1
2
3

o O b~

Operations Expressed by Overloaded Operators

4.1 Input and Output

4.1.1 PFormatted I/O with Manipulators

Each data type is output or input in a different formfat.int appears as a series of digitshar
as a single charactergauble has a decimal point.

In C, the format of eachalue had to be specified as aw@rion character after eaéhagiven to
printt andscanf . In C++, the format is determined by the data type of #ilae: W\ saw this on pp.
27-28 and 30-31.

In both languages, the format can be fine-tuned. In Cpiihe function can print an integer in
three different bases, roundlauble to a desired number of digits, and justify a string to the left or right.
In C++ we do the same formatting, but witbry different machinery: function nameenoading and i/o
manipulators.

int and char output
Integer and character output is produced by calling famctions with the same name. In line 8, the
expression is of typeint . When we write
cout <<i
the computer belvas as if we lad written a call to theperator<< function whose argument is ant .
cout.operator<<(i)

This function outputs thimt in decimal, lile the %dformat ofprintf

In the next line, the expressistatic_cast<char>(i) is of typechar . We aall a different
operator<< , one whose argument ischar . This function outputs thehar as one ASCII character
like the%cformat ofprintf

Lines 8-9 output the ingeri in both formats; lines 12-13 do the same for the charact&or the
double cast in line 13, see line 14stdtic_cast.C on p. 65.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iomanip/intchar.C

#include <iostream>
#include <cstdlib>
using namespace std;

nt main()

i
{

aess AN hesenea ©2014 Mark Meretzky

350 OperationsExpressed by Overloaded Operators Chapter 4

7 i nti=65;
8 cout<<i<<"\n" Hprintf("%d", i);
9 << static_cast<char>(i) << "\n"; [lprintf("%c", i);
10
11 char ¢ ="A]
12 cout <<c<<"\n" Ilprintf("%c", c);
13 << static_cast<unsigned>(static_cast<unsigned char>(c))
14 << "\n"; /lprintf("%u", (unsigned)(unsigned char)c);
15
16 return EXIT_SUCCESS;
17}
65 line 8
A line 9
A line 12
65 line 13

In C, theprintf function decides at runtime which format to use; see p. 29. In C++, the compiler
decides at compile time whiaperator<< function to call. (In the jargon, arverloaded function name
is resolvedat compile time.)

Here are simplified definitions for ttogerator<< functions that ta an integer and a character
The latter happens not to be a member function because it can aokitycalling a member function of
classostream , theput on pp. 329-330.

class ostream {
/ letc.

public:
ostream& operator<<(int i) {output i in decimal; return *this;}
/ letc.

}s

O~NO O WNPE

i nline ostream& operator<<(ostream& ost, char c) {return ost.put(c);}

Bases, manipulators, and format flags

Most changes of format in C++ are performed‘bytputting” or “inputting” i nvisible things called
i/o manipulatos to a stream such a&sut . The simplest examples are tbet , hex, and dec in lines
12-14. Nocharacters are output when vi@utput” theoct . But outputting theoct makes a change to
the stream, causing all subsequent integers output there to be written in octal. IrodseavC++ stream
can ‘remember’a format for output, and we canen copy this format into another stream object (line 17).
In C, on the other hand, a C file pointer suctstdeut has no memorylt must to be gien a format
evay time we callprintf

There is also gaetbase manipulator in line 15, but its only arguments are 8, 10, orAlGanipu-
lator with an argument needs the headexdibgnanip> ; those without arguments do not.

Lines 9 and 18 s& and restore the base of a streaBasing the base is unnecessary here, because
the initial base of a stream isnalys 10. Restoring it is also unnecességcause the program is about to
end. Butcode in the middle of a larger program might want to restore a base it had changed.

A stream object has an integer whose bits are flags describing its current format, including three for
octal, hex, and decimalA variable that holds format flags must be of data fypflags , atypedef for
the appropriate type of integer (line 9). This data type has the lastiosbase (ios in older \ersions
of the C++ Standard), just as thariablecout had the last namstd on p. 20. (Pages 419-422 will
shav what it means for a data type tovha hst name; for ng, don’t worry about it.)

acs2 AN hesenea ©2014 Mark Meretzky

1
2
3
4

ab~hwWwNRE

Section 4.1.1 Formatted I/O with Manipulators 351

The setf function in line 18 restores only the three flags thategothe base(To restore all the
flags, see line 42 of the next program.) The other flags of the stream remain unchanged because of the

ios_base::basefield argument. Thiss an enumeration that belongs to a class,dik
date::;january on pp. 223-228We'l | look at it more closely in the next section.
—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/iomanip/base.C

#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

i nti=10;
i os_base::fmtflags save = cout.flags(); //Save all the format flags.

cout <<i<<"\n" /[Decimal by default: printf("%d", i)
<< oct<<i<<"\n" [lprintf("%o0", i);
<< hex<<i<<"\n" Iprintf("%x", i);
<< dec<<i<<"\n" lprintf("%d", i);
<< setbase(16) <<i<<"\n"; [printf("%X", i);
cerr.copyfmt(cout); /[Copy the entire format of cout into cerr.
cout.setf(save, ios_base::basefield); /IRestore the base.
cout <<i<<"\n% //lsame base as line 11
return EXIT_SUCCESS;
10 line 11: decimal
12 line 12: octal afteroct
a line 13: hexadecimal aftdrex
10 line 14: decimal aftedec
a line 15: hexadecimal aftesetbase(16)
10 line 19: same as line 11

v Homework 4.1.1a: inconsistent format flags

To e the format flags, call thkags function with no arguments in line &o se the meaning of
each flag within the integer of flags, print the enumerations in lines 14¥hé.actual values may be dif-
ferent on each platform.ike thebasefield in the previous program, these enumerations are members
of classios_base . basefield , by the wayis a @mbination of the flags for all three bases (line 15).

Lines 17-19 use “bitwise andb print the value of an individual flag.

Theoct , hex, and dec manipulators turn the flags on and. diVe can also do this directly by call-
ing the member functions and manipulators in lines 21-40, taking arguments of type

ios_base::fmtflags . Ifline 24 is too drastic for you, do 28 instead.
—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/iomanip/flags.C

#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

acss A hesenea ©2014 Mark Meretzky

352 OperationsExpressed by Overloaded Operators Chapter 4

6 i nt main()
7
8 i os_base::fmtflags save = cout.flags();
9
10 cout << hex
11 << ‘"cout.flags() == " << save << "\n"
12 << ‘"ios_base::dec ==" << ios_base::dec << "\n"
13 << "ios_base::hex ==" << ios_base::hex << "\n"
14 << "ios_base:oct ==" << ios_base::oct << "\n"
15 << "ios_base::basefield == " << ios_base::basefield << "\n";
16
17 if (cout.flags() & ios_base::hex) {
18 cout << "The hex flag is set.\n";
19 }
20
21 ios_base::fmtflags myflags = ios_base::dec | ios_base::hex;
22
23 /[Turn on myflags; turn off all others.
24 cout.flags(myflags);
25
26 /[Outside of the basefield, leave all flags unchanged.
27 /IWithin the basefield, turn on myflags and turn off the others.
28 cout.setf(myflags, ios_base::basefield);
29
30 /[Turn on myflags; leave the others unchanged.
31 cout.setf(myflags);
32
33 /[Turn on myflags; leave the others unchanged.
34 cout << setiosflags(myflags);
35
36 /[Turn off myflags; leave the others unchanged.
37 cout.unsetf(myflags);
38
39 /[Turn off myflags; leave the others unchanged.
40 cout << resetiosflags(myflags);
41
42 cout.flags(save); /Irestore all the format flags, not just 3 base flags
43 return EXIT_SUCCESS;
44}
cout.flags() == 1002 line 11: binary001000000000010
ios_base::dec == line 12: binary000000000000010
ios_base::hex == line 13: binary000000000001000
ios_base::oct == 40 line 14: binary000000001000000
ios_base::basefield == 4a line 15: binary000000001001010
The hex flag is set. line 20: same as line 11
What will setbase do to the three flags if its argument is neither 8, 10, or 16? Can you turn on
more than one of the three base flags by saying
45 cout <<dec << hex;

or would you hge o resort tosetf or setiosflags ? If more or less than one of the three base flags
are set, in what base will the output be?
A

aess A hesenea ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 353

Three trivial manipulators

Negaive rumbers hee a regdive sgn. Positve rumbers will hae a wsitive dgn if we output the
showpos manipulator in line 11. This works only in base 10.

Theshowbase manipulator in line 12 will output @ (zero) before an octal irger, and aOx before
a hexadecimal intger. (This works only if the integer is non-zero.) It will also output the cugrepmbol
in certain locales (p. 1040). If you're showing the base and paddingiatbger with zeroes, specify the
internal padding on p. 357uppercase makes the numbers uppercase.

The three manipulators in line 15 turn these featurkesTdfis is unnecessary since lines 8 and 17
save and restore the base and the three trivial flags. This in turn is unnecessary since the program is about
to end.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/iomanip/trivial.C
1 #include <iostream> //don’t need <iomanip>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nti=10;
8 i os_base::fmtflags save = cout.flags();
9
10 cout <<i<<"\n"
11 << showpos <<i<<"\n" [lprintf("%+d", i)
12 << hex<<i<<"\n" Iprintf("%x", i)
13 << showbase <<i<<"\n" lprintf("%#x", i)
14 << uppercase <<i<<"\n" lprintf("%#X", i)
15 << nouppercase << noshowbase << noshowpos;
16
17 cout.setf(save, ios_base::showpos | ios_base::showbase |
18 ios_base::uppercase | i os_base::basefield);
19
20 cout <<i<<"\n" //lsame base and format as line 10
21 return EXIT_SUCCESS;
22}
10 line 10: decimal
+10 line 11: aftershowpos , positive sign
a line 12: afterhex, hexadecimal
Oxa line 13: aftershowbase , shows the base prefx
O0XA line 14: afteruppercase
10 line 20: same as line 10

The width evaporates after one use

The “set width’ manipulatorsetw , with the agument3 in line 11, causes the next item to be output
with at least three character§hat item,bond, is only a single-digit numbeso it will be padded with tw
blanks for a total of three characters. The comment shows thelequprintf

Unlike the other manipulatorsetw evgorates after one use. (See p. 1048 fav ks is imple-
mented.) Ngadding is applied to the items after tend : the™\n" at the end of line 11, the xtbond
in line 12, etc.To pad another item, we would Ve output anothesetw .

In C, the only padding characters are blank and zero, iprthé ’s in lines 11 and 15 respec-
tively. In C++, thesetfill manipulator in line 15 will let us requestyapadding characterLines 14

aess A hesenea ©2014 Mark Meretzky

354 OperationsExpressed by Overloaded Operators

and 16 see and restore the padding charactsen though it is unnecessary here.

—On the Web at

http://i5.nyu.edu/ Cmmé64/book/src/iomanip/width.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <iomanip>
4 using namespace std,;
5
6
7
8

Chapter 4

i nt main()
{
i ntbond =7,
9

10 cout << bond <<"\n" /lprintf("%d")
11 << setw(3) << bond <<"\n" /lprintf("%3d", i);
12 << bond << "\n"; [printf("%d", i)
13
14 char save = cout.fill();
15 cout << setw(3) << setfill('0’) << bond << "\n"; //printf("%03d", bond);
16 cout.fill(save); /lor cout << setffill(save);
17
18 cout << setw(3) << bond << "\n"; //same padding character as line 11
19 return EXIT_SUCCESS;
20}

7 line 10

7 line 11: padded with two spaces
7 line 12:setw evaporated after one use
007 line 15: padded with two zeroes
7 line 18: same as line 11

Output a bool

By default, abool is output as the numbéror 0. Lines 11 and 12 turn verbal output on and of
Lines 8 and 14 s& and restore théool format, een though it is unnecessary here.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/iomanip/bool.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

/IRestore only the bool format.

4
5 i nt main()
6 {
7 bool b = true;
8 i os_base::fmtflags save = cout.flags();
9
10 cout <<b<<""<<lpb<<"\n"
11 << boolalpha << b <<"" << Ib<<"\n"
12 << noboolalpha << b <<"" << Ib << "\n";
13
14 cout.setf(save, ios_base::boolalpha);
15 cout <<bs<<""<<lb<<"\n"; /lsame format as line 10
16 return EXIT_SUCCESS;
17}

printed 4/8/14
8:46:52 AM

All rights
reserved

©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 355

10 line 10
true false line 11: afterboolalpha
10 line 12: afternoboolalpha
10 line 15
Output a double

As in C, the default precision fordmuble is six digits. Line 9 outputs theoouble rounded to this
number of digits, just lik the %gformat ofprintf . The precision is théotal number of digits, some to
the left of the decimal point and some to the right.

To change the precision, call the manipulasetprecision in line 14. The double is nav
rounded to three significant digits; the agient format ofprintf is in the comment.

The maximum precision BBL_DIG, a macro defined the header figfloat> . On my patform
it is 15 digits, and line 8 takes full advantage ofWe will eventually discard this macro ira¥a of the
“ template” numeric_limits<double>::digits10 . See pp. 745-747.

To use the precision as the number of digits to the right of the decimal point, rather than the number
of significant digits, switch to thiéxed or scientific formats in lines 15-16As usual, the value is
rounded, not truncatedixed will display every digit to the left of the decimal point; see line 17 of
max.C on p. 748 for an example.

Unfortunately there are no manipulators to turrf fiked and scientific . To reset the tw
flags, line 17 must use thesetiosflags manipulator on p. 352.

Lines 10 and 18 sa and restore the precisiorA variable that holds the precision must be of data
typestreamsize , the type for counting characters that are output or input.

Lines 9 and 20 s& and restore the formafixed |, scientific , Or neither.

If a double value happens to be a whole numbenormally does not display a decimal point and
fractional digits. You can change this with thrghowpoint manipulator Also applicable taouble out-

put areshowpos and, if the format iscientific , uppercase .
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iomanip/double.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <iomanip>
4 using namespace std,;

5
6 i nt main()
7
8 double d = 6.66666666666666; //15 digits, including 1 to left of decimal
9 i os_base::fmtflags save = cout.flags();
10 streamsize prec = cout.precision();
11 cout << "The default precision is " << prec << ".\n";
12
13 cout <<d<<"\n" [printf("%g", d);
14 << setprecision(3) << d << "\n" [lprintf("%.3g", d);
15 << fixed <<d <<"\n" Iprintf("%.3f", d);
16 << scientific << d << "\n" [lprintf("%.3e", d);
17 << resetiosflags(ios_base::floatfield)<<d<<"\n" //printf("%.3g",d);
18 << setprecision(prec) << d << "\n"; //printf("%g", d);
19
20 cout.setf(save, ios_base::floatfield);
21 cout <<d<<"\n"; //same format as line 13
22 return EXIT_SUCCESS;
23}

aess AN hesenea ©2014 Mark Meretzky

356 OperationsExpressed by Overloaded Operators Chapter 4

The default precision is 6.

6.66667 line 13: total of six digits

6.67 line 14: total of three digits

6.667 line 15: fixed format, three digits to the right of the decimal point
6.667e+00 line 16: scientific format, three digits to the right of the decimal point
6.67 line 17: bak to mon-fixed, non-scientific format, still a total of three digits
6.66667 line 18: bak to default precision

6.66667 line 21: same as line 13

Output an array of characters

Thes in line 8 is an eight-character string, not counting its termin&iihg . Lines 14-15 output it
with a width of ten, padding it with twcharacters (asterisks for visibility).

By default, the padding characters are output before the string, right-justifying it within its ten-char
acter field. The manipulatorgeft andright in lines 17 and 20 let us control the justificatioffe an
even Yecify internal padding in line 23, which inserts the padding character between the sign and the
rest of the number.

Lines 10 and 26 sa and restore the three justification flatgft |, right , andinternal
—On the Web at

http://i5.nyu.edu/ Cmme64/book/src/iomanip/justify.C

1 #include <iostream>

2 #include <cstdlib>

3 #include <iomanip>

4 using namespace std,;

5

6 i nt main()

7

8 char s[] = "John Doe";

9 double d = 10.00;
10 ios_base::fmtflags save = cout.flags();
11
12 cout << "Pay to the order of " << s << " the amount of\n"
13
14 << "Pay to the order of " << setfill("*') << setw(10) << 's
15 << "t he amount of\n"
16
17 << "Pay to the order of " << left << setw(10) << s
18 << "t he amount of\n"
19
20 << "Pay to the order of " << right << setw(10) << s
21 << "t he amount of\n"
22
23 << internal << fixed << showpos << setprecision(2)
24 << seffill(’) << setw(7) << d << "\n";
25
26 cout.setf(save, ios_base::adjustfield); //restore only the 3 flags
27 cout << "Pay to the order of " << setw(10) << s << " the amount of\n";
28 return EXIT_SUCCESS;
29}

Paess AN hesenea ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 357

Pay to the order of John Doe the amount of line 12

Pay to the order of **John Doe the amount of lines 14-15: right justified by default
Pay to the order of John Doe** the amount of lines 17-18: aftetleft

Pay to the order of **John Doe the amount of lines 20—-21: afteright

+ 10.00 lines 23-24: aftelinternal

Pay to the order of John Doe the amount of line 27: same as lines 14-15

Another use ofnternal padding is to insert the padding character between a base indicator and a
number.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iomanip/internal.C

#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

i nt main(int argc, char **argv)
{
i nti=10;

O©CoOoO~NOOOUTA,WNPE

10 cout << hex << showbase << setfill('0’)
11 << setw(10) <<i<<"\n"
12 << internal << setw(10) <<i<<"\n";

14 return EXIT_SUCCESS;
15}

00000000xa line 11: wrong
0x0000000a line 12: correct

Input manipulators

istream objects such asin have the same format flags astream objects. istream ’s have
input manipulators, which are “inputvith the>> operator.

By default, intgers are input in decimal becauseigtnream is born with theos_base::dec
flag on. Line 12 will accept a number with a leadiydut the zero will be ignored. Line 12 will reject a
number with a leadin@x, but we didnt bother with error checkingWe should hae.

To permit octal input, thedmiliar oct appears in lines 15-17 as an input manipulawhen we
“input” the oct from anistream , no daracters are actually input. But inputting thet makes a
change tccin , causing all subsequent igirs input from that stream to be read in octal. (Line 16 will
reject a number with a leadif .)

Line 20 does heinput (it will accept and ignore a leading zero), and 24 goes back to detiimeal.
29 resets the flags for the three basasth all three turned off, we can woaccept integer input in gn
base.

As before, lines 9 and 34\w&aand reset the three base fladgigput error checking omitted for kuigy.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iomanip/input.C

#include <iostream>
#include <cstdlib>
#include <iomanip>
using namespace std;

abhwNRE

aess A hesenea ©2014 Mark Meretzky

358 OperationsExpressed by Overloaded Operators

Chapter 4

i nt main()
{
i nti, j, k; /luninitialized variables
i os_base::fmtflags save = cin.flags();
cout <<"Input an integer in decimal: ";
cin >>i;
cout <<"In decimal, the integer is " <<i << "\n\n";
cout <<"Inputtwo integers in octal; leading O optional: ";
cin >>o0ct>>i>>j;
cout <<"In decimal, the integers are " <<i<<", " <<j<<"\n\n";
cout <<"Input two integers in hexadecimal; leading Ox optional: ";
cin >>hex>>i>>j;
cout <<"In decimal, the integers are " <<i<<", " <<j<<"\n\n";
cout <<"Input an integer in decimal: ";
cin >>dec>>i;
cout <<"In decimal, the integer is " <<i << "\n\n";
cout <<"Input 3 integers in any base.\n"
"Leading 0 f or octal, Ox for hex, are now mandatory: ";
cin >>resetiosflags(ios_base::basefield) >> i >> j >> k;
cout <<"In decimal, the integers are "
<< | << n' " << J << ||' " << k < <".\I"I";
cin.setf(save, ios_base::basefield);
return EXIT_SUCCESS;
Input an integer in decimal: 10
In decimal, the integer is 10.
Input two integers in octal; leading O optional: 10 010
In decimal, the integers are 8, 8.
Input two integers in hexadecimal; leading Ox optional: 10 0x10
In decimal, the integers are 16, 16.
Input an integer in decimal: 10
In decimal, the integer is 10.
Input 3 integers in any base.
Leading O for octal, Ox for hex, are now mandatory: 10 010 Ox10
In decimal, the integers are 10, 8, 16.

Skip white space

By default, the>> operators discard grleading whitespace encounted before the valug dhe
looking for. For example, the character that line 11 inputs ot the first non-whitespace charact@o
get a fresh start we then ignore the rest of the input line: tkteneavline or 1000 characters, whigke

comes first. (What if the line is longer than 1000/ will fix this with

printed 4/8/14
8:46:52 AM

hesenea ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 359

numeric_limits<streamsize>::max() on pp. 747-748.)

Thenoskipws manipulator in line 18 will preent us from skipping white space. In this caseill

be the very next character regadoskipws works only if the \alue to be input is a character or string, not

a rumber White space is alays skipped before numerical input.) Line 24 turns skipping back on.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iomanip/skip.C

1 #include <iostream>
2 #include <cstdlib>

3

©O© oo~NO OA~

using namespace std;

i nt main()
{
i os_base::fmtflags save = cin.flags();
cout << "Input a line:"; //no space after colon
char c; /luninitialized variable

cin >>g¢;
cin.ignore(1000, \n’);

cout << "The first non-whitespace character was ™ << c
<< ";ignoring rest of line.\n\n";

cout <<"Input another line:";

cin >> noskipws >> c;

cin.ignore(1000, \n’);

cout << "The first character was ™ << c
<< ";ignoring rest of line.\n\n";

cout <<"Input yet another line:";

cin >> skipws >> c;

cin.ignore(1000, \n’);

cout << "The first non-whitespace character was ™ << c
<< " ignoring rest of line.\n";

cin.setf(save, ios_base::skipws);
return EXIT_SUCCESS;

Input a line: This line begins with three spaces.
The first non-whitespace character was 'T’; ignoring rest of line.

The first character was ' ’; ignoring rest of line.

The first non-whitespace character was 'T’; ignoring rest of line.

Input another line: This line begins with three spaces.

Input yet another line: This line begins with three spaces.

Output a pointer

A pointer to ay type of variable can be implicitly ceerted to a pointer tyoid . Therefore there is
only oneoperator<< , taking aconstvoid * for printing a pointer Thep in line 13 and th&i in
line 14 are passed to thoaperator<< . The pointer is output in the platforetornventional format, hea-

decimal on mine.

printed 4/8/14
8:46:52 AM

All rights
reserved

©2014 Mark Meretzky

1
2
3

©O© oo~NO OA~

360 OperationsExpressed by Overloaded Operators Chapter 4

When line 16 tries to print the address of a function, we get a nasty surprise: it prints as the number
1. Line 17 shars where thel come from: it is actually the representation of hoel valuetrue . Why
was the pointer coverted to abool ? A pointer to ag variable can be implicitly cowerted into a pointer
to void , but a pointer to a function cannot be. The only type to which a pointer to a function can be
implicitly converted, and for which there is aperator<< , isbool . Since the pointer was non-zero it
was converted totrue , which prints out as the diglt or the wordtrue .

We oould print the address 6fif we could cowert it to avoid * , but neitherstatic_cast nor
reinterpret_cast will convert a pointer to a function into a pointer to a non-function. Line 18 will
not compile. Paadoxically we can cowert a pointer to a function into a non-pointer (line 19xelected
the data typesize_t because it should be as wide as a painBaice size_t is an intger, it prints in
decimal. V¢ mrwvert it into a pointer in line 20 to print it in hex.

We dready sa this double cast in line 24 oéinterpret_cast.C on p. 67.We oould avoid it
by writing the primitve C @st in line 22. But dom’'succumb to this temptation. There is no way to search
the program to find all the C casts.

Two types of pointers he their ovn operator<< function. Thepointerq in line 25 is a pointer to
constchar , so we all theoperator<< whose argument is a pointerd¢bar . This function outputs
the characters to which the pointer points, not the value of the pokfeinter to asigned or
unsignedchar is treated the same way.

To autput the actual value of the pointer (the address of the pointed-to character), line 29 casts the
pointer into a pointer to a different type of variableid * is the only non-arbitrary choice.

The other type of pointer that has itsrooperator<< is a pointer to the specific type of function
shawn in line 6: one that takes and returns a reference tsta@am . This operator<< does not out-
put the \alue of the pointerlt calls the function that the pointer points /e will see the reason for this
oddity on pp. 361-362.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iomanip/pointer.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nline void f() {cout << "typical function\n";}
i nline ostream& g(ostream& ost) {return ost << "g is called, not printed\n.";}

i nt main()
{
int i =10;
int *p=&i
cout <<"Thevalueofpis"<<p<<"\n" [lprintf("%p", p)

"The address ofiis" << &i <<".\n\n";

cout <<f<<"\n"
<< boolalpha << f<<"\n"
/<< reinterpret_cast<const void *>(f) << "\n" //won’t compile
<< reinterpret_cast<size_t>(f) <<"\n"
<< reinterpret_cast<const void *>(reinterpret_cast<size_t>(f))

<< "\n"
<< (constvoid *)f //depricated
<< "\n\n";

const char *q = "hello";

aess A hesenea ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 361

27 cout <<'"qpoints at the characters\""' << q //printf("%s", q)
28 << "\"\n"
29 "The value of g is " << static_cast<const void *>(q) << ".\n\n";
30
31 cout <<g;
32
33 return EXIT_SUCCESS;
34}
The value of p is 0xffbff174. line 13: may be octal or decimal on other platforms
The address of i is 0xffbff174. line 14: the same address
1 line 16: the address df, converted tdool
true line 17: the address df, converted tdool
70288 line 19: the address df, converted tize t
0x11290 line 20: the same address, formatted asal *
0x11290 line 22: the same address, produced by a C-style|cast
g points at the characters "hello". line 27: a pointer to a character
The value of q is 0x113fO0. line 29: the address of thein hello
g is c alled, not printed line 31

Here are simplified definitions for the thregerator<< functions that taé pointers. Theone that
takes a pointer to a function (line 5) is short enough to be inliie one that takes a pointer talzar
(line 9) happens not to be a member function because it can do its work by calling a member function
(write) of classostream .

1 class ostream {
2 / letc.
3 public:
4 ostream& operator<<(const void *) {output the value of p; return *this;}
5 ostream& operator<<(ostream& (*p)(ostream&)) {return p(*this);}
6 / letc.
7},
8
9 i nline ostream& operator<<(ostreamé& ost, const char *p)
10{
11 ost.write(p, strlen(p)); //output the characters to which p points
12 return ost;
13}

How a manipulator works

The hex output manipulator is actually a function declared in the headesifisgream> . Like
anoperator<< function, its agument and return value is astream —the samestream , since it is
passed and returned by reference. Recall thabstream amgument of aroperator<< is implicit,
since theoperator<< is member function of classstream . The ostream argument ofhex is
explicit, sincehex is not a member of grclass.

1 ostream& hex(ostream& ost)

2 {

3 ost.setf(ios_base::hex, ios_base::basefield);
4 r eturn ost;

aess A hesenea ©2014 Mark Meretzky

362 OperationsExpressed by Overloaded Operators Chapter 4

The name of a function, with no argument list after it, stands for the address of that fuftigon.
expressiorhex is a therefore a pointer to a function that takes and returostegam . This function is
like a tny, ime-release capsule: it lies dormant until it is fed todgperator<< that ‘outputs’ it. When
we write

6 cout << hex
we are therefore calling thaperator<< function that takes a pointer to this particular type of function.
7 cout.operator<<(hex)

As we sav on pp. 360-361, thimperator<< does not output thealue of the pointerlt calls the func-
tion to which the pointer points, in this case ltie function.

We oould also define bex input manipulator as follows.

8 i stream& hex(istream& ist)

9 {
10 ist.setf(ios_base::hex, ios_base::basefield);
11 return ist;
12}
If we wrote
13 cin >> hex

the computer would beta & if we havesaid
14 cin.operator>>(hex)
calling the function

15 class istream {

16 /letc.

17 public:

18 istreamé& operator>>(istream& (*p)(istream&)) {return p(*this);}
19 /letc.

20}

But when we hee inheritance it will be unnecessary to define the same manipulator twice. See pp.
484-485.

Our first example of an i/o manipulator was &mell on p. 26. Here is a simplified definition for it.

21 ostreamé& endl(ostream& ost)

22 {

23 ost <<\n
24 ost.flush();

25 return ost;
26}

Extend the format of an ostream

The claspoint in pp. 201-204 had print member function for output only wout . We will
replace it by amperator<< friend for output to ayostream . We will also invent two i/0 manipula-
tors,cartesian andpolar , to output apoint in these tw codrdinate systemsA demonstration is in
lines 10-12 oMmain.C on p. 365; the default in line 10 is Cartesian.

Eachostream object already contains data membersdegktrack of whether it should output in
decimal or hex, justified left or right, padded with blanks or zeroesGatn.we add another data member
to hold its choice of codrdinate systeriy®d. Thenumber of data members of a class is fixed, once and for

aess A hesenea ©2014 Mark Meretzky

B

PO OWoOoO~NOOUOD»WNLPE

Section 4.1.1 Formatted I/O with Manipulators 363

all, by the declaration for that class.

But classostream has a special feature thatvgg us he effect of anxra data memberEach
ostream object contains an expandable arraylafg 's. Although each object has its own arréhe
arrays are all the same lengffo add a nev element to the array ofvery ostream object simultaneously
we call thexalloc static member function of classtream in line 6 ofpoint.C . In each array the
new element has the same subscript, which is returnedlbyc

The nev element must be added to the array of eastheam before ag point object is output to
anyostream . To ensure this, the call walloc is used to initialize a static data member of class
point . The static data members of a class awsy initialized before anobject of that class isver
constructed, let alone output. (This static data member cannot be initialized in its declaration in line 10 of
point.h , even though it is intgral and constant, because its initial value is not a constargssion. See
p. 238.)

The nev element of each array is initialized to zero, which isywke chose zero to represent the
default format, Cartesian, in the element. The arrays haname. D access an element of an
ostream s array, we pass its subscript to tlestream ’'s member functionword in line 10 of
point.C . Note thatxalloc is a static member function that affects all tis#ream ’'s smultaneously,
while iword is a non-static member function that accesses the array ostteam of which it is a
member function. The call tawvord is in anoperator<< with familiar arguments and return valuetb
also with aswitch statement and a light dusting of trigonometry.

The manipulatorgartesian andpolar in main.C are actually tw functions, the friends of
classpoint in lines 16 and 21 gboint.h . Like the hex function, thg take an ostream object and
return the same object. Along theyvthey assign a value to the weelement of theostream . We can
use the return value oford as an Ivalue in lines 17 and 22 because it is a read/write reference to the ele-
ment. Segp. 12-13.

cartesian andpolar mention the prate membesubscript of classpoint , so hiey must
be member functions or friends of that class. Ilf/ttvere member functions, theould be static because
they need no implicit pointer gument. Infact, they would hare © be $atic because the pointer argument
p of theoperator<< in line 5 on p. 361 can point only to a free functigh different type of pointer
would be needed to point to a non-free functi®ee p. 113 for free and non-free functions; p. 242 for
static member functions as free functions; pp. 255-257 for pointers to non-free functions.

Hadcartesian andpolar been static member functions, we woulaédbad to write
point::cartesian and point::polar in lines 11-14 ofmain.C . We therefore define them as
friends, to eliminate the last name. Sinceythe defined in the class definition and/éao arguments of
type point or compounded therefrom,thust also be declared outside the class at lines 6eé.p. 206.

We ae on a first-name basis with the members of a class within the curly braces of the class declara-
tion. Thats why lines 17 and 22 gfoint.h can mention theubscript . We ae also on a first-name
basis with the members of a class within the definition of a member function of the class. But the
operator<< in line 8 ofpoint.C is not a member function, so its line 10 must say
point::subscript
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/point_polar/point.h

#ifndef POINTH
#define POINTH
#include <iostream>
using namespace std;

ostream& cartesian(ostreamé& ost);
ostream& polar(ostreamé& ost);

class point {
static const int subscript; //subscript of new element in iword "array"
double x,vy;

aess A hesenea ©2014 Mark Meretzky

364 OperationsExpressed by Overloaded Operators Chapter 4

12 public:

13 point(double initial_x = 0, double initial_y = 0)

14 : X(initial_x), y(initial_y) {}

15

16 friend ostream& cartesian(ostreamé& ost) {

17 ost.iword(subscript) = 0; / ICartesian coordinates
18 return ost;

19 }

20

21 friend ostream& polar(ostreamé& ost) {

22 ost.iword(subscript) = 1; | Ipolar coordinates
23 return ost;

24 }

25

26 friend ostream& operator<<(ostream& ost, const point& p);
27}

28 #endif

On my platform, theatan2 function might set the “error numbéwrariableerrno if both of its
arguments are zerolo avoid this, we callatan2 only if at least one argument is not zero. Line 19 must

output its zeroes as numbers, rather than as the 40in@)" , to respond to théixed ,
scientific , and setprecision manipulators,
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/point_polar/point.C
1 #include <cstdlib> [ffor exit, EXIT_FAILURE
2 #include <cmath> [[for sgrt and atan2
3 #include "point.h"
4 using namespace std,;
5
6 const int point::subscript = ostream::xalloc();
7
8 ostream& operator<<(ostreamé& ost, const point& p)
9 {
10 switch (ost.iword(point::subscript)) {
11
12 case O:
13 /[Cartesian coordinates.
14 return ost<<"("<<px<<" "< py<<")
15
16 case 1:
17 /[Polar coordinates.
18 if (px==0.0&&p.y==0.0){
19 return ost<<"("<<0.0<<" "<<0.0<<")"
20 } else{
21 return ost<<"("<<sqgrt(pX*pX+py*py)<<","
22 << atan2(p.y, p.x) <<")";
23 }
24
25 default:
26 cerr <<"iword(" << point::subscript << ") =="
27 << ost.iword(point::subscript)
28 << " is n either O (Cartesian) nor 1 (polar).\n";
29 exit(EXIT_FAILURE);
30 }

acss A hesenea ©2014 Mark Meretzky

31}

O©CoO~NOUIL,WNPE

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Section 4.1.1 Formatted I/O with Manipulators 365

180° =rrradians

A(-1,0)

—On the Web at
http://i5.nyu.edu/ Cmm64/book/src/point_polar/main.C

#include <iostream>
#include <cstdlib>
#include "point.h"
using namespace std;

i nt main()
{
const point A(-1, 0);
cout <<A<<"\n" lloperator<<(cout, A)

<< polar << A <<"\n"
<< cartesian << A <<"\n";

cerr << polar << A << "\n";

return EXIT_SUCCESS;

When we write the abe line 14, the computer beles as if we lad written
operator<<(operator<<(operator<<(cerr, polar), A), "\n");
When we write the abve lines 10-12, the computer beka as if we lad written

operator<<(
operator<<(
operator<<(
operator<<(
operator<<(
operator<<(
operator<<(
operator<<(
cout,
A),
“\n"),
polar),
A),
“\n"),
cartesian),

aese A hesenea ©2014 Mark Meretzky

34
35

36
37

©CoOo~NOOOUTA,WNPE

366 OperationsExpressed by Overloaded Operators Chapter 4

A),
"“\n");
(-1, 0) line 10: cartesian by default
(1, 3.14159) line 11: radius == 1,0== mradians
(-1, 0) line 12: bak to cartesian
(1, 3.14159) line 14: standad error output

A more general version afartesian andpolar , gpplicable to input as well as output, will be
presented on pp. 485-486 after weénmheritance.

point A;
cin >> polar >> A >> cartesian;
For another pair of user-defined i/o manipulators, see p. 989.

To autput apoint in different formats was easy: we simply wrote a sroperator<< for class
point . To output anint as a Roman or Arabic numeral would be harderoffezator<< for type
int has already been written and engthin granite in the Standard LibraryWe will need a diferent
approach; see pp. 1047-1050.

v Homework 4.1.1b: output a date in French Reolutionary format

Define two manipulators to switch the output ofdate to and from French Relutionary format.
This artificial calendar is simpler thanyainaditional calendarAlso define tw public, static member func-
tions of classlate to sare and restore the political format of astream .

date first(date::september, 22, 1792); //Republic proclaimed
bool save = date::get_format(cout);
cout << first << "\n"

<< r evolutionary << first << "\n"

<< norevolutionary << first << "\n\n";

date last(date::july, 27, 1794); /[Robespierre arrested

cout <<last<<"\n"
<< revolutionary << last << norevolutionary << "\n";

date::set_format(cout, save);
9/22/1792
1 Vendémiaire de I’Année | de la Républic
9/22/1792
7/27/1794
9 Thermidor de I'Année Il de la Républic

Each month in this calendar is the same length, 30 dBys.first monthVendémiaie, begins on
September 22. (That date in 1792 was the autumnal equinox and the day after the proclamation of the
Republic.) Thevear | of this calendar therefore begins

1791 x 365+31+28+31+30+31+30+31+31+22-1

days after year 1 of the normal calendigmore leap yearsDon't bother with the accent marks or Roman
numerals until we get to p. 1050.

Paess AN hesenea ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 367

name tanslation equivalent
1 | Vendémiaire | Vintage September—-October
2 | Brumaire Mist October—-Noember
3 | Frimaire Frost Nwoember—-December
4 | Nivose Snowv December-January
5 | Pluviése Rain January—February
6 | Ventbse Wind February—March
7 | Germinal Seed March-April
8 | Floréal Blossom April-May
9 | Prairal Meadav May-June
10 | Messidor Harvest June-July
11 | Thermidor Heat July—-August
12 | Fructidor Fruits August-September

The twehe nonths total 360 days. The lastdidays of the year (thsans-culottidesthose without
knee breeches) ta pecial names.

name tanslation equivalent
Fete de la vertu Festval of Virtue Septembet7
Fete du génie Festval of Talent Septembetr8
Fete du travail Festval of Industry | September9
Fete de I'opinion Festval of Ideas Septemb&0
Fete des recompenses Festival of Rewads | Septembe2l

Aux armes, citgens! Fbrmez vos bataillons!
A

Define a manipulator with an argument

We haveseen a number of manipulators thaktalguments:setbase , setw , setffill , and
setprecision . We now areate one of our own.
Theset_life_foreground manipulator in line 24 afmain.C on p. 370 will change the format

in which alife object is output. It takes angament giving the character with which each occupied loca-
tion should be dran. Thisregans half of the functionality lost when timgint member function of class
life became awperator<< friend on p. 341.

To ooncentrate on the mefeatures of this class, wevgagripped avay most of the gerloaded opera-
tors. TheThree Laws hae been compressed into the single expression in line A2 a3

For corvenience, the same header file contains classedife_foreground andlife ; we
would never use the former without the lattehe epressionset_life_foreground('O’) in line
24 of main.C calls the constructor for an anonymous object of this class and passesgyiraerar The
object stores the argument indtslata member (line 13 dife.h) and then lies dormant.

Theset_life_foreground objects avakens when it is fed to iteperator<< in line 57 of
life.C . Long before this happens,ever, line 4 oflife.C has calleckalloc to add a n& element
to the expandable array irveey ostream object. Theawdkened set_life_foreground object

stores its character data member into the @lement in line 59 and plays no further réfBome time later
when alife object is fed tdts operator<< in line 63 oflife.C , the character is fetched from the
array element and is used to displaylifee object.

There is no guarantee thatsat life_foreground object will be ‘output” before alife
object is. Line 66 therefore defaults’¥0 if no foreground character has been established.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iword/life.h

printed 4/8/14 All rights

8:46:52 AM reserved©2014 Mark MeretZky

368 OperationsExpressed by Overloaded Operators Chapter 4

1 #ifndef LIFEH

2 #define LIFEH

3 #include <iostream> /ldefines size t

4 using namespace std,;

5

6 constsize_tlife_ymax = 10;

7 constsize_tlife_xmax = 10;

8

9 t ypedef bool life_matrix_t[life_ymax][life_xmax];
10 typedef bool _life_matrix_t[life_ymax + 2][life_xmax + 2];
11
12 class set_life_foreground {
13 const charc;
14 public:
15 set_life_foreground(char initial_c): c(initial_c) {}
16 friend ostream& operator<<(ostream& ost, const set_life_foreground& f);
17}
18
19 class life {
20 static const int subscript; //subscript of new element in iword array
21
22 int g; /lgeneration number
23 _life_matrix_t matrix;
24 public:
25 life(const life_matrix_t initial_matrix);
26 int generation() const {return g;}
27 life& operator++();
28
29 friend ostream& operator<<(ostream& ost, const life& li);
30 friend ostream& operator<<(ostream& ost, const set_life_foregroundé& f);
31}
32 #endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/iword/life.C

1 #include "life.h"

2 using namespace std;

3

4 constint life::subscript = ostream::xalloc();

5

6 | ife::life(const life_matrix_t initial_matrix)

7 9(0)

8 {

9 / ICopy initial_matrix into matrix.
10 for (size_ty =1;y <=life_ymax; ++y) {
11 for (size_t x = 1; x <= life_xmax; ++x) {
12 matrix[y][x] = i nitial_matrix[y - 1][x - 1];
13 }
14
15 /Neft and right edges
16 matrix[y][0] = matrix[y][life_xmax + 1] = false;
17 }
18
19 /Itop and bottom edges

aess A hesenea ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 369

20 for (size_tx =0; x < life_xmax + 2; ++x) {

21 matrix[0][X] = matrix[life_ymax + 1][x] = false;
22 }

23}

24

25 life& life::operator++()

26 {

27 _life_matrix_t newmatrix; //uninitialized variable
28

29 for (size_ty =1;y <=life_ymax; ++y) {

30 for (size_t x = 1; x <= life_xmax; ++x) {

31

32 //[How many of the 8 neighbors of element x, y are on?
33 int count = -matrix[y][X];

34

35 for (size_tyl=y-1;yl<=y+1;++yl){
36 for (size_tx1=x-1;x1<=x+1;++x1){
37 count += matrix[y1][x1];

38 }

39 }

40

41 /I Laws of Survival, Birth, and Death

42 newmatrix[y][x] = count==2 ? matrix[y][x] : count == 3;
43 }

44 }

45

46 /ICopy newmatrix into matrix.

a7 for (size_ty=1;y <= life_ymax + 1; ++y) {

48 for (size_tx =1; x <=life_xmax + 1; ++x) {

49 matrix[y][x] = newmatrix[y][X];

50

51 }

52

53 ++0;

54 return *this;

55}

56

57 ostreamé& operator<<(ostreamé& ost, const set_life_foreground& f)
58 {

59 ost.iword(life::subscript) = f.c

60 return ost;

61}

62

63 ostreamé& operator<<(ostreamé& ost, const life& i)

64 {

65 const long character = ost.iword(life::subscript);

66 const char full = character == 0 ? 'X’ : character;

67

68 for (size_ty =1;y <=life_ymax; ++y) {

69 for (size_t x = 1; x <= life_xmax; ++x) {

70 cout << (li.matrix[y][x] ? full : ".");

71 }

72 cout <<"\n";

73 }

acss A hesenea ©2014 Mark Meretzky

74
75
76}

O©CoOoO~NOOOUTA, WNPE

370 OperationsExpressed by Overloaded Operators

return ost;

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/iword/main.C

#include <iostream>
#include <cstdlib>
#include "life.n"

using namespace std;

i nt main()
{
const life_matrix_t glider_matrix = {
{0,0,0,0,0,0,0,0,0, 0},
{0, 1,0,0,0,0,0,0,0,0},
{0, 10,1,1,0,0,0,0,0,0},
{0, 1,1,0,0,0,0,0,0,0},
{o, 0,0,0,0,0,0,0,0,0},
{o, 0,0,0,0,0,0,0,0,0},
{o, 0,0,0,0,0,0,0,0,0},
{o, 0,0,0,0,0,0,0,0,0},
{o, 0,0,0,0,0,0,0,0,0},
{o, 0,0,0,0,0,0,0,0,0}
¥
life glider = glider_matrix;
cout <<glider <<"\n"
<< set_life_foreground('O’) << ++glider;
return EXIT_SUCCESS;

printed 4/8/14
8:46:52 AM

/luppercase letter O

All rights
reserved

Chapter 4

©2014 Mark Meretzky

NOoO bR~ WN

Section 4.1.1

Formatted I/O with Manipulators 371

line 23: foregound character defaults t§

line 24

v Homework 4.1.1c: improvements to set_life_format
(1) What happens if we say

cout << set_life_foreground(\0");

Have the constructor for classet_life_foreground
printable character(Call theisprint
<cctype> .) Onthe other hand, should we alld\0’

disallow this by checking that its argument is a

function in the standard library and include the header file

as a special value that sets the foreground charac-

ter back to its defult? Inthis case, we would still disalkoall other nonprintable characters.
(2) Make it possible for the user togathe foreground character for later restoration.

/ /a public static member function of class life
char save = life::get_foreground(cout);

cout << set_life_foreground(save); /Irestore the previous foreground

(3) We oould create another array element to hold the background char8cterd we hae pa-
rate manipulators for the foreground and background characters,

cout << set_life_foreground('F’) << set_life_background(’b’);
or a single constructor whose manipulator takesaiguments? Theecond argument could be optional.
cout << set_life_format('F’, 'b’);

A

An argument that will not fit into a long integer

Let's remove thecartesian andpolar manipulators from the clagoint on pp. 362-366, and
invent a nev manipulator for scaling point . Thescale in lines 11-12 omain.C on p. 374 will tak
an argument giving the factor by which the codrdinates of paicit should be multiplied.

printed 4/8/14
8:46:52 AM

hesenea ©2014 Mark Meretzky

O~NO O WNPE

372 OperationsExpressed by Overloaded Operators Chapter 4

Long before ay point object is output orven constructed, line 6 gboint.C will call xalloc
to add a n& element to the expandable array wery ostream object. Eaclostream actually has a
pair of arrays, alays agreeing in their number of elemente haveseen the array dbng 's accessed by
theiword member function of thestream ; a parallel array ofvoid * ’s is acessed by thpword
member function.Like iword , pword returns a read/write reference to an array element. This lets us
store a n& value into the element. If a format value is integral or an enumeration, it can be stored in an
element of theword array Otherwise, the address of thalwe can be stored in an element ofptwerd
array.

The expressiorscale(2.54) in line 11 ofmain.C calls the constructor for an anonymous object
of classscale , passing it one gument. Thescale object stores the argument infiégstor data mem-
ber and then lies dormant. Mvakens when it is fed to theperator<< function in line 15 opoint.C
Line 27 of this function copies the data member into the element of thepword array; more precisely
into the block of memory to which thewelement points.

Where did this block come fromRor corvenience, line 17 opoint.C creates a referengeto the
new element. Theelement is a pointer teoid ; p is a reference to a pointervoid . The initial value of
each element in theword array is a zero pointejust as the initial value of each element in ithierd
array was a zerlong . If line 19 finds that we ke reve assigned a alue to the ne element, line 20 will
store the address of a block of memory thdfe permit this assignment to be made thropgip had to be
a read/write reference to the array element. If we nestithe & from line 17,p would be merely a copof
the array element, not a reference thereto. The assignnein time 20 would then put a value only into
p, leaving the array element unchanged. Line 24 is discussed. belo

Could themalloc someha go up h the static initialization in line 6™No. Line 6 is performed
only once, but thenalloc must be called for eaalstream object to which we outputgcale . The
malloc , by the wayis only temporary It will be superseded by the C++ operatew.

To autput apoint , we a@ll the operator<< function in line 8 ofpoint.C . For corvenience,
line 10 creates a cypof the nev element of thepword array This p can be a cop not a reference,
because thisperator<< has no interest in changing the value of the agay element. If line 11 finds
that we hae reve assigned a value to thewmelement, it means that rezale object has been output to
this ostream yet. Inthat case, line 11 assumes a default scale®f, otherwise, it fetches theaétor
stored by line 27. Finallyhex andy data members are output with a light dusting of multiplication.

If line 20 successfully allocates a block of memdine 24 arranges to ta it deallocated when the

ostream is destructed. The first gument of theregister_callback function in line 24 is the
address of aallback function to be called at some futuneeet. Thesecond argument of
register_callback will be passed to the callback function when the callback function is called.

The callback function will be called on three types of occasions, represented by the three enumera-
tions in lines 37, 41, and 53. If we regéea illegd enumeration (lines 56-57), we do not attempt to out-
put an error message because the streams are messed up .s@®beadlgncern here is with line 37, the
case in which thestream is destructed. Line 38 frees the block of memory that was allocated in line 20.

The callback function is also called after all the formatting information of a stream is copied into
another stream, including the pointers in heord array We do rot want two different streams to ke
pointers to the same block of memotyine 43 saes a inter to the block, line 44 creates awtadock for
thisostream , and lines 48-49 cgpthe contents of the old block into theanene.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/point_scale/point.h

#ifndef POINTH
#define POINTH
#include <iostream>
#include <cstdlib>
using namespace std;

class scale {
const double factor;

aess AN hesenea ©2014 Mark Meretzky

Section 4.1.1 Formatted I/O with Manipulators 373

9 public:
10 scale(double initial_factor): factor(initial_factor) {}
11 friend ostream& operator<<(ostream& ost, const scale& s);
12}
13
14 class point {
15 static const int subscript; //subscript of new element in pword array
16 static void callback(ios_base::event e, ios_base& ost, int i);
17
18 double x,vy;
19 public:
20 point(double initial_x = 0, double initial_y = 0)
21 : X(initial_x), y(initial_y) {}
22
23 friend ostream& operator<<(ostreamé& ost, const point& pt);
24 friend ostream& operator<<(ostream& ost, const scale& s);
25}
26 #endif

—On the Web at
http://i5.nyu.edu/ Omm64/book/src/point_scale/point.C

1 #include <iostream>

2 #include <cstdlib> /lfor malloc, exit, EXIT_FAILURE

3 #include "point.h"

4 using namespace std,;

5

6 const int point::subscript = ostream::xalloc();

7

8 ostream& operator<<(ostreamé& ost, const point& pt)

9 {
10 const void *const p = ost.pword(point::subscript);
11 const double factor = p ==0 ? 1.0 : *static_cast<const double *>(p);
12 return ost << "(" << factor * pt.x << ", " << factor * pt.y << ")";
13}
14
15 ostream& operator<<(ostreamé& ost, const scale& s) //friend of two classes
16 {
17 void *& p = ost.pword(point::subscript); //a reference to a pointer
18
19 if (p==0){ /lif the pointer is O
20 if ((p = malloc(sizeof (double))) == 0) {
21 cerr << "scale operator<< out of store\n";
22 exit(EXIT_FAILURE);
23 }
24 ost.register_callback(point::callback, point::subscript);
25 }
26
27 *static_cast<double *>(p) = s.factor;
28 return ost;
29}
30
31 void point::callback(ios_base::event e, ios_base& ost, int i)
32{
33 void *& p = ost.pword(i);

aess A hesenea ©2014 Mark Meretzky

374 OperationsExpressed by Overloaded Operators Chapter 4
34
35 switch (e){
36
37 case i0s_base:erase_event:
38 free(p);
39 break;
40
41 case ios_base::copyfmt_event:
42 if (p!=0)({
43 const void *const q = p;
44 if ((p = malloc(sizeof (double))) == 0) {
45 cerr << "point::callback out of store\n";
46 exit(EXIT_FAILURE);
47 }
48 *static_cast<double *>(p) =
49 *static_cast<const double *>(q);
50 }
51 break;
52
53 case ios_base:imbue_event:
54 break;
55
56 default:
57 exit(EXIT_FAILURE);
58 }
59}
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/point_scale/main.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "point.h"
4 using namespace std,;
5
6 i nt main()
7
8 const point A(1, 2); /lin inches
9
10 cout <<A<<"\n"
11 << scale(2.54) << A<<"\n" //1 inch == 2.54 centimeters
12 << scale(l) << A <<"\n";
13
14 return EXIT_SUCCESS;
15}
1,2 line 10: display thgooint in inches
(2.54, 5.08) line 11: centimeters
1, 2) line 12: bak to inches

v Homework 4.1.1d: male a typedef

The data typelouble appears mantimes throught classgmint andscale .

for double namedvalue_type at line 6 of the abee point.h
A

Make a ypedef

aess A hesenea ©2014 Mark Meretzky

A WNPE

0o ~NO O

©

11}

N -

abhwWwNRE

Section 4.1.2 File I/O with Classesest r eamandi stream 375

v Homework 4.1.1e: mae the multiplication to the correct place

We dould neer haveburied the double-barreled multiplication in a place like 12 of the abee
point.C . This multiplication should be written once and for all inoperator*= for classpoint

class point {
/ letc.
public:
point& operator*=(double d) {x *= d; y *= d; return *this;}

Now that we can multiply point by adouble , we should change theperator<< function to
the following.

ostream& operator<<(ostream& ost, point pt) //point now passed by value

{

i f (constvoid *const p = ost.pword(point::subscript)) {
pt *= * static_cast<const double *>(p);

} non

return ost << "(" << ptx <" "<< pty << u)n;

It may be objected that we arewoonstructing a n@ object, since th@oint must be passed to the
operator<< by value. Butthe same object was constructed piecemeal in line 12 of tie pbint.C
Each multiplication there createddauble anorymous temporary to hold the product, so we were con-
structing the equalent of a two-data-member object.sltiearer to mak the object official.
A

v Homework 4.1.1f: copyfmt
We @an copy the format (base, justification, precision, etc.) of one stream to another:

cout << scale(2.54);
cerr.copyfmt(cout); //Copy the format of cout to cerr.
/ INow cerr has scale 2.54 too.

When this happens, theord andpword arrays are copied fromout to cerr , and then the callback
function ofcout is called with the argumerds_base::copyfmt_event

What does the following fragment output?

const point A(1, 2);

cout << scale(2.54);

cerr.copyfmt(cout);

cout << scale(1);

cerr << A<<"\n" //should output with scale 2.54

How does the output change when we remiines 41-51 of the abe point.C ?

4.1.2 Filel/O with Classesost r eamandi st ream

Class ofstream is dened from class ostream

The C functionprintf is quite capable of outputting to a file: just run the program from the com-
mand line using the file output symbel

prog > outfile

Why, then, did thg invent the trio of functiongopen , fprintf |, andfclose ? For two reasons:

aess A hesenea ©2014 Mark Meretzky

1
2

O©oo~NO O~ W

376 OperationsExpressed by Overloaded Operators Chapter 4

(1) All the printf s and putchar ’s in a C pogram send their output to tlsame destination,
which may be a file. But to send output tooter more diferent destinations, e.g., tnoutput files, we
must use théprintf trio. Thefollowing program is an example.

(2) Even if there is only one output file, we might still want to usédptietf trio. printf gives
the program no controlver the name of the output file, the name of the directory that will hold the file, or
whether the file will be opened ivawrite or append mode. All of these things can be specified with the
fprintf trio.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stream/fprintf.c

#include <stdio.h> /* C example */
#include <stdlib.h>

nt main(int argc, char **argv)

i
{

FILE *out1,

FILE *out2;

/ * Open two output files.

Clobber them if they already exist; create them if they don’t. */

outl = fopen("outfilel”, "w");

if (outl == NULL) {
fprintf(stderr, "can’t open outfile1.\n");
return EXIT_FAILURE;

}

out2 = f open("outfile2", "w");

if (out2 == NULL) {
fprintf(stderr, "can’t open outfile2.\n");
return EXIT_FAILURE;

}

fprintf(outl, "hello\n"); /* Output 6 char’'s. Do not output 0. */

fprintf(out2, "goodbye\n™);

fclose(outl);

fclose(out2);

return EXIT_SUCCESS;

hello This file isoutfilel
goodbye This file isoutfile2

We saw the abee senario in pp. 164-166: a pair ofeats, with data (theariableoutl) that per
sists from the first\ent to the second. In C++, we tie this all together by constructing and destructing an
object of clas®fstream , for “output file stream! The constructor opens an output file, and the destruc-
tor closes it. As usual, the destructors are called implicitly.

Construct an object of claséstream to perform file output. An object of clasfstream (such
asoutl andout2) can do gerything that an object of clagstream (such axout andcerr) can do:
<<, hex, precision , ec.; line 33 demonstratesgtw . This is becausefstream is derived from
ostream . Furthermore, an object of clas$stream can domore than an object of clagsstream : it

acss A hesenea ©2014 Mark Meretzky

Section 4.1.2 File I/O with Classeest r eamandi stream 377

lets us specify the name and directory of the destination file, and whether veelveiting or appending to
it.

See p. 327 for the use bfin the tests in lines 21 and 2Theif in line 21 is true when the con-
structor called in line 20 failed to opewtfilel successfully In this caseputl requires no destruc-
tion.

But our program still has aug. Supposéhat line 20 constructed the objeeitl , but line 26 &iled
to construct the objeaut? . In this caseout?2 requires no destructionuboutl does. Unfortunately
theexit in line 29 will terminate the program without destructovgl . We'll fix this bug when we do
exceptions.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/stream/ofstream.C
1 #include <iostream> //C++ example
2 #include <fstream> /[for ofstream
3 #include <iomanip> /[for setw
4 #include <cstdlib>
5 using namespace std,;
6
7 void f();
8
9 i nt main(int argc, char **argv)
10{
11 f0;
12 return EXIT_SUCCESS;
13}
14
15 void f()
16 {
17 /[The constructors called in lines 20 and 26 open two output files.
18 /[Clobber the files if they already exist; create them if they don't.
19
20 ofstream outl("outfilel™);
21 if (‘outl) { /fif (outl.operator!()) {
22 cerr << "can't open outfile1.\n";
23 exit(EXIT_FAILURE);
24 }
25
26 ofstream out2("outfile2");
27 if (lout2) {
28 cerr << "can't open outfile2.\n";
29 exit(EXIT_FAILURE);
30 }
31
32 outl << "hello\n"; //Output 6 char's. Do not output '\O'.
33 out2 << setw(8) << "goodbye" << "\n";

34} /ICall destructors for out2 and outl.

hello This file isoutfilel

goodbye This file isoutfile2

asss A hesenea ©2014 Mark Meretzky

378 OperationsExpressed by Overloaded Operators Chapter 4

A constructor with a default argument

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stream/append.c

1 #include <stdio.h> /* C example: K&R C book, pp. 160-161, 242 */
2 #include <stdlib.h>

O©oo~NO O, W

©CoOo~NOOOUTA, WNPE

i nt main()

{
FILE *outl;
FILE *out2;

outl = fopen("outfile1", "w"); [* overwrite */

if (outl == NULL) {
fprintf(stderr, "can’t open outfile1\n");
return EXIT_FAILURE;

}

out2 = f open("outfile2", "a"); [* append */

if (out2 == NULL) {
fprintf(stderr, "can’t open outfile2\n");
return EXIT_FAILURE;

}

fprintf(outl, "hello\n");

fprintf(out2, "goodbye\n™);

fclose(outl);
fclose(out2);
return EXIT_SUCCESS;

The constructor for classfstream has an optional second argument, which is an integer whose
bits specify in greater detail Wwato open the file. Each bit has an enumeration that provides a@oent
name for it; the value of the enumeration is a number with that bit turned on and the rest turned off.

For example, the default value for the second argument is the enumecatitrase::out , caus-
ing the constructor to open the file as an output file. When no other bits in the argument are turned on, this
also truncates the file as it is opened. Another possible argumentisstiase::app in line 14,
which appends to the file instead of truncating it.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stream/append.C

#include <iostream> //C++ example
#include <fstream>

#include <cstdlib>

using namespace std;

i nt main()
{
ofstream out1("outfile1"); /loverwrite
i f (loutl){ /fif (outl.operator!()) {
cerr << "can't open outfile1\n";
return EXIT_FAILURE;

aess AN hesenea ©2014 Mark Meretzky

13
14
15
16
17
18
19
20
21
22
23}

O©CoOoO~NOOOUTA, WNPE

Section 4.1.2 File I/O with Classesest r eamandi stream 379

ofstream out2("outfile2", ios_base::app); /lappend
if (lout2) {

cerr << "can't open outfile2\n";

return EXIT_FAILURE;

}

outl << "hello\n";
out2 << "goodbye\n";
return EXIT_SUCCESS; //Call destructors for out2 and outl.

Class ifstream is derved from class istream

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/stream/fscanf.c

#include <stdio.h> /* C example */
#include <stdlib.h>

i nt main(int argc, char **argv)
{

FILE *in1;

FILE *in2;

i nti;

i ntj;

/¥ Open two input files. */

inl = fopen("infilel", "r");

if (in1 ==NULL) {
fprintf(stderr, "can’t open infile1.\n");
return EXIT_FAILURE;

}

in2 = fopen("infile2", "r");

if (in2 == NULL) {
fprintf(stderr, "can’t open infile2.\n");
return EXIT_FAILURE;

}

fscanf(inl, "%d", &i);
fscanf(in2, "%d", &));

printf("%d %d\n", i, j);

fclose(inl);
fclose(in2);
return EXIT_SUCCESS;

In C++, we open and close avinput files by making tev objects of clas#stream , for “input file
stream”. An object of clas#fstream (such asnl andin2) can do gerything that an object of class
istream (such agin) can do (plus more}>, !, etc. Thisis becauséstream is derived from
istream

Paess AN hesenea ©2014 Mark Meretzky

380 OperationsExpressed by Overloaded Operators Chapter 4

ostream andistream are both devied fromios_base
—On the Web at

http://i5.nyu.edu/ COmm64/book/src/stream/ifstream.C
1 #include <iostream> //C++ example
2 #include <fstream>
3 #include <cstdlib>
4 using namespace std,;
5
6 i nt main(int argc, char **argv)
7
8 / IThe constructors called in lines 10 and 16 open two input files.
9
10 ifstream in1("infile1");
11 if (linl){ [fif (inl.operator!()) {
12 cerr << "can't open infilel1.\n";
13 return EXIT_FAILURE;
14 }
15
16 ifstream in2("infile2");
17 if (lin2){
18 cerr << "can't open infile2.\n";
19 return EXIT_FAILURE;
20 }
21
22 int i /luninitialized variable
23 inl >>i;
24
25 int [/luninitialized variable
26 in2 >>j;
27
28 cout <<i<<""<<j<<"\n"
29 return EXIT_SUCCESS;
30}

Class fstream is denved from both ifstream and ofstream

To open a file for both reading and writing in C, the second argument édgba in line 12 must
be either'r+" and"w+" . "w+" destroys the fil& previous contents, if anyr+" doesn't.

The fprintf in line 18 writes the wrd hello at the beginning of the file; tHecanf in line 43
reads the word from the file. Between these ftimes, we need thiseek in line 31 to rewind the file
back to the bginning. Thecalls toftell before and after thiseek , in lines 24 and 36, display our eur
rent position in the file.

Thelong variableposition in line 9 holds our current position in the filgell gets the posi-
tion and stores it into thisaviable;fseek sets the position from thisaxable. Ifthe number of bytes in
the file is too big to store inlang , we will have b upgrade to a variable of data tyfsws t and the
pair of functiondgetpos andfsetpos

The third argument dseek in line 31 must be one of the following macros, definestdio.h

SEEK_SEToffset from start of file
SEEK_CUPRffset from current position
SEEK ENDffset from end of file

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/stream/fseek.c

aess A hesenea ©2014 Mark Meretzky

Section 4.1.2

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>

3 #include <errno.h> [* for errno */
4 #include <string.h> /* for strerror */

5

6 i nt main(int argc, char **argv)

7

8 FILE *fp;

9 | ong position;
10 char buffer[256];
11
12 fp = fopen(‘file", "w+");
13 if (fp == NULL) {
14 fprintf(stderr,
15 return EXIT_FAILURE;
16 }
17
18 fprintf(fp, "hello\n");
19 if (fflush(fp) !=0) {
20 fprintf(stderr,
21 return EXIT_FAILURE;
22 }
23
24 position = f tell(fp);
25 if (position ==-1) {
26 fprintf(stderr,
27 return EXIT_FAILURE;
28 }
29 printf("position
30
31 if (fseek(fp, 0, SEEK_SET) !=0) {
32 fprintf(stderr,
33 return EXIT_FAILURE;
34 }
35
36 position = f tell(fp);
37 if (position ==-1) {
38 fprintf(stderr,
39 return EXIT_FAILURE;
40 }
41 printf("position
42
43 if (fscanf(fp, "%s", buffer) 1= 1) {
44 fprintf(stderr,
45 if (ferror(fp)) {
46 fprintf(stderr,
47 }
48 fprintf(stderr, "\n")
49 }
50
51 printf("%s\n", buffer);
52
53 if (fclose(fp) !=0) {
54 fprintf(stderr,

Faess A

%Ild\n", position);

%Ild\n", position);

File I/O with Classesest r eamandi stream 381

"can’t open file: %s\n", strerror(errno));

"can't fflush: %s\n", strerror(errno));

"can't ftell: %s.\n", strerror(errno));

/* rewind file back to beginning */

"can't fseek: %s.\n", strerror(errno));

"can't ftell: %s.\n", strerror(errno));

"can’t fscanfin");

": %s", strerror(errno));

"can'’t fclose: %s.\n", strerror(errno));

hesenea ©2014 Mark Meretzky

382 OperationsExpressed by Overloaded Operators Chapter 4

55 return EXIT_FAILURE;
56 }

57

58 return EXIT_SUCCESS;
59}

The standard output is

position 6 line 29
position 0 line 41
hello line 51

The filefile will contain

hello

To apen a file for both reading and writing in C++, construct an object of idaeam . Its con-
structor like those for classesfstream andifstream , has an optional second argument which is an
integer whose bits specify in greater detailvhim open the file. The second argument in line 10 is the
value 19. But dort'think of it as nineteen—think of it &0011 : “'yes, no, no yes, yes’lIt contains the
answers to seral independent yes/no questions:

name of enum value in binary
ios_base::in 00000000 00000001
ios_base::out 00000000 00000010
| i os base:trunc 00000000 00010000

00000000 00010011

If in is specified, the file will be truncated only if we also spetiipc . If in is not specified, the file
will be truncated wen without thetrunc . For example, the default value is
ios_base::in | ios_base::out , which would not truncate the file.

C has only one pair of tell and seek functions, but C++ has ®@alltellg (line 18) andseekg
(line 24) to get and set the position for reading;gtstands for‘get”. Calltellp andseekp to get and
set the position for writing; the stands for “put”.

The optional second argumentsafekg or seekp must be one of the enumerations

ios_base::beg offset from start of file (the default)
ios_base::cur offset from current position
ios_base::end offset from end of file

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/stream/fstream.C

1 #include <iostream> //C++ example

2 #include <fstream>

3 #include <cstdlib>

4 #include <cerrno> /ffor errno

5 #include <cstring> [[for strerror

6 using namespace std,;

7

8 i nt main(int argc, char **argv)

9 {
10 fstream fstr(“file", ios_base::in | ios_base::out | ios_base::trunc);
11 if (Mfstr) { [fif (fstr.operator!()) {
12 cerr << "can't open file: "<< strerror(errno) << ".\n";
13 return EXIT_FAILURE;
14 }

aess AN hesenea ©2014 Mark Meretzky

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44}

Section 4.1.3 File I/O as a Preview of Inheritance 383

fstr << "hello\n" << flush;
cout << 'input position ==" << fstr.tellg() << "\n";
if (!fstr) {
cerr <<"can'ttellg: " << strerror(errno) << ".\n";
return EXIT_FAILURE;
}
fstr.seekg(0); /lrewind file back to beginning
if (!fstr) {
cerr <<'"can't seekg: " << strerror(errno) << ".\n";
return EXIT_FAILURE;
}
cout << 'input position ==" << fstr.tellg() << "\n";
if (!fstr) {
cerr <<"can'ttellg: " << strerror(errno) << ".\n";
return EXIT_FAILURE;
}
char buffer[256]; //uninitialized variable
if (\(fstr >> buffer)) {
cerr << "can't read from file.\n";
return EXIT_FAILURE;
}
cout << buffer << "\n";
return EXIT_SUCCESS;
input position == line 18
input position == line 30
hello line 42

The filefile will contain

hello

asss A hesenea ©2014 Mark Meretzky

384 OperationsExpressed by Overloaded Operators Chapter 4

4.1.3 Filel/O as a Prview of Inheritance

class ios_base
/Ihex, oct, dec
IIsetf

/leofbit, badbit

base class for all of the following

class basic_ios<char>
/lilo buffering, fill

/leof, bad, fail, good
/loperators void * and !

class istream class ostream

/le.g., cin /le.g., cout, cerr, clog
/linput, but no control /loutput, but no control
/lover the source /lover the destination

class iostream

/finput from and output
/lto same place, but no
/lcontrol over where

class ifstream
/finput from a place
/lthat we choose

class fstream
/finput from and output
/lto a place that we

class ofstream
/loutput to a place that
/lwe choose

/lchoose

Classostream is the right shoulder of the foling diagram. The easiest way to remember what
this class does is to think of its moatrfous objectscout andcerr . An ostream object lets us per
form output, but it gies us no ontrol over the destination of the output.

Below classostream is classofstream . It provides all the functionality of clagsstream , plus
more. Anofstream lets us specify the name of the output file, and the name of the directory that holds
the file. It also lets us specify the mode in which the file is opewedvite vs. append.

Classofstream could hae been written by copying and pasting most of the source code of class
ostream into classofstream . But it is never a good idea to hee two copies of the same code. The day
will come when someone fixes a bug in oneycaqm forgets to makthe same fix in the other.

C++ gives us a letter way to endwe classofstream with all the functionality of clasestream .
There is a simple declaration, which we will see |ateat lets us build a class with a head stditis

Pacss A hesenea ©2014 Mark Meretzky

abrwWwNRE

©O© oo~NO

10
11

Section 4.2.1 When is Dynamic Allocation Necessary? 385

declaration states that clasfstream should begin by hang all the members of classtream |, plus
additional members. This method afilding a bigger class from a smaller one is caligteritance. The
smaller classdstream) is called thebase class;the bigger and better onef¢tream) is called the
derived classln a diagram, the base class iwajls drawn abee the derved dass.

Classesstream andifstream are another example of inheritand®n istream object such as
cin lets us perform input,ut it gives us no ontrol over the source of the inputAn ifstream provides
all the functionality of classstream , plus more. It lets us specify the name of the input file, and the
name of the directory that holds the file. In factifatream object is an impreed istream object.
This is the celebrated “is-a’elationship between a deed dass and a base class.

C++ allows us to dere a ¢ass from more than one base; this is caitedtiple inheritance Its
absence in da is ane of the big dierences between the dwanguages. ¢ example, clas®stream
lets us perform input and output, although tegius o control over the source of the input or the destina-
tion of the output.To dfer this control, claststream has been daréd fromiostream

It would seem that the mwhouldersjstream andostream , are total opposites. But in fact, the
have a bt in common.Both perform kiffering; both let apply thé operator to check for error; thehare
manipulators such afec, oct , andhex. The code that would be common to these tlasses has been
factored out and written once and for all in a base das&_ios<char> andits base class
ios_base . We've even :.en some members of these ancestral classes: the enumerations
ios_base::failbit in line 10 offai.C on p. 332, anibs_base::floatfield in line 18 of
double.C on p. 355.

The i/o classes are built in layers. The base itasdase does not kne what type of characters
we are dealing withchar orwhar_t . This knowledge is added in the next lgy®asic_ios<char>
The<angle bracketswhow that this is a “template class”.

Until now, our classes hee leen unrepresentaé kecause thewere created indidually. In real life
we often create a whole family of related classes. This family is ourxXasti@e. Althoughwe do not yet
know how to create our own classes by means of inheritance, we can start using these stream classes that
were created for us.

Why couldn’t we build the above family using aggregation?
We @an apply the same operators toodstream that we apply to anstream ; see lines 4-5.
ostream cout(argument(s), if anyfor constructo}; //in <iostream>
ofstream out("outfile");

cout << "hello”; /lexactly the same operators
out << "hello";

But if we had built classfstream using aggrgétion,

class ofstream {
public:
ostream os;
/ letc.

then wed dways need to mention the data membgr

cout <<"hello"; /lall you need is <<
out.os << "hello"; /Ineed .os in addition to <<

4.2 DynamicMemory Allocation with newand del et e

aess A hesenea ©2014 Mark Meretzky

386 OperationsExpressed by Overloaded Operators Chapter 4

4.2.1 Whenis Dynamic Allocation Necessary?

The most common way to create a variable in C and C++ is with a declaration that is also a defini-
tion.

1 i nti=10;
But in three situations the variable cannot be created this way.
(1) A variable constructed with a declaration has one of ordypbssible lifespans. If statically allo-
cated, it is destructed when the program ends; if automatically allocated, it is destructed whee e lea

block of statements in which it was defindebr these tw dorage classes and the definition oftéotck”,
see pp. 180-185.

The following program has examples of these lifespans. The statables are constructed once
and for all in lines 5 and 18 and are destructed when the program ends in line 12. The automatic variable is
constructed each time we awiin line 17 and destructed each time we reach the closing curly brace in line
19.

—On the Web at

http://i5.nyu.edu/ Cmme64/book/src/newl/lifespan.C
1 #include <cstdlib>
2 #include "obj.h"
3 using namespace std;
4
5 obj static_global = 10; /[static: destructed in line 12
6 void f();
7
8 i nt main()
9 {
10 fQ);
11 f0;
12 return EXIT_SUCCESS;
13}
14
15 void f()
16 {
17 obj automatic_local = 20; /lautomatic: destructed in line 19
18 static obj static_local = 30; //static: destructed in line 12
19}
construct 10 line 5 constructs the global
construct 20 line 10 callsf , constructing the automatic at line 17
construct 30 line 18 constructs the static local
destruct 20 } in line 19 destructs the automatic
construct 20 line 11 callsf , constructing the automatic again at line 17
destruct 20 } in line 19 destructs the automatic again
destruct 30 return frommain in line 12 destructs the statics
destruct 10

But we might need to gé a dfferent lifespan to aariable, perhaps constructing it in one function
and destructing it in anotheBuch a variable could not be created with a declaration.

(2) A series of variables constructed with declarations, either all global or all defined in the same
block, are alays destructed in theverse order This discipline is called “last hired, first fired”.

1 obj 01 =10; /[constructed first, destructed third
2 obj 02 = 20; /[constructed second, destructed second
3 obj 03 = 30; /[constructed third, destructed first

acss AN hesenea ©2014 Mark Meretzky

14

O©CoOo~NOOOUTA, WNPE

Section 4.2.1 When is Dynamic Allocation Necessary? 387

But we might need to destruct the variables in an order that cannot be predictedrioeadin
advance’means acompile time:when the program is written and compilelor example, the current
version of the rabbit game halts as soon asrabbit is killed; the next version will continue until all of
them are killed.We annot predict in advance which rabbit the user will kill first, sy ta@not be created
with declarations. Not untiiluntime—when the program runs—uwill we kwowhat order to destruct them
in.

(3) An array can be constructed with a declaration only if wevkatocompile time hav mary ele-
ments it will hae. But the following fragment does not kmdhis number until runtime, so the array decla-
ration will not compile.

#include <iostream>
#include <cstddef> [[for size_t
using namespace std;

size tn; /luninitialized variable

cout << "How many char’s do you want to allocate? ";
cin >>n;

char a[n]; [lwon’t compile: number of elements can’t be variable

Is there a way to create a variable without a declaratie®?, we can create it as an aryomous
temporary Here is one that holds the sumi oéndj :

cout <<i+j<<"\n"

But a temporary cannot owt# the expression in which it is created (unless it is referred to by a reference).
As before, a variable needing a different lifespan must be created in a different way.

Two examples that do not need dynamic allocation

But let's ot go wverboard. Therare still plenty of situations in whichaviables can be created with
declarations. & example, it is widely though erroneously bedtk that dynamic allocation is necessary
when creating an unpredictable number of variables (unpredictable at compile time, that is). But the fol-
lowing program does this without dynamic allocatideach time around the loop, it creates an object at
line 13 and destructs the object at the closing curly brace in line 14.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/new/unpredictable.C

#include <iostream>
#include <cstdlib>
#include "obj.h"

using namespace std;

i nt main()

{

cout << "How many variables do you want to create?\n";
i ntn;
cin >>n;
for (inti=0;i<n;++i){
obj ob(i);
}

return EXIT_SUCCESS;

Paess A hesenea ©2014 Mark Meretzky

388 OperationsExpressed by Overloaded Operators Chapter 4

How many variables do you want to create?

4

construct O first time we arrive at line 13
destruct O first time we arive at line 14
construct 1 second time we arrive at line 13
destruct 1 second time we arrive at line 14
construct 2 third time we arrive at line 13
destruct 2 third time we arrive at line 14
construct 3 fourth time we arrive at line 13
destruct 3 fourth time we arive at line 14

The variables in the ale pogram exist one at a timdt may be objected that dynamic allocation
would still be necessary to create an unpredictable number of variables that exist simultariRdgutsig
following program can do this with recursion, not dynamic allocation. On the way down, the program con-
structs an unpredictable number of objects which all exist during the last call to the fu@tidhe vay
back up, the objects are destructed.

—On the Web at

http://i5.nyu.edu/ Cmm64/book/src/new/recursion.C
1 #include <iostream>
2 #include <cstdlib>
3 #include "obj.h"
4 using namespace std,;
5
6 i ntf(int n);
7
8 i nt main()
9 {
10 cout << "How many variables do you want to create?\n";
11 int n;
12 cin >>n;
13
14 f(n);
15 return EXIT_SUCCESS;
16}
17
18 int f(int n)
19{
20 obj ob(n);
21
22 if (n>1){
23 fn - 1)
24 }
25}

acss A hesenea ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 389

How many variables do you want to create?

4

construct 4 first time we arrive at line 20
construct 3 second time we arrive at line 20
construct 2 third time we arrive at line 20
construct 1 fourth time we arrive at line 20
destruct 1 first time we arive at line 25
destruct 2 second time we arrive at line 25
destruct 3 third time we arrive at line 25
destruct 4 fourth time we arive at line 25

The abee wo programs did construct an unpredictable numberaofables, but each variableas
destryed when we left the block of statements in which it was declafedlestry a variable at another
point, we must resort to the other way of creating itdiayamic memory allocatiorDynamic meansas
the program is running’ We &k the operating system at runtime for a block of memory to holdattie v
able, and gie the block back to the operating system when we are done with it.

A block of memory is allocated dynamically in C by calling the functioradloc andfree . We
tell them hav mary bytes we need,ui not the data type of the variables that will ogctie block. Since
these functions do not kmowhat the block will be used fothey cannot initialize it for us. And when we
relinquish the blockfree does nothing except\g it back to the operating system.

A block of memory is allocated dynamically in C++ byeeuting thenew anddelete operators.
This time, we tell them the data type of theiables that will occupthe block. Since theew operator
knows what the block will be used fat can call the constructors for thanables in the block andwg v
a Hock full of initialized \ariables. Andwvhen we relinquish the blocklelete calls the corresponding
destructors before giving it back to the operating system.

4.2.2 Allocatea Scalar

Allocate a scalar in C

The following program néews dynamic memory allocation in C, pointing out its shortcomifigee
structnode that we allocate and deallocate islike C++ clas®iode in pp. 212-217, but stripped of
its member functions and friendgVe will allocate a linked list of these nodes in the next program. A
node, by the way is an &kample of ascalar—a variable that is not an array.

We all the functionmalloc in line 12 to get a block of memory which can be treated asiable,
in this case as structnode . (Remember that C needs thieuct keyword in line 12; C++ will not.)
The argument omalloc tells it the number of bytes weawnt. If successful, the return value mhlloc
will be the address of the allocated block.

malloc was reve told the data type ofariable that will occup the block. This means that
malloc cannot initialize the block with gruseful \alue. Ewen if it performs flavlessly the most we can
hope for frommalloc is the address of a block cdidpage. Les hope the program mer tries to read this
garbage.

Always store the return value ofalloc into a pointer andkeep it thee until the block is deallo-
cated. © ensure that we do, line 12 declanedo be a*const : a pointer that avays points to the same
place. Ifthe pointer were to point elsewhere, we would no longer be able to access the block or deallocate
it. This painful situation called memory leak.

Incidentally the = in line 12 performs an implicit cemrsion. Thereturn value ofmalloc is a
pointer tovoid , while p is a pointer to atructnode . This one special case of pointer eension,
between avoid * and another type of pointds the only one that C will do implicitlyl don't expect
arything will go wrong with the corersion. Butas we shall see, the correspondinig C++ will avoid the
corversion entirely.

aess A hesenea ©2014 Mark Meretzky

390 OperationsExpressed by Overloaded Operators Chapter 4

If unsuccessfulmalloc returnsNULL The conscientious C programmer will thereforerehdo
write the follov-upif in lines 13-17 aftervery call tomalloc . We will see that his or her equally con-
scientious C++ colleague will write the error checking only ondee message in line 14, by theyvis
not portable because of tBeéu sizeof vyields asize_t , which is a typedef founsigned on my
machine. ¥ursize_t might be a typedef fdongunsigned (%lu).

Since a successfutalloc delivers a block full of @rbage, we need lines 19-20 to assign values to
the fields in the block.Permitting these assignments is one reasow thk p in line 12 must be a
read/write pointer In C++, the assignments will be unnecessary@mdll be read-only To verify that the
assignments worked, line 22 uses%gformat to output each pointer field in the structure.

When we are done with the block, weeit back to the operating system by passing its address to
thefree function in line 29. Buteen if it performs flavlessly,free never calls the destructors for the
variables in the block. Le$'hope the program remembered to call them.

The only argument we shouldee give to free is the address of a block obtained from a previous
malloc ,realloc , orcalloc . If we mess up, there is no return value frinee that we could check
for error The argument ofree is avoid* , not aconstvoid * which is another reason wip
cant be read-only.

Thefree function will do nothing if its agument iSNULL This means that if thealloc in line
12 does returtNULL, and if we forget thef in lines 13-17and if we somehw get through lines 19-27,
thefree in line 29 will be harmless and not blap.

If we forget to calfree , the block will be freed arway when the program ends in line 30. But be a
good citizen of the global community afide the block as soon as you're done with it. Other people
might be waiting for memory.

To ensure thap will never reference the block after it is deallocated, we could try to insert the state-
ment

1 p = 0;

at line 29%. But p is a*const and this assignment will not compile. Instead of zeroing it, the C++
approach is to puent a dangling pointer from owiing the block to which it pointsThis p, for example,

is destructed in the very next line, before it can domaischief. Andon pp. 466—-467 we will see a pointer

that is elgantly destructed by the destructor for the object that occupies the block. The complementary
goal, to preent a block from outliving the pointer that points to it, will be aglieon p. 8.2 with an

auto_ptr

Let's poke aound in memory to see tWwamalloc records the number of bytes tifisge must free.
The hidden machinery is completely uingél and will be different on each platform. But looking at a typ-
ical implementation will sh@ us how the heap (the pool of dynamically allocatable memory) could
become corrupted in C++ if we deallocate incorrecttywill also shav us why writing our own allocation
and deallocation functions may be advantageous in C++.

On my platform, a dynamically allocated block of memory is actually eight bytes longer than the size
we ask for malloc takes the number of bytes in the block, rounds it up to a multiple of 8 and adds 1, and
stores the result in the first four bytes of the block (a slot ofdig@et). It stores another numheisu-
ally zero, in the next four bytes, and returns the address of the ninth byte. The usesie oh#he eight-
byte prefix before the official start of the block.

The following diagram shws what happens when we allocate streictnode in line 4. On my
machine each field of the structure is four bytes, for a total oT@2isplay the tve numbers in the prefix,
line 27 castp to a pointer tosize_t and then slaps on a getive aubscript. V¢ reed parentheses to
apply the cast tp before the subscript.

Thefree function in line 29 taks the address of the block and backpedals eight bytes to get to the
hidden numberThis number tellfree how mary bytes to free.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/new/scalar.c

1 #include <stdio.h> /* C example */

aess AN hesenea ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 391

2 #include <stdlib.h> [* for malloc and free */

3

4 struct node { /* a node on a doubly linked list */

5 i ntvalue;

6 struct node *prev;

7 struct node *next;

8 };

9
10 int main(int argc, char **argv)
114
12 struct node *const p = malloc(sizeof (struct node));
13 if (p==NULL){
14 fprintf(stderr, "%s: can't allocate %u bytes\n", /* not portable */
15 argv[0], sizeof (struct node));
16 return EXIT_FAILURE;
17 }
18
19 p->value = 10;
20 p->prev = p->next = NULL;
21
22 printf("value == %d, prev == %p, next == %p.\n",
23 p->value, p->prev, p->next);
24
25 printf("A struct node occupies %u bytes.\n", sizeof (struct node));
26 printf("The hidden numbers are %u and %u.\n", /* unofficial; not portable */
27 ((size_t “)P)[-2], ((size_t *)p)[-1]);
28
29 free(p);
30 return EXIT_SUCCESS;
31}

The abee lines 12-13 can be rewritten

32 struct node *p;
33 if ((p = malloc(sizeof (struct node))) == NULL) {

But why would you want to? The pointercould then no longer beonst

value == 10, prev == 0, next == 0.
A struct node occupies 12 bytes.

The hidden numbers are 17 and 0. 17=2x8+1
S 17 0 "~ 10 " NULL " NULL
“size dsuélly zero value ‘pre\} ‘ next

p | The return value ahalloc is the address of the ninth byte.

v Homework 4.2.2a: examine the hidden number on your platform

Is the hidden number on vyour platform at locatiof(size_t *)p)[-1] or
((size_t *)p)[-2] or elsewhere?
A

acss AN hesenea ©2014 Mark Meretzky

392 OperationsExpressed by Overloaded Operators Chapter 4

Scalars that must be allocated dynamically

We havejust created one structure;wave will create unpredictably mgn But that by itself is not
the reason whwe nust nav alocate them dynamicallyThe abee dructure was created in a block of
statements (the body of theain function) and destroyed in the same block. It could therefore been
created by a declaration that was also a definition. But thenialjpstructures are created in one block
(thewhile loop in lines 19-58) and destructed in another {tine loop in lines 62-68).They must be
allocated dynamically.

The program builds a doubly liel list of nodes, sorted in increasing numerical order by their
value ’'s. The return value of thecanf in line 19 is the number of variables that were successfully read
from input. It breaks us out of thehile loop when we encounter end-of-file or garbage, and we return
EXIT_SUCCESSor EXIT_FAILURE respectiely.

I’'m sorry that so much of this program, lines 28-48, is just a bunch of special cases. At least in the
C++ version, some of the cases will be hidden in the member functions and friends of a class.

I'm also sorry that theg = p->next in line 66 cart be in its expected place, after the second
semicolon in line 63. Butthe = p->next must coméeforethefree(doomed) in line 67, since the
free might then wipe out the value of the pointer fipldnext . This is an early example of thentre-
ment of death'on pp. 444-445.

doomed must be a read/write pointer because the argumefmeef is avoid * , not aconst

void * . In C++,doomed can be read-only.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/new/linked.c
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 struct node { /* a node on a doubly linked list */
5 i ntvalue;
6 struct node *prev;
7 struct node *next;
8 };
9
10 int main(int argc, char **argv)
114
12 struct node *first = NULL; [* List initially empty. */
13 struct node *last = NULL;
14 int i
15 struct node *p;
16
17 printf("Type a series of integers, EOF (control-d) to quit.\n");
18
19 while (scanf("%d", &i) ==1) {
20 struct node *const n = malloc(sizeof (struct node));
21 if (n==NULL){
22 fprintf(stderr, "%s: can't allocate %u bytes\n", /* not portable */
23 argv[0], sizeof (struct node));
24 return EXIT_FAILURE;
25 }
26 n->value =i;
27
28 if (first==NULL) {
29 /* Insert n into an empty list. */
30 n->next = n->prev = NULL,;
31 first = last=n;

aess A hesenea ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 393

32 continue;

33 }

34

35 if (i <=first->value) {

36 I* Insert n before the first node on the list. */
37 n->prev. = NULL;

38 n->next = first;

39 first = first->prev = n;

40 continue;

41 }

42

43 if (i > last->value) {

44 [* Insert n after the last node on the list. */
45 n->prev. = | ast;

46 n->next = NULL;

47 last = | ast->next = n;

48 continue;

49 }

50

51 for (p =first; i > p->value; p = p->next) {

52 }

53

54 /¥ Insert n between p->prev and p. */

55 n->prev = p->prev;

56 n->next = p;

57 p->prev = p->prev->next = n;

58 }

59

60 printf("\nHere are the integers in increasing order:\n");
61

62 for (p =first; p;) {

63 struct node *const doomed = p;

64 printf("%d\n", p->value);

65

66 p = p->next;

67 free(doomed);

68 }

69

70 return feof(stdin) && !ferror(stdin) ? EXIT_SUCCESS : EXIT_FAILURE;
71}

The abee lines 30—-31 may be combined to
72 (first = | ast = n)->next = n->prev = NULL;
But the original is clearer.
Line 39 must not be rewritten as follows

73 first->prev = first=n;

We would be unable to predict whether the feit was evaluated before or after the rigfitst ~ was
assigned to. Ditto for lines 47 and 57. See pp. 14-16.

aess AN hesenea ©2014 Mark Meretzky

abhwWwNRE

~N O

394 OperationsExpressed by Overloaded Operators Chapter 4

Type a series of integers, EOF (control-d) to quit.

30 Insert first node into empty list (lines 28-33).

10 Insert befoe first node (lines 35-41).

40 Insert after last node (lines 43-49).

20 Insert between two existing nodes (lines 51-58).
control -d

Here are the integers in increasing order:
10
20
30
40

Allocate a scalar in C++

C dlocates memory by calling svfunctions,malloc andfree . C++ allocates memory byxecut-
ing two operatorsnew anddelete , in lines 8 and 19 of the following program.

Operators may be unary or binapyefix or postfix. new anddelete are unary prefix operators.
Here are a f& familiar ekamples. Mosbf them are written as punctuation marks, but at least one of them
(sizeof)is written as a &yword. Mostof them require an expression as their operand, but at least one of
them (againsizeof) can take the name of a data type.

-a

&a

++a
sizeof a

sizeof (int)

Despite the parentheseszeof is not a function.lts (int) is an operand, not an argument list.
Recall that a function is something that hg$ady} somewheresizeof does not hee a lody.

new is a unary prefix operator Blsizeof . Itis not a function. Do not confuse it with the function
operatomew that we will see on p. 410.

An operand ofnew is always the name of a data typét is similar to a data type operand of
sizeof . The latter alvays has surrounding parentheses, but an operanevofilmost neer needs them.
See pp. 407-410.

In the following program, the name of the data type is the singitd mode in line 8. (The leyword
struct is not needed here in C++, as it was in line 12 of theeabwalar.c .) In preparation for the
more complg examples that follov, we how how the name is composed. Start with a declaration for a fic-
titious variable of the desired type. Then erase the name of the fictitious variable and the semibalon.
remains will be the name of the data type, which we cantgithe new operator For example, to allocate
annode,

node n; /ldeclaration for fictitious variable
node /Iname of data type
const node *const p = new node; /[dynamically allocate memory in line 8

Like malloc , new gives us he address of a block of memorBut unlike malloc , new knows
what the block will be used fofThe operandhode in line 8 tellsnew the data type of the variable that will
occupy the block, s;mew can initialize the variable by calling its constructiive pass the gumentl0 to
the constructor; there could be more than ogaraent in the parentheses for constructors that accept them.
The constructor initializes the data membeakie , prev , and next , so there is no need for the assign-
ment statements in lines 19-20 of theabscalar.c . This means that the pointprin our line 8 can
now be read-only.

The next @ample will check if thenew operator is successful in allocating the block of memory for
us. For the time being, we are merely hoping it will be. If it isn’t, no attempt will be made to construct the

aess A hesenea ©2014 Mark Meretzky

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21}

Section 4.2.2 Allocate a Scalar 395

object in the block, because there is no blookw will abort the program by calling thebort function
from the C Standard LibraryA more detailed description of Wwothis happens is in p. 590 and pp.
625-628; it ivolves “throwing an uncaught exceptioof data typebad_alloc

In C the return type ofalloc is alays void* , so he = in line 12 of the abee C pogram
scalar.c performed an implicit corersion. InC++, the value ohew is a pointer to whater data type
has been allocated’henew in line 8, for example, returns a pointer taale , so air = performs no con-
version.

When we're done with the block wevgiits address to another unary prefix operdt@rdelete in
line 19, with a more traditional kind of operantihe operand ofiew is the name of a data type; the eper
and ofdelete is the address of a block to be deleted. It must be the address of a block that we got from a
previousnew, just as the argument of the C functivee had to be the address of a block that we got
from a previousnallocrealloc , or calloc

Like free , delete will do nothing if its operand is a zero pointdut if the operand is non-zero,
delete will do more thanfree does. Thealata type of the pointer operand telete what type of
variable occupied the bloclkdelete will call the destructor for that type of variable and then return the
block to the operating system.

If we forget to write thedelete |, the block will be freed grway when the program ends in line 20.
But be a good citizen of the global community aedete the block as soon as you're done with it: other
people may be waiting for memory.

As in C, the number of bytes in a dynamically allocated block is (unofficially) stored in a hidden
number at the start of the block, tellidglete how mary bytes to delete. Once again, we cpdb a
pointer to asize_t in lines 16-17 before slapping on the subscripts. In C++, the casts must be
reinterpret_cast 's to make the cowersion between different pointer types more conspicuous. A
static_cast would not compile here.

Classnode was in p. 212-217.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/new/scalar.C

#include <iostream>
#include <cstdlib>
#include "node.h"
using namespace std;

nt main(int argc, char **argv)

i
{

const node *const p = new node(10);
cout <<"value=="<<*p<<" prev=="7<<p->prev
<< ", next=="<< p->next <<".\n"
<< "A node occupies " << sizeof (node) << " bytes.\n"
<< "The hidden numbers are " //unofficial
<< reinterpret_cast<const size t *>(p)[-2] <<"and "
<< reinterpret_cast<const size_t *>(p)[-1] << ".\n";
delete p;
return EXIT_SUCCESS;

asss A hesenea ©2014 Mark Meretzky

396 OperationsExpressed by Overloaded Operators

Chapter 4

value == 10, prev == 0, next == 0.
A node occupies 12 bytes.

The hidden numbers are 17 and 0. 17=2x8+1
T 1T7 T T (T) T T 1b T T (T) T T (T)
“size dsua{IIy zero “Value ‘pre\} ‘ next.

p | The value ohew is the address of the ninth byte.

v Homework 4.2.2b: allocate an obj
Allocate and deallocate abj (pp. 179-180) instead of reode . The output will pree that new

calls a constructor andelete calls the destructorlf you remae the delete , will the obj still be
destructed?
A
v Homework 4.2.2c: allocate a variable of a built-in data type
Verify that you can allocate and initialize ari just like an doject, een though arint has no con-
structor:
1 const obj *const p1 = new obj(10);
2 cout << "The obj is " << *pl << "\n";
3 delete p1;
4
5 const int *const p2 = new int(10);
6 cout <<"The intis " << *p2 << "\n";
7 delete p2;
A

v Homework 4.2.2d: call the default constructor

Verify that the dedult constructor is called when you omit thguanents. ¥u dont even need the
empty parentheses:

1 const obj *p1 = new obj(10); /[call one-arg constructor
2 cout << "The objectis " << *pl << ".\n";
3 delete p1;
4
5 pl = new obj(); /[call default constructor
6 cout << "The objectis " << *pl << ".\n";
7 delete p1;
8
9 pl = new obj; /[call default constructor
10 cout <<"The objectis" << *pl <<"\n";
11 delete pl;
When allocating a variable of aiili-in type, the variable bekes as if it as a default constructor
that puts zero into the newborariable. Buto call this constructoyou must write the empty parentheses
in line 16. Without them, no attempt is made to initialize the variable (line 20).
12 const int*p2 = new int(10); /[Put 10 into the int.
13 cout <<"Theintis" <<*p2<<"\n";

printed 4/8/14
8:46:52 AM

hesenea ©2014 Mark Meretzky

14
15
16
17
18
19
20
21
22

23
24
25
26

1
2
3

N

5
6
7
8

9

Section 4.2.2 Allocate a Scalar 397

delete p2;

p2 = new int(); /[Put zero into the int.
cout <<"Theintis" <<*p2<<"\n";

delete p2;

p2 = new int; /[Put garbage into the int.
cout <<"Theintis" <<*p2<<"\n";

delete p2;

When allocating and default-constructing a variable whose type is wnkme must therefore write
the empty parentheses.

/[Suppose this typedef was off in another file where we can't see it.
typedef int T;

const T *p3=new T();

The type will certainly be unknown when wevhdtemplates’. Seep. 660.
A

Check for allocation failure in C++

Let's check for allocation failure instead of alling the program to abort itselflo check for error in
C, we had to follev every malloc with anif . In C++, we can ma&the new operator check itself.

First, in lines 30-34, write a separate function containing the code trebeted upon allocation
failure. Thefunction can hee any mme, but it must h& o aguments and no returralue. For the time
being, it must end with agxit

In C and C++, the name of a function all by itself, with no parenthesized argument list after it, stands
for the address of the functiofror example, the nammy_new_handler in line 13 is the address of that
function. T tell the computer that this is the function to be called upon allocation failure, we pass its
address to another function, the C++ Standard Library funsébmew_handler . The header file
<new> in line 3 is whereset_new_handler is declared.

Ourmy_new_handler function must be declared (line 7) before its name can be otherwise men-
tioned (line 13). And we must pass the addressyfnew_handler to set_new_handler (line 13)
before our first attempt at allocation (line 15).

If the new operator cannot allocate a block of mematywill now call my _new_handler . No
attempt will be made to construct the object in the block, because there is no block.

There are other ways of checking for allocation failure; we will talk about them in pp. 625-628 after
we cover “‘exceptions’. Until then, we will alvays call set new_handler before ay attempt at
dynamic allocation.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/new/set_new_handler.C

#include <iostream>

#include <cstdlib>

#include <new> [lfor set_new_handler
#include "node.h"

using namespace std;
void my_new_handler(); [/[function declaration
const char *progname; /luninitialized variable

10 int main(int argc, char **argv)

11

aess AN hesenea ©2014 Mark Meretzky

398 OperationsExpressed by Overloaded Operators Chapter 4

12 progname = argv[0];

13 set_new_handler(my_new_handler);

14

15 const node *const p = new node(10);

16

17 cout <<"value=="<<*p<<", prev=="7<<p->prev
18 << ", next=="<< p->next << ".\n"

19

20 << "A node occupies " << sizeof (node) << " bytes.\n"
21

22 << "The hidden numbers are " //unofficial

23 << reinterpret_cast<const size t *>(p)[-2] <<"and "
24 << reinterpret_cast<const size_t *>(p)[-1] << ".\n";
25

26 delete p;

27 return EXIT_SUCCESS;

28}

29

30 void my_new_handler() //function definition

31

32 cerr << progname << ": out of store\n";

33 exit(EXIT_FAILURE);

34}

value == 10, prev == 0, next == 0.
A node occupies 12 bytes.
The hidden numbers are 17 and 0. 17=2x8+1

In archaic ersions of Microsoft Visual C++, youmy new_handler function must hee me agu-
ment of data typsize_t and a return type aft__cdecl . The return type is tovseparate words, the
second one starting with éaunderscores and ending with lowercase L. The function
_set_new_handler starts with an underscore, and the header fit@ésv.h> .

Scalars that must be allocated dynamically

Here is the linkd list example in C++. Once again, the allocation musthed/namic because the
objects are constructed in one block (ifgle loop in lines 21-47) and destructed in another {tine
loop in lines 51-57).

Note that the operand dklete can be a read-only pointamlike the argument of the C function
free .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/new/linked.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <new>
#include "node.h"
using namespace std;

N

5

6

7 void my_new_handler();

8 const char *progname; /luninitialized variable
9

10 int main(int argc, char **argv)

11

12 progname = argv[0];

acss A hesenea ©2014 Mark Meretzky

Section 4.2.2 Allocate a Scalar 399

13 set_new_handler(my_new_handler);

14

15 node *first = 0; /IList initially empty.

16 node *last=0;

17

18 cout << "Type a series of integers, EOF (control-d) to quit.\n";
19

20 value_type i;

21 while (cin>>1i){ //while (cin.operator>>(i).operator void *()) {
22 node *const n = new node(i);

23

24 if (first==0){

25 llInsert n i nto an empty list.

26 first = last=n;

27 continue;

28 }

29

30 if (i<=*first){ //if (i <= (*first).operator value_type()) {
31 n->insert_this_before(first);

32 first =n;

33 continue;

34 }

35

36 if (i>*last){

37 n->insert_this_after(last);

38 last =n;

39 continue;

40 }

41

42 node *p =first;

43 for (i>*p; p=p->next){ //i>(*p).operator value_type();
44 }

45

46 n->insert_this_before(p);

47 }

48

49 cout << "\nHere are the integers in increasing order:\n";
50

51 for (const node *p = first; p;) {

52 cout <<*p<<"\n" /lcout << (*p).operator value_type() << "\n";
53

54 const node *const doomed = p;

55 p = p->next;

56 delete doomed;

57 }

58

59 return cin.rdstate() == (ios_base::eofbit | ios_base::failbit)
60 ? EXIT_SUCCESS : EXIT_FAILURE;

61

62}

63

64 void my_new_handler()

65 {

66 cerr << progname <<": out of store\n";

acss A hesenea ©2014 Mark Meretzky

400 OperationsExpressed by Overloaded Operators Chapter 4

67 exit(EXIT_FAILURE);
68}

Type a series of integers, EOF (control-d) to quit.

30 Insert first node into empty list (lines 17-21).

10 Insert befoe first node (lines 23-27).

40 Insert after last node (lines 29-33).

20 Insert between two existing nodes (lines 35-39).
control -d

Here are the integers in increasing order:
10
20
30
40

4.2.3 Allocatean Array

Allocate an array in C

The allocated ariable in the following programs is an arragt a scalar We made it an array of a
built-in data typechar , to avoid the complication of calling constructors and destructors. The number of
elements of the array is not known until runtime, so it must be allocated dynamically.

In C and C++, aariable that holds the number of elements in an aorahe number of bytes in a
block of memoryshould alvays be of data typsize_t (line 6). On my machinesize_t is another
name forunsigned , so hescanf in line 10 has th&buformat. Onother machinesize_t might be
longunsigned so the format would ve © be %lu. This portability problem will goway in C++.

The malloc in line 12 returns the address of a block of memory which can then be treated as an
array in this case othar ’s. The multiplication bysizeof(char) is unnecessary sinsizeof
(char) is aways 1. But | wanted to remind you that thgament ofmalloc is the number of bytes we
need, not the number of array elementsalloc is never told that the block will hold an arralet alone
the number of elements.

To avoid memory leaks, we ahys want to store the address of an allocated block iritmast
pointer: one that alays points to the same plackwish that line 7 could ha definedp this way.

1 char *const p;

But we cant do this: a definition for a constant will not compile without an initialue. Somy second
wish is to maee the definition down to line 12, where wevkan initial value to put into it.

2 char *const p = malloc(n * sizeof(char));

But we cart do this either: C demands that local variables be declared immediately after the opening curly
brace of the enclosing block of statements, in linE&ced to dangle up at line @,will have remain a
non+*const in C. In C++, we will do better.

Again, the= in line 12 performs an implicit cerrsion. Thereturn value omalloc is a pointer to
void , while p is a pointer tachar . The corresponding in line 11 of the C++ program
no_destructor.C will avoid the cowersion entirely.

As with all arrays, the subscripts start at zeBince there are elements, the highest subscript is
n - 1 (line 22). Dont go beyond it.

The following diagram shows what happens when we allocate an array affat2s. The first
size_t in the eight-byte prefix is one more than a multiple of eight; the sesipadt is zero.

acss A hesenea ©2014 Mark Meretzky

Section 4.2.3

—On the Web at
http://i5.nyu.edu/

1 #include <stdio.h>
2 #include <stdlib.h>

/* C example */

Allocate an Array 401

COmm64/book/src/new/no_destructor.c

"%s: can't allocate %u char’'s\n", argv[0], n);

Warning: the subscripts only goup ton - 1. */

hidden numbers are %u and %u.\n", /* unofficial; not portable */

3

4 i nt main(int argc, char **argv)

5 {

6 size tn;

7 char *p;

8

9 printf("How many char’s do you want to allocate? ");
10 scanf("%u", &ny); [* not portable */
11
12 p = malloc(n * sizeof (char));
13 if (p==NULL){
14 fprintf(stderr,
15 return EXIT_FAILURE;
16 }
17
18 p[0] ="Aj; I* or*p ="A’; ¥/
19 p[l] =B
20 p[2] ='C;
21 [* etc.*
22 pln -1 =" \0; /
23
24 printf("The
25 ((size_t “)P)[-2], ((size_t *)p)[-1]);
26
27 free(p);
28 return EXIT_SUCCESS;
29}

The abee lines 12-13 can be combined to

30 if ((p =malloc(n * sizeof(int))) == NULL) {

But dont do it. We would just hae o uncombine them in C++.

How many char's do you want to allocate? 12

The hidden numbers are 17 and 0. 17=2x8+1
T 1? T T 0 T ‘A’ (B’ [C’ (D' [E' [F [G [H [I' [J [K |0
hidden number ‘usu‘ally zero

If we ask for too muchmalloc

p | The return value ahalloc

is the address of the ninth byte.

returnsNULL Let's ask for the biggest number that would fit into the

argument ofmalloc , which is asize_t . On my patform, this number is® - 1 = 4, 294, 967, 295.

How many char’s do you want to allocate?
no_destructor: can't allocate 4294967295 char’s

4294967295

printed 4/8/14
8:46:52 AM

hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUTA, WNPE

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

402 OperationsExpressed by Overloaded Operators Chapter 4

v Homework 4.2.3a: examine the hidden number on your platform

Run the abee C pogram seeral times on your platform, asking for different amounts of memtsy
the hidden number at locatid(size t *)p)[-1] or ((size_t *)p)[-2] or elsevhere? Doyou
see ay pattern in the values of the hidden number? Is it the number of bytes we askedrfded up to a
multiple of 8 and incremented?

A

Allocate an array of variables with no destructors in C++

To compose the name of the data type “arraynafhar 's” given to the new in line 18, we once
again begin by writing a declaration for a fictitious variable of this type. In this declaration, the first (or
only) dimension of an array can be ariable, although all subsequent dimensions (if any) must be con-
stants. Themrase the name of the fictitious variable and the semic®drat remains will be the name of
the data type, which we carvgi the new operator.

char a[n]; /[declaration for fictitious variable
char [n] /Iname of data type
char *const p = new char [n]; //[dynamically allocate memory in line 18

When we're done with memory that held a scalee gve it back to the unary prefix operator
delete . When wete done with memory that held an arraye gve it back to a different unary prefix
operatoy the delete([] in line 30. It is up to the programmer to write the correct forndefete ; the
next example will she why the heap will be corrupted if the programmer does it wrong.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/new/no_destructor.C

#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;

void my_new_handler();
const char *progname; /luninitialized variable

i nt main(int argc, char **argv)

progname = argv[0];
set_new_handler(my_new_handler);

cout << "How many char’s do you want to allocate? ";
size t n;
cin >>n; /Iportable

char *const p = new char [n];

p[0] = "A]

p[l] = "B,

pl2] ="'C;

/letc.

pln - 1] = \0; //Warning: subscripts only goupton - 1.

cout << "The hidden numbers are " /lunofficial

<< reinterpret_cast<size_t *>(p)[-2] << " and "
<< reinterpret_cast<size_t *>(p)[-1] << ".\n";

delete(] p;

aess A hesenea ©2014 Mark Meretzky

31
32}
33

Section 4.2.3 Allocate an Array 403

return EXIT_SUCCESS;

34 void my_new_handler()

35 {
36
37
38}

cerr << progname <<": out of store\n";
exit(EXIT_FAILURE);

How many char's do you want to allocate? 12
The hidden numbers are 17 and 0. 17=2x8+1

T T T T T T

17 0 ‘A’ [B' [C' D' [E'" [F [G [H [I' [J [K |0
hidden number ‘alwéys zero

p | The value ohew is the address of the ninth byte.

If we ask for too muchew callsmy_new_handler

How many char’s do you want to allocate? 4294967295
no_destructor: out of store

v Homework 4.2.3b: hav many bytes can you allocate?

How mary bytes is the biggest block of memory you can allocate in C++? lsvélyalthe same
number?
A

v Homework 4.2.3c: a new_handler that doesn’t end with exit

If our my_new_handler didn’t end with exit , it would return to thenew operator thatdiled.
Thenew would then try to allocate memoryag. Whatwould happen if we rem@ theexit from our
my_new_handler and ask for more memory than isigable?

A

Allocate an array of objects with destructors

Thenew in line 19 allocates and constructs an array of objects. The operandn&vittells it the
data type of each element and the number of elementsane Whenew attempts to allocate memeory
and, if successful, calls the constructor for each object in the array in order of ascending subscript.

Similarly, the delete([] in line 30 destructs and deallocates the artawill call the destructor for
each object in order of descending subscript, and then deallocates the memory occupied by thieearray
data type of the operand of tHelete[] tells it the data type of each element; the value of the operand
tells it the address of the first element. Buivltmesdelete[] know how mary elements there are?

On my platform, whemew allocates an array of objects with destructors, it stores the number of ele-
ments in the array at subscrjgt] in the hidden prefixdelete[] calls this number of destructors; it is
printed at line 28.

As usual,new also stores the total number of bytddut when allocating an array of objects with
destructorsnew stores the total at subscr{g8] , not[-2] . Itis printed at line 26.

Now we c@an see wi we must choose the corredelete operator The delete without the
square bracketswvabys expects to find the number of bytes to deallocate at suljs2fipt The
delete(] with square braaks expects to find the number of bytes at subs¢®pt if the array

asss AN hesenea ©2014 Mark Meretzky

404 OperationsExpressed by Overloaded Operators Chapter 4

elements hae destructors, or gt2] if they do mot. Of course, the layout of the hidden machinery will be
different on each platformBut on ary platform, choosing the wrongdelete , or passing it a pointer to the
wrong data type, will result in calling the wrong number of destructors and deallocating the wrong number
of bytes.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/new/destructor.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 #include "obj.h"
5 using namespace std;
6
7 void my_new_handler();
8 const char *progname; /luninitialized variable
9
10 int main(int argc, char **argv)
114
12 progname = argv[0];
13 set_new_handler(my_new_handler);
14
15 cout << "How many obj’'s do you want to allocate? ";
16 size t n,
17 cin >>n;
18
19 obj *const p = new obj [n]; /ICall the default constructor n times.
20
21 for (size_ti=0;i<n;++i){
22 cout <<p[i]<<"\n";
23 }
24
25 cout << "The hidden numbers are " /lunofficial
26 << reinterpret_cast<size_t *>(p)[-3] << ", "
27 << reinterpret_cast<size_t *>(p)[-2] << ", and "
28 << reinterpret_cast<size_t *>(p)[-1] << ".\n";
29
30 delete(] p;
31 return EXIT_SUCCESS;
32}
33
34 void my_new_handler()
35
36 cerr << progname << ": out of store\n";
37 exit(EXIT_FAILURE);
38}

aess A hesenea ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 405

How many obj's do you want to allocate? 3
default construct O

default construct O

default construct O

0

0

0

The hidden numbers are 17, 0, and 3. 17=2x8+1
destruct O

destruct O

destruct O

How many obj's do you want to allocate? 1

default construct O

0

The hidden numbers are 9, 0, and 1. 9=1x8+1
destruct O

How many obj's do you want to allocate? 0
The hidden numbers are 9, 0, and 0. 9=1x8+1

v Homework 4.2.3d: use the wrong delete

What happens, and whatils to happen, if we allocate and construct oloje and attempt to destruct
and deallocate it with thdelete with [square brackel® Does the object get destructed?

What happens, and whatils to happen, if we allocate and construct an arrapbpfs and attempt
to destruct and deallocate them with tledete without[square braaktd ? How mary of the objects get
destructed?

Is there an error messagé?both cases, confine yourself to observing the destructors that are called
or not called. There is no easy way to obsdne damage to the heap.
A

Allocate and initialize an array of objects with a constructor with arguments

We have passed guments to the constructor for a dynamically allocated scalar; see line 15 of the
above set_new_handler.C . But C++ does not alle us to @ss arguments to the constructors for the
elements in a dynamically allocated arrdtyforces us to call the dailt constructor for each element, as in
line 19 of the abwee destructor.C

We @n use a surprising workaround tovar@ thenew from calling the dedult constructor for each
element. Br symmetry we will use the same workaround to peat the delete[] from calling the
destructor for each elemenin between, we will manually call a constructor with arguments for each ele-
ment, and manually call the destructor for each element.

Under normal circumstanceasew allocates memory and calls a construct8ut thenew in the fol-
lowing line 19 will allocate memory without calling a constructor;rike in line 26 will call a constructor
without allocating memory.

Line 19 deliberately misinformsew that what we are allocating is an arraychér s, not an array
of objects. Since achar has no constructpline 19 calls no constructoBut the array othar 's occupies
exactly the same number of bytes as an arrayddte ’'s. (The number of bytes must be written as
n * s izeof (date) , hot sizeof (date[n]) , because a data type operandsafeof cannot
contain a variable-sized array.)

The value of th@ew in line 19 is a pointer to ehar , butp i s declared to be a pointer tadate .
A reinterpret_cast must be used when ogrting between pointers to different nenid types.
Note thatp is initialized to the address of a chunk of memory that is not yet occupiedldtg aobject.

acss AN hesenea ©2014 Mark Meretzky

406 OperationsExpressed by Overloaded Operators Chapter 4

The chunk will be coverted to adate in line 26.

The cast in line 43 deliberately misinforrdslete]] that what it is deallocating is an array of
char 's. Since achar has no constructpline 43 calls no constructor.

Since the constructors and destructors forddie 's were not called by lines 19 and 43, it is up to
us to call them. Usually theew operator performs memory allocation followed by construction. But the
new in line 19 performs allocation without construction; the one in line 26 performs construction without
allocation.

Thenew in line 19 is the one that weVYebeen using all alonglt allocates a block of memargnd,
if successful, it calls the constructor for each object in the block. At least it would call them, dfrithe v
ables in this block had constructors. But our variables are nehaty’s.

The new in line 26 is diferent. Itallocates no memorylt merely constructs alate object at
addresgy. The constructor recess the three explicit arguments, as well as the impliguarentq. This
use ofnew is called theplacement syntaxjt makes an object out of the themranemory to whichq
points. Thamplicit pointerq passed to the constructor must be read/wig usual, the value of theew
operator is the address of the newly constructed object. This value is ignored in line 26.

The placemennew in line 26 allocated no memqgrgo here is no need for a corresponding
delete . But it did call a constructpso we laveto call the corresponding destructor (if there is oveg
never wrote a destructor for clasite , but we can demonstrate the call to the destructpway This is
because the computer bebaas if dassdate had a destructor that does nothing; see p. 310.

For an dbject constructed with the placemeardw, the destructor must be callegpédicitly. In no
other case in C++ is a destructor callegleitly. See the syntax in line 40, and pp. 662-663 for another
example. Ofcourse, line 40 is needed only for a class whose destructor actually does something.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/new/placement.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <new>

4 #include "date.h"
5 using namespace std;
6
7 void my_new_handler();
8 const char *progname;
9
10 int main(int argc, char **argv)
114
12 progname = argv[0];
13 set_new_handler(my_new_handler);
14
15 cout << "How many date’s do you want to allocate? ";
16 size t n,
17 cin >>n;
18
19 date *const p = reinterpret_cast<date *>(new char[n * sizeof (date)]);
20
21 /ICall the constructor for each date in the array.
22 for (date*g=p;q<p+n;++q){
23 cout << "Month, day, year for date " << qg-p<<™ "
24 int month, day, year,; /luninitialized variables
25 cin >>month >> day >> year;
26 new(q) date(month, day, year); /lthe placement syntax
27 }
28

aess A hesenea ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 407

29 for (constdate *q=p; g<p+n;++q) {
30 cout <<*g<<"\n“;
31 }
32
33 cout << "The hidden numbers are " /lunofficial
34 << reinterpret_cast<size_t *>(p)[-2] << " and "
35 << reinterpret_cast<size_t *>(p)[-1] << ".\n";
36
37 /ICall the destructor for each date in the array.
38 /[(Required if class date has a destructor; does nothing otherwise.)
39 for (constdate*g=p+n-1;q9>=p;-q){
40 g->"date();
41 }
42
43 delete(] reinterpret_cast<char *>(p);
44 return EXIT_SUCCESS;
451}
46
47 void my_new_handler()
48 {
49 cerr << progname << ": out of store\n";
50 exit(EXIT_SUCCESS);
51}
How many date’s do you want to allocate? 5
Month, day, year for date O: 7 4 1776
Month, day, year for date 1: 10 29 1929
Month, day, year for date 2: 12 7 1941
Month, day, year for date 3: 7 20 1969
Month, day, year for date 4: 9 11 2001
71411776
10/29/1929
12/7/1941
7/20/1969
9/11/2001
The hidden numbers are 65 and O. 65=8x8+1

Parentheses around the operand of new
Paentheses arevallys needed around a data type argumenizafof
sizeof (int)
On two rare occasions, parentheses are also needed around the opend of

(2) If the name of the data type contafisarenthesgsnot enclosed in a pair ¢fsquare brackyq ,
we must surround the entire name with another pair of parentheses beforeewetginew. Don't
worry—this is not likely to happen. In fact, it took some effort to come up with the following example.

The simplest data type whose name contains parentheses is the data type of a function:

1 void f(); /ldeclaration for a function
2 void () /lthe name of the data type of this function

But new is used only to allocate memory for variables, not for functions.
The next simplest data types containing parentheses are “pointer to furastbripointer to array':

3 void (*p)(); /ldeclaration for a pointer to a function

Pacss A hesenea ©2014 Mark Meretzky

408 OperationsExpressed by Overloaded Operators Chapter 4

4 void (*)() /lthe name of the data type of this pointer
5

6 i nt (*p)[10]; //declaration for a pointer to an array

7 int(*)[10] /lthe name of the data type of this pointer

But malloc andnew are n&er used to allocate memory for one pointérwould gain us nothing, since
another pointernf equal size, would be needed to hold the address of the allocated pointer.

We therefore allocate an array of pointers to functiois.usual, we start with a declaration for a fic-
titious variable, this time an array of pointers to functions:

8 void (*a[n])(); //declaration for fictitious variable
9 void (*[n])() //name of data type
10 void (**const p)() = new (void (* [n])()); //dynamically allocate memory

The abee line 10 (and the folling line 19) has a double asterisk becausew that allocates an
array yields a pointer to the first element of the arif#tye elements of this array are pointers, so #ieey
of thisnew is a pointer to a pointeiSee the double asterisk in line 19l@figuage.C in p. 53.

Theconst in line 19 will keep the pointgr pointing to the same plac&ut aconst immediately
after the leftmost asteriskould male p a read-only pointer It would prevent the assignment in line 20
from compiling.

Lines 22 and 23 are twways to call the function th@{0] points to. If we do write the dereferenc-
ing operator (line 22), we need the surrounding parenthesesdamuee it before the function call operator

0.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/new/parentheses.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <new>

4 using namespace std,;
5

6

7

8

void my_new_handler();
const char *progname; /luninitialized variable
i nline void f() {cout << "f()\n";}

9
10 int main(int argc, char **argv)
114
12 progname = argv[0];
13 set_new_handler(my_new_handler);
14
15 cout << "How many pointers to functions do you want to allocate? ";
16 size t n,
17 cin >>n;
18
19 void (**const p)() = new (void (*[n])());
20 p[o] = f;
21
22 (*pIOD0); /lcall f
23 p[0]0); /[call f
24
25 delete(] p;
26 return EXIT_SUCCESS;
27}
28

29 void my_new_handler()

Paess AN hesenea ©2014 Mark Meretzky

Section 4.2.3 Allocate an Array 409

30{

31 cerr << progname << ": out of store\n";
32 exit(EXIT_FAILURE);

33}

(2) Even more unli&ly, the name of the data type must also be surrounded by parentheses if it is fol-

lowed immediately by tokens that could be part of a longer data*ty@g:or [] . new is greedy It tries
to appropriate to itself the longest series of tokens that could possibly be the name of a data type.

In line 14, the name of the data type is thie to the right of the wrd new. The value of the
expressiomew(int) is a pointer; we cast it imt so that it can be bitwise and’ed with anotimér . |
wrote the C-style cagint) in front of it because a C++ casbuld hare required parentheses around the
expressiomew (int) , which then would no longer be followed immediately by&he

1 i f (reinterpret_cast<int>(new (int)) & 1) {
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/new/odd.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <new>
4 using namespace std,;
5
6 void my_new_handler();
7 const char *progname; /luninitialized variable
8
9 i nt main(int argc, char **argv)
10{
11 progname = argv[0];
12 set_new_handler(my_new_handler);
13
14 if ((int)new (int) & 1) {
15 cout << "The allocated block is at an odd address.\n";
16 } else{
17 cout << "The allocated block is at an even address.\n";
18 }
19
20 /Imemory leak: never deallocated
21 return EXIT_SUCCESS;
22}
23
24 void my_new_handler() //function definition
25
26 cerr << progname << ": out of store\n";
27 exit(EXIT_FAILURE);
28}

The allocated block is at an even address.

Without the parentheses in thepeessiomew(int) |, the abee line 14 would try to allocate mem-
ory foran‘int & ", areference to amt . But we cant do this. Areference has no memory address, so
it would not compile. On my platform, the error message would be

aess A hesenea ©2014 Mark Meretzky

410 OperationsExpressed by Overloaded Operators Chapter 4

odd.C: In function ’int main(int, char**)’:
0dd.C:14:19: error: new cannot be applied to a reference type
0dd.C:14:21: error: expected)’ before numeric constant

4.2.4 AllocationFunctions: oper at or newandoper ator del ete

Allocation and deallocation functions for scalars

The new operator allocates and constructs a scalarféiete operator destructs and deallocates
the scalar This pair of operators calls a pair of functions to perform the allocation and deallocEtiere
is never any need to call these functions directlyit here are their declarationsyaray. The declarations
are not actually written in the source code anywhere,ventia a teader file. Lile the declaration for the
main function, thg are built into the language.

1 void *operator new(size_t n);
2 void operator delete(void *p);

PO Ooo~NO O,

B

13
14
15

Do not confuse the operators with the functioAs operator is something that takes operands; a
function is something that takes arguments and Hdmody} . We will refer to the operators athe new
operator’and “the delete operator’, with the English word‘bperator’ second and in Roman typ&\Ve

will refer to the functions as the functiofoperatornew " and the function‘operatordelete ,
with the leyword “operator’ first and incomputertype

Thenew anddelete operators do much more than just call the functaperator new and
operator delete . When we say

obj *const p = new obj(10); //apply the new operator to an operand
and

delete p; [lapply the delete operator to an operand
the computer belvas as if we lad said

/ Icall the allocation function
obj *const p = static_cast<obj *>(operator new(sizeof (obj)));

if(p==0{
call the function whose address was passed to set_new_handler;

} else{
new(p) obj(10); /[call the constructor

}

and

if (p!'=0){
p->"0bj(); /[call the destructor
operator delete(p); /lcall the deallocation function

}

When we hae “exceptions’, we will see that the@ew anddelete operators dowen more. See.
626.

Let's consider thenew operator that allocates and initializes a scaldre operator determines the
number of bytes the scalar will ocgiand passes this number as an argument of $yzee t to the
functionoperator new . This function assumes that the block will be occupied by a sbtatas other
wise similar in its ignorance to the C functiomlloc . It tries to allocate a block of memory of the
requested size, and if successful, returns the address of the block as a pwwiter. td’he new operator
converts this to a pointer to the data type of the scaad calls the constructoif there is one, for the
scalarto-be. Thevalue of thenew operator is the camerted pointer which is the address of thewigorn

aess AN hesenea ©2014 Mark Meretzky

Section 4.2.4 Allocation Functionsoper at or newandoperator delete 411

scalar.

If the functionoperator new cannot allocate the memory we requested, it calls the function
whose address was passeddb new_handler . If there was no such function, the function
operator new “throws a eception’ of typebad_alloc , triggering a series ofvents which may end
in a call to theabort function (p. 590).

Thedelete operator calls the scalardestructorif there is one. It then calls the function
operator delete , passing it the address of the block. The functperator delete backpedals,
at least on my platform, to disoa the number of bytes to deallocate. It is similar in its ignorance to the C
functionfree ; It knows it is deallocating a block that held a scatat it does not kne the data type of
the scalar.

Let's summarize the responsibilities of the operators and functions.

(1) Thenew anddelete operators knw the data type of the variable in the block. The functions
operator new andoperator delete know that the are allocating and deallocating a scalaut
they do rot know its data type.

(2) The constructor and destructor for the variable in the block are called bgwhanddelete
operators.

(3) The function designated »¢t new_handler is called by the functiomperator new if
the memory cannot be allocated. The functiperator new might also ‘throw an eception’, pp.
625-628.

The functionsoperator new andoperator delete have dready been written for us in the
C++ Standard LibraryWe oould write our avn version of them, if we thought we could do better- our
sehes. Allwe hae o do is wite two functions with the same name, arguments, and return type as the
original functionsoperator new andoperator delete . The new operator that allocates and ini-
tializes a scalarand its correspondingelete operatoy would then call the functiongperator new
andoperator delete that we wrote.

Let's write a simple functioroperator new andoperator delete that produce tracing out-
put. Anticlimacticly they rely onmalloc andfree to perform the actual allocation and deallocation.
Stubbornly our functionoperatornew keeps looping as long as the calln@lloc keeps failing (line
25).

If malloc has failed, line 27 checks to see if a handler has been established by a previous call to
set new_handler . Each call toset new_handler returns the address of the yics handler
function, or zero if there was no previous one. (Theablef is a pointer to a functionAn if whose
parentheses contain anable declaration is true if the variable is non-zero; see pp. 38-39.) An unfortunate
side effect of line 27 is to disestablish the handler function, so we need line 28 to re-estabiligterie
was no randler function, line 31 constructs and throws an “exception”.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/new/redefine_scalar.C
1 #include <iostream>
2 #include <cstdlib> /[for malloc and free, exit, EXIT_SUCCESS, EXIT_FAILURE
3 #include <new> [lfor set_new_handler, bad_alloc
4 #include "obj.h"
5 using namespace std;
6
7 void my_new_handler();
8 void *operator new(size_t n); //declaration for function in line 21
9 void operator delete(void *p); //declaration for function in line 39
10
11 int main()
12 {
13 set_new_handler(my_new_handler);
14

acss A hesenea ©2014 Mark Meretzky

412 OperationsExpressed by Overloaded Operators Chapter 4

15 const obj *const p = new obj(10); /[calls operator new in line 21
16 delete p; /lcalls operator delete in line 39
17

18 return EXIT_SUCCESS;

19}

20

21 void *operator new(size_t n)

22 {

23 void *p; /luninitialized variable
24

25 while ((p = malloc(n)) == 0) {

26 cerr << "operator new(" << n << ") out of store.\n";

27 if (void (*const f)() = set_new_handler(0)) {

28 set_new_handler(f);

29 *N0); //call the handler function
30 } else{

31 throw bad_alloc();

32 }

33 }

34

35 cout <<"operator new(" << n << ") returns " << p << "\n";

36 return p;

37}

38

39 void operator delete(void *p)

40 {

41 cout << "operator delete(" << p << ")\n";

42 free(p);

43}

44

45 void my_new_handler()

46 {

47 cerr << '"out of store\n";

48 exit(EXIT_FAILURE);

49}

operator new(4) returns 0x21c00
construct 10

destruct 10

operator delete(0x21c00)

An operator new function that does nothing
Any arguments written after aew operator will be passed along, after iee_t argument, to the
functionoperator new that thenew operator calls.For example, we hee dready seen the expression
1 new(q) date(day, month, year)

in line 26 ofplacement.C in p. 406. This calls a standard library functmperator new that returns
its second gument. Thdirst argument is unused, so it has no name (pp. 289-290).

2 void *operator new(size_t, void *p)
3 {

4 r eturn p;

5}

acss A hesenea ©2014 Mark Meretzky

Section 4.2.4 Allocation Functionsoper at or newandoperator delete 413

See pp. 625-628 for another extra argumenpfmrator new ; pp. 625-628 and pp. 501-503 for an
extra argument fooperator delete

Allocation and deallocation functions for arrays

A new operator that allocates and initializes an greag the correspondingdelete]] operator,
call a different pair of functions to allocate and deallocate the memory for the @h@yassumption is that
bigger blocks are required for arrays, which mightehta be dlocated using a different strategy than for
scalars.

1 void *operator new[](size_t n);
2 void operator delete[](void *p);

The argument of the functiarperator newf[] tells it hav mary bytes we vant. Itassumes that
the block will be occupied by an arrdt is otherwise similar in its ignorance to the C functiwalloc .
It does not knay the data type of the elements of the arfélye argument of the function
operator delete[] is the address of the block to be deallocated.

These tw functions,operator new[] and operator delete(] have dready been written
for us in the C++ Standard LibraryVe could write our own version of them, if we wanted to perform the
allocation ourseles. Allwe hare © do is wite two functions with the same name, arguments, and return
type as the original functionsperator new(] and operator delete[] . A new operator that
allocates and initializes an arrand the correspondingdelete[] operatorwould then call the functions
operator new(] andoperator delete[] that we wrote.

Here is a simple version of the functiargerator new(] andoperator delete[] that pro-
duce tracing output. Instead of writing our own memory allocaterrely onmalloc andfree to allo-
cate and deallocate.

The new operator in line 15 allocates an array whose elements toadestructor It asks the func-
tion operator new[] for a block that is the same size as the arfidye value of th@ew operator is the
address it receed from the functioroperator new(] , converted to the proper pointer type. The ele-
ments hge ro constructor eitherso we gt a block of garbage.

Thenew operator in line 32, on the other hand, allocates an array whose elemengsdstructor.

It asks the functioroperator new(] for a block that issizeof(size_t) bytes bigger than the
array Thenew operator stores the number of array elements in this slot. dlbe uf thenew operator is
the address of the byte after this slot,w@pted to a pointer to the data type of an array element.

—On the Web at

http://i5.nyu.edu/ Omme64/book/src/new/redefine_array.C
1 #include <iostream>
2 #include <cstdlib> //for malloc and free
3 #include "obj.h"
4 using namespace std,;
5
6 void *operator new[](size_t n);
7 void operator delete[](void *p);
8
9 i nt main()
10 {
11 cout << "How many elements do you want to allocate? ";
12 size t n,
13 cin >>n;
14
15 int *const pl1 = new int [n]; /[calls operator new[] in line 48
16
17 for (size_ti=0;i<n;++i){
18 cout <<"Theintat address " << pl +i

aess A hesenea ©2014 Mark Meretzky

414 OperationsExpressed by Overloaded Operators Chapter 4

19 << " holds" << pl][i] << ".\n";

20 }

21

22 cout << "The hidden numbers are " /lunofficial
23 << reinterpret_cast<size_t *>(p1)[-2] <<"and "

24 << reinterpret_cast<size_t *>(p1)[-1] << "\n";

25

26 delete(] pl; /lcalls operator delete[] in line 62
27

28 cout << "\nAn objis " << sizeof (obj) << " bytes, an array of " << n
29 << " of t hemis" << n * sizeof (obj)

30 << " bytes, and a size_tis " << sizeof (size_t) <<" bytes.\n";
31

32 obj *const p2 = new obj [n]; /lcalls operator new[] in line 48
33

34 for (size_ti=0;i<n;++i){

35 cout << "The obj at address " << p2 +i

36 << " holds" << p2[i] <<".\n";

37 }

38

39 cout << "The hidden numbers are "

40 << reinterpret_cast<size_t *>(p2)[-3] << ", "

41 << reinterpret_cast<size_t *>(p2)[-2] << ", and "

42 << reinterpret_cast<size_t *>(p2)[-1] << ".\n";

43

44 delete(] p2; /lcalls operator delete[] in line 62
45 return EXIT_SUCCESS;

46}

47

48 void *operator new[](size_t n)

49 {

50 if (void *const p = malloc(n)) {

51 cout << "operator new[](" << n << ") returns " << p

52 << " with hidden numbers "

53 << reinterpret_cast<size_t *>(p)[-2] << " and "

54 << reinterpret_cast<size_t *>(p)[-1] << ".\n";

55 return p;

56 }

57

58 cerr << "operator new[](" << n << ") out of store.\n";

59 exit(EXIT_FAILURE);

60 }

61

62 void operator delete[](void *p)

63 {

64 cout << "operator delete[](" << p << ") with hidden numbers "
65 << reinterpret_cast<size_t *>(p)[-2] << " and "

66 << reinterpret_cast<size_t *>(p)[-1] << ".\n";

67

68 free(p);

69 }

asss A hesenea ©2014 Mark Meretzky

Section 4.2.4 Allocation Functionsoper at or newandoperator delete 415

How many elements do you want to allocate? 3
operator new[](12) returns 0x220f0 with hidden numbers 17 and O.
The int at address 0x220f0 holds 139520. threeint ’s of garbage

The int at address 0x220f4 holds 0.
The int at address 0x220f8 holds 0.
The hidden numbers are 17 and 0.
operator delete[](0x220f0) with hidden numbers 17 and 0.

An obj is 4 bytes, an array of 3 of them is 12 bytes, and a size_t is 4 bytes.
operator new[](16) returns 0x220f0 with hidden numbers 17 and O.

default construct 0

default construct 0

default construct 0

The obj at address 0x220f4 holds 0. 4 bytes after return value afperator new(]
The obj at address 0x220f8 holds 0.

The obj at address 0x220fc holds 0.

The hidden numbers are 17, 0, and 3.

destruct O

destruct O

destruct O

operator delete[](0x220f0) with hidden numbers 17 and 0.

Reduce the werhead with class-specific allocation functions

SR THOMAS MORE.

A dispensation ws granted so that the King [Henry VIII] might marry Queen
Catherine [daughter of Ferdinand and Isabella], for state reabmswe ae to
ask the Pope to—dispense with his dispensation, also for state reasons?

—Robert Bolt, A Man for All SeasonsAct One

The functionsoperator new and operator delete in the C++ Standard Library will be
called to allocate variables ofyadata type. So will the ones we substituted for thenvelband the ones
in lines 38 and 49 of the folling main.C . They must be flexible enough to allocate blocks of an
requested size.

But the member functionsperator new andoperator delete of classcookie , in lines 9
and 26 ofcookie.C , will be called to allocate and deallocate objects of only that one cldssy. can
assume that each block will be exactly the same size (nasirdpf (cookie)), letting us reduce the
overhead on each blockThe cookie ’s, incidentally are so called because there all the same size,
stamped out with a cookie cutter.

A functionoperatornew andoperatordelete that are member functions arevays static,
even without the leyword static . They haveto be—no object exists when the allocation function is
called or when the deallocation function returns. Nehdhe memory for the object exists at these times.
Were the functions non-static, there would be nothing for their implicit pointers to point to.

The member function®perator new and operator delete of class cookie allocate
blocks of memory from thbuffer of characters in line 8, which is big enough to holdookies . We
are not allowed to mentiogizeof (cookie) until after the} that ends the class in line 25, so we can-

not declare the size of theiffer here. But we can getvay with the empty] square braakg in line 8
because thbuffer data member is static. The number of characters agruwtil the luffer is defined in
line 6 ofcookie.C

The array ofbool s in line 9 keeps track of which blocks in theffer are currently allocated.
Each block has onbkool , which is a smaller werhead than the eight-byte prefix. But eduyol still
occupies at least one byte. What we really want is an array of bits, suchbétseéhe in the C++ Stan-
dard Library We will retrofit it here on pp. 461-463.

aess A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

10
11

416 OperationsExpressed by Overloaded Operators Chapter 4

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/cookie/cookie.h

#ifndef COOKIEH
#define COOKIEH
#include <iostream>
using namespace std;

class cookie {
static const size_t n = 1000; //can allocate this many cookies
static char bufferf[];
static bool b[n]; [ftrue if this slot is currently allocated

int i;

12 public:

13
14
15
16
17
18
19
20
21
22
23
24

cookie(int initial_i): i(initial_i) {
cout << '"construct cookie " << i<<"\n";

}

cookie(): i(0) {
cout << "default construct cookie " << 0 << "\n";

}

“cookie() {cout << "destruct cookie " << i << "\n";}

void *operator new(size_t);
void operator delete(void *p);

25}
26 #endif

O©CoOo~NOOOTA,WNPE

The function operator new assumes that very cookie is the same size
(sizeof (cookie)), so it neer uses thesize_t amument in line 9.To avoid the “unused agument”
warning, we gve it no nrame.

But thecookie ’s will not always be the same siz&Vhen we heae inheritance, some of the objects
of a class will be biggerariants called'derived objects’. Think of them as heavier isotopes of a chemical
element. Thenember functioroperator new of classcookie will then need to use itsize t argu-
ment, and the member functiaperator delete will get an extra aggument, also of typsize_t
giving the size of the object to be deallocated. See pp. 501-503.

The casts of theoid *p in lines 29 and 36 can Isatic_ . A cast to or from another pointer
type, in lines 15 and 37, must beeinterpret_cast . See p. 389.

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/cookie/cookie.C

#include <iostream>
#include <cstdlib>
#include "cookie.h"
using namespace std;

¢ har cookie::buffer[n * sizeof (cookie)];
bool cookie::b[n];

void *cookie::operator new(size_t)

10{

11
12

for (size_ti=0;i<n; ++i){

it (tbfi]) {

aess A hesenea ©2014 Mark Meretzky

Section 4.2.4 Allocation Functionsoper at or newandoperator delete 417

13 bli] = true;

14 cookie *constp =

15 reinterpret_cast<cookie *>(buffer) + i;
16 cout << "cookie::operator new() returns " << p

17 << " [block" <<i<<".\n"

18 return p;

19 }

20 }

21

22 cerr << "cookie::operator new out of store\n";

23 exit(EXIT_FAILURE);

24}

25

26 void cookie::operator delete(void *p)

27 {

28 if (p < buffer || p >= buffer + sizeof buffer ||

29 (static_cast<char *>(p) - buffer) % sizeof (cookie) != 0) {
30

31 cerr << "cookie::operator delete: " << p

32 << " n ot from previous cookie::operator new.\n";
33 exit(EXIT_FAILURE);

34 }

35

36 const size_ti= static_cast<cookie *>(p) -

37 reinterpret_cast<cookie *>(buffer);

38

39 it ('b[i]){

40 cerr << "cookie::operator delete: " << p << " [block " <<'i
41 << "] not currently allocated.\n";

42 exit(EXIT_FAILURE);

43 }

44

45 cout << "cookie::operator delete(" << p << ") [block " <<i << "].\n";
46 b[i] = f alse;

47}

The operators in lines 12 and 13 call the general-purpose allocation functions in lines 38 and 49
because we wrote no functions specifically for ctdgs. Lines 17 and 18 call the allocation functions that
are members of clasgokie . Lines 22 and 23 call the functioaperator new(] and
operator delete[] in the C++ Standard Library because we did not write them ourselves, either as
members otookie or as non-members. Lines 25 and 2@reto the general-purpose functions in lines
38 and 49 because of the unary scope resolution operatee sav in pp. 122-124. Lines 32 and 33 call
mismatching functions.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/cookie/main.C

#include <iostream>
#include <cstdlib>
#include "obj.h"
#include "cookie.h"
using namespace std;

void *operator new(size_t n);
void operator delete(void *p);

©CoOo~NOOOUTA, WNPE

aess A hesenea ©2014 Mark Meretzky

418 OperationsExpressed by Overloaded Operators

10 int main(int argc, char **argv)

Chapter 4

114

12 const obj *const pd = new obj(10); /[call operator new in line 38

13 delete pd; /[call operator delete in line 49
14

15 cout <<"\n";

16

17 cookie *const pcl = new cookie(10); //call cookie::operator new

18 delete pcl; /lcall cookie::operator delete
19

20 cout <<"\n";

21

22 cookie *const pc2 = new cookie[3]; //call standard lib operator new[]

23 delete(] pc2; /lcall standard lib operator delete[]
24

25 cout <<"\n"

26

27 cookie *const pc3 = ::new cookie(30); //call operator new in line 38

28 ::delete pc3; /lcall operator delete in line 49
29

30 cout <<"\n"

31

32 cookie *const pc4 = ::new cookie(40); //call operator new in line 38

33 delete pc4; //deliberate mismatch: call cookie::operator delete
34

35 return EXIT_SUCCESS;

36}

37

38 void *operator new(size_t n)

39 {

40 if (void *const p = malloc(n)) {

41 cout << "operator new(" << n << ") returns " << p << "\n";

42 return p;

43 }

44

45 cerr << "operator new(" << n << ") out of store.\n";

46 exit (EXIT_FAILURE);

47}

48

49 void operator delete(void *p)

50 {

51 cout << "operator delete(" << p << ")\n";

52 free(p);

53}

printed 4/8/14
8:46:52 AM

All rights
reserved

©2014 Mark Meretzky

Section 4.3.1 Endow a Data Type with a Last Name 419

operator new(4) returns 0x23948. lines 12-13
construct 10

destruct 10

operator delete(0x23948)

cookie::operator new() returns 0x22490 [block 0]. lines 17-18
construct cookie 10

destruct cookie 10

cookie::operator delete(0x22490) [block 0].

operator new(16) returns 0x25d60. lines 22-23
default construct cookie 0

default construct cookie 0

default construct cookie 0

destruct cookie O

destruct cookie O

destruct cookie O

operator delete(0x25d60)

operator new(4) returns 0x23948. lines 27-28
construct cookie 30

destruct cookie 30

operator delete(0x23948)

operator new(4) returns 0x23948. lines 32-33
construct cookie 40

destruct cookie 40

cookie::operator delete: 0x23948 not from previous cookie::operator new.

v Homework 4.2.4a:

Write member function®perator new(] and operator delete][] for classcookie . It
will be easier to search the arraybafol 's when we heae the “algorithms” find (p. 861) and
search_n (p. 949).

A harried programmer may choose to defaperator new[] andoperator delete]] first.
The scalar functionsperator new andoperator delete can then be implemented by allocating
an array of one element.

A

4.3 \ectors and Lists

4.3.1 Endav a Data Type with a Last Name

A container is a big object that contains little objects. The little objects tderén haveto be
objects. Theg can be pointers, structures, or mereffues of the built-in data types. And the big object
doesnt haveto be an object, eithett could be an arrgyhich is the most rudimentary type of container.

This chapter will introduce better types of containers, includiegtor , list , and string
First, havever, we will need two preliminary techniques: hoto give a last name to a data type, anaviio
loop through a container with an “iterator”.

So far, we've ®en three kinds of class members: data members (line 7), member functions (lines 9
and 19), and enumeration members (lines 12-14). But a member can also be a d&ia syaenple, the
month_type in line 11, thehillary_t in line 17, and théill in line 21 are all public members of

acss A hesenea ©2014 Mark Meretzky

420 OperationsExpressed by Overloaded Operators Chapter 4

the classclinton in line 6. First we will say what this does not mean, and then what it does mean.

Finally, we will show why you would want to do this.

It does not mean thatdinton object contains aonth_type , ahillary t ,orabill . In
fact, we hae dready seen that the only data member d@firdon object is the in line 7. By making
month_type , hillary_t , and bill members otlinton , we ravemerely endwed the names of
these three data types with the last natimton . For example, the full name of the data type
hillary_t is clinton::hillary_t . bill | by the way, is called anested clasdecause its decla-
ration is inside the declaration for another class. Recall that wee dreaady seen a variable with a last
name: thestd::cout in p. 20.

We dready knav that we are on a first-name basis with all the members of a class witkicutthe
brace$ of the class declaration (lines 6 and 2¢lafton.h), and within the curly brace} of the body
of a member function of the class. Tlsathy inside the body of the member functioin line 19 of

clinton.h | thei ,january ,andhillary_t needed nothing in front of them. But outside these
{ curly brace}, we haveto identify which class the members of claBston belong to. Thas why in
main.C , january inline 9, thehillary t in line 10, and théill in line 12 all need the

clinton:: . Of coursejanuary , hillary t ,andbill all have o be public members of class

clinton merely to appear imain .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/clinton/clinton.h

1 #ifndef CLINTONH
2 #define CLINTONH
3 #include <iostream>
4 using namespace std,;
5
6 class clinton {
7 i nti;
8 public:
9 clinton(int initial_i): i(initial_i) {}
10
11 enum month_type {
12 january =1,
13 february,
14 march
15 3
16
17 typedef unsigned hillary_t;
18
19 void f() const {cout << i <<"" << january <<
20
21 class bill {
22 int
23 public:
24 bill(int initial_j): j(initial_j) {}
25 void g() const {cout << j << "\n";}
26 3
27},
28 #endif

<< sizeof (hillary_t) << "\n";}

We gve a last name to a data type so that we cam laadfferent data type with the same name in the
same programClassvector will provide our first real example of twdata types with the same name.
In the meantime, here is another claitis

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/clinton/gates.h

aess AN hesenea ©2014 Mark Meretzky

Section 4.3.1 Endow a Data Type with a Last Name 421

#ifndef GATESH
#define GATESH
#include <iostream>
using namespace std;

class gates {
public:
class bill {
double d;

©CoOo~NOOOUTA,WNPE

10 public:

11 bill(double initial_d): d(initial_d) {}
12 void g() const {cout << d << "\n";}

13 3

14}

15 #endif

The only purpose of clagmtes was to gve the last namgates to its clasdill . Classgates
has no other member#f you feel that thebill inside it malkesgates appear distended, here is another
way to do the same thing. Nethe curly braces ajates are close to each other (lines 6 and 9).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/clinton/gates2.h

#ifndef GATESH
#define GATESH
#include <iostream>
using namespace std;

class gates {
public:
class bill; //declaration for class gates::bill

O©CoOoO~NOOOUTA, WNPE

b

10

11 class gates::bill { //definition for class gates::bill
12 double d;

13 public:

14 bill(double initial_d): d(initial_d) {}
15 void g() const {cout << d << "\n";}

16 };

17 #endif

To gve bill alast name by means of a “namespace”, see pp. 1024-1025.

Theariablebc in line 12 is not &linton object or a data member othnton object. Infact,
we haren’t constructed anglinton objects at all.bc is merely of a data type whose last name is
clinton

Similarly, the \ariablebg in line 15 is not ayates object or a data member ofgates object. In
fact, we haen’t constructed ayngates objects at all, andven if we did, agates object would have o
data membersbg is merely of a data type whose last nangeites .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/clinton/main.C

1 #include <iostream>
2 #include <cstdlib>

3 #include "clinton.h"

4 #include "gates.h"

5 using namespace std;

Paess A hesenea ©2014 Mark Meretzky

422 OperationsExpressed by Overloaded Operators Chapter 4

6
7 i nt main()
8 {
9 cout << clinton::january << "\n"; //The last name of january is clinton.
10 clinton::hillary_t n = 10; /IThe last name of hillary_t is clinton.
11
12 clinton::bill bc = 20; /[The last name of bill is clinton.
13 bc.g();
14
15 gates::bill bg = 3.14159265358979323846;
16 bg.g();
17
18 return EXIT_SUCCESS;
19}
1 line 9
20 line 13
3.14159 line 16
Where can we call hillary_t by her first name?
The following example underlines all the territory where we are on a first-name basis with
hillary_t . Both ways of defining a member function, inline and non-inline, are shown.
As mentioned abe, we ae on a first-name basis with all the members of clagstzare within the
{ curly brace} of the body of a member function of that class. Therefore wet deat anything in front
of the thirdhillary_t in line 10 ofclinton2.h and thehillary_t in line 5 ofclinton2.C
We're dso on a first-name basis with all the members of a class anywhere within the parentheses of
the agument list of a member function of that class. Therefore we dead anything in front of the sec-
ondhillary_t in lines 10 and 11 aflinton2.h or in front of the secondillary_t in line 3 of
clinton2.C
We're dso on a first-name basis with all the members of a class anywhere witKioutthe brace}
of the class declaration for that class (lines 4-1@linfon2.h). Thereforewe dont need anything in
front of the firsthillary _t 'sinlines 10 and 11 daflinton2.h
But outside of these three places, we are not on a first-name badislesiyh t . That's why we
need elinton2:: in front of the firstillary_t in line 3 ofclinton2.C , and why we needed a
clinton:: in front of thehillary_t in line 10 of the abee main.C .
At the start of line 3 otlinton2.C , the clinton2::hillary_t is the return type of the
member function. Then thedinton2::g is the name of the member function.
1 #ifndef CLINTON2H /[This file is clinton2.h.
2 #define CLINTON2H
3
4 class clinton2 {
5 i nti;
6 public:
7 clinton2(int initial_i): i(initial_i) {}
8
9 t ypedef int hillary _t;
10 hillary t f(hillary _t h) const {return sizeof(hillary t);}
11 hillary t g(hillary t h) const;
12}
13 #endif

asss A hesenea ©2014 Mark Meretzky

1 #include "clinton2.h" //This file is clinton2.C.
2
3 clinton2::hillary_t clinton2::g(hillary_t h) const
4 {
5 r eturn sizeof(hillary t);
6 }

v Homework 4.3.1a: male a typedef member

We had typedefs floating near classtack , life , and employee , but we didnt know where to
put them. Nav we havea dace for them to go.

Let the typedefalue_type on pp. 153-154 be a public member of clstsek . Thetypedef
must be in theublic section of the class declaration, but it also has to come before it is used in line 6 of
theprivate section. Thepublic andprivate sections must therefore alternate

1 class stack {
2 public:
3 t ypedef int value_type; //must come before line 6
4 private:
5 static const size_t max_size = 100; /Imust come before line 6
6 value_type a[max_size];
7 size tn;
8 public:
9 stack(): n(0) {}
10 “stack();
11
12 void push(value_type i);
13 value_type pop();
14 size t size() const {return n;}
15}

Do the same for thealue_type of classnode in node.h on p. 214, and thes_t of class

employee on p. 259.
A
v Homework 4.3.1b: male a typedef member

You can do this homgork only with a \ersion of C++ that permits the initialization of a static data
member in line 30 on p. 238.

In 1 (2) of the homeork on p. 239, we thought about letting Ié¢_xmax andlife_ymax be
private static data members of the clafes on pp. 144-147. Do it mg and rename themmax and
ymax. Initialize the ne static data members as in line 30 on p. 238.

Then let the typedefdife_matrix_t andlife_matrix_t be members of cladife (as
hillary_t is a public member of clagtinton), and shorten their names tmatrix t and
matrix_t

1 class life {

2 static const size_t xmax = 10; //must come before lines 4 and 7
3 static const size_t ymax = 10;

4 t ypedef bool _matrix_t[ymax + 2][xmax + 2];//must come before line 5

5 __matrix_t matrix;

6 public:

7 t ypedef bool matrix_t[ymax][xmax]; /Imust come before line 8

8 | ife(const matrix_t initial_matrix);

Section 4.3.1 Endow a Data Type with a Last Name 423

aess AN hesenea ©2014 Mark Meretzky

424 OperationsExpressed by Overloaded Operators Chapter 4

_life_matrix_t can becomematrix_t within the{ curly brace} of the class declaration for
clasglife , and within the bodies and argument lists of the member functions ofliiéass Similarly,
life_matrix_t can becomenatrix_t within the{ curly brace} of the class declaration for class
life , and within the bodies and argument lists of the member functions ofliiéass For example, the
first argument of the constructor can becomeatrix_t in the abee line 8; and we sahillary t in
line 10 ofclinton2.h

But outside of these placdde_matrix_t will have o becomdife::matrix_t , just like
clinton::hillary_t in line 10 of the abee main.C . For example, in thenain function that plays
the game of life, you will hae b change

9 | ife_matrix_t glider_matrix = {
to

10 life::matrix_t glider_matrix = {

4.3.2 lterators

Looping through a container

A container is a big object that contains smaller objectfie smaller objects danéven haveto be
objects: thg can be values of aulit-in data type such ast . And the big object doedrhaveto be an
object, either: it canven be a fain, old array.

The values held in a container are callecigsnents.The elements of a containéike the elements
of an arraycan be pointers but not references.reference has no memory address, so it cannot be con-
tained in anything.

An array is only the most rudimentary type of contairfes we ae about to see, it lacks some of the
standard features of a C++ contain®ectors and the standard librastack in pp. 155-157 are better
containers because there safer and easier to us€hese and other container classes belong to a part of
the C++ Standard Library called the Standard Template Libwa§TL.

When looping through a containeve dways need a loopariable to keep track of ofar we hae
progressed. lfhe container is an array or vegtitre variable could be the pointeritd in lines 4-6:

1 i ntaf] ={10, 20, 30},
2 const size_t n = sizeof a / sizeof a[0];
3
4 for(constint*p=a;p<a+n;++p){
5 cout << *p << "\n";
6 }
But a different type of container would need deatént type of loop ariable. Ifthe container is a
linked list, the variable would ka © be he pointer to each element in the list in lines 18-20:
7 struct node {
8 i ntvalue;
9 node *next;
10 3
11
12 node c¢ = {30, 0};
13 node b = {20, &c};
14 node a = {10, &b};
15
16 node *begin=&a; //pointto 1st node in list, or O if list empty
17

aess AN hesenea ©2014 Mark Meretzky

18
19
20

Section 4.3.2 lterators 425

for (const node *p = begin; p != 0; p = p->next) {
cout << p->value <<"\n";

}

10 20 30 value
/ / 0 next

The loops in the alve examples were quite dérent. Nav let's mntemplate something that is rarely
attempted in C.To make it easy to switch from one type of container to anqttverwould like to be ale
to loop through aycontainer by writing the same looping code switch containers, we will hee o hide
the different loop variables, with their names and data typemttpe in the aboe line 4 vs. thenode
*p in line 18. We will also have © hide three pieces of code:

(1) thedifferent pieces of code that use the variable to access each item in the contafpemtliee 5
vs. thep->value in line 19;

(2) thedifferent pieces of code that advance the variabletpein line 4 vs. thep = p->next in line
18;

(3) thedifferent pieces of code that test the variableptkea + n in line 4 vs. thgg =0 in line 18.

Iterators

In C++, a ariables rmme and data type are hidden by making it eafidata member of some
object. Anobject that hides a loop variable is calleditarator. We sy that the iteratorefers o one of
the elements in the container through which we are looping.

Code is hidden by putting it into the body of a functidrhe three functions of a C++ iterator are
cornventionally namedperator* , operator++ , andoperator!= . Most iterators also la an
operator--

Each container class requires afatiént class of iteratorFor example, an iterator for looping
through the abee aray would contain the pointer to @t in line 5. We @uld also hae made a postfix

operator++ , and a corresponding pair operator-- ’s.
—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/vector/array _iterator.h
1 #ifndef ARRAY_ITERATORH
2 #define ARRAY_ITERATORH
3
4 class array_iterator {
5 i nt*p;
6 public:
7 array_iterator(int *initial_p): p(initial_p) {}
8 i nt& operator*() const {return *p;}
9 array_iterator& operator++() {++p; return *this;}
10
11 friend bool operator!=(const array_iterator& it1,
12 const array_iterator& it2) {
13 return itl.p = it2.p;
14 }
15}
16 #endif

If we also create the wfunctionsbegin andend in lines 9-10, returning iterators that refer to thgibe
ning and end of the arraye an rewrite the loop as follows.

Paess AN hesenea ©2014 Mark Meretzky

426 OperationsExpressed by Overloaded Operators Chapter 4

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/arrayl.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "array_iterator.h"
4 using namespace std,;
5
6 i ntal] ={10, 20, 30};
7 constsize_t n = sizeof a / sizeof a[0];
8
9 i nline array_iterator begin() {static const array _iterator it(a); return it;}
10 inline array_iterator ~ end() {static const array_iterator it(a+n); return it;}
11
12 int main()
13{
14 for (array_iterator it = begin(); it '= end(); ++it) {
15 cout << *it<<"\n"; llcout << jt.operator*() << "\n";
16 }
17
18 return EXIT_SUCCESS;
19}
10
20
30
On the other hand, an iterator for looping through theetinlist would contain the pointer tanade
in line 10.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/list_iterator.h
1 #ifndef LIST_ITERATORH
2 #define LIST_ITERATORH
3
4 struct node {
5 i ntvalue;
6 node *next;
7},
8
9 class list_iterator {
10 node *p;
11 public:
12 list_iterator(node *initial_p): p(initial_p) {}
13 int& operator*() const {return p->value;}
14 list_iterator& operator++() {p = p->next; return *this;}
15
16 friend bool operator!=(const list_iterator& it1,
17 const list_iterator& it2) {
18 return itl.p = it2.p;
19 }
20 };
21 #endif

If we also create the twfunctionsbegin andend in lines 10 and 16, returning iterators that refer to the

Raess A hesenea ©2014 Mark Meretzky

Section 4.3.2 lterators 427

beginning and end of the linked list, we can rewrite the loop as follows.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/list.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "list_iterator.h"
4 using namespace std,;
5
6 node c ={30, 0};
7 node b = {20, &c};
8 node a ={10, &b};
9
10 inline const list_iterator& begin()
114
12 static const list_iterator it(&a);
13 return it;
14}
15
16 inline const list_iterator& end() {
17 static const list_iterator it(0);
18 return it;
19}
20
21 int main()
22 {
23 for (list_iterator it = begin(); it I= end(); ++it) {
24 cout << *it<<"\n"; llcout << jt.operator*() << "\n";
25 }
26
27 return EXIT_SUCCESS;
28}
10
20
30

Our loops are ne identical, except for the name of the data type of the iter@fde will eventually
use a‘template’ to switch this name.) All three iteratorsvVeathe outward appearance of a pointeinto .
In fact, a much simpler implementation is possible for one of the iteratbesarray _iterator can be
the typedef in line 8 for a plain old pointer toiah :

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/array2.C

#include <iostream>
#include <cstdlib>
using namespace std;

1
2
3
4
5 i nta[] = {10, 20, 30};

6 constsize_t n = sizeof a / sizeof a[0];

7

8 t ypedef int *array_iterator;

i nline array_iterator begin() {return a;}

10 inline array_iterator ~ end() {return a + n;}
11

©

aess A hesenea ©2014 Mark Meretzky

428 OperationsExpressed by Overloaded Operators Chapter 4

12 int main()

13
14
15
16
17
18
19}

1
2
3

o o b~

for (array_iterator it = begin(); it '= end(); ++it) {
cout << *it<<"\n";

}

return EXIT_SUCCESS;

10
20
30

The iterators we will use in real life V@two improvements @er our array _iterator and
list_iterator . First, each class of iterator will Y& the same name, simpiterator . To make
this possible, each one will V@ a dfferent last name. The name willaglys be that of the container class
through which the iterator loopfJnfortunately we muld not illustrate this with ouarray_iterator
andlist_iterator . The array and linkd list were not objects, so thbelonged to no class. But we
will soon see a container class with the strange neagr<int> |, and will use a
vector<int>::iterator to loop through an object of this class.

Second, each container class already haspublic member functionshbegin and end, which
return the initial and final values for an iterator that will loop through the contaliherreturn value of
begin is an iterator that refers to the first element of the contginarded, of course, that the container
has a first element. Some containers are empty.

On the other hand, the returalwe ofend doesnot refer to the last element of the containér
refers to the empty location just beyond the last element. If the container is #rapéaturn value of
begin will also refer to this locatiorbegin andend will be the same.

Unfortunately we had to illustrate ouarray_iterator andlist_iterator with begin and
end functions that were not member functions. The array andditikt were not classes, soytmuldn’t
have member functions.

The operatorg, ++, and!= were chosen to makevery iterator look lile a pinter looping through
an array In fact, an iterator is sometimes thought of ag\amiable to which we can repeatedly apply these
three operators to get data from somewhere or to put data teveerse The* somewheré’is called a
container By these definitions, there are nykinds of containers besides arrays and vectors.

Thanks to these operators, we cawnse &actly the same notation to loop througty &mnd of
container: arraywector list, stack, queue, deque (double-ended queue)Tae consistencof the notation
will eventually male aur templates applicable to more types of containers.

4.3.3 Classrect or

Three drawbacks of an array

A C++ vector is an impneed aray. To motivate its introduction, we list the drawbacks of a C or C++
array.

(1) There is no way to makan aray grav or shrink atruntime, as the program runs. Even if the size
of the array is fixed, there is no way to determine the size at runtime.

#include <iostream>
#include <cstddef> [[for size_t
using namespace std;

cout << "How many array elements do you need?\n";
size_tn; /luse this data type for the number of elements in an array

aess A hesenea ©2014 Mark Meretzky

~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31

32
33
34
35

Section 4.3.3 Classvect or 429

cin>>n;
i nta[n]; /lwon’t compile: can’t use a variable as the dimension

The number of elements must be fixed@mnpile time when the program is writteriTo dlocate a block
of memory whose size may be set and changed at runtime, C programmers must resort to the functions
malloc ,realloc ,andfree . C++ programmers h& a letter alternatie which we are about to see.

(2) An array performs no subscript checkiffja subscript is out of bounds, the program willvblo
up. Ifwe're lucky.

i ntaf] ={10, 20, 30},
cout <<a[3]<<"\n"; //subscript out of range

(3) To copy and compare arrays, weve write loops:

int af] ={10, 20, 30};
int b[3];

/[Copy a intob.

for (size_ti=0;i<3; ++i){
bi] = ali;

}

/[Compare a andb.
for (size_ti=0;i<3; ++i){
it (ali] '=bfi]) {
cout << "The arrays are unequal.\n";
goto done;

}

cout << "The arrays are equal.\n";
done:;

| wish that arrays could be copied and comparedsiiiedars, i.e., variables that are not arrays:

int s = 10; Ils and t are scalars
int t=s; / Is can be copied with an =
if (s==1){ /Is and t can be compared with an ==

Line 35 will compile, but it does the wrong thing.

int af] ={10, 20, 30}
int Db[3]=a; /lwon’t compile: a cannot be copied with an =

if (a==b){ /lcompares the addresses, not the contents

Class vector

A vector is an impreed aray. Classvector is atemplate class: one whose name contains the
name of another data type, inserted iRémgle brackts>. The vector of classector<int> in line 8
will store and retrieeint 's, as wll the stack of classtack<int> in pp. 155-157.

A vector acts as a one-dimensional arrdiynore than one dimension is needed, use a slice of a
valarray . This kind of slice has nothing to do with the bad kind of slicing.

The template clasgector is declared in the header figector> . The following program shwes
five constructors for clasgector<int> , in lines 8-10, 14, and 16. The one-argument constructor in line
9 initializes eachint in the vector to zero because it calls the no-argument constructor for the data type
int . Inline 19 ofmain.C on p. 142, we sathat this no-argument constructor createsnan whose

asss A hesenea ©2014 Mark Meretzky

=Y

CQowoo~NOOUODWNLPE

430 OperationsExpressed by Overloaded Operators Chapter 4

value is zero.
Lines 9 and 16 call tev different one-argument constructors for classtor<int> . The agu-

ment in line 9 has parentheses to emphasize that a function is being called; the one in line 16 has an equal

sign to emphasize that the objedt is being copied. This is the camtional notation for calling the cgp
constructor.

A vector has three advantage®ran aray.

(1) A vector can gne as he program runs, which we will demonstrate shorthstead of grnewing a
block of memory by calling the functiomsalloc , realloc , andfree , we will call the member func-
tions of a vector object. The number of elements currently in use is calleddioe’ssize; the number of
elements for which there is room is called tkeeter'scapacity. To get the size and capagcitall thesize
andcapacity member functions in lines 19-20’he output of these lines shidhat the ectorvs is
born filled to capacity.

Do not attempt to get the current number of elements in a wetipsaying
sizeof v / sizeof v[0]

Thesizeof a variable nger changes as the program runs. It is determined once and for all when the pro-
gram is compiled.

The member functioempty in line 18 returns &ool , true if the size of the vector is zer8y
default, abool prints as @ or0. To change this, see line 30iot.C on p. 354.

(2) A vector will give s a dvilized error message in response to a bad subséiiptwon’t be ale
to do this until we ceer exceptions. Butet’s begn to look at what happens when we apply a subscript to a
vector.

When we write line 22, the computer beémas if we lad written the code in the comment beside it.
We ae really calling the member functiaperator(] , ahd the number we wrote in the square betsk
is passed as an argument to this function. The subscripts start at zerosS@]then line 22 is the second
element of the vector.

The member functiowperator(] performs no subscript checking: ivds fast and dangerously
But another member functiomt , will perform subscript checking. When we do exceptions, we will
change the expressiob[1l] in line 22 tov5.at(1)

(3) A vector can be compared to anothecter with the< in line 26, and copied into anothezotor
with the=in line 27. To compare and cgparrays, we would ha o write for loops.

The comparison in line 26 arks the same way as string comparison. It loops through thedey
tors in tandem, searching for the first mismatching pair of elembnthe case o¥3 andv4, the first mis-
match is at subscript 1 (the second eleme8ticev3[1] is less tharv4[1l] , the comparison in line 26
yields the aluetrue . If no mismatch is encounted, theators count as equal if thare the same size;
otherwise, the shorter one counts as being smaller.

Warning: the tvo arguments in line 10 would be in the opposite ordeifwere avalarray . See
line 10 ofsieve.C on p. 902.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/vector.C

#include <iostream>
#include <cstdlib>
#include <vector>
using namespace std;

i nt main()

{
v ector<int> v1; /lborn empty, but we can insert int’s later
v ector<int> v2(3); //born containing 0, 0, O

vector<int> v3(3, 10); /[born containing 10, 10, 10

aess A hesenea ©2014 Mark Meretzky

Section 4.3.3 Classvect or 431

11
12 const intaf] = {10, 20, 30};
13 const size_t n = sizeof a/ sizeof a[0];
14 vector<int> v4(a, a + n); //born containing 10, 20, 30
15
16 vector<int> v5 = v4; /Iborn containing 10, 20, 30: copy constructor
17
18 cout << "v5.empty() == " << v5.empty() << "\n"
19 << "vb.size() ==" << v5.size() << "\n"
20 << "vb.capacity() == " << v5.capacity() << "\n\n";
21
22 cout << v5[1] <<"\n"; /lcout << v5.operator[](1) << "\n";
23 v5[1] = 21; /[Change the 20 to 21: v5.operator[](1) = 21;
24 cout << v5[1] <<"\n"; /lcout << v5.operator[](1) << "\n";
25
26 if (v3<v4){ /ICompare two vectors: if (operator<(v3, v4)) {
27 vl = v5; /lassignment: v1.operator=(v5);
28 }
29
30 return EXIT_SUCCESS;
31}
By default, @ool is output ad or0. To change this, see p. 354.
v5.empty() ==
v5.size() ==

v5.capacity() ==

20
21

Make a \ector larger by calling push_back

We @n add anxra element to the end of a vector by callingiish_back member function.For
avector<int> , the argument gbush_back will be anint .

Each call topush_back adds 1 to the size of theestor If the nev size exceeds the capagcithe
latter is automatically increase@n my platform, the call tpush_back in line 15 doubles the capacity
from 3 to 6. Line 22 doubles it again, from 6 to 12.

My vector behaes this way because the more the size increases, the more probable it is that a fur
ther increase is coming. The C++ Standard doesmially say that the capacity has to be doubled each
time it is increased. But let'se what would go wrong if the capacity was merely increased by 1.

An increase in capacity has to do more than just allocate a bigger block of mdmmwoiyst also
copy the existing elements into thewélock. For example, imagine that we started with an empggtor
and calledpush_back n times. Thesecond call tgpush_back would copy the one gisting element
into a nev block. Thethird call topush_back would copy two existing elements.The n calls would
copy a total of
n-1)n 1 1
(n-n_1, 1

2 2 2
elements. Theime it would tale is herefore proportional to thequare of the number of element8ut
this “quadratic’ behavior is too sk for the C++ Standard, which demands “amortized constant time”.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/vector/push_back.C

1+2+3+...4n-1=

aess AN hesenea ©2014 Mark Meretzky

432 OperationsExpressed by Overloaded Operators

1 #include <iostream>
2 #include <cstdlib>
3 #include <vector>

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28}

O©CoOoO~NOOOUTA, WNPE

using namespace std;

i nt main()
{
const int a[] = {10, 20, 30};
const size_t n = sizeof a / sizeof a[0];

vector<int> v(a, a + n); //born containing 10, 20, 30
cout <<"v.size() ==" << v.size()
<< ", v.capacity() == " << v.capacity() << "\n";

v.push_back(40);

cout <<'"v.size() ==" << v.size()
<< ", v.capacity() == " << v.capacity() << "\n";

v.push_back(50);
v.push_back(60);
v.push_back(70);

cout <<'"v.size() ==" << v.size()
<< ", v.capacity() == " << v.capacity() << "\n";

return EXIT_SUCCESS;

Chapter 4

v.size() == 3, v.capacity() == lines 12-13
v.size() == 4, v.capacity() == lines 17-18
v.size() == 7, v.capacity() == 12 lines 24-25

Make a \ector larger by calling reserve

The capacity of a vector can be changed manually by callingeiesve
this before callingpush_back to avoid the automatic doubling.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/vector/reserve.C

#include <iostream>
#include <cstdlib>
#include <vector>
using namespace std;

i nt main()
{
const int a[] = {10, 20, 30};
const size_t n = sizeof a / sizeof a[0];
vector<int> v(a, a + n); //born containing 10, 20, 30
cout <<'"v.size() ==" << v.size()
<< ", v.capacity() == " << v.capacity() << "\n";
printed 4/8/14 All rights
8:46:52 AM reserved

member function.Do

©2014 Mark Meretzky

Section 4.3.3 Classvect or 433

15 v.reserve(7); /[Prevent the push_back’s from increasing the capacity.
16

17 cout <<"v.size() ==" << v.size()

18 << ", v.capacity() == " << v.capacity() << "\n";

19

20 v.push_back(40);
21 v.push_back(50);
22 v.push_back(60);
23 v.push_back(70);

24

25 cout <<"v.size() ==" << v.size()

26 << ", v.capacity() == " << v.capacity() << "\n";

27

28 return EXIT_SUCCESS;

29}
v.size() == 3, v.capacity() == lines 12-13
v.size() == 3, v.capacity() == lines 17-18
v.size() == 7, v.capacity() == lines 25-26

Two data types with the same first name and different last names

The abwee pograms printed the return value of #ize andcapacity = member functions of class
vector . Now we would like to dore these values into anable. Whatlata type should it be?

The C++ Standard Library contains a typesieé_type for the data type of a variable that holds
thesize orcapacity member function of gnvector But there is a complication.

Suppose our machine has 1,000,000 bytes of mentifosizeof(int)==4 , the biggest possible
vector<int> would hare 50,000 elementsA variable that holds the return value of
vector<int>::size would hare © be bg enough to hold the number 250,008nything bigger
would be wasteful.

1 v ector<int> vi(3, 10); //born containing 10, 10, 10
2 size_type s = vi.size();

If sizeof(char)==1 , the biggest possibleector<char> would have 1,000,000 elements.
A variable that holds the return valuewactor<char>::size would have © be bg enough to hold
the number 1,000,000. Again, anything bigger would be wasteful.

3 vector<char> vc(3, 'A’); //born containing 'A’, 'A’, A’
4 size_type s = vc.size();
To let us use the same namge_type , for these tw different data types, thehavebeen gien
two different last names:
5 v ector<int> vi(3, 10);
6 vector<int>::size_type s = vi.size(); //variable big enough to hold 250,000
7 vector<char> vc(3, 'A’);
8 vector<char>::size_type s = vc.size(); //variable big enough to hold 1,000,000
Often the name of a container is used as the last name of a data type that helps us loop through the con-
tainer The other examples wevesen arevalue_type anddifference_type
9 v ector<int> v(3, 10);
10 vector<int>::size_type s = v.size();
11 vector<int>::value_type i = v [0];

acss A hesenea ©2014 Mark Meretzky

434 OperationsExpressed by Overloaded Operators Chapter 4

12 vector<int>::difference_type d = v.end() - v.begin();

(In the abwe line 11, wly not say a simplént instead ofvector<int>::value_type ? We will
return to this when we kmomore about templates.)

Loop through a vector with an iterator

We row discard thesize_typei in line 15 in Avar of the iteratoit in line 26. If the data type
vector<int>::iterator is a typedef foint* , the operator$= , *, and ++ in lines 26-28 will be
the built-in ones that operate on pointelisthe data typevector<int>::iterator is a class, lines

26-28 will male the computer belva & if we had written lines 20-23.Think of lines 20-23 as an
“ exploded view’ of 26-28.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/iterator.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <vector>

4 using namespace std,;

5
6 i nt main()
7
8 const int a[] = {10, 20, 30};
9 const size_t n = sizeof a / sizeof a[0];
10 vector<int> v(a, a + n); //born containing 10, 20, 30
11
12 const vector<int>::size_type s = v.size();
13 cout << '"size ==" << s<<"\n\n";
14
15 for (vector<int>:size typei=0;i<s; ++i) {
16 cout << vJ[i] <<"\n"; [lcout << v.operator[](i) << "\n";
17 }
18 cout <<"\n"
19
20 for (vector<int>:iterator it = v.begin(); operator!=(it, v.end());
21 it.operator++()) {
22 cout << it.operator*() << "\n";
23 }
24 cout <<"\n"
25
26 for (vector<int>:iterator it = v.begin(); it I= v.end(); ++it) {
27 cout << *t<<"\n";
28 }
29 cout <<"\n"
30
31 return EXIT_SUCCESS;
32}

aess A hesenea ©2014 Mark Meretzky

Section 4.3.3 Classvect or 435

10
20
30

10
20
30

10
20
30

size == lines 12-13

lines 15-17

lines 20-23

lines 26-28

Warning. Whena vector ’s capacity is increased, the elements are copied into a bigger block of

memory This means that an iterator referring to an element in the original block willdemaredictably
when dereferenced or incremented.

CQOwoo~NOOUODWNPE

=Y

vector<int> v(argument(s) for constructjr

v ector<int>::iterator it = v.begin();

cout << *it << "\n"; /lcan dereference it here
v.push_back(10); //might increase the capacity
v.reserve(v.size() + 10); /[definitely increases the capacity

[Icout << *it << "\n"; /lcan no longer dereference it here

it = v .begin();

cout << *jt<<"\n" /lcan dereference new value of it

Two ways to male a pointer const

pl always points to the sameasiable. p2 gives us ead-only access . We saw tis in pp. 50-52.

#include <cstdlib>

i nt main()

i ntaf] ={10, 20, 30};

i nt *const pl = a;
++p1; [lwon’t compile: p1 must always point to a[0]

const int*p2 = a;

++*p2; /lwon’t compile: can’t use p2 to change a[0] from 10 to 11
const int *const p3 = a; //both of the above

++p3; /lwon’t compile: p3 must always point to a[0]

++*p3; /lwon’t compile: can’t use p3 to change a[0] from 10 to 11
a[0] = 11;//a is not a const array.

return EXIT_SUCCESS;

aese A hesenea ©2014 Mark Meretzky

436 OperationsExpressed by Overloaded Operators Chapter 4

Two ways to male an iterator const

An iterator can be made constant in the sane ways, but the syntax is é#frent. itl always
refers to the same elemeri2 gives us ead-only access to.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/const_iterator.C

1 #include <cstdlib>
2 #include <vector>
3 using namespace std;

4
5 i nt main()
6 {
7 i ntaf] ={10, 20, 30},
8 size_t n = sizeof a / sizeof a[0];
9 vector<int> v(a, a + n);
10
11 const vector<int>::iterator itl = v.begin();
12 /[++it1; /lwon’t compile: it must always refer to v[0]
13
14 vector<int>::const_iterator it2 = v.begin();
15 [[++*it2; /lwon’t compile: can’t use it2 to change v[0] from 10 to 11
16
17 const vector<int>::const_iterator it3 = v.begin(); //both of the above
18 /[++it3; /lwon’t compile: it3 must always refer to v[0]
19 [[++*it3; /lwon’t compile: can’t use it3 to change v[0] from 10 to 11
20
21 v[0] = 11; /Iv.operator[](0) =11
22 return EXIT_SUCCESS;
23}

A vector of objects

Classobj isin pp. 179-180. It will let usx-ray” a vector to see exactly aomanyobj s the \ec-
tor constructs and destructs, and in what ordéese statistics may be different on each platorm.

| thought line 11 wuld construct threebj 's by calling the default constructor for clagbj three
times. Butthe output shows that it constructiedir obj 's: one by the default constructor and three by the
copy constructor The author of clasgector must hae assumed that for most classes, theycamstruc-
tor is less gpensve than the default constructorhis is certainly the case for clagate : its default con-
structor calls system functions to get and parse the current date, whileyitsoosgructor merely copies
the integer data member(s).

The choice of constructors is not only a performance is§be.calls to the cgpconstructor ensure
that the three objects in the array will be as identical as thg @mstructor can makthem. If these
objects had been constructed by three calls to the default consttingtanight not hae been identical.
Different constructors can do different things.

Line 14 can be used only for objects whose constructestekactly one gument. Ifthe construc-
tor needs more than one argument we must use line 17, which wowdale than one argument in the
innermost parentheses.

On some platforms line 14 constructa/ée objects than line 17, and is therefore to be prefeBed.
a aperficial work-around would let us use line 1¥ea for objects whose constructor takes more than one
argument. Simplydefine a one-gument constructor whose argument is a structure containing more than
one field.

Similarly, lines 20-26 can be used only for objects whose construces tale ayument. Ifthere is
more than one argument (or with archaarsions of Microsoft Visual C++) we must use lines 29-36,

aess A hesenea ©2014 Mark Meretzky

Section 4.3.3 Classvect or 437

which would allev more than one argument in the parentheses in lines 300820me platforms lines
20-26 construct fger objects than lines 29-36, and are therefore to be preferred. But we can apply the
same workaround.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/vector_obj.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <vector>

4 #include "obj.h"

5 using namespace std;

6
7 i nt main()
8 {
9 v ector<obj> v1; /lborn empty
10
11 vector<obj> v2(3);
12 cout <<"\n";
13
14 vector<obj> v3(3, 10);
15 cout <<"\n";
16
17 vector<obj> v4(3, obj(20));
18 cout <<"\n";
19
20 const inta[] ={
21 30,
22 40,
23 50
24 3
25 const size_t na = sizeof a / sizeof a[0];
26 vector<obj> v5(a, a + na);
27 cout <<"\n";
28
29 const objb[] ={
30 obj(60),
31 obj(70),
32 0bj(80)
33 3
34 cout <<"\n";
35 const size_t nb = sizeof b / sizeof b[0];
36 vector<obj> v6(b, b + nb);
37 cout <<"\n";
38
39 for (vector<obj>::const_iterator it = v6.begin(); it I= v6.end(); ++it) {
40 cout << *it<<"\n";//can also say (*it).print() or it->print()
41 }
42 cout <<"\n";
43
44 return EXIT_SUCCESS;
451}

The objects defined imain are destructed when we return fronain in line 44. The vectors are
destructed from youngest to oldest, and so arelthés inb.

aess A hesenea ©2014 Mark Meretzky

46

47
48

49
50

438 OperationsExpressed by Overloaded Operators Chapter 4

The destructor for a vector calls the destructor for each object inetttervBut we get another
shocker: the elements in a vector are not necessarily destructed from youngest t&\@drstsee this in
v6 andv5, because their elementsveadstinct values. Infact, the elements are notem destructed in
order of descending subscript¥hey are alvays destructed from front to back because internétlg
destructor for a vector may calbalgorithms’ whose arguments are merelofward” iterators (pp.
839-840).

When we write the abe line 40, the computer beles as if we fad written line 46:
operator<<(operator<<(cout, it.operator*()), "\n");

(Line 46 assumes thét is an object.If it is merely a pointerthen line 46 would merely kia*it in
place of thet.operator*() .) Theit inline 39 is an iterator for looping through a vector that holds
obj ’s, s0 the epressiortit in lines 40 and 46 is of data typbj . This causes the rigloperator<<

in line 46 to be the one whose second argument abpn This function is a friend of classhj ; we saw
its definition in line 18 obbj.h in p. 180.

| also want to demonstrate Wwdo call a member function of an object retéd from a vector with an
iterator Unfortunately our classobj has only the member functiqmrint , rendered obsolete by the
friend operator<< . But we’'ll call it aryway, just to demonstrate the synta€hange line 40 to lines
47-48.

(*it).print(); /[Don’t write this: line 49 is simpler.
cout <<"\n";
Line 47 calls therint member function of the angmousobj*it . It must first retrige theobj from

the vector before it can call tipgint member function of thebj . That's why the* must be applied to
theit before the.print() is applied to theit . To make this happen\en though the* has laver
precedence than the dot, line 47 needs the parentheses arouxgréksiertit . Without them, the com-
puter would attempt to apply therint() to the iterator first. That would be totally wrong: we want to
call theprint member function of anbj , not of the iterator.

But line 47 was for pedagogical purposes orhange it to 49. In C and C++, the single operator
-> can do the work of & followed by a dot. And ne that there is only one operatare no bnger need
the parentheses around tlite in line 47.
it->print();
cout <<"\n";

aess A hesenea ©2014 Mark Meretzky

Section 4.3.3

Classvect or 439

default construct 0
copy construct 0
copy construct 0
copy construct 0
destruct O

construct 10

copy construct 10
copy construct 10
copy construct 10
destruct 10

construct 20

copy construct 20
copy construct 20
copy construct 20
destruct 20

construct 30
construct 40
construct 50

construct 60
construct 70
construct 80

copy construct 60
copy construct 70
copy construct 80

60
70
80

destruct 60
destruct 70
destruct 80
destruct 80
destruct 70
destruct 60
destruct 30
destruct 40
destruct 50
destruct 20
destruct 20
destruct 20
destruct 10
destruct 10
destruct 10
destruct O
destruct O
destruct O

Line 11 constructs?2.
Line 11 constructs?2.
Line 11 constructs?2.
Line 11 constructs?2.
Line 11 constructs?2.

Line 14 constructs3.
Line 14 constructs3.
Line 14 constructs3.
Line 14 constructs3.
Line 14 constructs3.

Line 17 constructs4.
Line 17 constructs4.
Line 17 constructs4.
Line 17 constructs4.
line 17 constructy4 : destruct the firsobj .

Lines 20—-26 construct5.
Lines 20—-26 construct5.
Lines 20—-26 construct5.

Lines 29-33 construct the arrdy.
Lines 29-33 construct the arrdy.
Lines 29-33 construct the arrdy.

Line 36 constructs6.
Line 36 constructs6.
Line 36 constructs6.

Lines 39-41
Lines 39-41
Lines 39-41

Line 44 destructs the thredj 's inv6 in an unexpected order.
Line 44 destructs the thredj 's inv6 in an unexpected order.
Line 44 destructs the thredj 's inv6 in an unexpected order.
Line 44 destructs the thredj 's in the arrayb in the expected order.
Line 44 destructs the thredj 's in the arrayb in the expected order.
Line 44 destructs the thredj 's in the arrayb in the expected order.
Line 44 destructs the thredj 's inv5 in an unexpected order.
Line 44 destructs the thredj 's inv5 in an unexpected order.
Line 44 destructs the thredj 's inv5 in an unexpected order.
Line 44 destructs4 ; we can't tell in what order.

Line 44 destructs4.

Line 44 destructs4.

Line 44 destructs3.

Line 44 destructs3.

Line 44 destructs3.

Line 44 destructs2.

Line 44 destructs2.

Line 44 destructs?2 ; thenvl is destructed silently.

printed 4/8/14
8:46:52 AM

hesenea ©2014 Mark Meretzky

1
2
3
4
5

440 OperationsExpressed by Overloaded Operators Chapter 4

Append an object to a vector of objects

The following program appears to construct and destruct onlplgnegin lines 10 and 17The out-
put shows, hwever, that it actually constructs and destructs.twl heunderlined lines of output betray the
presence of the second)j , constructed when the argumett in line 11 is passed by value.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/copy.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include "obj.h"

using namespace std;

i nt main()
{
v ector<obj> v;
obj ob=10;
v.push_back(ob);
for (vector<obj>::const_iterator it = v.begin(); it I= v.end(); ++it) {
cout << *t<<"\n";
}
return EXIT_SUCCESS; //Destruct ob and v, in that order.
construct 10 Line 10 constructsb.
copy construct 10 line 11
10 line 14
destruct 10 Line 17 destructsb.
destruct 10 Line 17 destructs thebj withinv, and then destructs.

I’'m not telling you not topush_back onto a vector of objects. But you must understand the price
to be paid: eery object that yoipush_back into the vector will be duplicateds there a way tovaid
this?

Avoid the unwanted copying

To avoid making an unwanted cgpf each object inserted into @&etor let the vector be a vector of
pointers to objects in line 10. Tlpaish_back function of this vector takes a pointer toah) (line 11).

As usual, the destructor for &ator calls the destructor for each item in teetur But the items in
this vector are merely pointers, and a pointer has no destru@orwe can pretend that a pointer has a
destructor that does nothing.) The destructor for #wtorv will therefore not call the destructor for the
objectob.

We onstructob beforev to ensure that line 18 will destruaib afterv. Wereob destructed firsty
would momentarily be left holding a pointer to the place winéreised to be. This is harmless, sinces
destructed in the next moment. But it is potentially dangerous for a pointer tee duglivariable to which
it points.

A vector can hold pointers, but not references. See p. 80.

Theit inline 13 is an iterator for looping through a vector that holds pointetsj ts. The epres-
sion*it in lines 14 and 15 is therefore of data type “pointestip " , and the**it is of typeobj .

| also want to demonstrate Wwdo call a member function of one of these objedisfortunately our
classobj has only the member functigmint , rendered obsolete by the frienderator<< . But line

aess AN hesenea ©2014 Mark Meretzky

1
2
3
4
5

abhwWwNRE

Section 4.3.3 Classvect or 441

15 shows ha to call it anyway just to demonstrate the syntax.

The (**it).print() calls theprint member function of the anonymous obj&tt . The
first (i.e., rightmost) retrieves a pinter to theobj from the \ector The second (i.e., leftmost) derefer-
ences the pointer to get thbj itself. Finally the dot calls the@rint member function of thebj . To

apply the tvo *'s to theit before the dot is applied to th&t |, line 15 needs the parentheses around the

expressiornt*it . Without them, the computer would attempt to apply the dot to the iterEibat would
be totally wrong: we want to call th@int member function of thebj , not of the iteratar The iterator
has nagprint

The (*it)->print() in line 15 would do the same thing. In C and C++, the single operator
can do the work of & followed by a dot. Does this malthe code easier to read?

When we hee inheritance, we will see another reasorywéctors and other containers usually con-
tain pointers to objects, rather than the objects theeselSeq. 487.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/vector/vector_obj_ptr.C

#include <iostream>
#include <cstdlib>
#include <vector>
#include "obj.h"

using namespace std;

i nt main()
{
obj ob = 10;
vector<obj *> v,
v.push_back(&ob);
for (vector<obj *>::const_iterator it = v.begin(); it = v.end(); ++it}{
cout << "The obj at address " << *it << " is " << **jt << ".\n";
/[Can also say (**it).print() or (*it)->print()
}
/[Destruct v and ob, in that order.
/[Do not allow v to even momentarily hold a pointer to a destructed obj.
return EXIT_SUCCESS;
construct 10 Line 9 constructsb.
The obj at address 0xffbffOb0 is 10. Lines 13-16
destruct 10 Line 18 destructs and therob.

v Homework 4.3.3a: define aroperator- to measue the distance between tw life objects

Define anoperator<= that would returrtrue if the firstlife object would golve into the sec-
ond one, and aoperator- that would tell us hw mary generations it would tak Sinceour playing
board is of finite size, we ddnhaveto worry about these functions going into an infinite lodphey
should ignore thg data member of clasife

if (gl<=g2){ /Iif (operator<=(g1, g2)) {
cout << "gl will evolve into g2 after "
<< g2-g1 |/ I<< operator-(g2, g1)

<< " g enerations.\n";

aess AN hesenea ©2014 Mark Meretzky

442 OperationsExpressed by Overloaded Operators Chapter 4

Theoperator- in the abwe line 3 will create a copof g1 and mae the copy forward one gener
ation at a time until one of the following happens, whieheomes first.

(1) Thecopy contains the same picture g3.
(2) Thecopy contains the same picture as in an earlier generation;
(3) anint cantcount ary higher.

In the latter two casespperator- should returdiNT_MAXto shav thatgl will never evolve into
g2, at least not in annumber of generations that can be counted witinan. INT_MAXis a macro for
the largesint value, defined in the header fielimits>

operator- will push_back each generation ofl into a local vector<life> . For the
present, we will assume (i.e., pray) that epabh_back will be successful; on p. 628 we will check if it
“throws an &ception’. For the present, we will search tiiector with afor loop; on p. 861 we will
search it with théind algorithm.

operator<= can do almost all of its work by callirgperator- . Also define aroperator<
returningtrue if the objects are unequal and the left one sahve into the right one. Note that for a sin-
glelife object we can easily kaa < a. For two life objects, we can vaa <b andb <a. For
three, we can va a < b andb < ¢ without also heging a < c; for example, the total distance franto c
may add up to more thdNT_MAX These nonstandard befars will make aur operator< ineligible
for most of the expected applications of<am the Standard Template Library (pp. 776-777). Maybe we
should hae ramed itcan_evolve_into instead obperator<
A

4.3.4 Clasdi st

vector vs. list

A vector is like a CD ad alist is like a ape. V¢ can jump around in sector but we must
wind and rewind dist

Use avector to access the elements in a non-conseeutider, i.e., for random access. Use a
list to perform maw insertions and deletions quickllthough classrector does hae the member
functionsinsert anderase , they're slower than the ones of cldiss

Theres another problem with thansert anderase member functions of clasgctor . All the
elements after the insertion or deletion point geveddo new locations. Thisnvalidatesary iterator that
refers to one of these elementss even worse when the capacity ofvector is changed: all the ele-
ments may be nwed, and all the iterators arevatidated.

The words in the circles are names of public members of classes andlist . Most of them

are members that are member functionsjthés a shorthand fooperator[] . Four of them are mem-
bers that are data types #ilhehillary_t member of classlinton):iterator
const_iterator , Size_type , andvalue_type

asss AN hesenea ©2014 Mark Meretzky

Section 4.3.4 Classl i st 443

iterator
const_iterator

begin insert
capacit end erase
pacity size remove
reserve .
resize
0 size_type push_front
value_type pop_front
at
empty
clear sort
push_back
pop_back

vector list

Construct a list of int’s
The constructors for clagist take the same arguments as those for cl@ssor

—On the Web at
http://i5.nyu.edu/ Ommé64/book/srcllist/list.C

1 #include <iostream>
2 #include <cstdlib>

3 #include <list>

4 #include <vector>

5 using namespace std;

6
7 i nt main()
8 {
9 | ist<int> li1; /Iborn empty, but we can insert int’s later
10 list<int> li2(3); /born containing 0, 0, 0
11 list<int> li3(3, 10); /born containing 10, 10, 10
12
13 const intaf] = {10, 20, 30};
14 const size_t n = sizeof a/ sizeof a[0];
15 list<int> lid(a, a + n); //born containing 10, 20, 30
16
17 vector<int> v(a, a + n); //born containing 10, 20, 30
18 list<int> li5(v.begin(), v.end()); /Ilborn containing 10, 20, 30
19
20 list<int> li6 = 1i5; //born containing 10, 20, 30: copy constructor
21
22 for (list<int>::const_iterator it = li6.begin(); it = li6.end(); ++it) {
23 cout << *jt<<"\n"
24 }
25
26 return EXIT_SUCCESS;
27}

aess AN hesenea ©2014 Mark Meretzky

444 OperationsExpressed by Overloaded Operators Chapter 4

10
20
30

Three ways to insert an element into a list

We must construct an iterator before we can call iigert in line 15. It must be a plain
iterator , not aconst_iterator

—On the Web at
http://i5.nyu.edu/ COmmé64/book/srcllist/insert.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <list>

4

23

24

using namespace std;

i nt main()
{
| ist<int> Ii; /lborn empty
li.push_back(30); /[Class vector has the same push_back function,
li.push_front(10); //but not a push_front function.
list<int>::iterator it = li.begin(); /lit refers to the 10.
++it; /INow it refers to the 30.
li.insert(it, 20); llInsert a 20 before the 30.
for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
cout << *it<<"\n";
}
return EXIT_SUCCESS;
A more complicated way to do line 11 would be
li.insert(li.begin(), 10);
We @an combine lines 14-15 to
li.insert(++it, 20);
10
20
30

v Homework 4.3.4a: the increment of death

Theerase in line 14 remwes the element to which the iterator refers. There areugs lop to and
including line 14.

But after of theerase , the++ in line 15 will behae wnpredictably We cannot increment a list iter
ator that refers to an element that has been erased. This is because each list element contains a pointer to
the next element, which theperator++ function uses to find the next element. If an element has been
erased, the pointer inside it will also be erased, cutting the ground out from upndierator that referred
to the element. Iteperator++ will not be able to navigate to the next element.

aess A hesenea ©2014 Mark Meretzky

Section 4.3.4 Classl i st 445

The++ in line 15 will therefore lege the iterator referring to an unpredictable locatibime 16 will
then blav up—if you are luck. Otherwise, it will output the wrong answeflow lucky are you?

—On the Web at

http://i5.nyu.edu/ Cmme64/book/src/list/increment.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 using namespace std,;
5
6 i nt main()
7
8 const int a[] = {10, 20, 30};
9 const size_t n = sizeof a / sizeof a[0];
10 list<int> li(a, a + n);
11 list<int>::iterator it = li.begin();
12
13 cout << "The first element of the listis " << *it << ".\n";
14 li.erase(it);
15 ++it;
16 cout << "The second element of the list is " << *it << ".\n";
17
18 return EXIT_SUCCESS;
19}
The first element of the list is 10.
The second element of the list is O. Should have beezD.
A
Continue looping after an erasure

Theerase function in line 19 remees ane element each time it is calleheremove function in
line 25 remwes every element that is equal 8. Theclear function in line 33 remees every element,
period. Ifthe elements & destructors (which these don't), all three functions will call the destructor for
each element remed from the list.

The argument okrase is aniterator referring to the element to be rewed; the agument of
remove is thevalue of each element to be rerel. remove contains a searching loop which applies the
operator== to each element in the list. Before callirgmove for a list of objects, we must therefore
write anoperator== function for that class of object.

I'm sorry that thet+i is not at the traditional place in ther loop, at the end of line 17/But as we
just sav, we caannot increment a list iterator referring to an element that has been dragadately the
erase function returns an iterator referring to the element after the one that was erased. (If there is no ele-
ment after the one that was erasgdse will return the same value as thad function.) Unfortunately
the++i had to be buried in aglse .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/list/erase.C
1 #include <iostream>
2 #include <cstdlib>
3 #include <list>
4 using namespace std,;
5
6 i nt main()
7

acss A hesenea ©2014 Mark Meretzky

446 OperationsExpressed by Overloaded Operators Chapter 4

8 const int a] = {30, 20, 30, 10, 20, 10},
9 const size_t n = sizeof a / sizeof a[0];
10 list<int> li(a, a + n);
11
12 for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
13 cout << *it<<"\n";
14 }
15 cout <<"\n%
16
17 for (list<int>:iterator it = li.begin(); it != li.end();) {
18 if (*it==20) {
19 it = lierase(it); lIGet rid of one 20.
20 } else{
21 ++it;
22 }
23 }
24
25 li.remove(30); /IGet rid of every 30.
26
27 for (list<int>::const_iterator it = li.begin(); it != li.end(); ++it) {
28 cout << *it<<"\n";
29 }
30 cout <<"\n"
31
32 cout << "size ==" << li.size() << "\n";
33 li.clear();
34 cout << "size ==" << li.size() << "\n";
35 return EXIT_SUCCESS;
36}
30 lines 12-14
20
30
10
20
10
10 lines 27-29
10
size == line 32
size == line 34

A list of objects

On my platform, line 11 constructs and destructs almost twice ag abgetts as the analogous line
26 ofvector_obj.C on p. 437. What does your platform do? Is there documentation?

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/list/list_obj.C

#include <iostream>
#include <cstdlib>
#include <list>
#include "obj.h"

A WNBEP

aess A hesenea ©2014 Mark Meretzky

Section 4.3.4 Classl i st 447

5 using namespace std;

6
7 i nt main()
8 {
9 const int a[] = {20, 30, 40};
10 const size_t n = sizeof a/ sizeof a[0];
11 list<obj> li(a, a + n);
12
13 obj 01=10;
14 li.push_front(ol);
15
16 obj 02=50;
17 li.push_back(02);
18
19 for (list<obj>::const_iterator it = li.begin(); it = li.end(); ++it) {
20 cout << *it<<"\n"; [lor (*it).print() or it->print()
21 }
22
23 for (list<obj>::iterator it = li.begin(); it != li.end();) {
24 if (*it==20){ [fif ((*it).operator int() == 20) {
25 it = lierase(it); //Calls the object’s destructor.
26 } else{
27 ++it;
28 }
29 }
30
31 for (list<obj>::const_iterator it = li.begin(); it = li.end(); ++it) {
32 cout << *it<<"\n";
33 }
34
35 return EXIT_SUCCESS;
36}

Lines 14 and 17 construct copies of the pushed object; the evidence is underlined.

asss A hesenea ©2014 Mark Meretzky

448 OperationsExpressed by Overloaded Operators Chapter 4

construct 20 line 11

copy construct 20 line 11

destruct 20 line 11

construct 30 line 11

copy construct 30 line 11

destruct 30 line 11

construct 40 line 11

copy construct 40 line 11

destruct 40 line 11

construct 10 line 13

copy construct 10 line 14

construct 50 line 16

copy construct 50 line 17

10 lines 19-21

20 lines 19-21

30 lines 19-21

40 lines 19-21

50 lines 19-21
destruct 20 line 25

10 lines 31-33

30 lines 31-33

40 lines 31-33

50 lines 31-33
destruct 50 Line 35 destructs?2.
destruct 10 Line 35 destructsl.
destruct 10 Line 35 destructs .
destruct 30 Line 35 destructs .
destruct 40 Line 35 destructs .
destruct 50 Line 35 destructs .

A list of pointers to objects

The erase member function of dist will call the destructor for the element erased from the
list . For example, the ale line 25 called the destructor for the second object irishe . But each
item in the following list is merely a pointeand a pointer has no destructd©Or we can pretend that a
pointer has a destructor which does nothing.) Thereforeethge in the following line 23 calls no
destructorso he twoobj s survive o line 33.

—On the Web at

http://i5.nyu.edu/ Cmmé64/book/src/list/list_obj_ptr.C

#include <iostream>
#include <cstdlib>
#include <list>
#include "obj.h"

using namespace std;

i nt main()

{
obj 01 =10;
obj 02=20;
list<obj *> [i;

li.push_front(&o1l);
li.push_back(&02);

printed 4/8/14
8:46:52 AM

All rights
reserved

©2014 Mark Meretzky

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34}

abhwNRE

(o2}

10
11
12

Section 4.3.4 Classl i st 449

for (list<obj *>::const_iterator it = li.begin(); it I= li.end(); ++it) {
cout << "The obj at address " << *it << " is " << **jt << ".\n";
/[Can also say (**it).print() or (*it)->print()

}
for (list<obj *>::iterator it = li.begin(); it != li.end();) {
if (**it==20){ [fif ((**it).operator int() == 20) {
it = lierase(it);
} else{
++it;
}
}

for (list<obj *>::const_iterator it = li.begin(); it != li.end(); ++it) {
cout << *ijt << "\n";

}
return EXIT_SUCCESS;
construct 10 line 9
construct 20 line 10
The obj at address 0xffbff148 is 10. lines 16-19
The obj at address 0xffbff144 is 20. lines 16-19
10 lines 29-31
destruct 20 line 33 destructs and thero?2.
destruct 10 line 33 destructsl.

Sorting a vector vs. sorting a list

The functions in the STL are calledgorithms. Most of their arguments are pairs of iteratofa
sort a vectqgrfor example, pass its beginning and end tcstre algorithm.

#include <vector> /ffor vector
#include <algorithm> [ffor sort
vector<int> v(argument(s) for constructjr

sort(v.begin(), v.end());

But not every pair of iterators can begin to thesort algorithm. Thearguments okort must be
random accessterators: ones to which we can add a large number (greater than 1) in a single operation.
For example, line 7 demonstrates that a vector iterator is random access:

v ector<int>::iterator it = v.begin();

it += 3; / lokay: meansit=it+3
Thesort algorithm adds laye numbers to the pair of iterators that it reeeBs aguments, so themust
be random access iterators.

On the other hand, lines 9 and 10 demonstrate thisit a iterator is not random access. The best
we can do is to increment it in lines 12-14:

| ist<int>::iterator it = li.begin();

it += 3; / /Won't compile.
it +=1; /[Even this won’t compile.
++it; /[This is how we have to move it forward.

asss A hesenea ©2014 Mark Meretzky

450 OperationsExpressed by Overloaded Operators Chapter 4

13 ++it;
14 ++it;

Therefore we cannotyg a @ir oflist iterators to theort algorithm. Insteadye’ll have o call the
sort member function in line 18, whiclventually gets the job done by repeated increments instead of by
adding large numbers. Trs®rt is slower than theort algorithm, but its the best we can do.

15 #include <list>

16
17 list<int> lit argument(s) for constructyr
18 li.sort();

It might be worthwhile to copa long list into a vector for sorting, and then gayback again:

1 #include <vector>
2 #include <list>
3 #include <algorithm>

| ist<int> li(argument(s) for constructjr
v ector<int> v(li.begin(), li.end());

sort(v.begin(), v.end());
copy(v.begin(), v.end(), li.begin());

©O© oo~NO OA~

4.3.5 Datatypes for pointer and iterator arithmetic

array STLcontainer
unsigned size t size_type
signed || ptrdiff_t difference_type

The data typssize_t is used for the number of elements in an aroayhe number of bytes in a
variable or dynamically allocated block of memotyis the data type of thealue of thesizeof operator,
the argument of the C functionalloc , and the return value of the C functistrlen . See the follov-
ing line 9. We dso usesize t for an array subscript.

Similarly, a data typesize_type is used for the number of elements in an STL contaiRer
example, asize_type s the return type of theize member function of\wery container in the STLIn
classvector , size_type is also as the return type of the member functiapacity , and the agu-
ment of the member functiomesize ,reserve ,operator[] ,andat. See line 17.

We @n subtract antwo pointers that point to elements in the same ay@yding a result of data
type ptrdiff_t (line 13). A ptrdiff_t is also what we add to a pointer to radke pointer point to a
neighboring array element (line 14)trdiff_t is signed (it is another name fot orlong),
size_t is unsigned (it is another name forsigned orlongunsigned), but the are the same size.

Similarly, we @an often subtract gnwo iterators that refer to elements in the same STL container
yielding a result of data typsifference_type (line 21). A difference_type is also what we add
to an iterator to makthe iterator refer to a neighboring item (line 22). Iterators that permit these opera-
tions are called “random acces@. 841). Pointers angector iterators are random access, blisa
iterator is not. An attempt to addiat<nt>::difference_type to alist<int>::iterator
would not compile.

The only difference between adifference_type and a size_type is that
difference_type is signed, whilesize_type is unsigned.

size_t andptrdiff_t are typedefs in the C Standard Librasy hey haveno last nameNoth-
ing in C has a last name, so there can be only one data type siamdd and only one named
ptrdiff_t

acss A hesenea ©2014 Mark Meretzky

Section 4.3.6 Classstring 451

But size_type anddifference_type are the names of manypedefs in the C++ Standard
Library, one for each type of containewhat makes this possible is that each one has a different last name.
For example, avector<int>::size_type holds the number of elements inector<int> , and a
vector<char>::size_type holds the number of elements irvector<char> . They might have
to be different data types becauseeator<char>::size_type might hare o hold a much lager
number than &ector<int>::size_type

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/size_type.C

1 #include <iostream>

2
3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25}

#include <cstdlib>
#include <vector>
using namespace std;

i nt main()
{
i nta[] = {10, 20, 30, 40, 50};
size_t n = sizeof a / sizeof a[0]; /Inis 5
int *pl=a; /Ipoint to the 10
int *p2=a+4; /Ipoint to the 50
ptrdiff_t dl =p2-p1; /ld1is 4
pl +=d1i; /INow p1 points to the 50.
vector<int> v(a, a + n);
vector<int>::size_type s = v.size(); Ils is 5
vector<int>::iterator itl = v.begin(); llrefer to the 10
vector<int>::iterator it2 = v.begin() + 4; [Irefer to the 50
vector<int>::difference_type d2 =it2 -itl; //d2is 4
itl +=d2; /INow it1 refers to the 50.
return EXIT_SUCCESS;

4.3.6 Classtring

Classstring

A C program holds a string in an array of characters; a C++ program holds a string in an object of
classstring

Lines 8 and 16 shwtwo constructors for classtring . Line 17 inputs a one-ovd string, &pand-
ing thestring object to hold it. To do the job of line 17 in C, without string object, we wuld need
all the code in the following C program.

The C++ Standard Library has three header files with similar names:

<string> declaration for the C++ classtring
<string.h> declarations belonging to no namespace for the C string funciiolem , strcat |, etc.
<cstring> declarations belonging to namespatd for the C string functionstrlen |, strcat , etc.

A group of functions and variables sharing the same last name is called a nam@sgacetsion of the
string functions declared string.h belong to no namespace; thatcstring belong to the standard
namespacstd . The objectin andcout also belong to namespastl ; see p. 20. Ditto for the C++
Standard Library classegctor ,list , andstack .

Paess A hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA, WNPE

452 OperationsExpressed by Overloaded Operators Chapter 4

Instead of thestr - functionsstrlen , strcat , etc., in the C Standard Librarwe row call the
member functions and friends ofsaing object. Sedines 10, 19, 23, 24, and 32. There are member
functions for searching for substrings and widilial characters, forwards from the start or backwards from
the end. Asin &ector orlist ,there are also member functionsrieert anderase .

Occasionally we need to load the characterssifiag into consecutie memory addresses, add a
\O' after the last one, and get a pointer to the first &ioe example, we may need to pass the characters
to an older function whose argument isanstchar *. (Two such functions are the constructors for
classexfstream andlocale .) Lines46-47 shw how not to get this pointer The pointer must be
read-only as in line 48: it cannot be used to change the characterstirritpe .

Unlike a C aray of characters, a C+string object has no terminatii®’ . This means that a
string object can hold the charact&®’ (line 50), making it possible for string object to hold
arbitrary binary data. Of course, weowd never want to call thec_str member function of atring
that contained a0’

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/string/string.C

#include <iostream>

#include <cstdlib>

#include <string> /ffor class string
using namespace std;

i nt main()
{
string s = "Hello there"; /lone-argument constructor
cout << 's.size() ==" << s.size() << "\n" /linstead of strlen
<< "The 1st character is " << s[0] << ™.\n" IIs.operator[](0)

<< "The next 3 characters are \"" << s.substr(1, 3) << "\".\n"
<< "The last character is ™ << s[s.size() - 1] << ™.\n\n";

cout << "Please type your name and press RETURN: ";

string word; //No-argument constructor puts null string into object.
cin >>word; /lInput 1 word like scanf(%s; string expands to hold it.
string line=s+","+word+"l "

line +="How are you?"; //instead of strcat: line.operator+=("How RU?");
cout <<line <<"\n\n";

if (s<line){ /linstead of strcmp: if (operator<(s, line)) {
line = s; /| linstead of strcpy: line.operator=(s);

}

for (string::const_iterator it = s.begin(); it '= s.end(); ++it) {
cout << *it;

}

cout << "\n\n";

string::size_type i = s .find(l); /linstead of strchr
if (i == string::npos) { /I"no position"

cout << "The string \"" << s << "\" does not contain 'I".\n";
} else{

cout << "Found the first'l' at position " << i << ".\n";

}

aess A hesenea ©2014 Mark Meretzky

39
40
41
42
43
44
45
46
47
48
49
50
51

52}

53

CQowo~NOOUODWNLPE

Section 4.3.6 Classstring 453

i = s.find("lo"); /linstead of strstr
if (i == string::npos) { /I"no position"
cout << "The string \"" << s << "\" does not contain \"lo\".\n";
} else{
cout << "Found the first \"lo\" at position " << i <<"\n";
}
/[char *p=s; /lwon’t compile
/[char *p = s.c_str(); /lwon’t compile
const char *p =s.c_str(); /Iwill compile: pointer must be read-only
s[0] = "\0;
return EXIT_SUCCESS;
The abee line 19 behees as if we lad written the nested function calls
string line = operator+(operator+(operator+(s, ", "), word), "t ");
s.size() == 11 no terminating\0’ at end ofHello

The 1st character is 'H'.
The next 3 characters are "ell".
The last character is 'e’.

Please type your name and press RETURN: Mar k
Hello there, Mark! How are you? line 21
Hello there lines 27-30
Found the first 'I’ at position 2. lines 32-37
Found the first "lo" at position 3. lines 39-44

To do the job of the abee lines 16-17, a C program would need a loop withlloc and
realloc

The first time we arvie & line 10,malloc allocates a block of one bytdven if the user ner
inputs aly non-whitespace characters, we will still need one byte to hold the termiri@ting Line 26
places each incoming character at the end of the biblekrealloc in line 10 then makes the block one
byte biggerbecause en if the user ner inputs ag more non-whitespace characters, we will still need
one more byte to hold the terminatitgy

Line 22 unreads the whitespace character so that line 35 can reaith.it By the cast in line 21, see
pp. 63-64.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/string/string.c

#include <stdio.h> /* for getchar, ungetc, stdin, EOF */
#include <stdlib.h> /* for malloc, realloc, free, size t*/
#include <ctype.h> [* for isspace */

i nt main(int argc, char **argv)
{

size tn;

char *p;

for (p = malloc(n = 1);; p = realloc(p, ++n)) {

aess AN hesenea ©2014 Mark Meretzky

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40}

454 OperationsExpressed by Overloaded Operators Chapter 4

int ¢
if (p==NULL){
fprintf(stderr, "%s: out of store\n", argv[0]);
return EXIT_FAILURE;
}
if ((c =getchar()) == EOF) {
break;
}
if (isspace((unsigned char)c)) {
ungetc(c, stdin);
break;
}
pin -1 =c ;
}
pn - 1] =’ \0;
printf("The word \"%s\" was terminated by the ", p);
if (feof(stdin)) {
printf("end of file.\n");
} else{
printf("whitespace character "\\x%02x".\n",
(unsigned char)getchar());
}
free(p);
return feof(stdin) && !ferror(stdin) ? EXIT_SUCCESS : EXIT_FAILURE;
Mar k

The word "Mark" was terminated by the whitespace character \x0a’.

v Homework 4.3.6a: let a terminal display a string object
Add a public member function to classminal declared as

void put(unsigned x, unsigned y, const string& s) const;

This function will simply pass the return valuewfstr to theterminal::put whose third agument
is aconstchar * . The function will therefore be short enough to be inline.

terminal.h will now haveto include the header figring and use namespastd .
A

String output

To demonstrate the versatility of ourmeperator<< andoperator>> , we will write a date
to three different destinations of output, and read one from three different sources olOnputf these
destinations and sources will bsteing of characters in memarysee Lippman pp. 1108-1112, Strous-
trup pp. 640-641.

Here’s how to write output to a string in C. Théstring” is merely the array of characteasin line
12; it's up to us to eate this array and remembemhong it is. Thesnprintf in line 13 writes at most
N characters (including the terminating’) to the array This demonstrates what string output is good
for: pasting together strings, numbers, characters, etc., into one big string for later use.

acss A hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTA, WNPE

©CoOoO~NOOOUTA,WNPE

Section 4.3.6

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/string/snprintf.c

#include <stdio.h> /* C example */
#include <stdlib.h>

#define N 100 /* number of characters in string */

i
{

nt main(int argc, char **argv)

const char word[] = "size";
constinti=38;
const charc="L"

char a[N]j; [* uninitialized variable */

if (snprintf(a, N, "%s %d%c", word, i, ¢) < 0) {
fprintf(stderr, "%s: snprintf failed\n", argv[0]);
return EXIT_FAILURE;

}

printf("The string contains \"%s\".\n", a);
return EXIT_SUCCESS;

Classstring 455

The string contains "size 38L".

To write output to a string in C++, we construct dsringstream

object in line 12.1t's a desti-

nation for output (line 13), just kkcout , but the characters do not go to the standard oufplgy are
written into a string in memoyynaking it longer and longetWe don’t haveto create or lengthen the string
ourselves: is dl done automatically by thestringsteam object.

To “harvest’ the characters stored in the growing string, line 20 callstthemember function of

theostringstream . Itreturns a C+string object containing the string of characters.
—On the Web at
http://i5.nyu.edu/ COmm64/book/src/string/ostringstream.C

#include <iostream>

#include <sstream> //for ostringstream; includes <string>
#include <cstdlib>

using namespace std;

i
{

nt main(int argc, char **argv)

const string word = "size";
constinti= 38;
const charc="L"

ostringstream ost;
ost <<word <<""<<i<<c;

if (lost){ //if (ost.operator!()) {
cerr << argv[0] << ": write to ostringstream failed\n";
return EXIT_FAILURE;

}

cout << "The string contains \"" << ost.str() << "\".\n";

printed 4/8/14
8:46:52 AM

hesenea ©2014 Mark Meretzky

21
22}

23

©CoOoO~NOOOUTA, WNPE

A WN PP

456 OperationsExpressed by Overloaded Operators Chapter 4

return EXIT_SUCCESS;

The abee lines 13-15 may be combined to

if (!(ost<<word<<""<<i<<c)){

The string contains "size 38L".

String input
Heres how to read input from a string in C. Thestring” is merely the’\O’ -terminated array of

characters in line 6. This demonstrates what string input is good for: breaking a big string into sub-

strings, numbers, characters, etc.

The return value o$scanf , like the return value of plain oldcanf , is the number of ariables
that were assigned wevalues. Irthis case, it should be three.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sscanf.c

#include <stdio.h> /* C example */
#include <stdlib.h>

i nt main(int argc, char **argv)
{

const char a[] = "size 38L";

¢ har word[100];
i nti;
char ¢;

if (sscanf(a, "%s%d%c", word, &i, &c) != 3) {
fprintf(stderr, "%s: sscanf failed\n", argv[0]);
return EXIT_FAILURE;

}

printf("word ==\"%s\"\n", word);
printf("i == %d\n", i);

printf("c =="%c"\n", c);

return EXIT_SUCCESS;

word == "size"
i == 38
c ==L’

To read input from a string in C++, we construct thgingstream object in line 8.1t's a
source of input (line 14), just likgn , but the characters do not come from the standard input.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/string/istringstream.C

#include <iostream>

#include <sstream> //for istringstream
#include <cstdlib>

using namespace std;

aess AN hesenea ©2014 Mark Meretzky

26

13
14
15
16

Section 4.3.6 Classstring 457

i nt main(int argc, char **argv)

{

i stringstream ist("size 38L");

string word;
int i
char ¢;

ist >>word >> | >> c;

if (list) {
cerr << argv[0] << ": the istringstream failed\n";
return EXIT_FAILURE;

}
cout << "word ==\"" << word << "\"\n"

<< L] <<|<< u\nu
<< uC == " << C << m\nn;

return EXIT_SUCCESS;

The abee lines 14-15 may be combined to

it (I(ist >> word >> i >> ¢)) {

word == "size"
i == 38
c ==L’

operator<< and operator>> can tale any destination or source

The originalprint member function of clastate was hardwired to send output to only one desti-
nation: the standard outpobut . See lines 99-107 on pp. 116-110ur nav operator<< friend of
classdate can send output to grdestination. V& demonstrate three of them: the standard output (line
11), an output file (line 19), and a string of characters (line 26).

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/string/destination.C
#include <iostream>
#include <fstream> //for ofstream
#include <sstream>
#include <cstdlib>
#include "date.h"
using namespace std;
i nt main(int argc, char **argv)
{
const date d;
cout <<d<<"\n" /loperator<<(cout, d).operator<<("\n");
ofstream ofstr("outfile");
if (lofstr) {
cerr << argv[0] << ": couldn’t open outfile\n";
return EXIT_FAILURE;

acss A hesenea ©2014 Mark Meretzky

458 OperationsExpressed by Overloaded Operators Chapter 4

17 }

18

19 ofstr <<d <<"\n" /loperator<<(ofstr, d).operator<<("\n");
20 if (lofstr) {

21 cerr << argv[0] << ": couldn’t write to outfile\n";
22 return EXIT_FAILURE;

23 }

24

25 ostringstream 0s;

26 0s <<d, /loperator<<(os, d);

27 if (los){

28 cerr << argv[0] << ": couldn’t write to string\n";
29 return EXIT_FAILURE;

30 }

31

32 cout << "The string contains \"" << os.str() << "\".\n";
33

34 return EXIT_SUCCESS;

35}

The standard output is

4/8/2014
The string contains "4/8/2014".

The fileoutfile contains

4/8/2014

Similarly, our operator>> friend of classdate can read alate from ary source. V¢ demon-
strate three of them: the standard input (line 13), an input file (line 26), and a string of characters (line 35).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/string/source.C

#include <iostream>

#include <fstream> [[for ifstream
#include <cstdlib>

#include <sstream>

#include "date.h"

using namespace std;

i nt main(int argc, char **argv)
{
date d;
cout << "Please type a date.\n";
cin >>d; /loperator>>(cin, d);
if ('cin) {
cerr << argv[0] << ™ couldn’t read date from standard input\n";
return EXIT_FAILURE;
}

cout <<"Read " <<d <<"from standard input.\n";

NRPRRRRRRRRE
QOO NODUDNWNROOON®UANWNPR

ifstream ifstr("infile");
if (lifstr) {

N
[y

aess AN hesenea ©2014 Mark Meretzky

Section 4.3.6 Classstring 459
22 cerr << argv[0] << ": couldn’t open infile\n";
23 return EXIT_FAILURE;
24 }
25
26 ifstr >>d; /loperator>>(ifstr, d);
27 if (lifstr) {
28 cerr << argv[0] << "™ couldn’t read date from infile\n";
29 return EXIT_FAILURE;
30 }
31 cout <<"Read"<<d <<"from infile\n";
32
33 istringstream is("12/31/2014");
34
35 is >>d; /loperator>>(is, d);
36 it (lis) {
37 cerr << argv[0] << " couldn’t read date from string\n";
38 return EXIT_FAILURE;
39 }
40 cout <<"Read"<<d <<"from string.\n";
41
42 return EXIT_SUCCESS;
43}
Given aninfile containing
4/8/2014

the prograns autput will be

Please type a date.

1/ 1/ 2014 The user types this line.
Read 1/1/2014 from standard input.

Read 4/8/2014 from infile.

Read 12/31/2014 from string.

Convert an object to a string

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/string/date.h

1 #ifndef DATEH

2 #define DATEH

3 #include <sstream> //for ostringstream
4 #include <ctime>

5 using namespace std;

6
7
8

class date {
i ntyear;

9 i nt month;
10 int day;
11 public:
12 date(int initial_month, int initial_day, int initial_year)
13 :year(initial_year), month(initial_month), day(initial_day) {}
14
15 date() {
16 const time_tt=time(0);

printed 4/8/14
8:46:52 AM

All rights
reserved

©2014 Mark Meretzky

460 OperationsExpressed by Overloaded Operators Chapter 4

17 const tm *const p = localtime(&t);

18

19 year = p->tm_year + 1900;

20 month = p->tm_mon + 1;

21 day = p->tm_mday;

22 }

23

24 friend ostream& operator<<(ostream& ostr, const date& d) {
25 return ostr << d.month << "/" << d.day << "/" << d.year;
26 }

27

28 operator string() const {

29 ostringstream ost;

30 ost <<*his; //calls line 24: operator<<(ost, *this);

31 return ost.str();

32 }

33}

34 #endif

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/string/main.C

#include <iostream>
#include <string>
#include <cstdlib>
#include "date.h"
using namespace std;

i nt main()

{
const date d;
10 const string s =d; /Istring s = d.operator string();
11
12 cout <<"\"'<<s<<"\"\n"
13 << "\"' << static_cast<string>(d) << "\"\n";
14
15 return EXIT_SUCCESS;
16}

O©CoOoO~NOOOUTA, WNPE

"4/8/2014"
"4/8/2014"

v Homework 4.3.6b: fix the operator<< friend of class date

Theres a lug in theoperator<< we wrote for classlate on p. 338. The following line 11 tries
to print adate in a field of width 12. Unfortunatelyt prints only the month number in the field.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/string/justify.C

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include "date.h"
using namespace std;

OO, WN B

aess A hesenea ©2014 Mark Meretzky

Section 4.3.7 Classbi t set 461

7 i nt main()

8 {

9 date d(date::december, 31, 2014);
10 cout <<"123456789012\n"
11 << setw(12) << d << "\n"
12
13 return EXIT_SUCCESS;
14}

123456789012
12/31/2014
Fix theoperator<< by writing the date to aastringstream . Then get the string from the

ostringstream and write it to theostream that is the first argument of tloperator<<

15 ostream& operator<<(ostreamé& ost, const date& d)

16 {
17 ostringstream stream;
18 stream << d.month <<"/" << d.day << "/" << d.year;
19 return ost << stream.str();
20}

123456789012

12/31/2014
We will use the same technique at a loweel®n p. 1048.
A

4.3.7 Clasdi t set

A bitset is an ‘array” of bits. Itis a template class whose argument is the number of bits in the
set.

A bitset can be coverted to and from atring (lines 12-18, 21), and to or fromlang
unsigned (lines 25-26). Line 24 diseers hav mary bits are in dongunsigned . If the bitset
has more bits thanlangunsigned , line 25 will put zeroes into the high-order bits of biset , and
line 26 will “throw an ception’ if t he value of thebitset does not fit into dongunsigned (p.
622).

Warning: subscripts applied tolatset access the bitset from right to left (line 1Bubscripts
applied to thestring representation access the bitset from left to right (line ZBe[square brackd
do not perform subscript checkingo get this checking, call the member functidlig , set , reset
andtest . These functions thmw an ecception if the subscript is k& (p. 622).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/bitset/bitset.C

#include <iostream>

#include <cstdlib>

#include <bitset>

#include <string>

#include <limits> //for numeric_limits
using namespace std;

i nt main()

{
10 bitset<32> a; 1132 bits of zeroes

©CoOoO~NOOOUTA,WNPE

aess A hesenea ©2014 Mark Meretzky

462 OperationsExpressed by Overloaded Operators Chapter 4

11

12 bitset<32> b(string("00000000111111110000000011111111"));
13 bitset<32> c(string(//more legible way to do the same thing
14 "00000000"

15 "11111111"

16 "00000000"

17 "11111111"

18)

19 cout <<"c=="<<c<<" rightmost bitis" << c[0] << ".\n";

20

21 string S = c.to_string<char, char_traits<char>, allocator<char> >();
22 cout <<"s=="<<s<<" leftmost bitis " << s[0] <<".\n";

23

24 if (numeric_limits<unsigned long>::digits <= 32) { //number of bits
25 bitset<32> d = OxFFFF0000;

26 unsigned long ul = d.to_ulong();

27 cout <<"d=="<<d<<" rightmost bitis " << d[0] << "\n"
28 << "ul=="<<ul<<"=="<< hex << ul << dec << "\n";
29 }

30

31 a =b&c;, //lcando &&= ||=""="<<<=>>>>===I=

32 cout <<"a=="<<a<<" rightmostbitis" << a[0] << ".\n";

33

34 a[0].flip(); /Mlip the rightmost bit

35 a.flip(0); /Mlip the rightmost bit

36 a.flip(); /Mlip all the bits

37 cout <<"a=="<<a<<" rightmostbitis" << a[0] << ".\n";

38

39 if (a.none()) {

40 cout << "None of the bits are on.\n";

41 } elseif (("a).none()) {

42 cout << "All of the bits are on.\n";

43 } else{

44 cout <<a.count() <<" of the bits are on.\n";

45 }

46

a7 a[0] = true; /[Turn on the rightmost bit.

48 a.set(0); /[Turn on the rightmost bit.

49 a.set(); /[Turn on all the bits.

50

51 a[0] = false; //Turn off the rightmost bit.

52 a.reset(0); /[Turn off the rightmost bit.

53 a.reset(); /[Turn off all the bits.

54

55 if (a.any() {

56 cerr << "None of the bits should be on after a reset.\n";

57 }

58

59 return EXIT_SUCCESS;

60 }

asss A hesenea ©2014 Mark Meretzky

WN P

4
5

~N O

8
9
10
11

Section 4.4 Put it all Together: Aggregation, Dynamic Memoryand Lists 463

¢ == 00000000111111110000000011111111, rightmost bit is 1.
s == 00000000111111110000000011111111, leftmost bit is 0.
d == 111111211111211110000000000000000, rightmost bit is 0.
ul == 4294901760 == ffff0000

a == 00000000111111110000000011111111, rightmost bit is 1.
a == 11111111000000001111111100000000, rightmost bit is 0.
16 of the bits are on.

¥ Homework 4.3.7a:

Change the array d@ool into abitset in the program in pp. 415-419.
A

4.4 Putit all Together: Aggregation, Dynamic Memory, and Lists

Keep the game going until all the rabbits ae dead

The current version of the game stops as soanggabbit is killed. We will make it continue
until all therabbit ’s are killed. We will use three features of C++ that we just@ed: aggrgation,
dynamic memory allocation, and lists.

(1) To make it possible to delete theabbit 's one by one, and someday to let them reproduce, we
will change the array afabbit ’s to alist of rabbit ’'s. More preciselyit will be alist of pointers
torabbit 's, so we @n insert them without duplicating them.

(2) To make it possible to delete theabbit ’'s in an wpredictable ordemwe will allocate them
dynamically withnew anddelete

(3) The list and the terminal will be data members ofvaatgect called agame. In other words, the
game will be built using aggrgstion.

Class game

The list will be shared by all the animals. Where should it go? The animals already share a common
terminal, which is a local object in tieain function. Eachanimal has a pointer to the shared object:

i nt main()

{

const terminal term(’."); [lthe object shared by all the animals

class rabbit {
const terminal *const t;

class wolf {
const terminal *const t;

These pointers are fine as long as there is only one shared @&hjéethe animals will n& share two
objects, a terminal and a master list of pointersbdit 's. If they were both local objects imain , each
animal would neetivo pointers:

i nt main()

{
const terminal term(’."); /ltwo objects shared by all the animals
list<rabbit *> master;

12 class rabbit {

13
14

const terminal *const t;
list<rabbit *> *const m;

aess AN hesenea ©2014 Mark Meretzky

464 OperationsExpressed by Overloaded Operators Chapter 4

15 class wolf {
16 const terminal *const t;
17 list<rabbit *> *const m;

This solution does not scale up: it is unnatural for each animaletiva umbilicals cords leading
to two placentas.

Another solution is to let the twehared variables be static data members of ctdsst

18 class rabbit {
19 static const terminal term;
20 static list<rabbit *> master;

Or they could be global variables:

21 const terminal term(’.’);
22 list<rabbit *> master;
23

24 int main()

25{

These last tw solutions would even let us dispense with the pointer data members of the animals. But the
would lock us into heing only one terminal and one master ligi-\0lk, ein Reich, ein Fllr. See p.
106. Inthe future we might ant to run more than one game simultanequsigh with its own terminal
and master listDon't try this yet, though. Each game would need its own terminakidght nav we have

only one.

To let each animal get by with only one pointge mmbine (‘aggregae”) the terminal and the mas-
ter list into a single object:

26 class game { /I[showing only the data members for now
27 const terminal term;
28 list<rabbit *> master,;
29},
Now that there is only one shared objectrain , each animal will hee mly one pointer.
30 int main()
31{
32 game qg(.); /lthe object shared by all the animals

33 class rabbit {
34 game *constg;

35 class wolf {
36 game *constg;

Classgame is a holder for the objects that are shared by all the anirk&le is its header fileThe
terminal is constructed beforeyaanimal or list of animals (lines 10-11) because thevasis logically
prior to the painting, the plaster to the fresco, the cardboard to the acrylic.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/game.h

#ifndef GAMEH
#define GAMEH
#include <list>
#include "terminal.h"
using namespace std;

NOoO o~ WNPRE

class rabbit; [lforward declaration

acss A hesenea ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memoryand Lists 465

8
9 class game {
10 const terminal term;
11 list<rabbit *> master;
12
13 rabbit *get(unsigned x, unsigned y) const;
14 public:
15 game(char initial_c =".): term(initial_c) {}
16 “game();
17
18 void play();
19
20 friend class rabbit;
21 friend class wolf;
22},
23 #endif
Classgame will mention the data typdist<rabbit *> in mary places. Br your own con-
venience, insert the following typedef at the @ddne 10%
24 typedef list<rabbit *> master_t;
and changewery subsequerlist<rabbit *> to master_t
Forward declaration
The forward declaration in the almline 7 is needed in front of lndasses that mention each other
Here is a simplen@ample. Ifevay ying contains a/ang, and esery yang contains &ing , they would
both blav up to infinite size. That ane reason wthe following code will not compile:
1 classying{
2 yangy;
3}
4
5 class yang {
6 yingy;
7},
But it is quite possible forging and ayang to contain pointers or references to each other:
8 classying {
9 yang *y;
10}
11
12 class yang {
13 ying *y;
14}

The word yang males its first appearance in the abdine 9. Before this initial appearance, the
computer needs some notification thahg is the name of a clasét doesnt need to see the complete def-
inition of the class; it needs only therward declaration in the following line 15. Note that the corre-
sponding line 22 needs no forward declaration fging , since lines 17-19 hee dready declared what a
ying is.

Our classegame andrabbit correspond tgying andyang, and need the same forward declara-
tion. Theright side of lines 15-19 are in the header file for cfgsre; the right side of 21-23 are in the
header file for classabbit

15 class yang; class rabbit;

Facss AN hesenea ©2014 Mark Meretzky

466 OperationsExpressed by Overloaded Operators Chapter 4

16

17 class ying { class game {

18 yang *y; list<rabbit *> master;
19} I3

20

21 class yang { class rabbit {

22 ying *y; game *constg;

23} I3

For other examples of forward declarations, see pp. 295, 684.

Instead of the forward declaration for clagbbit in line 7 of the abee game.h , why not simply
includerabbit.h at line 4¥%2? After all, including the header file for a class is the noraglofvtelling
the computer that the class exists.

Unfortunately we an't do that here.Were aout to see thatabbit.h has to includegame.h
before the definition of clagabbit . If the two header files included each oth#re program would not
compile because of the folling vicious circle. rabbit.h begins by defining the maci@ABBITH and
includinggame.h . The definition and the include are written at the top ofdhbit.h file, before the
definition of classabbit has been seen. dhme.h now tried to includeabbit.h at line 4% of
game.h , nothing would be included becauBABBITH has already been defined. Therdirabbit in
lines 11 and 13 ajame.h would then cause error messages.

v Homework 4.4a:
Version 2.0 of the Rabbit Game: list of pointers to dynamically allocated raits and agame object
to hold it
Keep the @me going until all theabbit ’s havebeen killed. Create a master list of pointers to
dynamically allocatedabbit ’'s and agame object to hold it.

(1) Change thé data member of clasabbit to
1 game *const g;

The*const keeps therabbit tethered to the same game throughout its life. But one of the data mem-
bers of thegame (the master list) will be changed byrabbit when therabbit is constructed or
destructed. That'why g is not a read-only pointetOn the other hand, nothing ents thet data mem-

ber of classvolf from being changed into a read-only pointer.

2 const game *const g;

(2) The first argument of the constructor for chasdf will now be

3 wolf::wolf(const game *initial_g, /* etc. */)
4 :g(initial_g), /letc.
5 {

The first argument of the constructor for clestsbit ~ will be the same, but without tleenst .

Sincerabbit.h andwolf.h now mention clasgame instead of clasgerminal |, they will have
to includegame.h instead oterminal.h

(3) Within the bodies of the member functions of classdsbit and wolf , every t-> will
become a->term. (with a dot after théerm). Seethe following line 6 and its comment for axaen-
ple.

(4) The last statement of the constructor for cladbit will push the address of the wleorn
rabbit onto the master list. The first statement after the beep in the destructor famblaiss will
remove the address of the dyimgbbit from the master listEvery constructor for clasabbit will
therefore end with

6 g->term.put(x, vy, c); /lused to be t->put(x, y, c);
7 g->master.push_back(this);

aess A hesenea ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memoryand Lists 467

and the destructor for clasgbbit will contain

(00}

g->master.remove(this);
9 g->term.put(x, y); /lused to be t->put(x, y);

after the beep.

Until now, every class has been barricaded froverg other class. The péte members of each class
have keen accessible only to the member functions and friends of that class.wBotinolassegame,
wolf , andrabbit will interpenetrate. As we ke just seen,\ery member function of classeabbit
andwolf will mention the prwate members of claggame; and at least one member function of class
gameis about to mention the pate members of clasabbit

Given their intimag, it is neither possible nor desirable to keep clgasie barricaded from the other
two. We will treat all three classes as one unit, protected from the outside world but not from each other
The wholesaldriend declarations in lines 20-21 of the abgame.h male every member function of
classesabbit andwolf a friend of clasgame.

(5) Until nowv, we havebeen using the characters of the screen to detect collisions betveeam-tw
mals. Fr example, when wolf encounters a Weercaser’ in lines 45-46 ofwolf.C on p. 199, it
knows that it has stomped omabbit

10 const bool |_ate _him =
11 g->term.get(newx, newy) != g->term.background();

But it doesnt know which rabbit it has stomped onYou will have o define the follaving private mem-
ber function of clasgame. It will loop along the master list, searching forabbit with the specified
codrdinates.

12 //IReturn the address of the rabbit at coordinates (x, y) in this game,
13 //or zero if no rabbit is there.

14

15 rabbit *game::get(unsigned x, unsigned y) const

16 {

The body ofgame::get will have b mention thex andy private members of clagabbit , so
game::get will have b be a fiend of clasgabbit . Add the following declaration to the definition of
classrabbit in rabbit.h

17 friend rabbit *\game::get(unsigned X, unsigned y) const;

Then change lines 45-46 ofvolf::move on p. 199 to callgame:get instead of
terminal::get

18 const bool I_ate_him = g->get(newx, newy) !=0;

(6) The constructor for clagmmeiin line 15 of the abee game.h will pass its argument to the con-
structor for the terminal. It will pass no arguments to the constructor for the master list.

(7) The message and pause in lines 30-3mhah.C on p. 194 should be naed from themain
function to the destructor for clagamein line 16 of the abee game.h .

(8) The main loop in thenain function cannot loop through the master list, since the master list is a
private member of clasgame. We therefore mee the main loop to a member function of clagsne:
code follows the data memiseMove te following code from thenain function togame::play

19 /IGet the dimensions of the terminal.

20 const unsigned xmax =

21 const unsigned ymax =

22

23 wolf w(this, xmax / 3, ymax / 2);

24

25 /[The array of rabbit's from Homework 2.13a.

aess AN hesenea ©2014 Mark Meretzky

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50

51

468 OperationsExpressed by Overloaded Operators Chapter 4

rabbit af] ={
rabbit(this, 2 * xmax/3,1*ymax/4),
rabbit(this, 2 * xmax/3,2*ymax/4),
rabbit(this, 2 * xmax/3,3*ymax/4)
¥

for (;; term.wait(250)) {
if (‘w.move()) {

return; /[Return from game::play; ho more goto.
}
for ('some type afterator it = master.begin();

it !=master.end(); ++it) {

if ((*it)->move()) { //if ({(**it).move()) {

return; /IReturn from game::play.

}

}

}

In the abee line 37, use youtypedef for list<rabbit *>

(9) Sincegame.C mentions classesbbit andwolf , it will have o includerabbit.h and
wolf.h

(10) Themain function will now contain only the following.

call srand (and also set_new_handler, when we get to { (11));

game g;
g-play();

return EXIT_SUCCESS;

Since the variablg is used only in the ale line 48, lines 47-48 couldren be ®mbined to

game().play();

Now thatmain constructs and destructs only one object, raioe comment at the end ofain about
destructing the rabbit, wolf, and terminahain.C will include game.h . Ideally the random number gen-
erator should be a data member of clgame, rather than a global function shared by all fane’s.
(Don't do this, though.) Doemain.C still need to includéerminal.h , rabbit.h , andwolf.h ?

(11) Objects in an array arenalys destructed in the opposite order from that in which Wesre con-
structed. © let therabbit ’s be destructed in an unpredictable orddepending on the whims of the
player remove the array ofabbit ’s in the abee lines 25-30. Construct them witlew in the construc-
tor for classgame, initializing eachrabbit to a different position. The constructor for classne will
now be Do big to be inline.main should callset new_handler before constructing thgame object.

Classrabbit originally had an implicitly defined cgpconstructor We made the cop constructor
private and undefined on p. 200. When we introduced the arregbbft 's on pp. 234-236, we were
forced to reinstitute the cgmonstructor Now that the array is gone, the gogonstructor can, and there-
fore should, be pvete and undefined again.

The value ofnew must alays be stored in a pointetines 63—-65 seem to V& forgotten this, bt
they really have dne it. A successfulnew will call the constructor for classbbit , which stores the
address of the newborabbit into the master list for us. (See (4) of this heword.)

For the time being, thevolf will still be constructed with a declarationgame::play . After all,
we knav in advance when theolf will be destructed. It will alays be the last animal to go.

52 /[Excerpt from game.C.

acss A hesenea ©2014 Mark Meretzky

Section 4.4 Put it all Together: Aggregation, Dynamic Memoryand Lists 469

53
54 game::game(char initial_c)
55 : term(initial_c)
56 {
57 /IGet the dimensions of the terminal.
58 const unsigned xmax =
59 const unsigned ymax =
60
61 /[Construct as many rabbits as you want, in different places.
62
63 new rabbit(three arguments for construcjor
64 new rabbit(three arguments for construcjor
65 new rabbit(three arguments for construcjor
66 }
(12) Thewolf will now destruct anyabbit it steps on. Change the line
67 const bool I_ate_him = g->get(newx, newy) !=0;

in wolf::move to

68 if (const rabbit *const other = g->get(newx, newy)) {
69 delete other;
70 }

This assumes that tlether rabbit is allocated dynamicallyit would be a disaster welete an object
that wasrt (e.g., one created by a declaration).

wolf.C must includerabbit.h to tell it if classrabbit has a destructor that must be called in
the abwoe line 69.

Now that wolf::move contains adelete statement, we must allocate all of trebbit 's
dynamically: we can'tlelete a variable that was constructed with a declaration.

A C++ object is not allowed to commit suicidEBor example, arabbit that blunders into aolf
can not call its own destructoinstead, thenove function of a blunderingabbit will returnfalse to
game:play , and game:play will call the destructor for the motind rabbit . Incidentally the
asymmetrical behavior on p. 199 willwmalisappear.

(13) The original main loop of the game relied on the return valweotif:move to tell us if a
rabbit was killed. Butnowwolf::move will delete therabbit for us, destructing it and remo
ing it from the master listThe main loop therefore no longer needs the return valweldfmove to
see if all theaabbit ’s are dead: it can simply call treempty member function of the master list. See line
18 ofvector.C on p. 431.

We therefore change the return type wblf::move from bool to void . The \ariable
|_ate_him will disappear entirelyand all thereturn ’'s with a value inwolf::move will become
plain oldreturn ’s. Thereturn in the last line ofvolf::move can disappear entirely.

(14) Keep the main loop igame::play , but change it to the following.

Therabbit destructor called in line 81 will rerae the dyingrabbit ’s address from the master
list. Thismeans that the increment must be at line 78 rather than the expected place, at the end of line 75.
But the increment must beeeuted before thdelete in line 81. We @annot increment a list iterator that
refers to an element that has already beemedefrom the list; see the “increment of deéatbh pp.
444-445.

game.C must includeabbit.h to tell if classrabbit has a destructor that must be called in line
81.

It's oo bad that we need thedvweeparatemove’s in lines 72 and 80We'll fix this when we hae
inheritance.

acss A hesenea ©2014 Mark Meretzky

71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87

WN -

~No o b~

470 OperationsExpressed by Overloaded Operators Chapter 4

for (; Imaster.empty(); term.wait(250)) {
w.move();

for (some type ofconst_iterator it = master.begin();
it !=master.end();) {

rabbit *const p = *it;
++it;

if ('p->move()) {
delete p; /ICall the destructor and deallocate.

}
}

(15) The original destructors for classabbit andwolf were complicated by the fact that there
might be another animal in the same place at the same time: wia#h astomps on aabbit or when a
rabbit blunders into avolf . We therefore needed thie around theput in line 86:

if (g->term.get(x,y) ==c) {
g->term.put(x, y);
}
See p. 200. But no thatwolf::movedelete 's therabbit , we will no longer hae wo animals in

the same place at the same tinte.the destructors forabbit andwolf , remove theif in the abee
lines 85 and 87, but keep line 86.

(16) The destructor for claggme should display the messag€éou killed all the rabbits!’ and then
pause for three seconds. Remdhe message and pause fromain .

(17) If you get the following Microsoft Visual C++ warning,

warning C4291:

'void *___cdecl operator new(unsigned int,const struct std::nothrow_t &)’ :
no matching operator delete found;

memory will not be freed if initialization throws an exception

you can say
#pragma warning (disable : 4291)
A

v Homework 4.4b:
Version 2.1 of the Rabbit Game: read theabbit constructor arguments from an array

Let's get rid of the unsightly repetition in the alolines 63-65.In the constructor for claggame,
create the ne data type

struct location {
unsigned X, y;

b
Then construct @onst array nameda of as maw location ’'s as you want, each initialized to the
coordinates where youamt to construct eabbit . Use thesizeof/sizeof idiom to count the num-

ber of structures in the arrafhe constructor for claggame will loop through the array:

f or (loop through the array with a read-only pointer p) {
i f (p->x and p->y are on the screen) {
new rabbit(this, p->x, //etc.

}

acss AN hesenea ©2014 Mark Meretzky

©CoOoO~NOOOUTA, WNPE

Section 4.4 Put it all Together: Aggregation, Dynamic Memoryand Lists 471

A

v Homework 4.4c:
Version 2.2 of the Rabbit Game: pass the array to the constructor for clagmame

(1) Let structlocation be a public member of clag@me, just like dassbill was a pblic
member of classlinton in lines 21-26 otlinton.h on p. 420.

(2) Add two new aguments to the constructor for clagame, namedfirst andlast , that are
read-only pointers ttocation ’'s. The existing agumentinitial_c will now be the third argument of
the constructorLet its default value remairi

(3) The loop in the constructor for clagame will now iterate through the array whose first and just-
past-the-last elements (or at least their addresses) were passed to it.

(4) Before constructing theyame, the main function should construct @onst array of
location ’'s. Make as nary elements as you want, each initialized to the coérdinates where amiutav
construct @abbit . main does not kne the dimensions of the terminal—thegenoterminal object
yet—so it will have b make an elucated guess as to where thbbit ’'s should be located.* Then pass
the addresses of the first and just-past-the-last elements to the constructor ffamkass

const game::location a[] = {

{ 0, 0O},
{20, 8},
{ 40, 16},
/ letc.: as many rabbits as you want

b

const size_t n = the number of elements in the array a;

game g(a, a + n); /IDoes this pair of arguments look familiar?

A
* 1t would be nice if thexmax andymax member functions of clagerminal werestatic . If so, main could

call them before constructing tharge. Butdon't do this.

aess A hesenea ©2014 Mark Meretzky

