Fix theoperator<< by writing the date to anostringstream . Then get the string from the
ostringstream and write it to theostream that is the first argument of theoperator<< .

15 ostream& operator<<(ostream& ost, const date& d)
16 {
17 ostringstream stream;
18 stream << d.month << "/" << d.day << "/" << d.year;
19 return ost << stream.str();
20 }

123456789012
12/31/2014

We will use the same technique at a lower level on p. 1048.
▲

4.3.7 Classbitset
A bitset is an ‘‘array’’ of bits. It is a template class whose argument is the number of bits in the

set.

A bitset can be converted to and from astring (lines 12−18, 21), and to or from along
unsigned (lines 25−26). Line 24 discovers how many bits are in along unsigned . If the bitset
has more bits than along unsigned , line 25 will put zeroes into the high-order bits of thebitset , and
line 26 will ‘‘throw an exception’’ if t he value of thebitset does not fit into along unsigned (p.
622).

Warning: subscripts applied to abitset access the bitset from right to left (line 19).Subscripts
applied to thestring representation access the bitset from left to right (line 22).The [square brackets]
do not perform subscript checking.To get this checking, call the member functionsflip , set , reset ,
andtest . These functions throw an exception if the subscript is illegal (p. 622).

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/bitset/bitset.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <bitset>
4 #include <string>
5 #include <limits> //for numeric_limits
6 using namespace std;
7
8 i nt main()
9 {

10 bitset<32> a; //32 bits of zeroes

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.3.7 Classbitset 461

462 OperationsExpressed by Overloaded Operators Chapter 4

11
12 bitset<32> b(string("00000000111111110000000011111111"));
13 bitset<32> c(string(//more legible way to do the same thing
14 "00000000"
15 "11111111"
16 "00000000"
17 "11111111"
18));
19 cout << "c == " << c << ", rightmost bit is " << c[0] << ".\n";
20
21 string s = c .to_string<char, char_traits<char>, allocator<char> >();
22 cout << "s == " << s << ", leftmost bit is " << s[0] << ".\n";
23
24 if (numeric_limits<unsigned long>::digits <= 32) { //number of bits
25 bitset<32> d = 0xFFFF0000;
26 unsigned long ul = d.to_ulong();
27 cout << "d == " << d << ", rightmost bit is " << d[0] << ".\n"
28 << "ul == " << ul << " == " << hex << ul << dec << "\n";
29 }
30
31 a = b & c; / /can do & &= | |= ˆ ˆ= ˜ << <<= >> >>= == !=
32 cout << "a == " << a << ", rightmost bit is " << a[0] << ".\n";
33
34 a[0].flip(); //flip the rightmost bit
35 a.flip(0); //flip the rightmost bit
36 a.flip(); //flip all the bits
37 cout << "a == " << a << ", rightmost bit is " << a[0] << ".\n";
38
39 if (a.none()) {
40 cout << "None of the bits are on.\n";
41 } else if ((˜a).none()) {
42 cout << "All of the bits are on.\n";
43 } else {
44 cout << a.count() << " of the bits are on.\n";
45 }
46
47 a[0] = t rue; //Turn on the rightmost bit.
48 a.set(0); //Turn on the rightmost bit.
49 a.set(); //Turn on all the bits.
50
51 a[0] = f alse; //Turn off the rightmost bit.
52 a.reset(0); //Turn off the rightmost bit.
53 a.reset(); //Turn off all the bits.
54
55 if (a.any()) {
56 cerr << "None of the bits should be on after a reset.\n";
57 }
58
59 return EXIT_SUCCESS;
60 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

c == 0 0000000111111110000000011111111, rightmost bit is 1.
s == 0 0000000111111110000000011111111, leftmost bit is 0.
d == 11111111111111110000000000000000, rightmost bit is 0.
ul == 4294901760 == ffff0000
a == 00000000111111110000000011111111, rightmost bit is 1.
a == 11111111000000001111111100000000, rightmost bit is 0.
16 of the bits are on.

▼ Homework 4.3.7a:

Change the array ofbool into abitset in the program in pp. 415−419.
▲

4.4 Putit all Together: Aggregation, Dynamic Memory, and Lists

Keep the game going until all the rabbits are dead

The current version of the game stops as soon asany rabbit is killed. We will make it continue
until all the rabbit ’s are killed. We will use three features of C++ that we just covered: aggregation,
dynamic memory allocation, and lists.

(1) To make it possible to delete therabbit ’s one by one, and someday to let them reproduce, we
will change the array ofrabbit ’s to a list of rabbit ’s. More precisely, it will be a list of pointers
to rabbit ’s, so we can insert them without duplicating them.

(2) To make it possible to delete therabbit ’s in an unpredictable order, we will allocate them
dynamically withnew anddelete .

(3) The list and the terminal will be data members of a new object called agame. In other words, the
game will be built using aggregation.

Class game

The list will be shared by all the animals. Where should it go? The animals already share a common
terminal, which is a local object in themain function. Eachanimal has a pointer to the shared object:

1 i nt main()
2 {
3 c onst terminal term(’.’); //the object shared by all the animals

4 c lass rabbit {
5 c onst terminal *const t;

6 c lass wolf {
7 c onst terminal *const t;

These pointers are fine as long as there is only one shared object.But the animals will now share two
objects, a terminal and a master list of pointers torabbit ’s. If they were both local objects inmain , each
animal would needtwo pointers:

8 i nt main()
9 {

10 const terminal term(’.’); //two objects shared by all the animals
11 list<rabbit *> master;

12 class rabbit {
13 const terminal *const t;
14 list<rabbit *> *const m;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memory, and Lists 463

464 OperationsExpressed by Overloaded Operators Chapter 4

15 class wolf {
16 const terminal *const t;
17 list<rabbit *> *const m;

This solution does not scale up: it is unnatural for each animal to have two umbilicals cords leading
to two placentas.

Another solution is to let the two shared variables be static data members of classrabbit .

18 class rabbit {
19 static const terminal term;
20 static list<rabbit *> master;

Or they could be global variables:

21 const terminal term(’.’);
22 list<rabbit *> master;
23
24 int main()
25 {

These last two solutions would even let us dispense with the pointer data members of the animals. But they
would lock us into having only one terminal and one master list—ein Volk, ein Reich, ein Führer. See p.
106. In the future we might want to run more than one game simultaneously, each with its own terminal
and master list.Don’t try this yet, though. Each game would need its own terminal, but right now we hav e
only one.

To let each animal get by with only one pointer, we combine (‘‘aggregate’’) the terminal and the mas-
ter list into a single object:

26 class game { //showing only the data members for now
27 const terminal term;
28 list<rabbit *> master;
29 };

Now that there is only one shared object inmain , each animal will have only one pointer.

30 int main()
31 {
32 game g(’.’); //the object shared by all the animals

33 class rabbit {
34 game *const g;

35 class wolf {
36 game *const g;

Classgame is a holder for the objects that are shared by all the animals.Here is its header file.The
terminal is constructed before any animal or list of animals (lines 10−11) because the canvas is logically
prior to the painting, the plaster to the fresco, the cardboard to the acrylic.

—On the Web at
http://i5.nyu.edu/ ∼mm64/book/src/game.h

1 #ifndef GAMEH
2 #define GAMEH
3 #include <list>
4 #include "terminal.h"
5 using namespace std;
6
7 c lass rabbit; //forward declaration

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

8
9 c lass game {

10 const terminal term;
11 list<rabbit *> master;
12
13 rabbit *get(unsigned x, unsigned y) const;
14 public:
15 game(char initial_c = ’.’): term(initial_c) {}
16 ˜game();
17
18 void play();
19
20 friend class rabbit;
21 friend class wolf;
22 };
23 #endif

Classgame will mention the data typelist<rabbit *> in many places. For your own con-
venience, insert the following typedef at the above line 10½

24 typedef list<rabbit *> master_t;

and change every subsequentlist<rabbit *> to master_t .

Forward declaration

The forward declaration in the above line 7 is needed in front of two classes that mention each other.
Here is a simpler example. Ifev ery ying contains ayang , and every yang contains aying , they would
both blow up to infinite size. That’s one reason why the following code will not compile:

1 c lass ying {
2 y ang y;
3 } ;
4
5 c lass yang {
6 y ing y;
7 } ;

But it is quite possible for aying and ayang to contain pointers or references to each other:

8 c lass ying {
9 y ang *y;

10 };
11
12 class yang {
13 ying *y;
14 };

The word yang makes its first appearance in the above line 9. Before this initial appearance, the
computer needs some notification thatyang is the name of a class.It doesn’t need to see the complete def-
inition of the class; it needs only theforward declaration in the following line 15. Note that the corre-
sponding line 22 needs no forward declaration for aying , since lines 17−19 have already declared what a
ying is.

Our classesgame andrabbit correspond toying andyang , and need the same forward declara-
tion. Theright side of lines 15−19 are in the header file for classgame; the right side of 21−23 are in the
header file for classrabbit .

15 class yang; class rabbit;

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memory, and Lists 465

466 OperationsExpressed by Overloaded Operators Chapter 4

16
17 class ying { class game {
18 yang *y; list<rabbit *> master;
19 }; };
20
21 class yang { class rabbit {
22 ying *y; game *const g;
23 }; };

For other examples of forward declarations, see pp. 295, 684.

Instead of the forward declaration for classrabbit in line 7 of the above game.h , why not simply
includerabbit.h at line 4½? After all, including the header file for a class is the normal way of telling
the computer that the class exists.

Unfortunately, we can’t do that here.We’re about to see thatrabbit.h has to includegame.h
before the definition of classrabbit . If the two header files included each other, the program would not
compile because of the following vicious circle. rabbit.h begins by defining the macroRABBITH and
includinggame.h . The definition and the include are written at the top of therabbit.h file, before the
definition of classrabbit has been seen. Ifgame.h now tried to includerabbit.h at line 4½ of
game.h , nothing would be included becauseRABBITH has already been defined. The word rabbit in
lines 11 and 13 ofgame.h would then cause error messages.

▼ Homework 4.4a:
Version 2.0 of the Rabbit Game: list of pointers to dynamically allocated rabbits and a game object
to hold it

Keep the game going until all therabbit ’s hav ebeen killed. Create a master list of pointers to
dynamically allocatedrabbit ’s and agame object to hold it.

(1) Change thet data member of classrabbit to

1 game *const g;

The *const keeps therabbit tethered to the same game throughout its life. But one of the data mem-
bers of thegame (the master list) will be changed by arabbit when therabbit is constructed or
destructed. That’s why g is not a read-only pointer. On the other hand, nothing prevents thet data mem-
ber of classwolf from being changed into a read-only pointer.

2 c onst game *const g;

(2) The first argument of the constructor for classwolf will now be

3 wolf::wolf(const game *initial_g, /* etc. */)
4 : g(initial_g), //etc.
5 {

The first argument of the constructor for classrabbit will be the same, but without theconst .

Sincerabbit.h andwolf.h now mention classgame instead of classterminal , they will have
to includegame.h instead ofterminal.h .

(3) Within the bodies of the member functions of classesrabbit and wolf , every t-> will
become ag->term. (with a dot after theterm). Seethe following line 6 and its comment for an exam-
ple.

(4) The last statement of the constructor for classrabbit will push the address of the newborn
rabbit onto the master list. The first statement after the beep in the destructor for classrabbit will
remove the address of the dyingrabbit from the master list.Every constructor for classrabbit will
therefore end with

6 g->term.put(x, y, c); //used to be t->put(x, y, c);
7 g->master.push_back(this);

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

and the destructor for classrabbit will contain

8 g->master.remove(this);
9 g->term.put(x, y); //used to be t->put(x, y);

after the beep.

Until now, every class has been barricaded from every other class. The private members of each class
have been accessible only to the member functions and friends of that class. But now, our classesgame,
wolf , and rabbit will interpenetrate. As we have just seen, every member function of classesrabbit
andwolf will mention the private members of classgame; and at least one member function of class
game is about to mention the private members of classrabbit .

Given their intimacy, it is neither possible nor desirable to keep classgame barricaded from the other
two. We will treat all three classes as one unit, protected from the outside world but not from each other.
The wholesalefriend declarations in lines 20−21 of the above game.h make every member function of
classesrabbit andwolf a friend of classgame.

(5) Until now, we hav ebeen using the characters of the screen to detect collisions between two ani-
mals. For example, when awolf encounters a lowercase’r’ in lines 45−46 ofwolf.C on p. 199, it
knows that it has stomped on arabbit :

10 const bool I_ate_him =
11 g->term.get(newx, newy) != g->term.background();

But it doesn’t know which rabbit it has stomped on.You will have to define the following private mem-
ber function of classgame. It will loop along the master list, searching for arabbit with the specified
coördinates.

12 //Return the address of the rabbit at coordinates (x, y) in this game,
13 //or zero if no rabbit is there.
14
15 rabbit *game::get(unsigned x, unsigned y) const
16 {

The body ofgame::get will have to mention thex andy private members of classrabbit , so
game::get will have to be a friend of classrabbit . Add the following declaration to the definition of
classrabbit in rabbit.h :

17 friend rabbit *game::get(unsigned x, unsigned y) const;

Then change lines 45−46 ofwolf::move on p. 199 to call game::get instead of
terminal::get :

18 const bool I_ate_him = g->get(newx, newy) != 0;

(6) The constructor for classgame in line 15 of the above game.h will pass its argument to the con-
structor for the terminal. It will pass no arguments to the constructor for the master list.

(7) The message and pause in lines 30−31 ofmain.C on p. 194 should be moved from themain
function to the destructor for classgame in line 16 of the abovegame.h .

(8) The main loop in themain function cannot loop through the master list, since the master list is a
private member of classgame. We therefore move the main loop to a member function of classgame:
code follows the data members. Move the following code from themain function togame::play .

19 //Get the dimensions of the terminal.
20 const unsigned xmax =
21 const unsigned ymax =
22
23 wolf w(this, xmax / 3, ymax / 2);
24
25 //The array of rabbit’s from Homework 2.13a.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memory, and Lists 467

468 OperationsExpressed by Overloaded Operators Chapter 4

26 rabbit a[] = {
27 rabbit(this, 2 * x max / 3, 1 * ymax / 4),
28 rabbit(this, 2 * x max / 3, 2 * ymax / 4),
29 rabbit(this, 2 * x max / 3, 3 * ymax / 4)
30 };
31
32 for (;; term.wait(250)) {
33 if (!w.move()) {
34 return; //Return from game::play; no more goto.
35 }
36
37 for (some type of::iterator it = master.begin();
38 it != master.end(); ++it) {
39
40 if (!(*it)->move()) { //if (!(**it).move()) {
41 return; //Return from game::play.
42 }
43 }
44 }

In the above line 37, use yourtypedef for list<rabbit *> .

(9) Sincegame.C mentions classesrabbit and wolf , it will have to include rabbit.h and
wolf.h .

(10) Themain function will now contain only the following.

45 call srand (and also set_new_handler, when we get to ¶ (11));
46
47 game g;
48 g.play();
49
50 return EXIT_SUCCESS;

Since the variableg is used only in the above line 48, lines 47−48 could even be combined to

51 game().play();

Now that main constructs and destructs only one object, remove the comment at the end ofmain about
destructing the rabbit, wolf, and terminal.main.C will include game.h . Ideally the random number gen-
erator should be a data member of classgame, rather than a global function shared by all thegame’s.
(Don’t do this, though.) Doesmain.C still need to includeterminal.h , rabbit.h , andwolf.h ?

(11) Objects in an array are always destructed in the opposite order from that in which they were con-
structed. To let therabbit ’s be destructed in an unpredictable order, depending on the whims of the
player, remove the array ofrabbit ’s in the above lines 25−30. Construct them withnew in the construc-
tor for classgame, initializing eachrabbit to a different position. The constructor for classgame will
now be too big to be inline.main should callset_new_handler before constructing thegame object.

Classrabbit originally had an implicitly defined copy constructor. We made the copy constructor
private and undefined on p. 200. When we introduced the array ofrabbit ’s on pp. 234−236, we were
forced to reinstitute the copy constructor. Now that the array is gone, the copy constructor can, and there-
fore should, be private and undefined again.

The value ofnew must always be stored in a pointer. Lines 63−65 seem to have forgotten this, but
they really have done it. A successfulnew will call the constructor for classrabbit , which stores the
address of the newbornrabbit into the master list for us. (See ¶ (4) of this homework.)

For the time being, thewolf will still be constructed with a declaration ingame::play . After all,
we know in advance when thewolf will be destructed. It will always be the last animal to go.

52 //Excerpt from game.C.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

53
54 game::game(char initial_c)
55 : term(initial_c)
56 {
57 //Get the dimensions of the terminal.
58 const unsigned xmax =
59 const unsigned ymax =
60
61 //Construct as many rabbits as you want, in different places.
62
63 new rabbit(three arguments for constructor);
64 new rabbit(three arguments for constructor);
65 new rabbit(three arguments for constructor);
66 }

(12) Thewolf will now destruct anyrabbit it steps on. Change the line

67 const bool I_ate_him = g->get(newx, newy) != 0;

in wolf::move to

68 if (const rabbit *const other = g->get(newx, newy)) {
69 delete other;
70 }

This assumes that theother rabbit is allocated dynamically. It would be a disaster todelete an object
that wasn’t (e.g., one created by a declaration).

wolf.C must includerabbit.h to tell it if classrabbit has a destructor that must be called in
the above line 69.

Now that wolf::move contains adelete statement, we must allocate all of therabbit ’s
dynamically: we can’tdelete a variable that was constructed with a declaration.

A C++ object is not allowed to commit suicide.For example, arabbit that blunders into awolf
can not call its own destructor. Instead, themove function of a blunderingrabbit will return false to
game:play , and game::play will call the destructor for the moribund rabbit . Incidentally, the
asymmetrical behavior on p. 199 will now disappear.

(13) The original main loop of the game relied on the return value ofwolf::move to tell us if a
rabbit was killed. But now wolf::move will delete the rabbit for us, destructing it and remov-
ing it from the master list.The main loop therefore no longer needs the return value ofwolf::move to
see if all therabbit ’s are dead: it can simply call theempty member function of the master list. See line
18 ofvector.C on p. 431.

We therefore change the return type ofwolf::move from bool to void . The variable
I_ate_him will disappear entirely, and all thereturn ’s with a value inwolf::move will become
plain oldreturn ’s. Thereturn in the last line ofwolf::move can disappear entirely.

(14) Keep the main loop ingame::play , but change it to the following.

The rabbit destructor called in line 81 will remove the dyingrabbit ’s address from the master
list. Thismeans that the increment must be at line 78 rather than the expected place, at the end of line 75.
But the increment must be executed before thedelete in line 81. We cannot increment a list iterator that
refers to an element that has already been reoved from the list; see the ‘‘increment of death’’ on pp.
444−445.

game.C must includerabbit.h to tell if classrabbit has a destructor that must be called in line
81.

It’s too bad that we need the two separatemove’s in lines 72 and 80.We’l l fix this when we have
inheritance.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memory, and Lists 469

470 OperationsExpressed by Overloaded Operators Chapter 4

71 for (; !master.empty(); term.wait(250)) {
72 w.move();
73
74 for (some type of::const_iterator it = master.begin();
75 it != master.end();) {
76
77 rabbit *const p = *it;
78 ++it;
79
80 if (!p->move()) {
81 delete p; //Call the destructor and deallocate.
82 }
83 }
84 }

(15) The original destructors for classesrabbit andwolf were complicated by the fact that there
might be another animal in the same place at the same time: when awolf stomps on arabbit or when a
rabbit blunders into awolf . We therefore needed theif around theput in line 86:

85 if (g->term.get(x, y) == c) {
86 g->term.put(x, y);
87 }

See p. 200. But now that wolf::move delete ’s the rabbit , we will no longer have two animals in
the same place at the same time.In the destructors forrabbit andwolf , remove the if in the above
lines 85 and 87, but keep line 86.

(16) The destructor for classgame should display the message ‘‘You killed all the rabbits!’’ and then
pause for three seconds. Remove the message and pause frommain .

(17) If you get the following Microsoft Visual C++ warning,

warning C4291:
’void *__cdecl operator new(unsigned int,const struct std::nothrow_t &)’ :
no matching operator delete found;
memory will not be freed if initialization throws an exception

you can say

#pragma warning (disable : 4291)

▲

▼ Homework 4.4b:
Version 2.1 of the Rabbit Game: read therabbit constructor arguments from an array

Let’s get rid of the unsightly repetition in the above lines 63−65.In the constructor for classgame,
create the new data type

1 s truct location {
2 unsigned x, y;
3 } ;

Then construct aconst array nameda of as many location ’s as you want, each initialized to the
coördinates where you want to construct arabbit . Use thesizeof / sizeof idiom to count the num-
ber of structures in the array. The constructor for classgame will loop through the array:

4 f or (loop through the array with a read-only pointer p) {
5 i f (p->x and p->y are on the screen) {
6 new rabbit(this, p->x, //etc.
7 }

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

8 }

▲

▼ Homework 4.4c:
Version 2.2 of the Rabbit Game: pass the array to the constructor for classgame

(1) Let structlocation be a public member of classgame, just like classbill was a public
member of classclinton in lines 21−26 ofclinton.h on p. 420.

(2) Add two new arguments to the constructor for classgame, namedfirst and last , that are
read-only pointers tolocation ’s. The existing argumentinitial_c will now be the third argument of
the constructor. Let its default value remain’.’ .

(3) The loop in the constructor for classgame will now iterate through the array whose first and just-
past-the-last elements (or at least their addresses) were passed to it.

(4) Before constructing thegame, the main function should construct aconst array of
location ’s. Make as many elements as you want, each initialized to the coördinates where you want to
construct arabbit . main does not know the dimensions of the terminal—thereis no terminal object
yet—so it will have to make an educated guess as to where therabbit ’s should be located.* Then pass
the addresses of the first and just-past-the-last elements to the constructor for classgame:

1 c onst game::location a[] = {
2 { 0, 0},
3 { 20, 8},
4 { 40, 16},
5 / /etc.: as many rabbits as you want
6 } ;
7 c onst size_t n = the number of elements in the array a;
8
9 game g(a, a + n); //Does this pair of arguments look familiar?

▲

* I t would be nice if thexmax andymax member functions of classterminal werestatic . If so, main could
call them before constructing the game. Butdon’t do this.

printed 4/8/14
8:46:52 AM

All rights
reserved ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memory, and Lists 471

