
1
Before Objects

1.1 Introduction: C++ as a superset of C

Es ist das schönste Los einer physikalischen Theorie, wenn sie selbst zur Aufstel-
lung einer umfassenden Theorie den Weg weist, in welcher sie als Grenzfall weit-
erlebt.

The fairest destiny of any physical theory is to point the way to the introduction of
a more comprehensive theory, in which it lives on as a limiting case.

—Albert Einstein,Relativity: the Special and the General Theory(1918), Chapter 22

C++ is a superset of C: it has everything that C has, plus more.Conversely, C is a subset of C++, in
which it lives on as a limiting case. Here are a few representative words from each language, showing C
nestled snugly within C++.

#include
main
int
for
struct
typedef

C

class
operator
new
virtual
throw
template

C++

But it’s not really this simple. C++ has better alternatives for many of the characteristic features of
C, including#define , malloc andfree , and the input and output functions in the C Standard Library.
A better diagram would exclude these old war horses from C++.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

2 Before Objects Chapter1

#include
main
int
for
struct
typedef

class
operator
new
virtual
throw
template

C++

#define
printf
fprintf
sprintf
scanf
malloc

C

superseded in C++

I know that the reader is eager to learn about objects. But before we do, Chapter 1 will have to
present the new machinery for input and output. After all, if we can’t do output, we can’t even tell if our
program is running. This chapter will also round up all the other pre-object topics of C++.Chapter 2 will
introduce objects and they will occupy the rest of the book.

In C, i/o is performed by passing arguments to a function.

1 printf("%d %d %d\n", i, j, k); /* C example */

In C++, i/o is performed by giving operands to an operator.

2 c out << i << " " << j << " " << k << "\n"; //C++ example

In C, the operators were used only for arithmetic.In C++ they will have many more applications, including
i/o and formatting, dynamic memory allocation, and data structure access.In fact, all of the glamorous,
high-profile features of C++ will ultimately be written in terms of operators.We therefore begin with a
review of operators, operands, and expressions.

1.2 Expression Evaluation
The rules for evaluating an expression are the same for C and C++. The gaps where there are no

rules are also the same.

Operators and their arity

An operator is a symbol that performs an operation.

+ add
- subtract
* multiply
/ divide

The values that are added, subtracted, or otherwise operated upon, are calledoperands.The number of op-
erands is called the operator’s arity, a term derived from the words unary, binary, ternary. Here are a few
examples.

The addition operator takes two operands; we therefore say it is abinary operator.

a + b

The ‘‘negation operator’’ (negative sign) takes one operand; it is aunary operator.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

-a

The ‘‘conditional operator’’ takes three operands; it is the onlyternary operator.

a ? b : c

The value of the above expression isb if a is true,c if a is false.

The ‘‘throw’’ operator can take zero arguments or one argument.

1 t hrow //no arguments
2 t hrow x //one argument

The pair of parentheses in the expressionf() are also an operator, like the pair of plusses in the
expressiona++. This ‘‘function call’’ operator can enclose any number of arguments, so it can have any
arity. It can equally well be unary, binary, ternary, or worse.

f() unary
f(a) binary
f(a, b) ternary
f(a, b, c) quaternary
f(a, b, c, d) quinary

The increment and decrement operators can be written before their operand or after it.They are the
only operators that can be eitherprefix or postfix.

++a increment can be prefix or postfix
a++
--a decrement can be prefix or postfix
a--

Expressions and subexpressions

A literal is a number, character, or string. Examplesare

10 a literal of typeint
3.14 a literal of typedouble
’A’ a literal of typechar
"hello" a literal of typearray of 6 const char (including the terminating’\0’)

The smallestexpressionsare the individual literals and variables of the program.A larger expres-
sion, such as

a + b

is built by pasting together smaller ones with operators.We say thata andb aresubexpressionsof the
a + b , since they are little expressions in their own right.

Every expression in C and C++ has a value, except for those of data typevoid . When computing
this value, orevaluating the expression, the operators are executed one at a time.A problem will therefore
arise when an expression has more than operator. Which one goes first?

In some cases the answer is simple. In the expression

a * - b

the multiplication and the negation are competing for the operandb. The negation wins, because it has
elbowed its way closer to theb. Theb is therefore an operand of the negation, the-b is a subexpression of
thea * - b, and the negation is executed first.

Let’s annotate our expressiona * - b to show how it is parsed into subexpressions. We will draw a
box around each expression and subexpression.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.2 Expression Evaluation 3

4 Before Objects Chapter1

When one box contains another, the expression in the inner box will be evaluated before the one in
the outer box. The innermost boxes hold the individual variables, so each variable will be evaluated before
any other expression that contains it.In our example, theb is evaluated before the-b , which is evaluated
before thea * - b.

When neither of two boxes contains the other, the expressions in the boxes can be evaluated in either
order (exceptions on pp. 12−13).For example, neither of the boxes fora andb contains the other, so we
cannot predict which will be evaluated first. But these expressions are merely variables. Theirevaluation
consists only of fetching their values from memory, so it does not matter which one is first.

Of the four boxes in the diagram, the one around the-b shows that the- executes before the* . The
other four boxes are redundant, drawn only for completeness.We say that the* is theoutermostoperator
of the expression, since it is enclosed by only the outermost box.The outermost operator is always
executed last.

a * - b

Incidentally, other textbooks use a tree diagram to show how an expression is parsed. In that nota-
tion, an operator at a lower node (branching point) is executed before its parent (the node immediately
above it).

*

a -

b

Some operators surround one of their operands, preventing any other operator from being adjacent to
the operand. The subscripting operator, for example, consists of two separate ‘‘tokens’’ (p. 100). It is a
binary operator that surrounds its second operand.

a[b]

Another operator that engulfs an operand isstatic_cast<>() . In C, we wrote the old-fashioned cast
operator to form an expression whose value is that of an operand converted to another data type.

(int)a

In C++, the new notation for this is

static_cast<int>(a)

The parentheses are part of thestatic_cast operator, so it surrounds its operand.

▼ Homework 1.2a: draw the boxes

Each of the following expressions has two operators competing for a disputed operand.In each case,
one of the operators has elbowed its way closer to the operand.Draw the boxes showing the articulation of
each expression into subexpressions. Don’t worry yet about what the operators mean.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

a++ * b
a * + +b
a :: : :b
a[b] + c
a[b]++
a() + b
a()++
*++a
-static_cast<int>(a)
a + s tatic_cast<int>(b)
static_cast<int>(a) + b
static_cast<int>(static_cast<double>(a))

▲

Operator precedence

Here are addition and multiplication competing for theb. This time, both operators are adjacent to
the disputed operand.To evaluate the expression correctly, we must know which one will get to sink its
teeth into theb.

a + b * c

Since they are both adjacent to the same disputed operand, we can useoperator precedenceto deter-
mine the outcome. Each operator has a level of precedence, listed in the following table. The * has a
higher level of precedence than the+ (level 13 vs. level 12), so theb is an operand of the* . Think of the*
as having a greater gravitational pull or chemical valence than the+. The* is executed first.

The pictures show that theb * c is a subexpression ofa + b * c . The haplessa + b is not a subex-
pression at all, just as the Delmarva Peninsula is not a state and Russia is not a continent. Of the five boxes
in the diagram, the one around theb * c shows us that the* is executed before the+. The other four are
drawn only for completeness.

a + b * c

+

a *

b c

Table of operators

The operators are listed with the highest level of precedence at the top. The operators within each
level share the same precedence.For example, the[] and ++ in level 16 hav e equal precedence.For
‘‘ lvalues’’ and ‘‘rvalues’’, see pp. 11−12.

TheT stands for the name of a data type, e.g.,int .

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.2 Expression Evaluation 5

6 Before Objects Chapter1

The 60 Operators of C++

prec. associativity arity value operator description

18 none unary lvalue :: global scope operator

17 left-to-right binary lvalue :: class or namespace scope

binary lvalue [] subscripting
binary lvalue . - > access a field of a structure

any rvalue () function call operator
unary rvalue ++ -- postfix increment, decrement
unary rvalue static_cast<T>() safe cast
unary rvalue reinterpret_cast<T>() unsafe or unportable cast
unary rvalue const_cast<T *>() remove the read-only’ness
unary rvalue dynamic_cast<T *>() runtime type identification
unary rvalue typeid(T or expression) runtime type identification

16 left-to-right

lvalue ++ -- prefix increment, decrement
lvalue * dereference a pointer
rvalue & address of
rvalue + - positive, neg ative (2’s comp.)
rvalue ˜ bitwise not (1’s complement)
rvalue ! not
rvalue sizeof size in bytes
rvalue new dynamic memory allocation
none delete and deallocation (scalar)
none delete[] and deallocation (array)

rvalue (T) old-style cast (type conversion)

15 right-to-left unary

14 left-to-right binary lvalue .* ->* dereference pointer to member

13 left-to-right binary rvalue * / % multiply, divide, remainder

12 left-to-right binary rvalue + - add, subtract

11 left-to-right binary rvalue << >> left and right shift

10 left-to-right binary rvalue < <= > >= compare

9 left-to-right binary rvalue == != equality, inequality compare

8 left-to-right binary rvalue & bitwise and

7 left-to-right binary rvalue ˆ bitwise exclusive or

6 left-to-right binary rvalue | bitwise or

5 left-to-right binary rvalue && and

4 left-to-right binary rvalue || or

ternary lvalue ?: conditional operator
binary lvalue = assignment
binary lvalue *= /= %= += -=
binary lvalue <<= >>= &= ˆ= |=

assign back to same variable
3 right-to-left

2 none unary none throw throw an exception

1 left-to-right binary lvalue , comma operator (sequencing)

As in C, the same symbol can represents two different operators. There are four groups of examples.

(1) The++ and -- in level 15 are the prefix increment and decrement; the ones in level 16 are the
postfix ones.

(2) The- in level 15 is the negation operator (the negative sign) because it is unary; the one in level
12 is the subtraction operator (the minus sign) because it is binary. Similarly, the+ in level 15 is the ‘‘posi-
tive sign’’ because it is unary; the+ in level 12 is the ‘‘plus sign’’ (the addition operator) because it is
binary. The positive sign does nothing, merely yielding the value of its operand.+10 is the same as a plain
old 10 .

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

(3) The unary* in level 15 is the dereferencing operator; the binary* in level 13 is the multiplication
operator. Similarly, the unary& in level 15 is the ‘‘address of’’ operator; the binary& in level 8 is the ‘‘bit-
wise and’’ operator.

(4) The :: ’s in lev els 18 and 17 are two different ‘‘scope’’ operators, unary and binary. These are
new in C++.

A digression on unfamiliar operators

The ‘‘non-bitwise’’ operators! , &&, and || know only the two values of data typebool . They treat
any non-zero operand astrue , and any zero operand asfalse . For example,1 || 2 yields the value
true .

The ‘‘bitwise’’ operators˜ , &, ˆ , and | know about multi-bit operands and results.For example,
1 | 2 yields the value3. To see this, write the operands one above the other in binary, draw a horizontal
line, and write the answer underneath.For ‘‘bitwise or’’, each bit of the answer will be0 if all the bits
above it were0, and1 otherwise.

00000000000000000000000000000001 one
| 0 0000000000000000000000000000010 two

00000000000000000000000000000011 three

Precedence of unary operators

Returning to operator precedence, the same rules apply when two unary operators are adjacent to a
disputed operand. The expression

*p++

has two operators competing for thep: the postfix increment operator++ at level 16, and the dereferencing
operator* at level 15. Dueto its higher precedence, the++ wins. Thep is an operand of the++, thep++
is a subexpression of the*p++ , and the++ is executed first.

* p ++

So because the++ has higher precedence, the computer will execute the++ before the* . But
because the++ is postfix, the computer should perform the dereference before the increment.To reconcile
these requirements, we must analyze the evaluation of the subexpressionp++ into three steps.

(1) Thepostfix ++ creates an invisible, nameless variable called ananonymous temporary, and copies
the value ofp into it.

(2) Thepostfix++ adds 1 top.

(3) Theanonymous temporary is used as the value of the expressionp++. (This value becomes the oper-
and of the next operator, the* , which dereferences the value.)

The*p++ therefore does behave as if it dereferenced the original value ofp and then incrementedp.
What it actually does, however, is to incrementp and then dereference a copy of the original value ofp.
The net effect is the same. (The three steps will become explicit in lines 50−54 ofdate.h on p. 274.)

Establishing that the++ executes before the* , even though the++ is postfix, is no empty exercise in
metaphysics. Whenwe do ‘‘operator overloading’’, we will see that each operator in an expression may
actually call a function (sneak preview, p. 18; full-blown example, pp. 291−292).Our *p++ might call two
functions, with the bizarre namesoperator++ and operator* . operator++ will be called first
because the++ operator is executed first. Thus, the rules of precedence can dictate the order in which our
functions are called.Without knowing this order, any attempt at debugging would be hopeless.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.2 Expression Evaluation 7

8 Before Objects Chapter1

▼ Homework 1.2b: operator precedence

The operators in the following expression are binary. Draw a box around each subexpression, but
don’t bother with the box around each individual variable. Ifthere is no room to draw the boxes, just num-
ber the operators in order of execution. Don’t worry about the meaning of the operators.

1 a = b && c ˆ d == e << f * g -> h :: i - >* j + k < l & m | n || o , p

The operators in the following expression are unary. Draw the boxes.

2 - - :: a ()

The following expressions have unary and binary operators. Draw the boxes.

3 - a - b
4 - a -> b
5 : :a -> b
6 : :a :: b
7 : :a :: b++
8 c out << a + b
9 c in >> a[i]

▲

Parentheses

Consider the expression

a + b * c

Theb is an operand of the* , theb * c is a subexpression, and the multiplication executes before the addi-
tion. Thehaplessa + b is not an expression at all: it is bits and pieces of several expressions.

To cause theb to be an operand of the+, we surround thea + b with parentheses.Thea + b is now a
subexpression of(a + b) * c . As a consequence of the fact that theb is an operand of the+, the addition
now executes before the multiplication.

(a + b) * c

These parentheses are not operators; they merely change the way the expression is parsed into subex-
pressions. We therefore embed them in the walls of the box they create.

a + b() * c

Similarly, in the expression*p++ we can force the* to execute before the++.

* p() ++

Thep is now an operand of the* , and the*p is a subexpression of(*p)++ . We dereferencep and then
increment the resulting value.

Let’s use the termbinding parenthesesfor these parentheses that override which operator a given
expression is an operand of.We can easily distinguish between the binding parentheses and the function
call operator. The function call operator always is immediately preceded by an expression; the pair of bind-
ing parentheses never is. In the last example, the left pair of parentheses are the function call operator
becausea is an expression; the right pair of parentheses are also function call operator becausea() is an
expression.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

1 * a(b) function call operator becausea is an expression
2 a*(b) binding parentheses because neither* nor a* is an expression
3 a++(b) function call operator becausea++ is an expression
4 a+(b) binding parentheses because neither+ nor a+ is an expression
5 a()()

Note that the binding parentheses have no effect other than to override which operator an exression is
an operand of.For example, the following parentheses have no effect at all, since even without them thea
andb would still be operands of the left* . In particular, they hav eno effect on which multiplication is
executed first. See pp. 1−3.

(a * b) + c * d

▼ Homework 1.2c: operator precedence and parentheses

Kernighan and Ritchie once remarked that in C, ‘‘[s]ome of the operators have the wrong prece-
dence’’.* Which ones did they hav ein mind? What would go wrong here without the order-of-operations
parentheses? Notethat the outermost parentheses belong to theif statement, not the expression.

1 i f ((a & b) == c) {

The following examples call functions in the C Standard Library (exceptterm_key). In what order
do the three operators of each expression execute? Whatwould go wrong without the order-of-operations
parentheses?

2 while ((c = getchar()) != EOF) {
3 i f ((p = malloc(n)) == NULL) {
4 i f ((fp = fopen("filename", "w")) == NULL) {
5 while ((c = term_key()) != ’\0’) {

▲

Operators that act as parentheses

Here are two operators adjacent to, and competing for, the b. The [] has higher precedence, so it
wins. Theb is an operand of the[] , and theb[c] is a subexpression.

a + b [c]

Here are the same two operators adjacent to, and competing for, the sameb. We would expect the
[] to win again. Butan operator that surrounds an operand acts as a pair of order-of-operations parenthe-
ses, forcing the enclosed material to be a subexpression. Thistime, theb is an operand of the+, and the
b + c is a subexpression. Thisis true even though the[] and+ are both adjacent to theb and the[] has
higher precedence.

a [b + c]

Another operator that acts like parentheses is thestatic_cast<>() operator. It surrounds its op-
erand, since the parentheses are part of the operator. Thea + b is a subexpression even though the
static_cast<>() and the+ are both adjacent to thea and thestatic_cast<>() has higher prece-
dence.

* The C Programming Language, 2nd ed.,p. 3.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.2 Expression Evaluation 9

10 Before Objects Chapter1

static_cast<int>(a + b)

Another example is the conditional operator?: . Like the [] , it surrounds its second operand.The
b , c is a subexpression true even though the?: and the, are both adjacent to theb and the?: has higher
precedence.

a ? b , c : d

Operator associativity

Operator precedence cannot help us when the two adjacent operators have equal precedence. In this
case, we resort tooperator associativity. Like precedence, it can be used only when the two operators are
adjacent to a disputed operand. Here are four examples.

(1) The expression1 - 2 + 3 has two operators of equal precedence competing for the2. Since their
associativity is left-to-right, the2 is an operand of the- , the1 - 2 is a subexpression, and the- is executed
before the+. The value of the whole expression is 2, not −4.

1 - 2 + 3

(2) The expressionc = b = a has two assignment operators competing for theb. They hav eequal
precedence since they are the same operator. This time the associativity is right-to-left, so the= on the right
wins. We assign thea to b and then theb to c .

c = b = a

(3) The expressionp->f++ has a unary and a binary operator competing for thef . They hav eequal
precedence since the++ is postfix. Their associativity is left-to-right, so the-> wins.

p -> f ++

(4) The expressiona ? b : c ? d : e has two ternary operators competing for thec . They hav eequal
precedence since they are the same operator. Their associativity is right-to-left, so the one on the right
wins.

e:d?c:b?a

Here are examples of adjacent ternaries. The pointerp is initialized to the address of one of three possible
strings.

1 c onst char *p =
2 i < j ? " less than" :
3 i > j ? " greater than" :

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

4 " equal";

5 / /ordinal suffix for number in range 1 to 10 inclusive
6 c onst char *suffix =
7 n == 1 ? "st" :
8 n == 2 ? "nd" :
9 n == 3 ? "rd" :

10 "th";

See p. 776 for another example.

Connoisseurs of grammar will notice that one of the C operators has a new precedence in C++.The
conditional operator?: used to have higher precedence than the assignment operator=, but they are now at
the same level. We hasten to assure the reader that every legal expression in C will still be parsed (boxed)
the same way in C++, although the reasons may sometimes be different. Thesimplest example is the fol-
lowing, which executes the?: before the= in both languages.In C, this was because the?: had higher
precedence. InC++, it is because they hav ethe same precedence and right-to-left associativity. In both
cases, we get the same parse.

d = a ? b : c

▼ Homework 1.2d: operator associativity

Draw the boxes for the following expressions. Don’t worry about their meanings.

The first example requires both precedence and associativity. Precedence tells us that thea is an op-
erand of the left+, not of the=. Associativity tells us that theb is an operand of the left+, not of the right
+.

1 d = a + b + c
2 c out << a << b << c
3 c out << a << b << c + d
4 c out << a << b << (c & d)
5 c in >> a >> b >> c

6 a[i][j]
7 a[i].f

8 c .d(e)
9 b(c).d(e)

10 a.b(c).d(e)

▲

▼ Homework 1.2e: operator associativity

Integer division yields an integer result.So won’t the expression5 / 9 be zero, giving us a Celsius
temperature of zero? Is this a bug or ‘‘merely’’ bad style?

1 double fahrenheit = 72;
2 double celsius = (fahrenheit - 32) * 5 / 9;

▲

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.2 Expression Evaluation 11

12 Before Objects Chapter1

Other uses of precedence and associativity

The multiplication operator* needs a level of precedence and a direction of associativity because it
can compete with other operators for an adjacent operand.

a + b * c

But why did they bother to assign a precedence and associativity tostatic_cast<>() ? The cast sur-
rounds its operand, so no other operator can compete with it.

a + s tatic_cast<int>(b) * c

Well, precedence and associativity do more than just determine how an expression is parsed.They
also can be used to disallow certain illegal combinations of operators.A C example would be the follow-
ing.

a ? b : c = d

In that language, the?: had a higher precedence than=, leading us to expect the following parse.

a ? b : c = d does not compile in C

But the grammar of C stipulates that the left operand of= cannot be an expression whose outermost opera-
tor (p. 4) has a precedence lower than that of prefix++. This disqualifies the expressiona ? b : c from
being the left operand of=, so the ‘‘expression’’a ? b : c = d will not compile in C.

Lvalues and rvalues

The expression does compile in C++, with the following parse. The operators= and?: have equal
precedence and right-to-left associativity.

a ? b : c = d

The expression

(a ? b : c) = d

also compiles in C++.Let’s introduce the terminology for talking about why it compiles in C++ but not in
C.

An lvalue is an expression that can be used as the left operand of the assignment operator=. An
rvalue is an expression that can be used as the right operand of the assignment operator. A variable for
example, can be an lvalue or an rvalue; a literal can be only an rvalue.

1 a = 10 / /variable used as lvalue, literal used as rvalue
2 a = b / /variables used as lvalue and rvalue

More precisely, an lvalue is an expression whose address can be taken and whose value can be changed by
= or ++ and-- (prefix or postfix), or whose valuecould be changed were it not of aconst data type.

A l iteral is not an lvalue. Noneof the following will compile.

3 10 = a
4 ++20
5 - -30
6 &40

Several operators build an expression that can be either an lvalue or an rvalue. Theoperator?:
always yields an rvalue in C, but can yield an lvalue or an rvalue in C++.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

7 a[i] = 10 x = a [i]
8 s .f = 20 x = s .f
9 p->f = 30 x = p ->f

10 *q = 40 x = * q
11 (a ? b : c) = x x = a ? b : c

But most operators yield only an rvalue. Theparentheses are needed to attempt to apply the++, -- , and &
to the entire expressiona + b .

12 c = a + b / /a + b can be an rvalue

13 a + b = 10 / /a + b cannot be an lvalue: won’t compile
14 ++(a + b)
15 --(a + b)
16 &(a + b)

With heroic effort, involving ‘‘operator overloading’’ and ‘‘references’’, almost any operator in C++
can be forced to yield an lvalue. Thetable on p. 5 identifies the ones that can do so without any extraordi-
nary machinery. The other operators yield only rvalues.

Lvalues and rvalues will reappear when we do operator overloading on p. 284.

Exceptional operators that evaluate their left operand first

Four operators always evaluate their left operand before the other(s).

a && b
a || b
a ? b : c
a , b

The&&evaluates its left operand first, and then evaluates its right one only if the left one was true.The ||
also evaluates its left operand first, but then evaluates its right one only if the left one was false. The ?:
evaluates its left operand first, and then evaluates one of its other two operands: the second if the first is
true, the third if the first is false. Thecomma operator evaluates its left operand first, and then evaluates its
right operand. Our only example will be on pp. 263−264.

The rules for&& and || gives us a shortcut or checking if it safe to perform a dangerous operation.
A division by zero, for example, will result inQundefinedbehavior, a polite way of saying that the program
may crash. The following expression will perform the division only if the divisor b is non-zero. If b is
zero, the division will be skipped and theif will be false.

1 i f (b != 0 && a / b == c) {
2 / /arrive here if a / b == c

Unfortunately, our box notation has no way to show that the left operand of&& is evaluated first, and
the right operand possibly not evaluated at all.We will just have to remember it.

b != 0 && a / b == c

In a language offering no guarantee that the left operand of&& is evaluated first, we would have to evaluate
theb != 0 and thea / b == c in two separate statements.

3 i f (b != 0) {
4 i f (a / b == c) {
5 / /arrive here if a / b == c

See p. 64 for another example.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.2 Expression Evaluation 13

14 Before Objects Chapter1

Using || , we can perform the opposite test. Once again, we perform the division only if the divisor
b is non-zero. Ifb is zero, the division will be skipped and theif will be true.

6 i f (b == 0 || a / b != c) {
7 / /arrive here if a / b != c

b == 0 || a / b != c

In a language offering no guarantee that the left operand of|| is evaluated first, we would have to evaluate
the b == 0 and thea / b != c in two separate statements.We would need abool variable as well as
anotherif .

8 bool x = b == 0; //true if b == 0
9

10 if (!x) {
11 //arrive here if b != 0
12 x = a / b != c ; / /x stays true if a / b != c
13 }
14
15 if (x) {
16 //arrive here if a / b != c

Ambiguity

Armed with the rules of precedence and associativity, an expression can be parsed (boxed) in only
one way. This would lead us to believe that there is a uniquely determined order for the evaluation of the
subexpressions and the execution of their operators.Surprisingly, this is not the case. Each of the follow-
ing examples has a pair of subexpressions, drawn with dashes, that do not contain each other. We men-
tioned on p. 4 that in this case, it is impossible to predict which of the two subexpressions will be evaluated
first. (For the time being, we’ll ignore the four exceptional operators in the previous section,&& || ?: , .
Subexpressions joined by these operators do have a uniquely determined order of execution.)

(1) The following expression has three operators.The addition goes last because it has lower prece-
dence than the adjacent multiplications.But there is no way to tell which multiplication goes first.We can-
not rely on operator precedence or associativity for this decision, because the two multiplications are not
adjacent to each other: there is no operand that they are both touching and for which they are both compet-
ing. Themultiplications’ order of execution could be different on different platforms.

a * b + c * d

C and C++ permit this freedom (a.k.a. anarchy) because of their lust for speed.Some machines are
faster when they perform the left multiplication first, others the right one first.C and C++ let each machine
pick the order that is best for it.Java, on the other hand, is executed on only one platform, the ‘‘Java Virtual
Machine’’. It always follows the same order, the left multiplication first.

Admittedly, it makes no difference which of the above multiplications is evaluated first. That’s
because they hav eno side effects: they do not change the value of any variable or perform I/O.But multi-
plications might have side effects in the future. When we do operator overloading, the* and+ operators
might call functions namedoperator* andoperator+ . These functions could have side effects, so
the order in which they are called could make a big difference. Ifthey produce output, for example, the
order will be visible to the user.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

(2) The following expression has three operators. As before, the addition goes last because it has the
lowest precedence. The dashed boxes now contain expressions that certainly call functions. Precedence or
associativity cannot tell us which function call goes first. The order could be different on different plat-
forms.

f () + g ()

To ensure thatf is called beforeg on all platforms, we would have to split the expression into two separate
statements.

1 c onst int temp = f();
2 t emp + g();

(3) Thedramatis personæfor the following example are an array with 12 elements and a variablei
that holds a subscript.We will declare subscripts to be of data typesize_t ; see p. 66.

3 i nt a[12];
4 s ize_t i = 10;

As usual, the following expression has three operators.The= will go last because it has the lowest prece-
dence. Butwe cannot tell whether the[] or the++ will go first. On platforms where the subexpression
a[i] is evaluated before the++i , the assignment will put 11 intoa[10] . On platforms where the++i is
evaluated before thea[i] , the assignment will put 11 intoa[11] . In either case,i will be left with the
value 11.

a [i] = ++ i

Changing the++ to postfix would not remove the ambiguity. On platforms where thea[i] is evalu-
ated before thei++ , we would just be putting 10 intoa[10] . On platforms where thei++ is evaluated
before thea[i] , we would put 10 intoa[11] . In either case,i would once again be left with the value
11.

Once again, the solution is to split the expression into two statements,

5 ++i;
6 a[i] = i; //Put 11 into a[11] on all platforms.

or

7 c onst size_t temp = i;
8 a[temp] = ++i; //Put 11 into a[10] on all platforms.

I’m not encouraging you to write ambiguous expressions. Iwant you to recognize them and stay
aw ay from them.For other examples, see pp. 393, 688.

▼ Homework 1.2f: unpredictable output

(1) Why can’t we predict the following output? What are the two possibilities in each case?

1 i nt i = 10;
2 c out << ++i << " " << i << "\n";

1 i nt j = 10;
2 c out << ++j << " " << ++j << "\n";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.2 Expression Evaluation 15

16 Before Objects Chapter1

The moral is that we should never increment or decrement a variable whose value is used elsewhere in the
same expression.

(2) Why can’t we predict the following sums? What are the two possibilities in each case?

1 i nt i = 10;
2 i nt sum1 = ++i + i;

1 i nt j = 10;
2 i nt sum2 = i + ++i;

(3) Why can’t we predict the new value ofa[9] ?

1 i nt a[10];
2 s ize_t i = 8;
3 s ize_t j = 9;
4
5 a[i = j] = i;

▲

1.3 Output and Input
‘‘ [I]t is not enough to discharge a projectile and then take no further notice of it.
We must follow it throughout its course, until the moment it hits its target.’’

‘‘ What?’’ shouted the general and the major, a bit taken aback by this idea.

‘‘ Absolutely,’’ replied Barbicane with self-assurance.‘‘ Absolutely. Otherwise our
experiment would produce no result.’’

—Jules Verne,Fr om the Earth to the Moon(1865), Chapter 7

A C program to be translated into C++

Every program in this book is on the web. See if you can download the one below. It accepts one
command line argument and echoes it to the standard output.

Many platforms rely on the filename suffix to determine what language the program is written in.
Our convention will be to end the name of a C program with.c (dot lowercase c) and a C++ program with
.C (dot uppercase C). If your platform has different conventions, you will have to rename the downloaded
files before you compile them.

The line numbers, and the blank after each line number, are not part of the source code.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/prog/prog.c

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 i nt main(int argc, char **argv) /* char *argv[] would mean the same thing */
5 {
6 i f (argc != 2) {
7 f printf(stderr, "%s: requires 1 command line argument\n", argv[0]);
8 r eturn EXIT_FAILURE;
9 }

10
11 printf("I received the argument %s.\n", argv[1]);
12 return EXIT_SUCCESS;
13 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

The variableargc in the above line 6 gives the number of words constituting the command line that
launched the program.The first word is the name of the program itself; the remaining ones are thecom-
mand line arguments.The value ofargc is therefore one more than the number of command line argu-
ments. Ifthe program is supposed to receive one command line argument,argc should be 2.

Theprintf in the above line 11 is an abbreviation for

14 fprintf(stdout, "I received the argument %s.\n", argv[1]);

This stdout and thestderr in the above line 7 are two destinations for output, calledfile pointers in C.
stdout stands for ‘‘standard output’’;stderr stands for ‘‘standard error output’’.

The wordsprintf , fprintf , and stderr are part of the C Standard Library, not the C language
itself. We must therefore include the header filestdio.h in which they are declared. The GNU C com-
piler on our Unix machine i5.nyu.edu is namedgcc . For this compiler, thestdio.h file is in the direc-
tory /usr/include . I discovered this by giving the-H option togcc when compiling the program.

On some platforms (Windows), you might have to insert the following function call immediately
before line 12 to prevent the program’s output from disappearing before you can read it.

1 s ystem("PAUSE");

If you have to make this call in many places, consider doing it automatically with theatexit function in
the C Standard Library.

The integer returned by themain function in line 12 tells the operating system (Windows, Macin-
tosh, Unix) whether the program succeeded or failed at its primary mission.The code number for success
is represented by the macroEXIT_SUCCESS. This macro belongs to the C Standard Library, and is
defined in the header filestdlib.h . If the program fails, we return the valueEXIT_FAILURE in line 8.

To remove the leading whitespace from each line so you can insert your own, Unix people can use
the following ‘‘global substitute’’ command invi :

:g/ˆ[]*/s/// one blank and one tab inside the square brack ets

To see the online manual forgcc , giv e the following command. The1$ is the Unix shell prompt.

1$ man gcc

To see the manual on the web, visithttp://i5.nyu.edu/ ∼ mm64/man/ and typegcc .

To see the version number ofgcc ,

2$ gcc -v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/lto-wrapper
Target: sparc-sun-solaris2.11
Configured with: /export/home/hudson/workspace/nightly/build/sparc/components/gcc45/gcc-4.5.2/configure CC=/ws/onnv-tools/SUNWspro/sunstudio12.1/bin/cc CXX=/ws/onnv-tools/SUNWspro/sunstudio12.1/bin/CC --prefix=/usr/gcc/4.5 --mandir=/usr/gcc/4.5/share/man -
Thread model: posix
gcc version 4.5.2 (GCC)

We will tell the compiler to place the executable file in thebin directory of your home directory.
The following command will give an error message if you do not already have abin .

3$ ls -ld ˜/bin ‘‘ list’’ with lowercase L’s

If you do not already have it, create it by saying

4$ mkdir ˜/bin ‘‘ make directory’’
5$ ls -ld ˜/bin

Compile the programprog.c and place the executable fileprog in thebin subdirectory of your
home directory.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 17

18 Before Objects Chapter1

6$ gcc -o ˜/bin/prog prog.c minus lowercaseO
7$ ls -l ˜/bin/prog Verify that we created an executable file named˜/bin/prog .
8$ prog hello Run the program, giving it the argumenthello .
9$ echo $? See the program’s exit status; should be zero for EXIT_SUCCESS.

Our convention will be to show output in a box.With the argumenthello , the output will be

I r eceived the argument hello.

Direct the output to a file in Windows

To store the standard output of a C or C++ program into a file on the disk in Windows, go to the com-
mand prompt and specify the filename after the> symbol.

Start → Programs → Accessories → Command Prompt
C:\> cd to the directory that containsprog.exe
C:\> prog.exe hello send output to screen
C:\> echo %errorlevel% See the program’s exit status; should be zero for EXIT_SUCCESS.
C:\> prog.exe hello > prog.out send output to the fileprog.out
C:\> type prog.out

Keep theprintf in the above line 11; do not change it tofprintf .

The same program, in C++

Since this is a C++ program, its name ends in uppercase.C . Rename it if your platform demands a
different convention.

The keywords are the same in both languages:main , if , and return . So are the parentheses,
curly braces, quotation marks, and exit status codes. But the output statements are completely different.
Thestd::cout in lines 12−14 and thestd::cerr in lines 7−8 are two destinations for output, called
output streams in C++. They lead to the same destinations as the C file pointersstdout andstderr .
Thec in cout andcerr stands for ‘‘character’’; we also have wcout andwcerr for ‘‘wide characters’’
such as Chinese and Unicode. The annoying prefixstd:: will be removed on p. 20.

C C++
file pointers input and output streams

standard input stdin std::cin

standard output stdout std::cout

standard error output stderr std::cerr

Like stdout andstderr , the wordscout andcerr belong to the C++ Standard Library, not to
the language itself.We must therefore include the header fileiostream in which they are declared.The
GNU C++ compiler on our Unix machine i5.nyu.edu is namedg++. For this compiler, the iostream file
is in the directory/usr/gcc/4.5/include/c++/4.5.2 . I discovered this by giving the-H option
to g++ when compiling the program.The file used to be namediostream.h or even stream.h , but
the names of the C++ Standard Library header files no longer end with.h .

The operator<< is pronounced ‘‘put to’’. It represents output because it points toward the destina-
tion: thecout in line 12 or thecerr in line 7. Forthcoming will be a lengthy explanation. For now, recall
that an operator may, under certain circumstances, call a function (p. 7).This << operator calls a function
namedoperator<< , which is (roughly) the C++ equivalent of the functionprintf .

A one-line comment may be delimited with the double slash in line 4.The comment starts at the
double slash (no whitespace between them) and ends at the end of the line.No terminating delimiter is
necessary. For multi-line comments, you can still use the old-fashioned/* and*/ .

As in C, you might have to insertsystem("PAUSE"); immediately before line 16 to prevent the
program’s output from disappearing before you can read it.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/prog/prog.C

1 #include <iostream>
2 #include <cstdlib>
3
4 i nt main(int argc, char **argv) //char *argv[] would mean the same thing
5 {
6 i f (argc != 2) {
7 s td::cerr << argv[0];
8 s td::cerr << ": requires 1 command line argument\n";
9 r eturn EXIT_FAILURE;

10 }
11
12 std::cout << "I received the argument ";
13 std::cout << argv[1];
14 std::cout << ".\n";
15
16 return EXIT_SUCCESS;
17 }

To see the online manual forg++, giv e the following command.

1$ man g++

To see the manual on the web, visithttp://i5.nyu.edu/ ∼ mm64/man/ and typeg++.

To see the version number ofg++,

2$ g++ -v
Using built-in specs.
COLLECT_GCC=g++
COLLECT_LTO_WRAPPER=/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/lto-wrapper
Target: sparc-sun-solaris2.11
Configured with: /export/home/hudson/workspace/nightly/build/sparc/components/gcc45/gcc-4.5.2/configure CC=/ws/onnv-tools/SUNWspro/sunstudio12.1/bin/cc CXX=/ws/onnv-tools/SUNWspro/sunstudio12.1/bin/CC --prefix=/usr/gcc/4.5 --mandir=/usr/gcc/4.5/share/man -
Thread model: posix
gcc version 4.5.2 (GCC)

We will tell the compiler to place the executable file in thebin directory of your home directory.
The following command will give an error message if you do not already have abin .

3$ ls -ld ˜/bin ‘‘ list’’ with lowercase L’s

If you do not already have it, create it by saying

4$ mkdir ˜/bin ‘‘ make directory’’
5$ ls -ld ˜/bin

Compile the programprog.C and place the executable fileprog in thebin subdirectory of your
home directory.

6$ g++ -o ˜/bin/prog prog.C minus lowercaseO
7$ ls -l ˜/bin/prog Verify that we created an executable file named˜/bin/prog .
8$ prog hello Run the program, giving it the argumenthello .
9$ echo $? See the program’s exit status; should be zero.

I r eceived the argument hello.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 19

20 Before Objects Chapter1

How can << mean ‘‘output’’ as well as ‘‘left shift’’?

An overloaded operator is one that has two or more meanings, depending on the data type(s) of its
operand(s). Operatoroverloading is present even in C, but no one talks about it.For example, the+ in line
7 means ‘‘integer addition’’ because its operands are integers; the+ in line 8 means ‘‘double addition’’
because its operands aredouble ’s. Although we write them with the same operator, these are very differ-
ent operations.(The + in line 9 also means double addition. Line 9 copies the value ofi into an anony-
mous temporary of typedouble , and then adds the temporary andd. Both operands aredouble ’s.

In C, we need to know the data types of these sums if we want to output them with the correct format
of printf . This will be cleaned up in C++.

1 i nt i = 10; /* C example */
2 i nt j = 20;
3
4 double d = 3.1415926535897932385;
5 double e = 2.7182818284590452353;
6
7 printf("%d\n", i + j); /* int addition */
8 printf("%f\n", d + e); /* double addition */
9 printf("%f\n", i + d); /* double addition */

Operator overloading is more noticeable in C++.The << operator in line 12 means ‘‘left shift’’
because its left operand is an integer. The<< in line 13 means ‘‘output’’ because its left operand is an out-
put stream.

10 int i = 1 0; //C++ example
11 int j = 2 0;

12 int k = i << j ; / /left shift
13 std::cout << i; //output

Tw o variables with the same first name

The purpose of a last name is to allow two or more people to have the same first name. Examples in
English are in column 1.

Bill Clinton std::cout
Bill Gates different::cout

For exactly the same reason, a C++ variable can have a last name.Examples are in column 2 above.
The last name ofcout is std becausecout belongs to the C++ Standard Library. We could also have
anothercout with a different last name.

In English the first name is written first, with a space between the first and last names. In C++ the
last name is written first, with the class scope operator (the double colon) between the names.No space is
allowed between the two colons.

A family of variables with the same last name is called anamespace.The most common example is
the namespacestd , many of whose members are declared in the header fileiostream . For the present,
however, the variables that we create will have no last names.

Remove the std::

I wish we didn’t hav eto callstd::cout andstd::cerr by their full names all the time. And in
fact, we don’t. Theusing directive in line 3 will put us on a first-name basis with all the members of the
std namespace.

This directive is convenient for our small programs, but might produce unexpected results for larger
ones. Namespacestd contains hundreds of variables, functions, data types, and ‘‘templates’’. Seep. 1023
for a way to be selective.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

In older versions of C++,cout andcerr had no last name at all.The using directive was not
needed or even permitted.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/namespace/using.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std; //using directive: may not be needed on your platform.
4
5 i nt main(int argc, char **argv)
6 {
7 i f (argc != 2) {
8 c err << argv[0];
9 c err << ": requires 1 command line argument\n";

10 return EXIT_FAILURE;
11 }
12
13 cout << "I received the argument ";
14 cout << argv[1];
15 cout << ".\n";
16 return EXIT_SUCCESS;
17 }

I r eceived the argument hello.

The << operator

Now that we’ve simplified thestd::cout , let’s work on the<< operator. We will walk through
two examples with the familiar operators+ and=, and then treat<< the same way.

(1) + is a binary operator whose operands must both be numbers.Since the resulting expression
a + b has a value, it can be an operand of another+.

a + b

a + b + c

a + b + c + d

(2) Another binary operator, this time with right-to-left associativity, is the assignment operator=.
The expressionb = a installs a new value intob. But the expression does more: it has a value of its own.
(Every non-void expression in C and C++ has a value.) Thisvalue is the new value of the left operand,b.
We can easily verify this in C.

1 double a = 3.14159265358979323846;
2 i nt b = 10;

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 21

22 Before Objects Chapter1

3
4 printf("%d\n", b = a); /* The value of the expression b = a is 3. */

Since the expressionb = a has a value, it can be the operand of another=.

a=b

a=b=c

a=b=c=d

(3) << is a binary operator with left-to-right associativity. If i ts left operand is an integer, it means
left shift; if its left operand is an output stream, it means output.For example, the expressioncout << a
outputs the value ofa. But the expression does more: it has a value of its own. Itsvalue is the value of the
left operand,cout .

Since the expressioncout << a has a value that is an output stream, it can be used as the left oper-
and of another<< that performs output.

cout << a

cout << a << b

cout << a << b << c

Therefore the lines 8−9 on p. 21

5 c err << argv[0];
6 c err << ": requires 1 command line argument\n";

can be combined to

7 c err << argv[0] << ": requires 1 command line argument\n";

The two << operators in the above line 7 will be executed from left to right, because they are adjacent to a
common operand and have left-to-right associativity. They are adjacent even though they are separated by
an [] operator. The subexpressionargv[0] is evaluated first, i.e., boiled down to a single value, and the
two <<’s are left competing for this value. They becomeadjacent after the[] is gone. Another example is
on p. 24.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Similarly, lines 13−15 on p. 21

8 c out << "I received the argument ";
9 c out << argv[1];

10 cout << ".\n";

can be combined to

11 cout << "I received the argument " << argv[1] << ".\n";

▼ Homework 1.3a: rewrite expressions

Each of the following questions gives away another’s answer.

(1) Write the following three expressions as one big expression that has the same side effects (p. 14)
in the same order.

b = a
c = b
d = c

(2) Write the following expression as three separate expressions that have the same side effects in the
same order.

d = c = b = a

(3) Write the following three expressions as one big expression that has the same side effects in the
same order.

cout << a
cout << b
cout << c

(4) Write the following expression as three separate expressions that have the same side effects in the
same order.

cout << a << b << c

Answer the next pair of questions after seeing the>> operator on pp. 30−31.

(5) Write the following three expressions as one big expression that has the same side effects in the
same order.

cin >> a
cin >> b
cin >> c

(6) Write the following expression as three separate expressions that have the same side effects in the
same order.

cin >> a >> b >> c

▲

▼ Homework 1.3b: combine consecutive output statements

It is very difficult to be king when the gods are changing.

—James A. Michener,Hawaii, Chapter II

Compile and run the ‘‘I received the argument’’ C++ program in pp. 20−21.You may have to change
the program’s filename suffix from.C to .CPP, .CXX, or something else.You may have to #include
iostream.h instead ofiostream , and/or stdlib.h instead ofcstdlib . The using directive
might not be needed; in fact, in might not even be allowed. You may need asystem("PAUSE)";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 23

24 Before Objects Chapter1

immediately before eachreturn from main .

Combine consecutive output statements into one big output statement as on pp. 22−23. Do this for
bothcout andcerr .
▲

Output an expression with an operator of its own

We will walk through an example with the multiplication operator* , and then treat the output opera-
tor << the same way.

Line 1 multiplies2 and 3, and uses their product as the operand of the next operator, the +. No
parentheses are required to execute the* before the+, because* has higher precedence than+.

1 i nt i = 1 + 2 * 3;

We diagram only the expression1 + 2 * 3 , not the rest of the statement.

2 * 3+1

Similarly, Line 2 multiplies2 and3, and uses their product as the operand of the next operator, the
<<. No parentheses are required to execute the* before the<<, because* has higher precedence than<<.

2 c out << 2 * 3;
3 c out << "\n";

2 * 3<<cout

6

The above lines 2−3 should be combined to

4 c out << 2 * 3 << "\n";

2 * 3<<cout << "\n"

The subexpression2 * 3 is boiled down into the single number6 before the two <<’s are executed. This
causes the<<’s to become adjacent (p. 22), allowing precedence and associativity to determine that they are
executed from left to right.

Output a low-precedence expression

Line 1 ‘‘bitwise ands’’ 2 and3 and uses the result as the operand of the next operator, the+. Paren-
theses are required to execute the& before the+, because binary& has lower precedence than binary+.

Similarly, line 3 ‘‘bitwise ands’’ 2 and3 and uses the result as the operand of the next operator, the
<<. Parentheses are required to execute the& before the<<, because binary& has lower precedence than
<<. Another example is in line 17 ofstatic_cast on p. 65.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

1 i nt i = 1 + (2 & 3);
2
3 c out << (2 & 3);
4 c out << "\n";

2

The above lines 3−4 should be combined to

5 c out << (2 & 3) << "\n";

▼ Homework 1.3c: insert parentheses only where necessary

Each statement should evaluate and output the right operand of the<<. Insert parentheses where
necessary to force this operand to be everything between the<< and the semicolon.For example, in line 1
the right operand of the<< should bea + b , not merelya. Are parentheses need to accomplish this?

The two <<’s in line 11 should be executed from left to right. Each one should output its right oper-
and. Theright operand of the first<< should bed; that of the second should be

d == 1 ? " d ollar" : " dollars"

Line 12 is a silly example. Theright << should be a shift operator; the left, the output operator. I
want to left-shift the 10 three times and output the result. Each left-shift should double the number, so three
left-shifts should octuple it. The result should be 80.Unfortunately, it prints 103 because the right<<
means ’’output’’. By inserting parentheses in the correct place, you will change the meaning of the right
<< to ‘‘left-shift’’.

1 c out << a + b;
2 c out << a += b;
3 c out << p - a;
4 c out << a[i];
5 c out << f(x); //These parentheses are the function call operator.
6 c out << -i;
7 c out << i & 0xF; //Output the four least significant bits of i.
8 c out << d == 10; //prints as 1 for true, 0 for false; see p. 354
9 c out << old[y][x] ? ’X’ : ’.’;

10 cout << d == 1 ? "dollar" : "dollars";
11 cout << d << d == 1 ? " dollar" : " dollars";
12 cout << 10 << 3; //want to multiply 10 × 8.

▲

All operators obey the same rules

The i/o operators and the arithmetic ones obey the same rules.

(1) Why can line 1 string together as many <<’s as we want? For the same reason that line 2 can
string together as many+’s as we want: little expressions may be combined to form bigger ones.

(2) Why are the<<’s in line 1 executed from left to right?For the same reason that the+’s in line 2
are executed from left to right:<< and+ have left-to-right associativity.

(3) Why is the * in line 1 performed before the two surrounding<<’s? For the same reason that the
* in line 2 is performed before the two surrounding+’s: * has higher precedence than<< and+.

(4) Why does line 1 need parentheses to perform the& before the<< in front of it? For the same rea-
son that line 2 need parentheses to perform its& before the+ in front of it: & has lower precedence than<<
and+.

1 c out << b << c << d * e << (f & g);

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 25

26 Before Objects Chapter1

2 a = b + c + d * e + (f & g);

Quotation marks and newlines

C++ has the same single and double quotes that C has.Single quotes must enclose exactly one char-
acter; double quotes can enclose zero or more.

I usually write double quotes even when they enclose only one character. It’s easier to write only one
kind of quote, and I would have to change the single quotes to double quotes anyway when I add extra char-
acters:

1 c out << "The coordinates are " << x << ’,’ << y << ’\n’;
2 c out << "The coordinates are " << x << ", " << y << ".\n";

Although it does take longer to place a double quoted character into the output stream, the extra time is
insignificant compared to that needed for the character to be read on a screen by a human being or written
to a disk.

Lines 3−5 do the same thing. Please don’t write 3 or 4: they would just annoy people. Line5 is sim-
pler.

3 c out << "hello" << ’\n’; //bad
4 c out << "hello" << "\n"; //bad
5 c out << "hello\n"; //good

Line 6 would be bad in any language. Whatwould be the point of outputting whitespace (e.g., a
blank or tab) immediately before a newline? Noone would ever see the whitespace. Write line 7 instead,
but not because it saves one byte of memory and a millionth of a second.Do it because anyone seeing line
6 would think they hav ea corrupted version of the source code, since no one in their right mind would
write like that.

6 c out << "hello \n"; //bad
7 c out << "hello\n"; //good

Flush the output buffer

There’s another way to output the newline character, but we have to talk aboutbuffering first.

We often imagine that each output statement,printf in C or << in C++, sends data directly to a
destination in the outside world. But in real life, the outgoing data may spend time in a holding area in the
computer’s memory, called anoutput buffer. Each output statement places more data in the buffer. When it
is full, all the data in the buffer is flushed to the outside world in one big convo y.

Buffered output is faster than performing a separate output operation for each statement.For exam-
ple, each write to a file on the disk moves the read/write head in the disk drive. If we consolidate several
small disk writes into one big write, fewer motions will be required.

Sometimes, however, we want to flush the buffer before it is full. For example, a critical message
cannot be allowed to languish in a buffer before it is displayed.In C, we can flush the standard output
buffer at any time by callingfflush :

1 printf("All bomber groups have reached their Fail-Safe points.\n");
2 f flush(stdout);

In C++, we flush an output buffer by outputting a mysterious something namedendl (‘‘end line’’, with a
lowercase L). Outputting theendl causes two things to happen.It outputs a newline character, and then
flushes the output buffer.

3 c out << "All bomber groups have reached their Fail-Safe points." << endl;

endl is an example of ani/o manipulator: something that causes a side effect when it is output or
input. Therewill be many others.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Output the various data types

The fourteenbuilt-in data types are those built into the language. C++ has all the built-in types that
C has (except thelong long types in the more recent versions of C), plus a ‘‘wide character’’ type
wchar_t for large sets of characters such as Chinese or Unicode.Usechar andwchat_t for charac-
ters;signed char andunsigned char for narrow integers.

bool
wchar_t
char unsigned char signed char
short unsigned short
int unsigned int
long unsigned long

float
double
long double

C++ also hasuser-defineddata types such as enumerations and classes.Finally, it hasderived data types:
pointers to, references to, arrays of, and functions that take and return, all of the above. They are declared
the same way as in C, but an initial value should always be provided for each variable. Moreon this
shortly.

The printf function in C depends on the%formats to tell what type of output to perform:%dfor
integer,%f for double,%s for string. The<< operator in C++ gets this information from the data types of
its operands. There are no formats for us to write. (How this works is on pp. 349−350.)

Consider the first (leftmost)<< in line 19. Its left operandcout is of data type ‘‘output stream’’, so
the<< means output rather than left shift. Its right operandi is of data typeint , so the<< means ‘‘inte-
ger output’’, like the Cprintf("%d" . Now consider the second<< in line 19. Its left operand
cout << i is of data type ‘‘output stream’’, so the<< means output. Its right operand"\n" is of data type
‘‘ string of chars’’ because of the double quotes, so the<< means ‘‘string output’’, like the C
printf("%s" .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/io/builtin.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 / /If you don’t have bool, uncomment line 8 to implement it.
8 / /enum bool {false, true};
9

10 bool b = t rue; //or false
11 char c = ’ A’;
12 int i = 1 0;
13 double d = 1.0 / 3.0;
14 long double ld = 1.0L / 3.0L;
15 char s[] = "hello"; //Array of 6 char’s; put ’\0’ into s[5].
16
17 cout << b << "\n";
18 cout << c << "\n";
19 cout << i << "\n";
20 cout << d << "\n";
21 cout << ld << "\n";
22 cout << s << "\n"; //Print up to, but not including, the ’\0’ in s[5].

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 27

28 Before Objects Chapter1

23 cout << &i << "\n";
24
25 return EXIT_SUCCESS;
26 }

By default, abool prints as1 or 0; to print as the wordstrue or false , see p. 354.A double
prints with six significant digits; to change this, see pp. 355−356.

1 Line 17:bool prints as1 or 0.
A
10
0.333333 Line 20:double prints as 6 significant digits.
0.333333
hello
0xffbff1d4 Line 23: pointers print in hexadecimal on most platforms.

Warning: the value ofd is slightly less than one third because the machine is binary, not ternary. A
double is stored as a power of 2, times a fraction whose denominator is 253. (We say that thedouble
has a <I>matissa</I> of 53 bits.) The closest we can get to one third is

2−1 ×
6, 004, 799, 503, 160, 661

253
=

6, 004, 799, 503, 160, 661

18, 014, 398, 509, 481, 984

= . 333333333333333314829616256247390992939472198486328125

Seenumeric_limits on pp. 745−747.

The above lines 17−23 should be combined to one statement.

27 cout << b << "\n" << c << "\n" << i << "\n" << d << "\n" << ld
28 << "\n" << s << "\n" << &i << "\n";

Then split the statement up the way the output appears.

29 cout << b << "\n"
30 << c << " \n"
31 << i << " \n"
32 << d << " \n"
33 << ld << "\n"
34 << s << " \n"
35 << &i << "\n";

Three more reasons why<< in C++ is better than printf in C

(1) The most commonprintf mistakes are not caught until runtime, if at all.

1 c har c = ’A’; /* C example */
2 printf("%s\n", c); /* error message (unlikely) or garbage at runtime */

The most common<< mistakes are caught at compile time.Wherever possible, C++ moves the error mes-
sages from runtime to compile time.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/io/error.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

7 c har c = ’A’;
8
9 c out << c < "\n";

10 cout << c "\n";
11
12 return EXIT_SUCCESS;
13 }

Here are the error messages on my platform.I can’t pretend that they are of much help, but at least
you know at compile time thatsomethingis wrong.

error.C: In function ’int main()’:
error.C:9:14: error: no match for ’operator<’ in ’std::operator<< [with _Traits
= std::char_traits<char>](((std::basic_ostream<char>&)(& std::cout)), ((int)c))
< " \012"’
error.C:9:14: note: candidates are: operator<(const char*, const char*)
<built-in>
error.C:9:14: note: operator<(void*, void*) <built-in>
error.C:10:12: error: expected ’;’ before string constant

(2) << also executes faster thanprintf . Each call toprintf has to loop through all the charac-
ters in its first argument and search for percent signs.Based on the character after the percent sign, it
decides upon the output format. In effect,printf is an interpreter for a little language.

14 /* simplified outline of what printf does */
15
16 char *p;
17
18 for (p = address of first argument of printf; *p != ’\0’; ++p) {
19 if (*p == ’%’) {
20 switch (*++p) { /* Examine the character after the ’%’. */
21 case ’d’:
22 output an integer in decimal;
23 break;
24
25 case ’f’:
26 output a f loat or double;
27 break;
28
29 case ’s’:
30 output a s tring until the terminating ’\0’;
31 break;
32
33 /* etc. */
34 }
35 }
36 }

The<< operator, on the other hand, does this decision making once and for all at compile time, without all
the looping and switching. This is important if the<< statement is inside a loop (which it usually is).

(3) printf is not extensible. Thisproblem is bigger in C++, where we will invent many new data
types:

37 struct blood_pressure { /* a new data type */
38 int systolic; /* bigger number: contract */
39 int diastolic; /* smaller number: expand */

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 29

30 Before Objects Chapter1

40 };
41
42 /* Create a variable of the new data type. */
43 struct blood_pressure b = {120, 80};
44
45 printf("%b\n", b); /* Can’t invent %b. */
46 printf("%d/%d\n", b.systolic, b.diastolic); /* Must do this instead. */

After we do operator overloading, we’ll be able to output ablood_pressure with the same<< that we
use for the built-in types See p. 335.

47 blood_pressure b(120, 80); //Don’t even need the keyword struct.
48 cout << b << "\n"; //Output a blood_pressure.

The >> operator

Input is the counterpart of output, but more can go wrong.The cin in lines 11, 14, and 17 is a
source of input, called aninput stream,analogous to the Cstdin .

The operator>> is pronounced ‘‘get from’’. It was chosen to represent input because it points away
from the source, in this casecin . If i ts right operand is anint , as in line 14, it will performint input. If
its right operand is a string, as in line 11, it will performstring input. C++string input is just like the C
scanf("%s", ...) : it will input only one word, not necessarily the entire line of input. And if the user
inputs a word in line 11 that is longer than the array in line 10, the>> will overwrite the memory after the
array. We’ll fix this later when we do classstring .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/io/input.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 c out << "Please type the date and press RETURN.\n"
8 << " For example, January 1 2014\n";
9

10 char month[256]; //uninitialized variable
11 cin >> month; //Put a ’\0’ into month after the last character.
12
13 int day; //uninitialized variable
14 cin >> day; //scanf("%d", &day); would have needed an ampersand.
15
16 int year; //uninitialized variable
17 cin >> year;
18
19 cout << "month == " << month << "\n"
20 << "day == " << day << "\n"
21 << "year == " << year << "\n";
22
23 return EXIT_SUCCESS;
24 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Please type the date and press RETURN.
For example, January 1 2014
May 10 2014 The user types this line.
month == May
day == 10
year == 2014

>> is a binary operator because it requires two operands. Ifits left operand is an integer, it means
right shift; if its left operand is an input stream, it means input.For example, the expressioncin >> a
installs a new value intoa. But the expression does more: it has a value of its own. Itsvalue is the value of
its left operand,cin .

Since the expressioncin >> a has a value, it can be the left operand of another>>:

cin >> a

cin >> a >> b

cin >> a >> b >> c

Therefore lines 11, 14, 17 of the above program could be combined to

25 cin >> month >> day >> year;

Concatenate strings at compile time

C lets us write a double-quoted string in two or more parts:

1 printf("hello"); /* output 5 characters */
2 printf("hel" "lo"); /* output 5 characters */

This lets us write a long string on separate source lines:

3 printf("hel"
4 " lo"); /* output 5 characters */

5 printf("supercalifragilistic"
6 " expialidocious");

7 c har a[] = "hel" "lo"; /* an array of 6 characters, including one ’\0’ */

C++ lets us do the same thing, so the above lines 7−8 could be written with only one<< operator:

8 c out << "Please type the date and press RETURN.\n"
9 " For example, January 1 2014\n";

In fact, we could even get rid of the<<’s at the start of lines 20 and 21. But don’t do it—people would just
get confused.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.3 Output and Input 31

32 Before Objects Chapter1

Why >> is less error prone than scanf

scanf andprintf agree on the same format letter forint input and output (the%din lines 8−9).
But for other data types, they sometimes use different formats.

1 s hort s; /* C example */
2 i nt i;
3 double d;
4
5 s canf("%hd", &s); /* "%s" was already taken for "string". */
6 printf("%d\n", s);
7
8 s canf("%d", &i);
9 printf("%d\n", i);

10
11 scanf("%lf", &d); /* can’t input a double with "%f" */
12 printf("%f\n", d); /* but can output a float or double with "%f" */

1.4 Declarationsand their Placement

Declare a variable in a block

A block is a group of zero or more statements enclosed in{ curly braces} . The most common exam-
ples are the body of a function, loop,if , or else .

1 v oid f(int n)
2 {
3 / /The body of a function is the most common example of a block.
4 }

5 f or (i = 1; i <= 10; ++i) {
6 / /The body of a for loop is a block.
7 }

8 i f (a == n) {
9 / /This is a block.

10 } else {
11 //This is another block.
12 }

In C and C++, a variable declared in a block can be mentioned only within that block.We say that
the variable’sscope (habitat) extends only from the declaration to the closing curly brace} at the end of
the block.

In versions of C prior to C99, a declaration in a block must be at the start of the block.We will
demonstrate why this is bad with a program that takes an integer as its command line argument and outputs
the sum of the positive integers from 1 up to that one.

The expressionargv[1] in line 15 is the address of the first character of the first command line
argument. Thefunction atoi examines this character and the following ones, hopefully all digits, and
returns the number that is spelled out by these digits.If the characters are not digits,atoi returns zero,
making it impossible to tell the difference between a legitimate argument of"0" and an argument of
garbage. We could remedy this now with thestrtol function or later with anistringstream object.

In the block that extends from lines 5 to 23, the declarations (lines 6−8) must come before the state-
ments (lines 10−22). But this rule often forces us to leave a gap between the variable’s declaration and its
initialization. For example,n contains garbage from line 6 to line 15;i contains garbage from 7 to 17.It’s
dangerous to leave garbage in variables for such long periods.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

There is one variable, thesum in line 8, that can be initialized in its declaration. But now we hav e
the opposite problem: the initialization will be wasted if the program ends prematurely in lines 10−13.It’s
not our fault. Cis rigid.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/declare/sum.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h> /* for atoi */
3
4 i nt main(int argc, char **argv)
5 {
6 i nt n; /* not initialized until line 15 */
7 i nt i; /* not initialized until line 17 */
8 i nt sum = 0; /* This initialization is wasted effort if argc != 2. */
9

10 if (argc != 2) {
11 fprintf(stderr, "%s: requires one command line argument\n", argv[0]);
12 return EXIT_FAILURE;
13 }
14
15 n = atoi(argv[1]);
16
17 for (i = 1; i <= n; ++i) {
18 sum += i; /* means sum = sum + i */
19 }
20
21 printf("The sum of the numbers from 1 to %d is %d.\n", n, sum);
22 return EXIT_SUCCESS;
23 }

prog 10 This is the command line that launches the program.
The sum of the numbers from 1 to 10 is 55.

In C++, a variable declaration in a block need not be at the start of the block, although it must still be
written before the variable is used.Don’t declare the variable until you are ready to initialize it; then
declare and initialize it in the same statement.If you find yourself declaring a variable without initializing
it in the same statement, you have declared it too soon.

An extra benefit is that the variablen in line 13 is now initialized rather than assigned to. It can
therefore be aconst . (See pp. 302−303 for a weighty discussion of the other advantages of initialization
over assignment.)

C++ permits us to tuck the declaration fori into the for loop at line 15. By declaringi at this
point, we’re announcing that it will be used only inside the loop. On the other hand, the declarations of
sum andn in lines 12−13 announce that they will be used outside the loop.The position of a declaration
documents your intent. Position the declaration to make the scope of the variable as small as possible: no
variable should outlive its usefulness.

In older versions of C++, the scope of the variablei extended from line 15 to line 21. In newer ver-
sions, the scope ofi extends from 15 only to 17. Some versions give you a choice, e.g., with the
-ffor_scope option of the GNU compilerg++. The same rule applies to a variable declared within the
parentheses of anif or while .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/declare/sum.C

1 #include <iostream> //C++ example
2 #include <cstdlib>

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.4 Declarations and their Placement 33

34 Before Objects Chapter1

3 using namespace std;
4
5 i nt main(int argc, char **argv)
6 {
7 i f (argc != 2) {
8 c err << argv[0] << ": requires one command line argument\n";
9 r eturn EXIT_FAILURE;

10 }
11
12 int sum = 0;
13 const int n = atoi(argv[1]);
14
15 for (int i = 1; i <= n; ++i) {
16 sum += i;
17 }
18
19 cout << "The sum of the numbers from 1 to " << n << " is " << sum << ".\n";
20 return EXIT_SUCCESS;
21 }

prog 10
The sum of the numbers from 1 to 10 is 55.

▼ Homework 1.4a: is the induction variable still in scope after the end of the for loop?

In C and C++, we can’t hav etwo variables with the same name in the same scope.Make whatever
changes are necessary to avoid compilation errors. On p. 183, we will have an easier way of seeing how
long a variable lasts.

In newer version of C++, no change should be needed.The scope of thei in line 7 extends only as
far as line 15, permitting us to declare anotheri in line 17. Similarly, the scope of thej in line 8 extends
only as far as line 10, permitting us to declare anotherj in line 12.

But in older versions of C++, the scope of thei in line 7 extends all the way to line 24, preventing us
from declaring anotheri in line 17. You could rename thei in line 17. Or simply remove the keyword
int from line 17, so that thei in 17 will be the same variable as thei in 7. Similarly, the scope of thej
in line 8 extends all the way to line 15, preventing us from declaring anotherj in line 12. You could
rename thej in line 12. Or simply remove the keyword int from line 12, so that thej in 12 will be the
same variable as thej in 8.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/declare/forscope.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 f or (int i = 0; i < 3; ++i) {
8 f or (int j = 0; j < 3; ++j) {
9 c out << i << ", " << j << "\n";

10 }
11
12 for (int j = 0; j < 3; ++j) {
13 cout << i << ", " << j << "\n";
14 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

15 }
16
17 for (int i = 0; i < 3; ++i) {
18 for (int j = 0; j < 3; ++j) {
19 cout << i << ", " << j << "\n";
20 }
21 }
22
23 return EXIT_SUCCESS;
24 }

▲

The real reason to declare and initialize in the same statement

Suppose that C implicitly initialized every int to 0 unless you said otherwise:

1 i nt i; /* Put 0 into i. */
2 i nt j = 10;

Then it would be wasteful to say lines 3−4, since the 0 that line 3 puts intoi would be wiped out by the 10
in line 4.

3 i nt i; /* Put 0 into i. */
4 i = 10; /* Replace the 0 with 10. */

Instead of lines 3−4, it would be better to say

5 i nt i = 10;

Now let’s come back to reality: anint is not implicitly initialized to 0 in C and C++. But an
‘‘ object’’ may be initialized to 0 or to some other default value. Inthat case, the initialization in line 6
would be wasted because of line 7.

6 obj ob; //Put 0 (or some default value) into ob.
7 ob = 10; //Replace the 0 with 10.

It takes only a millionth of a second to initialize anint , but it might take a hundredth of a second—an
eternity—to initialize an object.We nev er want to do it unnecessarily. Instead of lines 6−7, the program
would execute faster if we said

8 obj ob = 10;

Even if you’re usingint ’s, please write in the object style by declaring and initializing a variable in
the same statement. This will make it possible later to use the same code forint ’s and objects by means
of a ‘‘template’’. Seep. 634.

Five situations in which we can’t declare and initialize in the same statement

C++ is not perfect. Here are five cases in which we can’t initialize a variable in its declaration.
Nonetheless, we should assign a value to the variable as soon as possible after declaring it. Do this by
declaring it just before the assignment.

(1) A variable declared outside the body of any function is said to beglobal. A global can be men-
tioned by all the functions defined below its declaration.But if its initial value comes from a function argu-
ment, it must receive the value inside the body of the function.

1 c onst char *progname; //global variable must be declared outside main
2
3 i nt main(int argc, char **argv)
4 {
5 progname = argv[0]; //value must be assigned inside main

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.4 Declarations and their Placement 35

36 Before Objects Chapter1

(2) The variable is an array whose initial values are assigned in a loop. (Use the data typesize_t
for the number of elements in an array and for an array subscript. See p. 66.)

6 c onst size_t n = 1000000;
7 i nt a[n]; //uninitialized variable
8
9 f or (size_t i = 0; i < n; ++i) {

10 a[i] = i ;
11 }

(3) The variable’s initial value comes from input. There is no way to combine lines 12 and 13.

12 int n; //uninitialized variable
13 cin >> n;

(4) The variable’s initial value comes from a function via pass-by-reference (pp. 69−70). There is no
way to combine lines 18 and 19.

14 void f(int *p); //function declaration or prototype
15
16 int main(int argc, char **argv)
17 {
18 int i; //uninitialized variable
19 f(&i); //give value to i

Here’s the same example, with the argument changed from a pointer to a ‘‘reference’’ (pp. 71−72).

20 void g(int& r); //function declaration or prototype
21
22 int main(int argc, char **argv)
23 {
24 int i; //uninitialized variable
25 g(i); //give value to i

(5) The variable is given its initial value inside a loop or other block, but must be declared outside
because it will be used after the loop or block is over.

26 int firstarg; //uninitialized variable
27
28 if (argc < 2) { //If there were no arguments
29 firstarg = 0;
30 } else {
31 firstarg = atoi(argv[1]);
32 }
33
34 cout << "The first argument is " << firstarg << ".\n";

35 int r; //uninitialized variable
36
37 while ((r = rand()) <= 100) {
38 }
39
40 cout << "The first random number greater than 100 was " << r << ".\n";

Since thethen and theelse each consist of one assignment statement (lines 29 and 31), we could
use the?: operator instead of anif . This permits the variablei to beconst .

41 const int firstarg = argc < 2 ? 0 : atoi(argv[1]);

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Dead values

Except for the above five cases, every C++ variable should be initialized at its moment of birth.But
some initializations are worse than useless.

A dead value is one that will never be used again. In the following example, the values 10, 30, and
50 are dead. Never store a dead value into a variable.

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt i = 10; //Dead value: never used because wiped out in line 8.
8 i = 20;
9 c out << i << "\n";

10
11 i = 30; //Dead value: never used because wiped out in line 12.
12 i = 40;
13 cout << i << "\n";
14
15 int j = 5 0; //Dead value: never used because program ends in line 16.
16 return EXIT_SUCCESS;
17 }

No variable should outlive its usefulness

No variable should be born before we have a initial value for it. Similarly, no variable should live
beyond its last use. That is why we declared thei in the parentheses of thefor loop in line 15 ofsum.C
in pp. 33−34. Here is another example.

In C, we often assign a value to a variable and test it in the same expression. ThisC++ program is in
the same style (line 9).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/declare/if1.C

1 #include <iostream>
2 #include <cstdlib> //for rand, exit, EXIT_SUCCESS
3 using namespace std;
4
5 i nt main(int argc, char **argv)
6 {
7 i nt r; //uninitialized variable
8
9 i f ((r = rand()) != 0) { //assign and test

10 cout << "The first random number was " << r << ".\n";
11 } else {
12 cout << "The first random number was zero (" << r << ").\n";
13 }
14
15 return EXIT_SUCCESS;
16 }

The output will be the same each time we run the program because we made no call to the function
srand before the call torand .

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.4 Declarations and their Placement 37

38 Before Objects Chapter1

The first random number was 16838.

In the above line 9, the function call operator goes first because of its higher precedence; the assign-
ment operator goes second; and the comparison goes last because it its outside the parentheses.Another
example is on pp. 86−87.

r = rand ()() != 0

The most common examples of this idiom in C are

1 i nt c;
2 while ((c = getchar()) != EOF) {

3 c har *p;
4 i f ((p = malloc(n)) == NULL) {

5 FILE *out;
6 i f ((out = fopen("outfile", "w")) == NULL) {

But C++ does not share C’s rage to cram as much code as possible into a single expression. TheC++
style would be to separate the assignment and the test. The assignment is now an initialization, which per-
mits the variable to be aconst in line 7.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/declare/if2.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main(int argc, char **argv)
6 {
7 c onst int r = rand(); //initialize
8
9 i f (r != 0) { / /test

10 cout << "The first random number was " << r << ".\n";
11 } else {
12 cout << "The first random number was zero (" << r << ").\n";
13 }
14
15 return EXIT_SUCCESS; //r is still alive at this point
16 }

The first random number was 16838.

The variabler is intended for use only within the bodies of theif andelse in lines 9−13 of the
above program. Ithas no business being alive all the way down to the last line ofmain . To restrict its
scope to the bodies of theif andelse , the following line 7 tucks its declaration and initialization into the
parentheses of theif . The if will be true if the variable declared in the parentheses has a non-zero initial
value; more precisely, if it has atrue value when converted to abool . Now r will no longer outlive the
if andelse .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/declare/if3.C

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main(int argc, char **argv)
6 {
7 i f (const int r = rand()) { //initialize and test
8 c out << "The first random number was " << r << ".\n";
9 } else {

10 cout << "The first random number was zero (" << r << ").\n";
11 }
12
13 return EXIT_SUCCESS; //r no longer exists at this point
14 }

The first random number was 16838.

Why is it so important to extinguish a variable as soon as we are done with it?Admittedly, the death
of an integer will free up no resources. But a more complicated variable (an ‘‘object’’) might hold many
things during its life: open files and network connections, dynamically allocated memory, locks of various
kinds. Killing the variable (‘‘destructing the object’’) will make it surrender these resources.Please get
into the habit of killing off all your variables, even integers, as soon as you are done with them. As we
mention in p. 634, programming in the same style with every data type will ease our transition to templates.

We hav eseen that a variable can be declared and initialized in the parentheses of afor loop or if
statement. We can also do it in the parentheses of awhile loop. An r is born each time we arrive at line
13; it dies each time we reach the} in line 15. There is actually a whole series ofconst variables, each
with the same namer . Contrast thewhile loop in p. 36, in which there is only one variabler whose
value keeps changing.

1 f or (int i = 0; i < 10; ++i) {
2 c out << i << "\n";
3 }
4
5 / /i no longer exists here (in modern versions of C++)

6 i f (const int r = rand()) {
7 c out << "The first random number was " << r << ".\n";
8 } else {
9 c out << "The first random number was zero (" << r << ").\n";

10 }
11
12 //r no longer exists here

13 while (const int r = rand()) {
14 cout << "The random number was " << r << ".\n";
15 }
16
17 //r no longer exists here

1.5 Translate a C Program into C++

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.5 Tr anslate a C Program into C++ 39

40 Before Objects Chapter1

J. H. Conway’s Game of Life

John Horton Conway’s ‘‘Game of Life’’ is the classic example of a ‘‘cellular automaton’’. This soli-
taire game was unleashed upon the world in Martin Gardner’s ‘‘Mathematical Games’’ column inScientific
Americanmagazine.

223 (October 1970): pp. 120−123,The fantastic combinations of John Conway’s new solitaire game ‘‘life’’
224 (February 1971): pp. 112−117,On cellular automata, self-reproduction, the Garden of Eden, and the game ‘‘life’’

The playing board is made of rows and columns of square cells. Each cell is occupied or empty. In the
days before computers, they used checkers on a checkerboard.

Initially, the user draws whatever picture strikes their fancy; three examples are shown below. The
user plays no other rôle. He or she simply sits back and watches the picture evolve.

This happens according to three laws. We will pretend that the playing board is infinite, so we don’t
have to worry about edge cells. Each cell has eight neighbors.

(1) TheLaw of Survival says that the contents of a cell remain unchanged if exactly two of its eight
neighbors are occupied.

(2) TheLaw of Birth says that a cell becomes occupied if exactly three of its eight neighbors are occu-
pied. If the cell is already occupied, it remains occupied.

(3) TheLaw of Death says that a cell becomes empty if less than two or more than three of its eight
neighbors are occupied. If the cell is already empty, it remains empty.

The hard part is that the laws must be applied to each cell simultaneously. We usually leave the pic-
ture untouched and build up the new picture, orgeneration, in a temporary array.

In the initial generation below, the occupied cell in the center of the blinker has two occupied neigh-
bors. Bythe Law of Survival, it remains occupied in the next generation. The other two cells in the blinker
each have one occupied neighbor. By the Law of Death, they become empty in the next generation.The
two empty cells to the left and right of the central one each have three occupied neighbors. By the Law of
Birth, they become occupied in the next generation. All the other cells remain unoccupied, by the Laws of
Survival or Death.

A blinker has period 2. It repeats itself every two generations.

• • •
• • • • • • • • •
• • •

A paw print is a still life.

• • • • • • • • • •
• • • • • • • • • •

A glider oozes to the lower right, exuding pseudopodia. It resumes its original shape after four gen-
erations.

• •
• • • • • • •

• • • • • • • • • • •
• • • • •

To simplify lines 35−42, we print the generations vertically. The charactersX and ‘‘dot’’ represent
the occupied and unoccupied cells.To simplify lines 54−62, the 10× 10 playing board that the user sees is

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

surrounded with a border of permanently unoccupied cells. This means that the underlying array has to be
12× 12.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/life/life.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h> /* for strcmp */
4
5 #define LIFE_YMAX 10
6 #define LIFE_XMAX 10
7
8 i nt main()
9 {

10 int old[LIFE_YMAX + 2][LIFE_XMAX + 2] = { /* sorry y before x */
11 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
12
13 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
14 {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* a glider */
15 {0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0},
16 {0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},
17 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
18 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
19 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
20 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
21 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
22 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
23
24 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
25 };
26 int new[LIFE_YMAX + 2][LIFE_XMAX + 2];
27 int generation;
28 char buffer[256];
29 size_t x, y; /* loop through all elements in the array */
30 int count;
31 size_t x1, y1; /* subscript of each of the 8 neighbors of x, y */
32
33 for (generation = 0;; ++generation) {
34
35 /* Print the matrix. */
36 for (y = 1; y <= LIFE_YMAX; ++y) {
37 for (x = 1; x <= LIFE_XMAX; ++x) {
38 /* sorry y before x */
39 putchar(old[y][x] ? ’ X’ : ’.’);
40 }
41 putchar(’\n’);
42 }
43
44 printf("%d: Press c to continue, q to quit, and RETURN.\n",
45 generation);
46 scanf("%s", buffer);
47 if (strcmp(buffer, "c") != 0) {
48 break;
49 }
50

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.5 Tr anslate a C Program into C++ 41

42 Before Objects Chapter1

51 for (y = 1; y <= LIFE_YMAX; ++y) {
52 for (x = 1; x <= LIFE_XMAX; ++x) {
53
54 /* How many of the 8 neighbors of element x, y
55 are turned on? Don’t count the element itself.*/
56 count = - old[y][x];
57
58 for (y1 = y - 1; y1 <= y + 1; ++y1) {
59 for (x1 = x - 1; x1 <= x + 1; ++x1) {
60 count += old[y1][x1];
61 }
62 }
63
64 /* Law of Survival */
65 if (count == 2) {
66 new[y][x] = old[y][x];
67 }
68
69 /* Law of Birth */
70 else if (count == 3) {
71 new[y][x] = 1;
72 }
73
74 /* Law of Death */
75 else {
76 new[y][x] = 0;
77 }
78 }
79 }
80
81 /* Copy new into old. */
82 for (y = 1; y <= LIFE_YMAX; ++y) {
83 for (x = 1; x <= LIFE_XMAX; ++x) {
84 old[y][x] = new[y][x];
85 }
86 }
87 }
88
89 return EXIT_SUCCESS;
90 }

The above lines 64−77 may be combined to the single expression

91 new[y][x] = count == 2 ? old[y][x] : count == 3;

But don’t do it. C++does not share C’s rage to cram as much code as possible into a single expression.

▼ Homework 1.5a: translate C to C++

Translate the above program from C to C++.We hav e not done classes yet, so do not use class
string . Print the output in a monospace font.

Make these changes:

(1) Rename the program to tell the computer that it is now in C++.

(2) Include iostream instead ofstdio.h . If you don’t hav e iostream , you will have to
includeiostream.h .

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

(3) Includecstdlib instead ofstdlib.h . If you don’t hav ecstdlib , you will have to include
stdlib.h .

(4) Includecstring instead ofstring.h . If you don’t hav ecstring , you will have to include
string.h .

(5) Do all i/o with>> and<<. Theusing namespace std; may not be needed or even allowed.
Do not call any of the C i/o functions:printf , putchar , scanf , fprintf , etc.

(6) Use the C++ comment delimiter// for one-line comments.

(7) You can’t use a keyword as the name of a variable, array, function, or anything else that has a
name. Hereare the 74 C++ keywords.

and continue goto public try
and_eq default if register typedef
asm delete inline reinterpret_cast typeid
auto do int return typename
bitand double long short union
bitor dynamic_cast mutable signed unsigned
bool else namespace sizeof using
break enum new static virtual
case explicit not static_cast void
catch export not_eq struct volatile
char extern operator switch wchar_t
class false or template while
compl float or_eq this xor
const for private throw xor_eq
const_cast friend protected true

(8) Change the macros to variables of data typeconst size_t . And now that they are no longer
macros, let their names be all lowercase. To keep their scope as small as possible, declare them inside the
main function.

(9) Theint ’s that represent numbers (count , x , y , etc.) shouldremainint ’s. But theint ’s that
represent on/off or true/false (the array elements) should becomebool ’s. Set them totrue or false
instead of to1 or 0 in lines 71 and 76. But to keep the picture legible, let the initial values of the array ele-
ments remain1’s and0’s even though they are nowbool ’s in lines 11−24.bool ’s can be initialized with
1’s and0’s:

92 bool a[] = {1, 0, 1, 0}; //= {true, false, true, false};

If your version of C++ has nobool , usebool anyway. Simply insert line 8 ofbuiltin.C in p.
27 (without the comment delimiter) after the#include ’s.

(10) Unfortunately, the arraysnew andbuffer cannot be initialized in their declarations; see p. 36,
¶ (2). Butat least you should move their declarations down to the last possible moment, so they will con-
tain garbage for the shortest possible time.

(11) Every other variable must be initialized in its declaration. Declare the loop counters (y , x , y1 ,
etc.) immediatelyafter the left parenthesis of eachfor loop if your version of C++ permits this.You dis-
covered if it does in Homework 1.4a (pp. 34−35).

(12) Extra credit. Instead of writing to the standard output, write onto the screen by calling the
term.h functions on p. 86.If the game is small enough to fit on the screen, display it in the upper left cor-
ner (‘‘upper-left justified’’). If the game is too big to fit on the screen, display as much of it as will fit.Dis-
play the prompt ("Press c to continue, ...") below the game.

Call themin function to find which is smaller: the number of columns in the game or on the screen.
(Ditto for the number of rows). Includethe header file<algorithm> for min . Like cout , min belongs
to namespacestd ; be sure to sayusing namespace .std ; In some versions of Microsoft Visual C++,
min andmax are named_cpp_min and_cpp_max .

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.5 Tr anslate a C Program into C++ 43

44 Before Objects Chapter1

The two arguments ofmin have to be the same data type (explanation on p. 652). The number of
columns in the game will be asize_t (¶ (8) above); the number of columns on the screen will be an
unsigned (the return type ofterm_xmax). If size_t is not another name forunsigned on your
machine, you will have to cast one of the arguments ofmin to the type of the other.

Warning: the first argument ofterm_get and term_put is the column number, but the first sub-
script of a two-dimensional array is the row number.

For speed, you shouldterm_put a new character only when it is different from the old character at
that location.Call term_get to find out what the old character was. Donot term_put a newline onto
the screen.

For the extra credit, do not bother to display the generation number: it is too much trouble to convert
it into a series of digit characters. But if you feel compelled to display it anyway, construct an object of the
classostringstream on pp. 454−456.Thestr member function of classostringstream returns a
‘‘ string object’’, and thec_str member function of the object returns a pointer to achar .

93 #include <sstream> //for ostringstream
94 using namespace std;
95
96 ostringstream ost;
97 ost << generation << ": Press c to continue, q to quit, and RETURN.";
98 term_puts(x, y, ost.str().c_str());

▲

1.6 Pointers and References
The introduction of object is the take-off point from C into C++. Ultimately this will be a new way

to think about programming.Initially, howev er, our objects will merely be a notation for tying together the
structures, pointers, and functions familiar from C.To visualize an object we will need a structure, a
pointer thereto, and a function to which the pointer will be passed. Here is a review of this machinery.

1.6.1 Review of Pointers

A pointer to a stand-alone variable

We will begin by considering astand-alonevariable, one that is not an element of an array. A vari-
able in memory occupies one or more bytes.The addressof a variable is the address of the byte that has
the lowest address.The value of a variable may change as the program runs, but its address and number of
bytes stay the same.A variable cannot ooze around in memory.

Line 10 outputs the address ofi . Line 13 stores this address into apointer, a variable that can hold
an address. Since the value ofp is the address ofi , we say thatp points to i .

The unary operator* in line 15dereferencesp: it uses the value ofp to get the value of the variable
to whichp points. The* fetches anint from memory, as opposed to adouble or some other data type,
because of the declaration ofp in line 13. The value of the expression*p in line 15 is the value ofi .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/pointer.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt i = 10;
8

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

9 c out << "The value of i is " << i << ".\n"
10 << "The address of i is " << &i << ".\n"
11 << "The size in bytes of i is " << sizeof i << ".\n\n";
12
13 int *p = &i; //Let the value of p be the address of i.
14
15 cout << "The value of i is " << *p << ".\n"
16 << "The address of i is " << p << ".\n"
17 << "The size in bytes of i is " << sizeof *p << ".\n\n"
18
19 << "The value of p is " << p << ".\n"
20 << "The address of p is " << &p << ".\n"
21 << "The size in bytes of p is " << sizeof p << ".\n";
22
23 return EXIT_SUCCESS;
24 }

You can split the above line 13 into

25 int *p;
26 p = &i;

But why would you want to allowp to momentarily hold garbage?

The value of i is 10. All platforms output integers in decimal.
The address of i is 0xffbff194. My platform outputs addresses in hexadecimal.
The size in bytes of i is 4. May be different on other platforms.

The value of i is 10.
The address of i is 0xffbff194.
The size in bytes of i is 4. May be different on other platforms.

The value of p is 0xffbff194.
The address of p is 0xffbff190.
The size in bytes of p is 4. May be different on other platforms.

Here is a diagram ofi andp in memory, showing that the value ofp is the address ofi . There was
room to show only the last two hex digits of the address of each byte. Although my platform putp imme-
diately beforei in memory, our convention will be to draw a pointer to the right of the variable to which it
points; we’ll see why when we talk about constant pointers and pointers to pointers on pp. 51 and 52.The
address and size of the variable will be different on each platform. In particular, an integer and a pointer to
an integer may be different sizes.

i

10

94 95 96 97

p

0xffbff194

90 91 92 93

A pointer to an array element

Three more operators can be applied to a pointer that points to an element of an array:++, -- , and
[] .

Here are two ways to loop through an array. In lines 10−13, the variable i holds the subscript of
each element of the array. To get the value of each element, the subscripting operator[] in line 12 has to
do a lot of arithmetic. It multiplies the subscripti times the width of each element (the number of bytes in

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.1 Review of Pointers 45

46 Before Objects Chapter1

an int .) Thenit adds this product to the address of the first element of the array, yielding the address of
the desired element. The element’s value is then fetched from that address.

Is there a way to avoid this hidden multiplication and addition each time around thefor loop? In
lines 17−20, the pointerp holds the address of each element of the array. The dereferencing operator* in
line 19 does not have to do any arithmetic at all: the address of the desired element is already sitting inp.
This is one of the reasons why C was given pointers in 1970. Is it still relevant? Whenwe write lines
10−13, some contemporary compilers are smart enough to behave as if we had written lines 17−20. Is your
compiler one of them?

As usual, the++p in line 16 meansp = p + 1 . This makesp point at the next array element, not at
the next byte. In low lev el terms, we say that an integer added to a pointer is implicitly multiplied by the
number of bytes in the pointed-to variable. Sinceline 17 declaredp to be a pointer to anint , the++ adds
sizeof (int) to the value ofp.

Other examples of this multiplication are the expressionsa + i anda + n in lines 11 and 17.The
name of an array, unencumbered by a subscript, is a pointer to its first element. The integersi andn are
therefore multiplied by the number of bytes in that element. The addressa + n , for example, would ben
× sizeof (int) bytes from the start of the array. This is the address of the (non-existent) first element
beyond the end of the array.

The subtraction in line 18 yields the distance from the first element to the element thatp is pointing
to. Thisdistance is measured in array elements, not in bytes; it is therefore the subscript of the element that
p is pointing to. In low lev el terms, we say that an the difference of two pointers is implicitly divided by
the number of bytes in the pointed-to variables. Thesubtraction will compile only when both pointers are
declared to point to the same type of variable.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/array.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt a[] = {10, 20, 30};
8 c onst size_t n = sizeof a / sizeof a[0];
9

10 for (size_t i = 0; i < n; ++i) {
11 cout << "a[" << i << "]: address is " << a + i
12 << ", value is " << a[i] << ".\n";
13 }
14
15 cout << "\n";
16
17 for (int *p = a; p < a + n; ++p) {
18 cout << "a[" << p - a << "]: address is " << p
19 << ", value is " << *p << ".\n";
20 }
21
22 return EXIT_SUCCESS;
23 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

a[0]: address is 0xffbff050, value is 10. the start of the array
a[1]: address is 0xffbff054, value is 20. sizeof (int) bytes from start of array
a[2]: address is 0xffbff058, value is 30. 4 * s izeof (int) bytes from start of array

a[0]: address is 0xffbff050, value is 10.
a[1]: address is 0xffbff054, value is 20.
a[2]: address is 0xffbff058, value is 30.

Any pointerp can access the variable to which it is pointing: simply apply the dereferencing operator
*p . A pointer to an array element can also access the neighboring elements with the subscripting operator
[] . p[0] is another way to say*p , the element to whichp is pointing. p[1] , p[2] , p[3] , and p[-1] ,
p[-2] , p[-3] , are the neighbors in each direction. Be careful not to go beyond the ends of the array.

The following program uses this notation to sort an array of integers into ascending order. The strat-
egy is calledbubble sort.Line 11 initializesp to point to the first element of the array. The first time we
execute line 12,p[0] andp[1] are therefore the first two elements. Sincewe want to sort the elements
into ascending order, we hope thatp[0] is less than or equal top[1] . If this is not the case, lines 13−15
swap the values of the two elements.

The second time we execute line 12,p points at the second element of the array. This time,p[0]
andp[1] are the second and third elements. The third time we execute line 12,p points at the third ele-
ment;p[0] andp[1] are the third and fourth elements. Line 12 makes it look like we had a little portable
array namedp that we could superimpose on each pair of elements.It is a considerable notational con-
venience.

When thefor loop in line 11 exhausts itself, the largest number in the array has been borne along to
the last element. The other numbers, however, may still be in disarray, so we hav eto go back to the begin-
ning of the array and start again. That’s why the loop in line 11 is enclosed in the larger loop in line 10; it
decrementsend so we don’t go all the way to the last element again.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/sort.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt a[] = {20, 10, 50, 30, 40};
8 c onst size_t n = sizeof a / sizeof a[0];
9

10 for (int *end = a + n - 1; a < end; --end) {
11 for (int *p = a; p < end; ++p) {
12 if (p[1] < p[0]) { //if p[0] and p[1] in wrong order,
13 const int temp = p[0]; //swap them
14 p[0] = p[1];
15 p[1] = t emp;
16 }
17 }
18 }
19
20 for (int *p = a; p < a + n; ++p) {
21 cout << *p << "\n";
22 }
23
24 return EXIT_SUCCESS;
25 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.1 Review of Pointers 47

48 Before Objects Chapter1

10
20
30
40
50

If C++ did not have the subscripting operator, the above line 12 would have to be

26 if (*(p + 1) < *p) {

The expressionp + 1 is the address of the element after the one to whichp is pointing; the expression
(p + 1) is the value of that element.We would need parentheses to execute the+ before the .

But C++ does have the subscripting operator, so do not write the above line 26. Thep[1] in line 12
is a simpler way to do the same thing. The operator[] does the work of the+ and* . And now that the
two operators are gone, we no longer need the parentheses to make them execute in the correct order. (At
the end of line 12, I wrotep[0] instead of*p for stylistic consistency with the expressionp[1] .)

The same rule applies to an array and a subscript: always write a[i] instead of*(a + i) . The
name of an array is a pointer to the first element of the array, and a subscript can be applied to any pointer
to an array element.

We will turn this function into an ‘‘algorithm’’ on pp. 761−763.

A pointer to a structure

One more operator can be applied to a pointer that points to a structure: the operator-> .

Line 14 creates a structure.A C program would need to saystruct str here (p. 30, line 43) but
we need only thestr . Line 15 accesses the structure fields with the. operator.

Line 17 creates a pointer to the structure. The dereferencing operator* can be applied to any pointer.
But the structure is not an element of an array, so the operators++, -- , or [] cannot be applied to this
pointer.

Let’s walk through the order in which the subexpressions of the(*p).i in line 19 are executed. We
use the pointerp by applying the* operator to it, retrieving to the pointed-to variable. Inthis case, the
variable turns out to be a structure.We use a structure by applying the dot operator which we saw in line
15. The* operator must therefore be applied before the dot. Since the* has lower precedence, we need
the parentheses to make the* go first. See p. 112 for a similar sequence of subexpressions.

But never write the expression(*p).i . The single operator-> in the expressionp->i will do all
the work of the two operators in(*p).i . And now that the two operators are gone, we no longer need the
parentheses to make them execute in the correct order.

Line 22 passesp to a function. We will see on pp. 111−112 that C++ gives us a better notation for
this.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/struct.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 s truct str {
6 i nt i;
7 double d;
8 } ;
9

10 void f(str *p);
11
12 int main()

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

13 {
14 str s = { 10, 3.14}; //don’t need the keyword "struct"
15 cout << s.i << " " << s.d << "\n";
16
17 str *p = &s; //Let the value of p be the address of s.
18
19 cout << (*p).i << " " << (*p).d << "\n"
20 << p->i << " " << p->d << "\n";
21
22 f(p);
23
24 return EXIT_SUCCESS;
25 }
26
27 void f(str *p)
28 {
29 cout << p->i << " " << p->d << "\n";
30 }

10 3.14
10 3.14
10 3.14
10 3.14

▼ Homework 1.6.1a: two ways to simplify the same expression

The following program has an array of structures. The expression(*(a + 2)).d in line 19 is the
field namedd of the structure at subscript 2. It can be simplified in two ways.

(1) changethe+ and* to the operator[]

(2) changethe* and dot to the operator->

Try both. Whichway lets us get rid of the most parentheses? Which way yields the simpler result?

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/simplify.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 s truct str {
6 i nt i;
7 double d;
8 } ;
9

10 int main()
11 {
12 str a[] = {
13 {10, 15.0},
14 {20, 25.0},
15 {30, 35.0}
16 };
17 const size_t n = sizeof a / sizeof a[0];
18
19 cout << (*(a + 2)).d << "\n";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.1 Review of Pointers 49

50 Before Objects Chapter1

20
21 return EXIT_SUCCESS;
22 }

35

▲

1.6.2 Constants,Constant Pointers, andconst_cast

Constants

A variable whose value is not supposed to change should be declaredconst . This designation will
make the program easier to understand and debug.

A constant cannot be assigned to (line 2). It must therefore be initialized at its moment of birth (line
1).

1 c onst int i = 10;
2 i = 20; //won’t compile: can’t assign to a const
3
4 c onst int j; //won’t compile: a const must be initialized

Please use aconst variable instead of a macro. The rules for parentheses are simpler for a variable.

5 #define TAX (610 + 395 + 15) //macro needs parentheses
6 c onst int tax = 610 + 395 + 15; //const doesn’t need parentheses

And a variable can be made local to a function or other block.

7 v oid f()
8 {
9 #define TAX (610 + 395 + 15)

10 const int tax = 610 + 395 + 15;
11 } //The variable tax disappears at this point.
12
13 void g()
14 {
15 //The macro TAX still exists at this point,
16 //but the variable tax does not.
17 }

A pointer can be constant in two different ways.

Constants that are pointers are twice as complicated as plain old constants; those that are pointers to
pointers are four times as complicated. But don’t worry: we will never go beyond two lev els. Pointersto
pointers to pointers are rarely used.

The variable to which a pointer points will be called thetarget variable. The strings in lines 1−2 will
be our target variables. Thediagram shows the first string at address 1000 and the first pointer at address
2000, but these numbers will be different on each platform.

Lines 4−8 show what a pointer can do. Line 5 reads the target variable; line 6 writes it.Since our
pointer can do both, it is aread/write pointer. Line 7 shows that a pointer can access not only the target
variable, but also the target variable’s neighbors. Line8 shows that a pointer can be given a new value. It
now points to a different target.

We now demonstrate the two different types of constant pointers. In the name of a data type, the
keyword const may appear at the beginning (lines 10 and 22) or immediately after any asterisk (lines 16

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

and 22).

In the name of a pointer data type, aconst at the beginning of the name means that the pointer can-
not write its target variable. Inthis case we say that the pointer isread-only. For example, the pointerp1 in
line 10 can be used to read the target variable in line 11, but not to write the target variable or its neighbors
in lines 12 and 13. It can, however, still have its value changed in line 14.It now points to a different tar-
get. (‘‘Read-only’’ refers not to the value of the pointer, but to the what the pointer can do to the value its
target variable.)

Note that a ‘‘pointer to a function’’ cannot beconst in this sense.A function cannot be overwrit-
ten.

In the name of a pointer data type, aconst immediately after an asterisk means that the pointer can-
not be given a new value. It therefore always points to the same target. For example, the pointerp2 in line
16 always points to the targets . It can, however, still read and write the target in lines 17−19.

We hav eseen the two positions where the keyword const can be inserted in the name of a pointer
data type. The two areas of memory in the following diagram correspond to these two positions. Aconst
in the left position means that we cannot use the pointer to change the value of the target variable (the data
in the left part of the diagram).A const in the right position means that we cannot change the value of
the pointer (the data in the right part of the diagram).

A pointer can be madeconst in both ways simultaneously (line 22).

Even with all these various types of constant pointers aimed at it, the target s is still not constant.
Line 29 demonstrates thats can be changed very easily. We just cannot changes by means of the read-
only pointersp1 andp3 .

’h’

1000

s

’e’

1001

’l’

1002

’l’

1003

’o’

1004

’\0’

1005

1000

2000

p

1 c har s[] = "hello";
2 c har t[] = "goodbye";
3
4 c har *p = s; //s means &s[0]
5 c out << *p << "\n"; //Output the ’h’.
6 * p = ’ H’; //Change the ’h’ to ’H’.
7 p[1] = ’E’; //Change the ’e’ to ’E’.
8 p = t ; / /Make p point to t.
9

10 const char *p1 = s; //p1 gives read-only access to s
11 cout << *p1 << "\n";
12 *p1 = ’ H’; //won’t compile: can’t use p1 to change s[0]
13 p1[1] = ’ E’; //won’t compile: can’t use p1 to change s[1]
14 p1 = t ; / /okay
15
16 char *const p2 = s; //p2 must be initialized
17 cout << *p2 << "\n";
18 *p2 = ’ H’; //okay
19 p2[1] = ’ E’; //okay
20 p2 = t ; / /won’t compile: can’t make p2 point away from s
21
22 const char *const p3 = s; //p3 must be initialized because of 2nd const
23 //in line 22
24 cout << *p3 << "\n";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.2 Constants, Constant Pointers, andconst_cast 51

52 Before Objects Chapter1

25 *p3 = ’ H’; //won’t compile because of 1st const in line 22
26 p3[1] = ’ E’; //won’t compile because of 1st const in line 22
27 p3 = t ; / /won’t compile because of 2nd const in line 22
28
29 s[0] = ’ H’; //okay, even with all the const pointers
30 //pointing at s[0].

A pointer to a pointer can be constant in three different ways.

The strings in lines 1 and 2 will be the target variables for our pointersp andq. These pointers are
themselves targets for the pointer to pointerpp . Let’s say thatp andq will be theimmediate targets of
pp , ands andt will be theultimate targets of pp .

Lines 8−10 show what a pointer to pointer can do with differing numbers of asterisks.We access
three areas of memory, corresponding to the three areas in the following diagram. Line 8 writes into the
ultimate target ofpp (the data in the left part of the diagram); line 9 writes into the immediate target ofpp
(the data in the middle of the diagram); line 10 writes intopp itself (the data in the right part of the dia-
gram).

Once again, we can insert the keyword const at the start of the name of a data type, or immediately
after any asterisk. Thusthere are three positions where we can insert the keyword into the name of the type
of a pointer to pointer. The three areas of memory in the following diagram correspond to these three posi-
tions. A const in the left position (lines 12−13) means that the pointer to pointer cannot be used to
change the value of the ultimate target (the data in the left part of the diagram).A const in the middle
position (lines 15−16) means that the pointer to pointer cannot be used to change the value of the immedi-
ate target (the data in the left part of the diagram).A const in the right position (lines 18−19) means that
we cannot change the value of the pointer to pointer itself (the data in the right part of the diagram).

’h’

1000

s

’e’

1001

’l’

1002

’l’

1003

’o’

1004

’\0’

1005

1000

2000

p

2000

3000

pp

1 c har s[] = "hello";
2 c har t[] = "goodbye";
3
4 c har *p = s; //p points to the string s.
5 c har *q = t;
6
7 c har **pp = &p; //pp points to the pointer p in line 4.
8 * *pp = ’H’; //Change the ’h’ to ’H’.
9 * pp = t; //Make p point to a different string.

10 pp = &q; //Make pp point to a different pointer.
11
12 const char **pp1 = &p;
13 **pp1 = ’ H’; //won’t compile: can’t use pp1 to change s[0].
14
15 char *const *pp2 = &p;
16 *pp2 = t ; / /won’t compile: can’t use pp2 to change p.
17
18 char **const pp3 = &p; //pp3 must be initialized
19 pp3 = &q; //won’t compile: can’t make pp3 point away from p

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

A r ealistic example

The following program starts in English mode (line 19), but we can change it to Spanish in line 26.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/language.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 c onst char *const english[] = { //constant in 2 out of 2 ways
8 " Monday",
9 " Tuesday",

10 "Wednesday"
11 };
12
13 const char *const spanish[] = {
14 "Lunes",
15 "Martes",
16 "Miercoles"
17 };
18
19 const char *const *language = english; //constant in 2 out of 3 ways
20
21 cout << "The first days of the week are " << language[0]
22 << " a nd " << language[1] << ".\n"
23 << "The first characters of the first day are "
24 << language[0][0] << " and " << language[0][1] << ".\n\n";
25
26 language = spanish;
27
28 cout << "The first days of the week are " << language[0]
29 << " a nd " << language[1] << ".\n"
30 << "The first characters of the first day are "
31 << language[0][0] << " and " << language[0][1] << ".\n";
32
33 return EXIT_SUCCESS;
34 }

The array in the above line 7 contains three pointers. Because of the rightconst in line 7, the point-
ers always point to the same place. This prevents the following from compiling.

35 //Try to make the first pointer in the array point somewhere else.
36 english[0] = " Bloomsday";

Because of the leftconst in line 7, the pointers give us read-only access to the characters to which they
point. Thisprevents the following from compiling.

37 //Try to use the pointer english[0]
38 //to change the ’M’ in "Monday" to lowercase.
39 english[0][0] = ’ m’;

The variablelanguage in line 19 is a pointer to a pointer, like theargv in line 4 ofsum.c on p.
33. It points to the first element of one or the other array. This first element is a pointer, which is why
language has to be a pointer to a pointer.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.2 Constants, Constant Pointers, andconst_cast 53

54 Before Objects Chapter1

Lines 21−24 demonstrate how language can be used. Since it is a pointer to a pointer, it can be
dereferenced once or twice.Dereferencing it once, with the application of a leading* or a trailing sub-
script, will access a pointer in one of the arrays. Think of this as a journey in the above diagram starting at
pp and following one arrow; we land at a pointer to a character. Dereferencing it twice, with two applica-
tions of these operators, will access a character in one of the strings. Think of this as a journey starting at
pp and following both arrows; we land at a character.

Line 26 demonstrates thatlanguage can be pointed at a different variable. Itwill compile because
of the absence of aconst after the right asterisk in line 19.But language cannot be used to damage the
pointers in the arrays or the characters to which they point. Becauseof theconst after the left asterisk in
line 19, language is read-only with respect to its immediate target, which is a pointer in one of the
arrays. Line42 will not compile.

40 //Try to make the first pointer in one of the arrays
41 //point somewhere else.
42 language[0] = " Bloomsday";

And because of theconst at the start of line 19,language is also read-only with respect to its ultimate
target, which is a character in one of the strings. Line 44 will not compile.

43 //Try to change the ’M’ in "Monday" or ’L’ in "Lunes".
44 language[0][0] = ’ A’;

The first days of the week are Monday and Tuesday.
The first characters of the first day are M and o.

The first days of the week are Lunes and Martes.
The first characters of the first day are L and u.

To get the above line 39 to compile, we would have to remove the leftconst from line 7. To get
line 44 to compile, we would also have to remove the leftconst from 19. But to get lines 39 and 44 to
execute, we have to do even more.

A double-quoted string literal is an array of constants.For example, the"Monday" in the above
line 8 is of typeconst char[7] . Thanks to a loophole in C++, a non-const pointer can to point at a
string literal. This is why line 7 will still compile even without the leftconst . But if we try to use such a
pointer to overwrite the characters, we get undefined behavior.

45 char *const p = "Monday"; //legal but deprecated
46 p[0] = ’ m’; //undefined behavior

To execute lines 39 and 44 correctly, the character arrays must be changed from arrays ofconst
char to arrays ofchar . For example,

47 char monday[] = "Monday"; //The array monday can be overwritten.
48 char tuesday[] = "Tuesday";
49 char wednesday[] = "Wednesday";
50
51 char *const english[] = {
52 monday,
53 tuesday,
54 wednesday
55 };

Subvert a read-only pointer

The pointer in line 2 gives us read-only access to the target variable in line 1. If line 4 tries to use the
pointer to write the target variable, it will not compile.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

The amateur knows how to follow the rules; but the professional knows how to break the rules.With
due caution, the professional can use the pointer as if were notconst by writing theconst_cast in line
5. Thiskind of cast temporarily removes the ‘‘read-onlyness’’ f rom a pointer. (See pp. 63−65 for the other
kinds of cast.) It can be applied to a read-only pointer, but only if the target variable is notconst . If the
target isconst , the program will still compile but its behavior will be undefined. If you’re lucky, it will
blow up.

1 c har s[] = "hello"; //target variable is not const
2 c onst char *p = s; //p normally gives read-only access to s
3
4 * p = ’ H’; //won’t compile: try to change the ’h’ to ’H’
5 * const_cast<char *>(p) = ’H’; //will compile: change the ’h’ to ’H’

Who can point to a const variable?

Only a read-only pointer can point to aconst object:

1 c onst char s[] = "hello";
2
3 c onst char *p = s; //will compile: p is a read-only pointer
4 c har *q = s; //won’t compile: q is a read/write pointer

If the above line 4 were legal, the user could then say

5 * q = ’ H’;

circumventing theconst in line 1.

1.6.3 Type Conversion, including Pointer Conversion

Unsigned integers

An 8-bit integer can hold 256= 28 different values. Now which 256 values should they be?

An integer that we use to hold only non-negative values, starting at zero and working upwards, is
called anunsigned integer. An 8-bit unsigned integer, for example, can count from 0 to 255 inclusive.

binary decimal

11111111 255 = 28 − 1
11111110 254
11111101 253
11111100 252

.

.

.
00000011 3
00000010 2
00000001 1
00000000 0

A 16-bit unsigned integer can count from 0 to 65,535 inclusive.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.3 Type Conversion, including Pointer Conversion 55

56 Before Objects Chapter1

binary decimal

1111111111111111 65,535 = 216 − 1
1111111111111110 65,534
1111111111111101 65,533
1111111111111100 65,532

.

.

.
0000000000000011 3
0000000000000010 2
0000000000000001 1
0000000000000000 0

A 32-bit unsigned integer can count from 0 to 4,294,967,295 inclusive.

binary decimal

11111111111111111111111111111111 4,294,967,295 = 232 − 1
11111111111111111111111111111110 4,294,967,294
11111111111111111111111111111101 4,294,967,293
11111111111111111111111111111100 4,294,967,292

.

.

.
00000000000000000000000000000011 3
00000000000000000000000000000010 2
00000000000000000000000000000001 1
00000000000000000000000000000000 0

A 64-bit unsigned integer can count from 0 to 18,446,744,073,709,551,615 inclusive.

binary decimal

11 18,446,744,073,709,551,615 = 264 − 1
1110 18,446,744,073,709,551,614
1101 18,446,744,073,709,551,613
1100 18,446,744,073,709,551,612

.

.

.
0011 3
0010 2
0001 1
00 0

▼ Homework 1.6.3a: do you have these data types?

Does your C++ have an 8-bit unsigned integer data type?It’s probably the typeunsigned char .
Do you have a 16-bit one? It’s probably the data typeunsigned short .

To find out, use the<climits> macros. (They will be superseded by thenumeric_limits
‘‘ class’’ on pp. 745−747.)

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/cast/char_bit.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <climits> //for CHAR_BIT, UCHAR_MAX, USHRT_MAX

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

4 using namespace std;
5
6 i nt main()
7 {
8 c out
9 << " On my platform, a byte contains " << CHAR_BIT

10 << " b its.\n\n"
11
12 << "On every platform, a char is by definition 1 byte.\n"
13 << "On my platform, the largest number that an unsigned char"
14 << " c an hold is " << UCHAR_MAX << ".\n\n"
15
16 << "On my platform, an unsigned short contains "
17 << sizeof (unsigned short) << " bytes or "
18 << CHAR_BIT * sizeof (unsigned short) << " bits.\n"
19 << "The largest number that an unsigned short can hold is "
20 << USHRT_MAX << ".\n";
21
22 return EXIT_SUCCESS;
23 }

On my platform, a byte contains 8 bits.

On every platform, a char is by definition 1 byte.
On my platform, the largest number that an unsigned char can hold is 255.

On my platform, an unsigned short contains 2 bytes or 16 bits.
The largest number that an unsigned short can hold is 65535.

For 32 bits, try the data typeunsigned with the macroUINT_MAX. For 64 bits, try long
unsigned with the macroULONG_MAX.
▲

Signed integers and the two’s complement representation

An integer that we use to hold negative and non-negative numbers is called asigned integer. A neg-
ative number is usually written with a negative sign (−1). But how can the negative be represented when
the computer’s memory holds only1’s and0’s?

Automobile manufacturers solved this problem a long time ago. In an odometer running backwards,
99999999 represents −1 and99999998 represents −2.

00000003
00000002
00000001
00000000
99999999
99999998
99999997

negative one
negative two
negative three

In the binary world, the moral equivalents of 99999999 and 99999998 are 11111111 and
11111110 . This way of representing negative numbers is called thetwo’s complementnotation. We will
assume our hardware uses it, although other representations are possible.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.3 Type Conversion, including Pointer Conversion 57

58 Before Objects Chapter1

00000011
00000010
00000001
00000000
11111111
11111110
11111101

negative one
negative two
negative three

Does11111111 mean 255 or −1?It depends on whether the 8-bit integer is unsigned or signed.
The range of unsigned values starts at zero and goes up. The range of signed values is centered as nearly as
possible around zero.For an 8-bit signed integer, it goes from −128 to 127 inclusive.

binary decimal

01111111 127 = 27 − 1
01111110 126
01111101 125
01111100 124

.

.

.
00000011 3
00000010 2
00000001 1
00000000 0
11111111 −1
11111110 −2
11111101 −3

.

.

.
10000011 −125
10000010 −126
10000001 −127
10000000 −128 = − 27

The two’s complement notation gives us an easy way to tell if a signed integer is negative. The left-
most bit will be1 for a negative number,0 otherwise. We call it thesign bit.

We actually had no choice when representing −1 as ‘‘all ones’’. Let’s use 8-bit integers to show why.
If we want zero to be00000000 and 1 to be00000001 , and if we want the sum of 1 and −1 to be zero,
then the representation of −1 as ‘‘all ones’’ is forced upon us. No other bit pattern will give us a sum of
zero.

00000001 positive one
+ 11111111 negative one

00000000 zero

Similarly, if we want the sum of 2 and −2 to be zero, the representation of −2 as11111110 is forced
upon us.

00000010 positive two
+ 11111110 negative two

00000000 zero

For a 16-bit signed integer, the range of values goes from −32,768 to 32,767 inclusive.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

binary decimal

0000000001111111 32,767 = 215 − 1
0000000001111110 32,766
0000000001111101 32,765
0000000001111100 32,764

.

.

.
0000000000000011 3
0000000000000010 2
0000000000000001 1
0000000000000000 0
1111111111111111 −1
1111111111111110 −2
1111111111111101 −3

.

.

.
1000000000000011 −32,765
1000000000000010 −32,766
1000000000000001 −32,767
1000000000000000 −32,768 = − 215

For a 32-bit signed integer, the range goes from goes from −2,147,483,648 to 2,147,483,647 inclu-
sive.

binary decimal

01111111111111111111111111111111 2,147,483,647 = 231 − 1
01111111111111111111111111111110 2,147,483,646
01111111111111111111111111111101 2,147,483,645
01111111111111111111111111111100 2,147,483,644

.

.

.
00000000000000000000000000000011 3
00000000000000000000000000000010 2
00000000000000000000000000000001 1
00000000000000000000000000000000 0
11111111111111111111111111111111 −1
11111111111111111111111111111110 −2
11111111111111111111111111111101 −3

.

.

.
10000000000000000000000000000011 −2,147,483,645
10000000000000000000000000000010 −2,147,483,646
10000000000000000000000000000001 −2,147,483,647
10000000000000000000000000000000 −2,147,483,648 = − 231

For a 64-bit signed integer, the range goes from goes from −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 inclusive.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.3 Type Conversion, including Pointer Conversion 59

60 Before Objects Chapter1

binary decimal

0111 9,223,372,036,854,775,807
0110 9,223,372,036,854,775,806
011101 9,223,372,036,854,775,805
011100 9,223,372,036,854,775,804

.

.

.
0011 3
0010 2
0001 1
00 0
11 −1
1110 −2
1101 −3

.

.

.
100011 −9,223,372,036,854,775,805
100010 −9,223,372,036,854,775,806
1001 −9,223,372,036,854,775,807
1000 −9,223,372,036,854,775,808

▼ Homework 1.6.3b: do you have these data types?

Does your C++ have signed integers of 8, 16, 32, and 64 bits?The macroCHAR_BIT is the number
of bits in any type of char , signed or unsigned.Each signed data type has a pair of macros, giving the
minimum and maximum values for that type.

data type minimum maximum

signed char SCHAR_MIN SCHAR_MAX
int INT_MIN INT_MAX
long LONG_MIN LONG_MAX

▲

▼ Homework 1.6.3c: infinite loops

Why do the following loops iterate forever? Fix them.

1 / /Should iterate 11 times.
2 f or (unsigned char c = 10; c >= 0; --c) {
3 / /do something
4 }

5 / /Should iterate UCHAR_MAX + 1 times.
6 f or (unsigned char c = 0; c <= UCHAR_MAX; ++c) {
7 / /do something
8 }

The problem is not limited to the unsigned data types:

9 / /Should iterate CHAR_MAX - CHAR_MIN + 1 times.
10 for (char c = CHAR_MIN; c <= CHAR_MAX; ++c) {
11 //do something
12 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

▲

Integral conversions

The integral data types areint (signed and unsigned, long and short),char (signed, unsigned, and
neither),wchar_t , and bool . They are the built-in data types that are neither fractional nor pointers.
Enumerations are integral in C but not in C++, since they will take ‘‘overloaded operators’’ in C++. In the
following rules, however, enumerations will behave as signed integers.

When converting one data type to another, the values are called thesource anddestination. If the
source and destination types are both integral, the conversion is called anintegral conversion. An integral
conversion from a narrower source type to a wider destination type is called awidening.

(1) In an integral conversion that is a widening, the result is determined by the source type.First, the
bit pattern of the source is copied into the rightmost bits of the destination.Then if the source is unsigned,
the new bits will be all zeroes.We say that an unsigned source iszero-extended.This ensures that a non-
negative value will remain non-negative. Here is a widening from 8 to 32 bits.

11111111 unsigned source is 255
00000000000000000000000011111111 destination, whether signed or unsigned, is 255

If the source is signed, the new bits will be copies of the source’s sign bit. We say that a signed
source issign-extended,and that its sign bit ispropagated.This ensures that a non-negative value will
remain non-negative, and a negative value will remain negative if it possibly can (i.e., if the destination is
signed).

01111111 signed source is 127
00000000000000000000000001111111 destination, whether signed or unsigned, is 127

11111111 signed source is −1
11111111111111111111111111111111 see below

The last destination above will represent −1 if signed, 4,294, 967, 295= 232 − 1 if unsigned. (Mathemati-
cians can take comfort that these two possibilities, seemingly so different, are actually congruent mod 232.)

(2) In an integral conversion that is not a widening, the result is determined by the destination type.
A source that is too big or too small to fit in a signed destination yields an ‘‘implementation defined’’ result.
Otherwise, the bit pattern of the source, or as much of it as will fit, is simply copied into the destination.
Here are two conversions from 32 to 32 bits.

11111111111111111111111111111111 signed source is −1
11111111111111111111111111111111 unsigned destination is4, 294, 967, 295= 232 − 1

11111111111111111111111111111111 unsigned source is4, 294, 967, 295= 232 − 1
???????????????????????????????? signed destination is implementation defined

The last destination above is implementation defined because a signed 32-bit integer cannot hold values
beyond 2,147, 483, 647= 231 − 1.

Here are four conversions from 32 to 8 bits.

11111111111111111111111111111111 unsigned source is4, 294, 967, 295= 232 − 1
11111111 unsigned destination is255= 28 − 1

11111111111111111111111111111111 signed source is −1
11111111 signed destination is −1

11111111111111111111111111111111 signed source is −1
11111111 unsigned destination is255= 28 − 1

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.3 Type Conversion, including Pointer Conversion 61

62 Before Objects Chapter1

11111111111111111111111111111111 unsigned source is4, 294, 967, 295= 232 − 1
???????? signed destination is implementation defined

The last destination above is implementation defined because a signed 8-bit integer cannot hold values
beyond 127= 27 − 1.

Implicit type conversion

Four kinds of conversion can be performed simply by assigning a value of one type to a variable of
another type.We call them implicit conversions, since they can be written without a cast. The last three
are pointer conversions; another pointer conversion will be on p. 486.

(1) Convert between the built-in data types (p. 27). The conversion in line 4 avoids integer division
in line 5 and the resulting truncation.

1 i nt dividend = 22;
2 i nt divisor = 7;
3
4 double d = dividend; //convert int to double
5 double quotient = d / divisor;

(2) Convert theint value0 to any pointer type.

6 i nt *p1 = 0; //convert 0 to "pointer to int"

(3) Convert any pointer type tobool . The result will befalse if the pointer is zero,true other-
wise.

7 i nt i = 10;
8 i nt *p = &i;
9 bool b = p; //convert "pointer to int" to bool

We say that a data type isconvertible to bool if it can be implicitly converted tobool . This convertibil-
ity makes it easy to write a statement that checks if a pointer is zero. The expression in the parentheses of
an if , while , or for is always converted to abool if it is not one already. We can therefore use a
pointer in this context. TheC tests in lines 14 and 17 will continue to work in C++.

10 #include <stdio.h> /* for fopen: C example */
11 #include <stdlib.h> /* for malloc */
12
13 FILE *const fp = fopen("filename", "r");
14 if (fp) { /* convert "pointer to FILE" to bool; true if fopen succeeded */
15
16 char *const p = malloc(10);
17 if (p) { /* convert "pointer to char" to bool; true if malloc succeeded */

(4) Convert any ‘‘pointer to variable’’ to ‘ ‘pointer tovoid * ’’ .

18 int i = 1 0;
19 int *p = &i
20 void *q = p; //convert "pointer to int" to "pointer to void"

A ‘‘pointer to function’’ cannot be converted implicitly to a ‘‘pointer tovoid * ’’ .

21 void f(); //function declaration
22 void (*p)() = f; //pointer to the function
23 //void *q = p; //won’t compile

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

A new notation for a cast

The above conversions are usually performed more easily by casting than by assignment.C++ has
six different notations for casts. Here we will endorse two and reject two; elsewhere we will cover
const_cast (pp. 54−55) anddynamic_cast (pp. 1012−1015).

The C cast in line 4 avoids integer division and the resulting truncation. The C++ cast in line 5 does
the same thing. The expression to be converted must be in(parentheses) and the desired data type in
<angle brackets>. This punctuation is borrowed from the ‘‘explicit template argument’’ on pp. 659−660.

To find every cast in the program, we can now search for the conspicuous word static_cast .
This is one advantage of the C++ cast over the C cast.

1 i nt dividend = 22;
2 i nt divisor = 7;
3
4 double quotient = (double)dividend / divisor; /* C */
5 double quotient = static_cast<double>(dividend) / divisor; //C++

Explicit type conversion

There is one conversion that could be implicit in C but must be explicit in C++.C can convert a
‘‘ pointer tovoid ’’ t o any other type of pointer without a cast; see pp. 68−69.For example, line 3 converts
the return value ofmalloc from ‘‘pointer tovoid ’’ t o ‘‘pointer tochar ’’ .

1 #include <stdlib.h> /* for malloc: C example */
2
3 c har *p = malloc(10); /* convert "pointer to void" to "pointer to char" */
4 i f (p) {

But in C++ astatic_cast is needed to convert a ‘‘pointer tovoid ’’ t o a ‘‘pointer to variable’’. (We
will get rid of themalloc entirely when we donew on p. 394.)

5 #include <cstdlib> //for malloc: C++ example
6
7 c har *p = static_cast<char *>(malloc(10));
8 i f (p) {

A static_cast that prev ents a program from crashing

Lines 10 and 14 of the following program are realistic examples ofstatic_cast . We output a
character if it is printable, or its character code (probably an ASCII code) if it is not.

Line 8 of the following static_cast.C deliberately puts a non-printable bit pattern, ‘‘all ones’’,
into the variablec . Writing the pattern as0xFF or 255 would have giv en us ‘‘all ones’’ only on platforms
where thechar was no wider than 8 bits. Writing the pattern as0xFFFF would have put an implementa-
tion defined result into thechar on platforms where the data typechar is signed and0xFFFF is outside
the range of values for achar . Instead, we took anint zero, guaranteed to be at least as wide as achar ,
and made a photographic negative with the ‘‘bitwise not’’ operator. (We could have written -1 , but the
intent of thischar is to hold a pattern of bits rather than a signed integer.)

Since achar is signed on some platforms, we must take care when passing it to the function
isprint in the following line 10. This function belongs to the C Standard Library (declared in
<ctype.h>), and therefore also to the C++ Standard Library (declared in<cctype>). Theargument of
isprint is anint ; a narrower value will be implicitly widened.

isprint returns a non-zeroint if the character is printable, zero otherwise. It would make more
sense forisprint to returnbool . But isprint was originally written in C, and C has nobool .
Without the!= 0 in line 10, theint return value ofisprint would be implicitly converted tobool ,
causing a warning message on some compilers.

1 / /Excerpt from the header file <cctype>

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.3 Type Conversion, including Pointer Conversion 63

64 Before Objects Chapter1

2 / /(or from another header file included therein).
3
4 i nt isprint(int c);

Although a negative character code might be printable (pp. 1032−1034), we must never giv e a neg-
ative argument toisprint . This function is expected to work only if its argument is the end-of-file indi-
catorEOF(probably −1) or a value in the range of anunsigned char . Any other argument could legally
crash the program.isprint was giv en this latitude so that it could be implemented by the following
array lookup.

isprint verifies that its argument is notEOFand then looks it up in an array. The array has one
element for each value in the range of anunsigned char . The value of each element is non-zero if the
character is printable, zero otherwise.We can now see why the argument ofisprint must beEOFor a
value in the range of anunsigned char . Any other value would be an out-of-range subscript in line 7
and could crash the program.(The && operator will evaluate its right operand only if its left operand is
true; see pp. 13−14.)

5 i nt isprint(int c)
6 {
7 s tatic const int a[] = {0, 0, 0, /* etc. */ };
8 r eturn c != EOF && a[c];
9 }

Let’s assume that the data typechar is an 8-bit signedint on our platform. If the following line 9
gavec directly toisprint ,

10 if (isprint(c) != 0) {

c would be sign extended toint , resulting in a value of −1.

11111111
11111111111111111111111111111111

If EOFwere −1,isprint would mistake this argument forEOF. Even worse, ifEOFwere not −1, this
argument would be outside the range of values for anunsigned char and could crash the program in the
above line 7.

By castingc to unsigned char , line 10 ensures that it will be zero extended toint . The result-
ing value is in the range of anunsigned char and is a legal argument forisprint .

11111111
00000000000000000000000011111111

The expressionc in line 11 is of data typechar , so the preceding<< displays it as a character. But
we don’t want to attempt this in lines 13−17, where the value ofc is known to be unprintable. Instead, line
14 will output the character code ofc as a number in the range of anunsigned char .

To do this requires two casts. Theentire expression in line 14 is of data typeunsigned , so the pre-
ceding<< will display it as a non-negative integer in decimal. First, however, we must castc to
unsigned char to ensure that it will be zero extended when widened tounsigned . (The same double
cast will appear in line 40 ofterminal.C on p. 161.) Lines 15 and 16 show what goes wrong if only one
cast is used; we will have to remember this on pp. 877 and 892.

Line 17 is a fast and dirty way of printing a character code as a non-negative integer. It trims away
all but the bottom 8 bits ofc with ‘‘bitwise and’’. (Theparentheses are required because the precedence of
& is lower than<<; see pp. 24−25.) But the bit pattern0xFF works only if achar is exactly eight bits,
which is precisely the kind of assumption that should not be embedded in our code.Please program with
data types (line 14) not arithmetic (line 17).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/cast/static_cast.C

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

1 #include <iostream>
2 #include <cstdlib>
3 #include <cctype> //for isprint
4 using namespace std;
5
6 i nt main()
7 {
8 c har c = ˜0; //0 is all zeroes; ˜0 is all ones.
9

10 if (isprint(static_cast<unsigned char>(c)) != 0) {
11 cout << "The character is ’" << c << "’.\n";
12 } else {
13 cout << "The character code is "
14 << static_cast<unsigned>(static_cast<unsigned char>(c)) << ".\n"
15 << static_cast<unsigned>(c) << "\n"
16 << static_cast<int>(c) << "\n"
17 << (c & 0xFF) << "\n";
18 }
19
20 return EXIT_SUCCESS;
21 }

The character code is 255. line 14:28 − 1
4294967295 line 15:232 − 1
-1 line 16
255 line 17

Why not avoid the whole problem of sign extension by declaring all our character variables to be
unsigned char ? Well, many of the standard library functions expect arguments that are pointers to
plain oldchar .

1 / /Excerpts from <string.h> in C, <cstring> in C++
2
3 s ize_t strlen(const char *);
4 c har *strcpy(char *dest, const char *source);

We can implicitly convert from unsigned char to char , but not from ‘‘pointer tounsigned char ’’
to ‘‘pointer tochar ’’ . As we are about to see, even an explicit static_cast cannot perform this con-
version.

Dangerous conversions with reinterpret_cast

Certain pointer casts must be marked with a different keyword because they are so dangerous.We
write reinterpret_cast instead ofstatic_cast in the following three situations.

(1) We need areinterpret_cast to convert between pointers to different types of variables.
Line 11 of the following program converts the expressiona from ‘‘pointer to unsigned char ’’ t o
‘‘ pointer tochar ’’ (see p. 81 for another way to do this). Line 14 converts the expression&s from
‘‘ pointer toshort ’’ t o ‘‘pointer tochar ’’ ; it then dereferences the latter to access the firstchar of the
short . This tells us the order of the bytes within theshort , which is of concern when we do network-
ing. TheInternet expects to receive the bytes of ashort in big-endian order.

(2) We need areinterpret_cast to convert between pointers to different types of functions.
The f in line 2 is a pointer to a function that returnsvoid ; thep is a pointer to a function that returnsint .

1 v oid f();
2 i nt (*p)() = reinterpret_cast<int (*)()>(f);

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.3 Type Conversion, including Pointer Conversion 65

66 Before Objects Chapter1

(3) We saw on p. 62 that a pointer to a variable can be implicitly converted to abool . But all other
conversions between a pointer and a non-pointer require areinterpret_cast .

3 #include <cstddef> //for size_t
4
5 i nt i = 10;
6 i nt *p = &i
7
8 s ize_t s = reinterpret_cast<size_t>(p);//convert pointer to non-pointer
9 p = r einterpret_cast<int *>(s); //convert non-pointer to pointer

The data typesize_t should be used for any variable that holds an array subscript, or the number
of elements in an array, or the number of bytes in a block of memory. size_t is therefore the data type of
the return value of the C functionstrlen , the argument of the C functionmalloc , and the value of the
sizeof operator. It ought to be big enough to hold the value of a pointer.

Do not use the data typeint for these purposes: it might not be big enough.(The one exception is
the argv array, which was invented beforesize_t . For this array, the number of elements (argc) has
always been anint .)

size_t is another name forunsigned or unsigned long , depending on the hardware. It is
defined in the header file<stddef.h> in C, <cstddef> in C++. But we usually don’t need to include
these files directly. They are already included by<stdio.h> in C and by<iostream> in C++.

We emphasizesize_t , and its signed counterpartptrdiff_t , because there will be a parallel
pair of typedefs for ‘‘containers’’ in C++: size_type anddifference_type .

One kind of conversion is so dangerous that neither astatic_cast nor areinterpret_cast
will do it. This is a conversion between a ‘‘pointer to function’’ and a ‘‘pointer to non-function’’ (including
a ‘‘pointer tovoid ’’). An example is in line 24 of the following program, which print the address of the
functionf in hexadecimal (or whatever the platform’s conventional address format is).

Line 20 tries to give the address off directly to the<< operator. But the<< in the C++ Standard
Library will not accept a pointer to a function.The only acceptable data type to which the pointer can be
implicitly converted isbool , a substantial loss of information.bool is printed as1 or 0.

Line 22 converts the pointer into asize_t , the integer type that should be big enough to hold it.
Like any integer, a size_t is printed in decimal. But we would like our pointer to print in hexadecimal.
Line 24 therefore casts thesize_t into avoid * .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/cast/reinterpret_cast.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <cstring> //for strlen
4 using namespace std;
5
6 v oid f();
7
8 i nt main()
9 {

10 unsigned char a[] = "hello";
11 cout << "The length is " << strlen(reinterpret_cast<char *>(a)) << ".\n";
12
13 short s = 0 x1234;
14 if (*reinterpret_cast<char *>(&s) == ’\x12’) {
15 cout << "Host is big endian.\n";
16 } else {
17 cout << "Host is little endian.\n";
18 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

19
20 cout << f << "\n"
21 << "The address of f in decimal is "
22 << reinterpret_cast<size_t>(f) << ".\n"
23 "The address of f is "
24 << reinterpret_cast<void *>(reinterpret_cast<size_t>(f)) << ".\n";
25
26 return EXIT_SUCCESS;
27 }
28
29 void f()
30 {
31 cout << "f\n";
32 }

The length is 5.
Host is big endian.
1 line 20: abool prints as1 or 0
The address of f in decimal is 69320. lines 21−22: asize_t prints in decimal
The address of f is 0x10ec8. lines 23−4: avoid * prints in hex on my platform

Casts we will not use

C++ has one cast we will not use, and one we will not use now. The first is the C cast we saw back
on p. 63.

1 double quotient = (double)dividend / divisor;

It is capable of doing anything that astatic_cast or reinterpret_cast can do. In fact, it can do
more. Theconversions in the above line 24 could be written with a single C cast.

2 << (void *)f << ".\n";

But don’t use this cast in C++. It is of no help when we have to search for every place where a cast is per-
formed. Thereis no conspicuous word or combination of punctuation marks.

The other notation for a cast looks like a function.

3 double quotient = double(dividend) / divisor;

It is not really a cast at all; we will see that it is a one-argument ‘‘constructor’’. Lik e the C cast, it is hard to
search for. Furthermore, it can be used only when the name of the destination type is a single word. It can
convert an expression toint , but not tounsigned long or to int * . It is intended for use only in a
‘‘ template’’, where the data type will always have a one-word name.Don’t use it yet. (It will appear in
passing on p. 134.)

1.6.4 Write0 instead ofNULL
A pointer can legally point to three places.

(1) A pointer can point to a variable, including an array element or a structure member.

1 i nt i = 10;
2 i nt *p = &i;

However, a pointer cannot point to a structure bit-field.

(2) A pointer can point to the location after the last element of an array where the next element would
be.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.4 Write 0 instead ofNULL 67

68 Before Objects Chapter1

3 c onst size_t n = 10; //number of elements in the array
4 i nt a[n];
5 i nt *p = a + n; //point to where the element with subscript 10 would be

However, a pointer cannot point to the location before the first element.

(3) A pointer can point to a function, even if the function is ‘‘inline’’ (pp. 97−100).

6 v oid f(); //function declaration
7 v oid (*p)() = f; //Let p point to f.
8
9 (*p)(); //one way to call f

10 p(); //a simpler way to call f
11 f(); //the simplest way to call f (of course)

A pointer that is supposed to not point to any of the above three places should have the value zero, to
ensure that it is not accidentally pointing to one of them. In C, this zero was written as the macroNULL. In
C++, we write it as a plain old0. The0 is an integer, but it can be converted implicitly to a pointer in both
languages.

12 int *p = NULL; /* pointer in C */
13 int *p = 0; //pointer in C++

The definition of NULL in C

How was the macroNULLdefined in C, and why don’t we use it in C++?A first attempt at definition
would be

1 #define NULL 0 /* provisional: doesn’t work yet */

But this runs into trouble when we passNULL to a function whose arguments are not declared. The
printf function, for example, is declared with the ellipsis dots in line 2. Because of the%dand%pfor-
mats in line 4, the first zero must be passed as an integer argument, the second zero (written asNULL) as a
pointer argument. Onereason the data types must be correct is because an integer and a pointer are differ-
ent sizes on some platforms;printf would be confused if we passed the wrong amount of data to it.The
definition ofNULL in the above line 1, however, will make the computer think that the second argument is
an integer. The computer pays no attention to the%formats in the first argument ofprintf , and the ellip-
sis dots are certainly of no help.

2 i nt printf(const char *format, ...); /* declaration in <stdio.h> */
3
4 printf("%d %p\n", 0, NULL); /* pass an int and a pointer */

For this reason,NULL is defined in C as an expression of type pointer:

5 #define NULL ((void *)0)

Now the computer will know that the last argument in the above line 4 is indeed a pointer.

In C++ this is not an issue, because function arguments in that language are almost always declared.
In fact, the only common functions that use ellipsis areprintf andscanf , and their cousinsfprintf ,
sprintf , etc.

Why we don’t use NULL in C++

In both languages, a conversion from one type of pointer to another always requires an explicit cast,
with the one exception discussed below.

1 i nt i = 10;
2 i nt *p = &i;
3 c har *q = (char *)p; /* explicit cast to convert int * to char * */

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

The loophole is that in C, a conversion between avoid * and another type of pointer can be done implic-
itly, with no cast:

4 i nt i = 10;
5 i nt *p = &i;
6 v oid *q = p; /* convert int * to void * */

Now that we know the definition ofNULL, we can see that the above line 12 performs a pointer conversion,
from ‘‘pointer to void ’’ t o ‘‘pointer to int ’’ . The loophole allows line 12 to compile in C without an
explicit cast. But the loophole is closed in C++.Line 12 will not compile in that language unless we
change the definition ofNULLback to zero. The integer zero can be converted, without a cast, to any type
of pointer.

7 #define NULL 0

It would be possible to have two different definitions ofNULL, one for each language, but it’s simpler to
dispense withNULL in C++.

The other type of zero

A zero of data typechar should be written with single quotes and a backslash in both languages.

1 c har c = ’\0’; //a char, not a pointer
2 wchar_t wc = L’\0’; //a wide char, not a pointer

In C, the quotes and backslash are merely helpful documentation to show the intent of the zero.0 is an
integer,’\0’ is a character.

3 v oid f(int i); /* C example: declare a function */
4
5 f (0); /* Call the function in line 3. */
6 f (’\0’); /* Call the same function. */

In C++, however, the quotes and backslash could make the program do something different because of unc-
tion name overloading’’ (pp. 89−94).

7 v oid f(int i); //C++ example: declare two functions with the same name
8 v oid f(char c);
9

10 f(0); //Call the function in line 7.
11 f(’\0’); //Call the function in line 8.

1.6.5 Pass-by-Value vs. Pass-by-Reference
C and C++ have two ways of passing an argument to a function. The most common,pass-by-value,

creates a copy of the value of the argument and passes this copy to the function. The function cannot
change the value of the argument, because the function never receives the argument. Onlya copy falls into
the function’s hands.

To permit a function to change the value of an argument we must performpass-by-reference,in
which the address of the argument, rather than a copy of its value, is passed to the function.Knowing
where the original argument lives, the function can install a new value into it.

The classic example of pass-by-value isprintf , not counting the format string.The classic exam-
ple of pass-by-reference isscanf , again not counting the format string which only coincidentally is passed
by reference.

1 i nt i = 10; /* C example */
2
3 printf("%d\n", i); /* printf can use the value of i but can’t change it. */
4 s canf("%d", &i); /* scanf can change the value of i. */

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.5 Pass-by-Value vs. Pass-by-Reference 69

70 Before Objects Chapter1

Here is the definition of a function whose first argument is passed by value and whose second is
passed by reference.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/byvalue.C

1 #include <iostream> //C++ example
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f(int copy, int *p); //function declaration
6
7 i nt main()
8 {
9 i nt i = 10;

10 int j = 2 0;
11
12 f(i, &j);
13
14 cout << "i == " << i << "\n"
15 << "j == " << j << "\n";
16
17 return EXIT_SUCCESS;
18 }
19
20 void f(int copy, int *p) //function definition
21 {
22 ++copy; //has no effect on i
23 ++*p; //adds 1 to j; means *p = *p + 1
24 }

i == 1 0
j == 2 1

Pass-by-value is usually avoided where we can get away with pass-by-reference.For a deliberate use
of pass-by-value, see lines 75−77 ofdate.h on p. 274.

Read-only pointer arguments

When called from line 12, the functionf has read and write access to the arraya, but read-only
access to the arrayb.

See theconst argument(s) in the declaration ofstrcpy and the other familiar string functions.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/pointer/pointer_argument.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f(int *p, const int *q);
6
7 i nt main()
8 {
9 i nt a[] = {10, 20, 30};

10 int b[] = {40, 50, 60};
11

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

12 f(a, b);
13 return EXIT_SUCCESS;
14 }
15
16 void f(int *p, const int *q)
17 {
18 p[0] = 70; //change the 10 to 70
19 //q[0] = 80; //won’t compile: try to change the 40 to 80
20 }

1.6.6 References

References an alternative notation for pointers

Column 1 creates the variablei , initializes and assigns to it, and outputs its value, address, and size.
Column 2 performs the same operations on the same variable, accessing it via the pointerp. When we put
the address of a variable into a pointer, we must always apply the& operator to the variable. Seeline 7 of
column 2. When we dereference the pointer to get back to the target variable, we must always apply the*
operator to the pointer. Line 9 of column 2 puts 20 intoi .

A reference is another notation for a pointer. Deep inside the machine, the referencer in column 3
is exactly the same as the pointerp in column 2. The pointer and the reference contain the address of the
same variable,i . The only two differences between them are on the surface: in the source code of the pro-
gram.

(1) When we put the address of a variable into a reference, we do not apply the& operator to the vari-
able. Line7 of column 3 appears to be putting the value ofi into r . But r can’t hold anint : it can hold
only an address.We are actually putting the address ofi into r .

(2) When we dereference the reference to get back to the target variable, we do not apply the* oper-
ator to the reference. Line 9 of column 3 appears to be putting 20 intor . But r can’t hold anint : it can
hold only an address.We are actually putting 20 intoi .

Why did they inv ent a way to take the address of a variable without applying& to it, and dereference
a pointer without applying* to it? A hint will come on p. 76, but the real story will have to wait until we
do ‘‘operator overloading’’.

A reference always contains the address of thesamevariable. Ourreferencer is therefore like the
*const pointerp in column 2.

A reference has no memory address of its own. Line13 of column 3 therefore prints the address of
i , not of r .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reference/reference.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt i = 10; int *const p = &i; int& r = i;
8
9 i = 20; *p = 20; r = 20;

10 ++i; ++*p; ++r;
11
12 cout << i << "\n"; cout << *p << "\n"; cout << r << "\n";
13 cout << &i << "\n"; cout << p << "\n"; cout << &r << "\n";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.6 References 71

72 Before Objects Chapter1

14 cout << sizeof i << "\n"; cout << sizeof *p << "\n"; cout << sizeof r << "\n";
15
16 return EXIT_SUCCESS;
17 }

23 line 12: the value ofi
23
23
0xffbff07c line 13: the address ofi
0xffbff07c
0xffbff07c
4 line 14: thesizeof i
4
4

Read-only reference

A read-only reference is just like a read-only pointer.

1 i nt i = 10;
2
3 c onst int *const p = &i;
4 * p = 20; //try to change i to 20: won’t compile due to 1st const in line 3
5
6 c onst int& r = i;
7 r = 30; //try to change i to 30: won’t compile due to const in line 6

The word ‘‘reference’’ now means two different things.

(1) Pass-by-value vs. pass-by-reference:

1 printf("%d\n", i); /* i is passed by value. */
2 s canf("%d", &i); /* i is passed by reference. */

(2) Pointer notation vs. reference notation:

3 i nt i = 10;
4 i nt *const p = &i; //p is a pointer to i.
5 i nt& r = i; //r is a reference to i.

To avoid confusion, we will no longer use the word ‘‘reference’’ in the first sense. Instead, we will
now say

6 printf("%d\n", i); /* i is passed by value. */
7 s canf("%d", &i); /* pass the address of i to the function */

When to use a reference

There are two reasons for passing the address of a variable to a function. Each reason will now hav e
a separate notation.

(1) We want to let the function change the value of a variable; the classic example isscanf . In this
case, let the argument be a read/write pointer to the variable as in C. See the argumentp in line 22.

(2) We want to save time by avoiding the construction, and eventual destruction, of a copy of the vari-
able. Inthis case, let the argument be a read-only reference to the variable. Seethe argumentr in line 22.
In this case, the variable is merely anint . But if the variable was larger, it would be worthwhile to pass it
as a reference.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

If both reasons apply, let the argument be a read/write pointer to the variable.

Deep in the machine, the last two arguments in line 13 are passed the same way. In both cases we are
passing the address of the variable to the function.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reference/pass_int.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid f(int copy, int *p, const int& r);
6
7 i nt main()
8 {
9 i nt i1 = 10;

10 int i2 = 20;
11 int i3 = 30;
12
13 f(i1, &i2, i3);
14
15 cout << "i1 == " << i1 << "\n"
16 << "i2 == " << i2 << "\n"
17 << "i3 == " << i3 << "\n";
18
19 return EXIT_SUCCESS;
20 }
21
22 void f(int copy, int *p, const int& r)
23 {
24 cout << "Arguments are " << copy << ", " << *p << ", " << r << ".\n";
25
26 ++copy; //has no effect on i1
27 ++*p; //add 1 to i2; means *p = *p + 1
28 //++r; //won’t compile: r is a read-only reference
29 }

Arguments are 10, 20, 30.
i1 == 10
i2 == 21
i3 == 30

A r ead/write reference argument is deceptive

A reference argument should almost always be read-only, like the r in the above line 28. It can be a
read/write only when the name of the function clearly indicates that the function changes the value of its
argument.

Here are the only examples we will encounter in this book. All but the last two are from the C++ lan-
guage itself or its standard library.

(1) theoperator++ functions for enumerations on p. 290;

(2) Thesecond argument of theoperator>> function is the variable that receives a new value from
input via the operator>>. (The first argument ofoperator>> and operator<< is also a
read/write reference. In fact, a ‘‘stream’’ argument is always a read/write reference.See pp.
324−326.)

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.6 References 73

74 Before Objects Chapter1

(3) theget member function on p. 329;

(4) theswap algorithm on pp. 648−649;

(5) theadvance algorithm on p. 914;

(6) theput member function of a facet on p. 1048;

(7) my terminal::next member function on p. 158, abolished on p. 966.This function is a stop-
gap measure until we acquire the machinery to do the job correctly.

(8) mydecrement function object on p. 880. The author hopes the name is sufficiently explicit.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reference/readwrite_reference.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 v oid increment(int *p, int& r);
6
7 i nt main()
8 {
9 i nt i = 10;

10 int j = 2 0;
11
12 //Obvious that line 14 can change i,
13 //dangerously unobvious that line 14 can also change j.
14 increment(&i, j);
15
16 cout << "i == " << i << "\n"
17 << "j == " << j << "\n";
18
19 return EXIT_SUCCESS;
20 }
21
22 void increment(int *p, int& r)
23 {
24 ++*p; //means *p = *p + 1
25 ++r; //means r = r + 1
26 }

i == 1 1
j == 2 1

Return the address of a variable from a function

An expression that can be used as the left operand of the assignment operator= is called anlvalue
(pp. 12−13); the L stands for ‘‘left’’. For example, a variable is an lvalue.

1 x = 10;

For reasons we will explain on p. 76, the return value of a function must sometimes be used as an
lvalue. Whenline 17 tries to do this with the expressionf() , howev er, it does not compile.A value that
has been returned by value is not an lvalue.

But a value that has been returned by reference is an lvalue (lines 18 and 19). Deep in the machine,
the functionsg andh both return the address ofi . The return value ofg needs the dereferencing operator
* before it can be used as an lvalue in line 18. The return value ofh in line 19 doesn’t need the asterisk.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

For even more arcane reasons, also to be explained on p. 76, the return value of a function must
sometimes be used as an lvalue without an asterisk.We will therefore declare the return type to be the ref-
erence in line 38 rather than the pointer in line 33.

To qualify as an lvalue, it must also be possible to apply the ‘‘address of’’ operator& to the expres-
sion. Onceagain, theg() in line 22 must have an asterisk before it can be used as an lvalue. (The& and*
in this line can cancel each other out.) Theh() in line 23 needs no asterisk.For an example, see p. 900.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reference/return_int.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt i = 10; //statically allocated so it won’t be destroyed by a return
6
7 i nt f();
8 i nt *g();
9 i nt& h();

10
11 int main()
12 {
13 cout << "f() == " << f() << "\n"
14 << "*g() == " << *g() << "\n"
15 << "h() == " << h() << "\n";
16
17 //f() = 20; //won’t compile
18 *g() = 30; //Change the value of i to 30. Must have the asterisk.
19 h() = 40; //Change the value of i to 40. Don’t need asterisk.
20
21 //cout << &f() << "\n"; //won’t compile
22 cout << &*g() << " " << g() << "\n"; //Print the address of i.
23 cout << &h() << "\n"; //Print the address of i.
24
25 return EXIT_SUCCESS;
26 }
27
28 int f()
29 {
30 return i; //Create a c opy of the value of i and return the copy.
31 }
32
33 int *g()
34 {
35 return &i; //Return the address of i.
36 }
37
38 int& h()
39 {
40 return i; //Return the address of i.
41 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.6 References 75

76 Before Objects Chapter1

f() == 10
*g() == 10
h() == 10
0x21380 0x21380
0x21380

Why did Stroustrup invent references?

Why is it so important to be able to use the return value of a function, without an asterisk, as an
lvalue (line 19 above)? It seems like an unnatural thing to do:

1 x = sqrt(y); //Natural: x is an l value.
2 s qrt(x) = y; //Unnatural: sqrt(x) is not an lvalue. Won’t compile.

But when we perform operator overloading with ‘‘objects’’, we’ll have to do this all the time.Let’s
assume that an object is a variable. We will apply a subscript to an object (v in the following example) just
like we do to an array. We then use the subscripted object as an lvalue:

3 / /Store the number 20 inside the object v at position 10.
4 v [10] = 20;

When we write the above line 4, the computer behaves as if we had written line 5, calling a function with
the admittedly strange namev.operator[] . The subscript in the[square brackets] in line 4 is passed
as the argument to this function:

5 v .operator[](10) = 20; //This is what line 4 actually does.

To make it possible to use the return value as an lvalue,v.operator[] must return an address. (In fact,
the function returns the address within inv where the number 20 is to be stored.) One way to return an
address is as a pointer. If the return type ofv.operator[] were a pointer, we would have to write line 4
as

6 * v[10] = 20;

to make the computer behave as if we had written

7 * v.operator[](10) = 20;

But we want the syntax of line 4 to mimic the familiar syntax of an array. The return type of
v.operator[] is therefore a reference. This permits us to write line 4 without the asterisk.

Never r eturn the address of a non-static local variable.

A non-static local variable evaporates as we return from the function in which it is defined.If we
return its address, we are returning the address of garbage. We should return the addresses of only those
variables that donot evaporate as we return.

The following functions are wrong for the same reason.We now hav e two different notations in
which to write the same mistake in C++.

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt *g();
6 i nt& h();
7
8 i nt main()
9 {

10 cout << "*g() == " << *g() << "\n"
11 << "h() == " << h() << "\n";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

12
13 return EXIT_SUCCESS;
14 }
15
16 int *g()
17 {
18 int i = 1 0;
19 return &i; //i evaporates as g returns.
20 }
21
22 int& h()
23 {
24 int i = 1 0;
25 return i; //i evaporates as h returns.
26 }

A r eference to a structure

The notation for a pointer to a structure is different from the notation for a pointer to a non-structure.
For example, thep->f1 in line 14 of column 2 means(*p).f1 : the operator-> does the work of the
operators asterisk and dot. And now that the expression has only one operator, there is no longer a need for
the parentheses.

Since the notation is so different, here is the original pointer vs. reference example again, this time
with pointers and references to a structure.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reference/structure.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 s truct str {
6 i nt f1;
7 i nt f2;
8 } ;
9

10 int main()
11 {
12 str s = { 10, 20}; str *const p = &s; str& r = s;
13
14 s.f1 = 30; p->f1 = 30; r.f1 = 30;
15 ++s.f1; ++p->f1; ++r.f1;
16
17 cout << s.f1 << "\n"; cout << p->f1 << "\n"; cout << r.f1 << "\n";
18
19 cout << &s << "\n"; cout << p << "\n"; cout << &r << "\n";
20 cout << &s.f1 << "\n"; cout << &p->f1 << "\n"; cout << &r.f1 << "\n";
21
22 cout << sizeof s << "\n"; cout << sizeof *p << "\n"; cout << sizeof r << "\n";
23 cout << sizeof s.f1<<"\n";cout << sizeof p->f1<<"\n";cout << sizeof r.f1<<"\n";
24
25 return EXIT_SUCCESS;
26 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.6 References 77

78 Before Objects Chapter1

The ++ in line 15 of column 1 adds 1 tos.f1 , not to s . The box around the subexpressions.f1
causes thes.f1 to be treated as a unit by the operators outside of it.The++ cannot reach into the box and
single out the sub-subexpressions .

++ s . f1

33 line 17
33
33
0xffbff108 line 19
0xffbff108
0xffbff108
0xffbff108 line 20: the same address
0xffbff108
0xffbff108
8 line 22
8
8
4 line 23
4
4

Pass the address of a structure to a function

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reference/pass_structure.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 s truct str {
6 i nt f1;
7 i nt f2;
8 } ;
9

10 void f(str copy, str *p, const str& r);
11
12 int main()
13 {
14 str a1 = {10, 20};
15 str a2 = {30, 40};
16 str a3 = {50, 60};
17
18 f(a1, &a2, a3);
19
20 cout << "a1.f1 == " << a1.f1 << "\n"
21 << "a2.f1 == " << a2.f1 << "\n"
22 << "a3.f1 == " << a3.f1 << "\n";
23
24 return EXIT_SUCCESS;
25 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

26
27 void f(str copy, str *p, const str& r)
28 {
29 ++copy.f1; //has no effect on a1.f1; means copy.f1 = copy.f1 + 1
30 ++p->f1; //adds 1 to a2.f1; means p->f1 = p->f1 + 1
31 //++r.f1; //won’t compile
32 }

a1.f1 == 10
a2.f1 == 31
a3.f1 == 50

Return the address of a structure from a function

Deep inside the machine, the functionsg andh return the address ofs :

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/reference/return_structure.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 s truct str {
6 i nt f1;
7 i nt f2;
8 } ;
9

10 str s = {10, 20};
11
12 str f();
13 str *g();
14 str& h();
15
16 int main()
17 {
18 cout << "f().f1 == " << f().f1 << "\n"
19 << "g()->f1 == " << g()->f1 << "\n"
20 << "h().f1 == " << h().f1 << "\n";
21
22 g()->f1 = 30; //Change s.f1 to 30. Must use arrow.
23 h().f1 = 40; //Change s.f1 to 40. Must use dot.
24
25 return EXIT_SUCCESS;
26 }
27
28 str f()
29 {
30 return s;
31 }
32
33 str *g()
34 {
35 return &s;
36 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.6.6 References 79

80 Before Objects Chapter1

37
38 str& h()
39 {
40 return s;
41 }

f().f1 == 10
g()->f1 == 10
h().f1 == 10

References to the derived types

There are references to pointers.

1 i nt i = 10; //an int
2 i nt *p = &i //a pointer to the int
3 i nt *& r = p; //a reference to the pointer to the int
4
5 c out << "The address of i is " << r << ".\n" //the value of p
6 << " The value of i is " << *r << ".\n"; //the value of *p (i.e., i)

Another example is in line 17 ofpoint.C in p. 373.

There are references to arrays.

7 i nt a[3] = {10, 20, 30}; //an array
8 i nt (&r)[3] = a; //a reference to the array: () and 3 required
9

10 cout << r[0] << "\n" //the value of a[0]
11 << r[1] << "\n" //the value of a[1]
12 << r[2] << "\n"; //the value of a[2]

There are even references to functions:

13 void f(); //function declaration
14
15 void (&r)() = f; //a reference to the function
16 r(); //Call the function.

But we are never allowed to take the address of a reference. The address might exist, but like an
object behind the event horizon of a black hole, we are never allowed to see it.This is not as strange as it
sounds. We already know many things whose memory address we are not allowed to see.For example, a
literal such as10 or ’A’ has no visible address:

17 const int *p = &10; //won’t compile
18 const char *p = &’A’; //won’t compile

If we do try to take the address of a reference, all we get is the address of the original variable. Line21 out-
puts the address ofi , not the address ofr . r has no address, or at least no address that we can see.

19 int i = 1 0;
20 int& r = i ;
21 cout << &r << "\n"; //Output the address of i.

Since we are not allowed to take the address of a reference, there are no pointers to references, refer-
ences to references, or arrays of references. By definition, an array is a series of elements at equally spaced
memory addresses. But a reference has no visible address, so it cannot be an array element.Later, we will
see an improved array called avector . There will be novector ’s of references, or any other containers
of references.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

▼ Homework 1.6.6a: a cast to a reference

Line 14 ofreinterpret_cast.C on p. 66 casts one type of pointer into another type of pointer.

1 i f (*reinterpret_cast<char *>(&s) == ’\x12’) {

Change it to cast a variable into a reference to another type of variable. (Thisis calledtype punning.)

2 i f (reinterpret_cast<char &>(s) == ’\x12’) {

Does it still work? Isit simpler? Is it easier to understand—which is not at all the same thing? Can you
get used to it? Other examples will be on pp. 655 and 857.
▲

1.7 Enhancementsto Functions

1.7.1 Functionswith No Arguments

1 /* C e xample */
2
3 v oid f(void); /* This function takes no arguments. */
4 v oid f(); /* This function could take any arguments (obsolete). */
5 v oid f(...); /* This function could take any arguments (current). */

In C++, the following line 8 declares a function that takes no arguments. Line9 does the same thing,
but don’t write it until p. 84.

6 / /C++ example
7
8 v oid f(); //This function takes no arguments.
9 v oid f(void); //This function takes no arguments.

10 void f(...); //This function could take any arguments.

1.7.2 Calla C Function from a C++ Program
In real life, a C++ program has to call functions written in other languages. Here is how a C++ pro-

gram can call a function written in C.

A C function and a C++ function cannot be defined in the same file.This implies that a C++ pro-
gram that calls C functions must be split into at least two source files.

A program that comprises two or more source files

Let’s begin with a multi-file program all in the same language. If the same declarations need to be
present at the start of each file, they can be written once and for all in a header file.

A header file might contain statements that are legal to write once but not twice.We might therefore
get error messages if we#include the same header file twice.

1 #include <stdio.h> /* C example */
2 #include <stdio.h>

The same problem would occur even if we#include ’d two different header files

3 #include <stdio.h>
4 #include <another.h>

if another.h contained the line#include <stdio.h> .

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.2 Call a C Function from a C++ Program 81

82 Before Objects Chapter1

The preprocessor directives in line 1, 2, and 6 allow the header file to be compiled only the first time
it is #include ’d in a giv en .C file. Thefirst time the computer reads line 1, the#ifndef is true: no
macro namedFGHhas yet been defined.The computer then reads everything from line 1 to the#endif in
line 6, and the first thing it does in these lines is to define the macro in line 2.(The macro counts as being
defined even though it contains only the null string.) If the header file is ever #include ’d again in the
same.C file, line 1 will now be false. We will skip directly to the#endif , ignoring the entire header file.

The#ifndef trick will be our only use of a macro in C++.Newer versions of the language might
have an easier way to accomplish the same thing, but they are not yet standard.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/sources/fg.h

1 #ifndef FGH
2 #define FGH
3
4 v oid f(); //function declaration
5 i nt g(int i);
6 #endif

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/sources/fg.C

1 #include <iostream>
2 #include "fg.h"
3 using namespace std;
4
5 v oid f() //function definition
6 {
7 c out << "f\n";
8 }
9

10 int g(int i)
11 {
12 return 2 * i ;
13 }

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/sources/main.C

1 #include <iostream>
2 #include <cstdlib>
3 #include "fg.h"
4 using namespace std;
5
6 i nt main()
7 {
8 f ();
9 c out << g(10) << "\n";

10
11 return EXIT_SUCCESS;
12 }

When compiling on Unix we mention only the names of the.C files, not the names of the.h files.

1$ g++ -o ˜/bin/prog main.C fg.C
2$ ls -l ˜/bin/prog
3$ prog

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

f
20

Call C functions from a C++ program

The name of each file tells the computer what language the file is written in.

(1) In Unix, define the C++ functions in files whose names end with uppercase.C , and the C func-
tions in files whose names end with lowercase.c .

(2) In Microsoft Visual C++ and the Project Builder IDE, define the C++ functions in files whose
names end with.cpp , and the C functions in files whose names end with.c .

(3) In Borland Turbo C++, define the C++ functions in files whose names end with.CPP, and the C
functions in files whose names end with.C .

Here is the half that is written in C++.A function must always be declared before it is called. If the
function is written in C, use the funny declarations in lines 6−7.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/callC/main.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 / /These 2 declarations should be written in a header file, and soon will be.
6 extern "C" void f(); //uppercase C in double quotes
7 extern "C" int g(int i);
8
9 i nt main()

10 {
11 f();
12 cout << g(10) << "\n";
13
14 return EXIT_SUCCESS;
15 }

We will probably be calling many C functions. Insteadof writing a separateextern "C" for each
declaration in the above lines 6−7, we can write a singleextern "C" with curly braces.

16 extern "C" {
17 void f();
18 int g(int i);
19 } //no semicolon

Here is the other half of the program, written in C.Thevoid ’s in the parentheses in the declaration
in line 4 and the definition in line 7 are optional in C++ but required in C.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/callC/fg.c

1 #include <stdio.h>
2
3 /* T hese 2 declarations should be written in a header file, and soon will be. */
4 v oid f(void);
5 i nt g(int i);
6
7 v oid f(void) /* function definition */
8 {
9 printf("f\n");

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.2 Call a C Function from a C++ Program 83

84 Before Objects Chapter1

10 }
11
12 int g(int i)
13 {
14 return 2 * i ;
15 }

The -c option tellsgcc that the filefg.c is not intended to be a complete program.It isn’t—it has
nomain function. It is only one file of a larger program.

1$ gcc -c fg.c Create the ‘‘object’’ fi le fg.o .
2$ ls -l fg.o minus lowercase L

3$ g++ -o ˜/bin/prog main.C fg.o Create the executable file˜/bin/prog .
4$ ls -l ˜/bin/prog
5$ prog

f
20

A header file acceptable to both languages

We declared the functionsf andg twice, in lines 5−7 of the above main.C and lines 3−5 offg.c .
Instead of writing the declarations in each file, we should write them once and for all in a header file.

The following header can be included in both of the above files because we restricted ourselves to
features that are legal in both languages.

(1) Commentsare delimited by/* and*/ , not by // .

(2) Functionswith no arguments are declared with an argument list of(void) .

(3) Cfunctions are declared without theextern "C" .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/callC/fg.h

1 #ifndef FGH
2 #define FGH
3
4 v oid f(void); /* The void in parens is optional in C++ but required in C. */
5 i nt g(int i);
6 #endif

We can now change lines 3−5 offg.c to

7 #include "fg.h"

and lines 5−7 ofmain.C to

8 extern "C" {
9 #include "fg.h"

10 }

The above lines 8−10 show the real purpose of theextern "C" with curly braces in the above lines
16−19. Ithas nothing to do with avoiding the repetition of the wordsextern "C" . The real intent is to
banish these words from the lines that declare the functions.What remains on those lines will now be
acceptable to both languages, and can be moved to a header file.The (void) in the header file is permit-
ted in C++ for the same reason: so we can write a declaration acceptable to both languages.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

1.7.3 APortable Interface to the Terminal

We will write a video game to explore object-oriented programming, inheritance, templates, and the
C++ Standard Library. To focus on these imposing topics, we will ignore color, pixels, and sound files.
Our game will treat the screen as a monochrome display of rows and columns of characters, emitting a
monotone beep. Input will come only from the keyboard, not from the mouse.

Each platform—Unix, Microsoft, Borland—provides functions for graphics and other special effects.
Unfortunately, these native functions have different names, arguments, and return types on each platform.
To keep the game independent of platform, we will make no direct calls to these functions. Instead, we will
call the following term_ functions which will call the native functions for us.The term_ functions con-
stitute the platform-independent base upon which the game will be built. They are written in C. Their
header fileterm.h can be included in a C or a C++ file; they can be called from either language.

The functionterm_put in line 15 writes one character at the given (x , y) position on the screen.
The term_puts in line 16 writes a string of characters, not counting the terminating’\0’ , starting at the
given position. Thex ’s are the column numbers; they ’s, the row numbers. Onlyprintable characters can
be written—those for which the C Standard Library functionisprint returns non-zero. All other charac-
ters will cause an error message.For example, the newline and tab characters are unprintable, but there is
never any need to write them on the screen.We can space horizontally and vertically by providing the
appropriatex andy values.

A character that has been written on the screen can be read back withterm_get in line 19. It
returns the character, or a blank if no character has been written there yet.

On every platform, thex ’s go from left to right and they ’s from top to bottom. Both start at zero, so
the origin (0, 0) is at the upper left corner of the screen.The number of columns and rows will be different
on each platform. But on any platform, the functionsterm_xmax and term_ymax in lines 11−12 will
return these numbers. If the number of columns is 80, for example, the legal values of thex arguments will
range from 0 to 79 inclusive. An out of rangex or y will cause an error message.

When representing coördinates that start at zero we will always follow the convention of the C++
Standard Library and use unsigned numbers. This will prevent the coördinates from ever being negative.
Examples in this group of functions are thex andy arguments ofterm_put , term_puts , and
term_get , and the return values ofterm_xmax and term_ymax . A previous example was the
unsigned data typesize_t used for array subscripts (p. 66).

Calls to the functionterm_key in line 23 return the characters typed at the keyboard. Ifev ery char-
acter has already been returned, or before any character has yet been typed, it will return the character
’\0’ . term_key differs from the C functiongetchar in that it always returns immediately, without
waiting for the user to pressRETURN. In other words, it gives us a liv e keyboard.

The functionterm_wait in line 25 pauses for the specified number of milliseconds.term_beep
in line 26 beeps the terminal.

We sav ed the two most importantterm_ functions for last. Before we can do any special effects,
there is always some setup to be done. On some platforms we have to put the screen into graphics mode;
on others, we have to pop up a graphics window. Similarly, there is always some cleanup at the end: we
have to put the screen back into text mode, or make the graphics window disappear.

On every platform, the functionsterm_construct and term_destruct in lines 5 and 6 will
do whatever setup and cleanup are necessary. They must be the first and lastterm_ functions called.The
otherterm_ functions are guaranteed to work correctly only between the calls to these two.

Failure to callterm_destruct may leave your terminal in an unusable state.For example, under
normal conditions every character that we type is echoed onto the screen. But during the interval between
term_construct and term_destruct , this echoing is turned off. To see the characters as they are
typed, we must write them on the screen ourselves (line 32 of the followingmain.C).

In C, it is up to the programmer to make sure that both functions are called once,
term_construct beforeterm_destruct . In C++, the language will pair these function calls for us
when we have ‘‘constructors’’ and ‘‘destructors’’. Seepp. 164−166, 163.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.3 A Portable Interface to the Terminal 85

86 Before Objects Chapter1

For the time being, we will restrict ourselves to having only one terminal. The first step toward lift-
ing this restriction will be on pp. 994−999.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/term/term.h

1 #ifndef TERMH
2 #define TERMH
3
4 /* M ust be called before and after the other term_ functions. */
5 v oid term_construct(void);
6 v oid term_destruct(void);
7
8 /* L egal x values go from 0 to term_xmax() - 1 inclusive.
9 Legal y values go from 0 to term_ymax() - 1 inclusive. */

10
11 unsigned term_xmax(void); /* number of columns of characters */
12 unsigned term_ymax(void); /* number of rows of characters */
13
14 /* Display a character or string on the screen. */
15 void term_put (unsigned x, unsigned y, char c);
16 void term_puts(unsigned x, unsigned y, const char *s);
17
18 /* Return the character at the given position on the screen. */
19 char term_get(unsigned x, unsigned y);
20
21 /* Return immediately with the key the user pressed. If no key was pressed,
22 return immediately with ’\0’. */
23 char term_key(void);
24
25 void term_wait(int milliseconds); /* 1000 milliseconds == 1 second */
26 void term_beep(void);
27 #endif

▼ Homework 1.7.3a: test the terminal interface

Run the following C++ program on your machine to test theterm_ functions.

Lines 10 and 39 set up and clean up the terminal. Lines 11−12 get the dimensions of the screen; lines
14−15 compute the coördinates of the center point.

Line 17 writes an’X’ at this position and 18 reads it back. Line 19 writes the read-back character
next to the original one.You should see the name of the Mexican beer Dos Equis (XX) at the center of the
screen. Line21 writes a string of characters, starting at the upper left corner of the screen.

The term_key function always returns immediately. To wait until a character is typed, we must
call it in the littlewhile loop in lines 25−26.We remain trapped in this loop until we are brave enough to
type a character. This wastes processing power, but is a simple way to get the job done. The expression in
line 25,

c = term_key ()() == ’\0’

executes the same operators (substituting== for !=), in the same order, as the following classic idiom in C.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

c = getchar ()() != EOF

Earlier examples of this idiom were on p. 38.

We break out of thewhile loop when we type a character, and write it onto the screen in line 32.
(Remember, the normal echoing of characters is turned off between the calls toterm_construct and
term_destruct .) Whathappens if you type an unprintable character such as newline or tab?

The code we have just walked through in lines 25−32 is inside of the classic nested pair offor loops
in lines 23−24. It is executed over and over, writing each character we type onto the screen at the next posi-
tion. Whenwe break out with a’q’ , lines 37−38 test the wait and beep.

A C program would have to declare all its variables immediately after the{ in line 9. Our C++ pro-
gram declares its variables when we have values to put into them in lines 11−15 and 18.

For the time being, we are passing a group of variables (x andy) to a series of function calls.The
code will become simpler and faster when they are merged into a single variable (p. 177). Also for the time
being, we need two for loops with two counters (the samex and y) because the screen is two-dimen-
sional. Whenthey are merged into a single variable (called an ‘‘iterator’’), we will be able to loop through
the screen with only one loop and one counter.

The filemain.C is not the complete program.We also need theterm.h file of function declara-
tions, and theterm.c file of function definitions. These two files are in the same directory on the web.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/term/main.C

1 #include <iostream>
2 #include <cstdlib>
3 extern "C" {
4 #include "term.h"
5 }
6 using namespace std;
7
8 i nt main()
9 {

10 term_construct();
11 const unsigned xmax = term_xmax();
12 const unsigned ymax = term_ymax();
13
14 unsigned x = x max / 2; //center of screen
15 unsigned y = y max / 2;
16
17 term_put(x, y, ’X’); //Draw XX at center of screen.
18 char c = t erm_get(x, y);
19 term_put(x + 1, y, c);
20
21 term_puts(0, 0, "Please type printable characters ending with a q.");
22
23 for (y = 1; y < ymax; ++y) {
24 for (x = 0; x < xmax; ++x) {
25 while ((c = term_key()) == ’\0’) {
26 }
27
28 if (c == ’q’) { //quit
29 goto done;

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.3 A Portable Interface to the Terminal 87

88 Before Objects Chapter1

30 }
31
32 term_put(x, y, c); //Echo the character the user typed.
33 }
34 }
35
36 done:;
37 term_wait(1000); //one full second
38 term_beep();
39 term_destruct();
40 return EXIT_SUCCESS;
41 }

▲

List of the three source files that constitute the test program

(1) term.h andterm.c (both online in the same directory on pp. 86−87).They are the only two writ-
ten in C; the other is in C++.

(2) main.C (pp. 87−88)

Select the platform.

The term.c file is written in C. Be sure that you don’t accidentally tell your computer that it’s writ-
ten in C++ by giving it the wrong filename extension. Beforecompiling, uncomment (i.e., remove the
comment delimiters from) exactly one of the following three macro definitions at the top of this file:

1 /* # define UNIX */
2 /* # define MICROSOFT */
3 /* # define BORLAND */

For example, if you were compiling under Microsoft, you would change line 2 to

4 #define MICROSOFT

Make no other change toterm.c . Unix pros can use the-D option ofgcc andg++ instead of uncom-
menting.

Compile under Unix

Seecurses (3curses) athttp://i5.nyu.edu/ ∼ mm64/man/ , or Programming with cursesby
John Strang; O’Reilly & Associates, 1986; ISBN 0−937175−02−1.

http://www.oreilly.com/catalog/curses/

The ‘‘minus uppercaseI dot’’ option tellsgcc andg++ to #include the term.h file in the cur-
rent directory instead of anyterm.h file that might be in other directories.

The -DUNIX= option defines the macroUNIX to be the null string, eliminating the need for the
above uncommenting. Bloomberg people should also give the compiler the option-D_WIDEC_H=to pre-
vent the compiler from including the file/usr/include/widec.h . Remember to use this option
whenever compiling term.c .

The minus lowercasec option tellsgcc to create a.o file instead of an executable file. The minus
lowercase L option tellsg++ to link in the librarylibcurses.a .

1$ gcc -I. -DUNIX= -c term.c Create the object fileterm.o .
2$ ls -l term.o minus lowercase L

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

3$ g++ -I. -o ˜/bin/tester main.C term.o -lcurses
4$ ls -l ˜/bin/tester
5$ tester Run it; but first make sure your terminal is set tovt100 , bit ansi .

If you do not see the twoX’s, set yourTERMenvironment variable tovt100 (lowercase VT one hun-
dred) To do this, Korn shell users should say

6$ echo $TERM See what’s already inTERM.
7$ export TERM=vt100
8$ echo $TERM Verify that we putvt100 into TERM.

C shell users should say

9$ echo $TERM See what’s already inTERM.
10$ setenv TERM vt100
11$ echo $TERM Verify that we putvt100 into TERM.

Then try again.

Compile under Microsoft

Create a ‘‘Win32 Console Application’’. In Microsoft Visual C++ (part of Visual Studio), you have
to create a blank project with no files in it. If you try to modify themain.cpp file of their ‘‘Hello, world’’
program, you get ‘‘unresolved external symbol__CrtDbgReport ’’ .

1.7.4 FunctionName Overloading

An overloaded function name

In a C program, every function has to have a different name.*Lines 17−19 call functions with three
different names to print arguments of different data types:int , char , anddouble .

The printf in line 31 outputs the ASCII code of the character in decimal.The first argument of
printf is declared to be a string. The remaining arguments have no declarations.

1 i nt printf(const char *format, ...); //ellipsis dots

A char argument passed toprintf would therefore be widened toint . If the data typechar were
signed on this platform, the widening would be accomplished by sign extension. For example, an 8-bit
char would appear as a number in the range −128 to 127 inclusive. Line 31 prevents this by casting the
char to unsigned char , which will be widened by zero extension. Now the char will appear in the
range 0 to 255 inclusive. We saw the same cast in C++ in line 14 ofstatic_cast.C on p. 65. The%u
format, without the cast, would not be enough.See what a pain it is to call a function whose arguments are
undeclared?

Line 41 breaks thedouble into its mantissa and exponent: 65=
65

128
× 128= . 5078125× 27.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/foverload/print.c

1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include <ctype.h> /* for isprint */
4 #include <math.h> /* for frexp */
5
6 v oid print_int(int i); /* function declaration */

* One exception: astatic function defined in one.C file could have the same name as a function defined in another
.C file.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.4 Function Name Overloading 89

90 Before Objects Chapter1

7 v oid print_char(char c);
8 v oid print_double(double d);
9

10 int main()
11 {
12 int i = 6 5;
13 char c = ’ A’;
14 double d = 65.0;
15
16 print_int(i);
17 print_char(c);
18 print_double(d);
19
20 return EXIT_SUCCESS;
21 }
22
23 void print_int(int i) /* function definition */
24 {
25 printf("%d\n", i);
26 }
27
28 void print_char(char c)
29 {
30 /* Output the character code of c as a non-negative decimal integer. */
31 printf("%u", (unsigned char)c); /* cast to avoid sign extension */
32 if (isprint((unsigned char)c)) {
33 printf("\t’%c’", c);
34 }
35 printf("\n");
36 }
37
38 void print_double(double d)
39 {
40 int exponent;
41 double mantissa = frexp(d, &exponent);
42
43 printf("%g, mantissa == %g, exponent == %d\n", d, mantissa, exponent);
44 }

65
65 ’A’
65, mantissa == 0.507812, exponent == 7

Our functions have the names in column 1. But other naming conventions are possible: column 2 has
embedded uppercase letters, and column 3 has theprint at the end of the identifier. Some data types
have more than one name:long unsigned vs. unsigned long . Whichever convention we adopt will
have to be consistently enforced.

print_int printInt int_print
print_char printChar char_print
print_double printDouble double_print

print_long_unsigned printLongUnsigned long_unsigned_print
print_unsigned_long printUnsignedLong unsigned_long_print

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

If there are many data types (and there will be), it is just not practical to give a different name to each
function. Andin C++ we don’t hav eto. C++can have sev eral functions with the same name if their argu-
ments are of different data types or if they hav edifferent numbers of arguments. Theshared name is said to
beoverloaded; the functions that share the name are called theoverloadsof the name.

To make our example simpler, we can use the same name for all threeprint functions. Lines
18−21 call different functions, even though they hav ethe same name.

Had there been a function whose argument was ashort , line 21 would have called it. Since there
isn’t, it selects theint print rather than thechar print . The computer prefers conversions that do
not throw away information: promotions, rather than truncations.

The inner cast in line 34 prevents sign extension, like the cast in the previous program. The outer
cast causes the<< to print the value as a decimal integer, not as a character.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/foverload/print.C

1 #include <iostream> //C++ example
2 #include <cstdlib>
3 #include <cctype> //for isprint
4 #include <cmath> //for frexp
5 using namespace std;
6
7 v oid print(int i);
8 v oid print(char c);
9 v oid print(double d);

10
11 int main()
12 {
13 int i = 6 5;
14 char c = ’ A’;
15 double d = 65.0;
16 short s = 6 5;
17
18 print(i); //the function declared in line 7
19 print(c); //the function declared in line 8
20 print(d); //the function declared in line 9
21 print(s); //the function declared in line 7
22
23 return EXIT_SUCCESS;
24 }
25
26 void print(int i)
27 {
28 cout << i << "\n";
29 }
30
31 void print(char c)
32 {
33 //Output character code of c as a non-negative decimal integer.
34 cout << static_cast<unsigned>(static_cast<unsigned char>(c));
35 if (isprint(static_cast<unsigned char>(c)) != 0) {
36 cout << "\t’" << c << "’";
37 }
38 cout << "\n";
39 }
40

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.4 Function Name Overloading 91

92 Before Objects Chapter1

41 void print(double d)
42 {
43 int exponent; //uninitialized variable
44 double mantissa = frexp(d, &exponent);
45
46 cout << d << ", mantissa == " << mantissa
47 << ", exponent == " << exponent << "\n";
48
49 }

65
65 ’A’
65, mantissa == 0.507812, exponent == 7
65

Recall the functionsterm_put andterm_puts in lines 15−16 ofterm.h on p. 86.They needed
different names because they were written in C.To a C++ programmer, the different names would be an
annoying redundancy. The arguments suffice to distinguish the functions.

If you remain unconvinced, consider the ‘‘absolute value’’ f unctions in the C Standard Library. Each
one has to have a different name:abs , labs , fabs , with the recent addition ofllabs , fabsf , and
fabsl . Which one is forfloat ? Which one is fordouble ?

The compiler considers only the number and data types of the function’s arguments, not the data type
of the return value, when deciding which function to call:

1 i nt f(int i); //This pair is okay.
2 i nt f(double d);
3
4 i nt g(int i);
5 double g(int i);
6
7 i nt main()
8 {
9 i nt i = 10;

10 double d = 3.14159265358979323846;
11
12 f(i); //the function declared in line 1
13 f(d); //the function declared in line 2
14
15 g(i); //won’t compile: can’t tell which g to call

The number of arguments, as well as the data type of the arguments, can distinguish two functions
with the same name.

16 void f(int i); //this pair is okay
17 void f(double d);
18
19 void g(int i); //this pair is okay
20 void g(int i, int j);
21
22 void h(int i, double d); //asking for trouble
23 void h(double d, int i);
24
25 int main()
26 {
27 int i = 1 0;

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

28 double d = 3.14159265358979323846;
29
30 f(i); //the function declared in line 16
31 f(d); //the function declared in line 17
32
33 g(i); //the function declared in line 19
34 g(i, i); //the function declared in line 20
35
36 h(i, d); //the function declared in line 22
37 h(d, i); //the function declared in line 23
38
39 h(i, i); //won’t compile: can’t tell which h to call
40 h(d, d); //won’t compile: can’t tell which h to call

Function name overloading plays three important rôles in the C++ Standard Library. It lets us do i/o
without the%formats ofprintf andscanf (pp. 349−350). It lets us establish a different pair of mem-
ory allocation and deallocation functions for each data type (pp. 415−419).It is the hidden machinery for
‘‘ dispatching’’ the different categories of iterators in the Standard Template Library (p. 915).

‘‘ Intersection of sets of functions’’

If a feature is so unusual or unclear that to understand it you need to consult a
‘‘ language lawyer’’—an expert in reading language definitions—don’t use it.

—Brian W. Kernighan & Rob Pike, The Practice of Programming, p. 191

The rules for deciding which function to call are complicated. My advice is to use the same name
only for functions whose arguments are so different that you never hav eto consult the rules.

Let’s see how line 14 decide which function to call. First, the function in line 8 is disqualified
because the second argument in line 14 cannot be converted to the data typeint * without an explicit
cast.

Then we find the function that best matches the first argument in line 14, or the ones that are tied for
being the best match. The function in line 8 would be the best match, but it has already been disqualified.
We settle for the functions in lines 5 and 6, and draw a circle around them.They are better than the one in
line 7, which would require ashort -to-int promotion followed by anint -to-double conversion.

Next we consider the second argument in line 14. It can be promoted to theint in lines 6−7, or
truncated to thechar in line 5. We prefer promotion because no information is lost, and indicate this by
drawing the second circle.

For each argument, we form the set of functions that best match the argument. Ifthe intersection of
the sets is exactly one function, then that function is called. Otherwise, we get an error message.

1st arg 2nd arg

5 76

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/foverload/intersection.C

1 #include <iostream>
2 #include <cstdlib>

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.4 Function Name Overloading 93

94 Before Objects Chapter1

3 using namespace std;
4
5 v oid f(int i, char c);
6 v oid f(int i, int j);
7 v oid f(double d, int i);
8 v oid f(short s, int *p);
9

10 int main()
11 {
12 short s = 1 0;
13
14 f(s, s); //call the function declared in line 6
15 return EXIT_SUCCESS;
16 }
17
18 void f(int i, char c) {cout << "int char\n";}
19 void f(int i, int j) {cout << "int int\n";}
20 void f(double d, int i) {cout << "double int\n";}
21 void f(short s, int *p) {cout << "short int *\n";}

int int

1.7.5 DefaultValues for Function Arguments

Default value for a function argument

Here is another example of function name overloading. Theoct , dec , and hex in lines 23, 25, and
27 are i/o manipulators, like the endl on p. 26. They are invisible, but outputting them causes all subse-
quent integers output to the same destination to be written in the specified base (pp. 350−351).

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/default/overload.C

1 #include <iostream> //for cout, cerr, <<, oct, dec, hex
2 #include <cstdlib>
3 using namespace std;
4
5 v oid print(int n, int base);
6 v oid print(int n);
7
8 i nt main()
9 {

10 int i = 2 55;
11
12 print(i, 10); //the function in line 5
13 print(i, 8); //the function in line 5
14 print(i, 16); //the function in line 5
15 print(i); //the function in line 6
16
17 return EXIT_SUCCESS;
18 }
19
20 void print(int n, int base)
21 {

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

22 if (base == 8) {
23 cout << oct << n << "\n";
24 } else if (base == 10) {
25 cout << dec << n << "\n";
26 } else if (base == 16) {
27 cout << hex << n << "\n";
28 } else {
29 cerr << "base " << base << " must be 8, 10, or 16\n";
30 exit(EXIT_FAILURE);
31 }
32 }
33
34 void print(int n)
35 {
36 print(n, 10); //call-through to the function in line 20
37 }

The function in line 34 is merely acall-through: a function that does all its work by calling another
one.

255 line 12: base 10
377 line 13: base 8
ff line 14: base 16
255 line 15: base 10

But we do not have to bother with the call-through in the above line 34. A simpler way to get the
same effect is to provide a default value for the last argument in the following line 5. The default value
must be written in the function declaration in line 5, not in the function definition in line 19.

Only trailing arguments can have a default value. Inother words, every argument with a default
value must come to the right of every argument without a default value. WhenI write a new function, this
influences the order in which I declare the arguments. Iput an argument at the end of the list if I think it
may have a default value in the future.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/default/default.C

1 #include <iostream> //for cout and <<
2 #include <cstdlib>
3 using namespace std;
4
5 v oid print(int n, int base = 10); //only one print function
6
7 i nt main()
8 {
9 i nt i = 255;

10
11 print(i, 10);
12 print(i, 8);
13 print(i, 16);
14 print(i);
15
16 return EXIT_SUCCESS;
17 }
18
19 void print(int n, int base)
20 {

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.5 Default Values for Function Arguments 95

96 Before Objects Chapter1

21 if (base == 8) {
22 cout << oct << n << "\n";
23 } else if (base == 10) {
24 cout << dec << n << "\n";
25 } else if (base == 16) {
26 cout << hex << n << "\n";
27 } else {
28 cerr << "base " << base << " must be 8, 10, or 16\n";
29 exit(EXIT_FAILURE);
30 }
31 }

255 line 11: base 10
377 line 12: base 8
ff line 13: base 16
255 line 14: base 10

Bound at compile time, evaluated at runtime

The default value does not have to be a constant. Ifthe default value is a variable or an expression
containing variables, the variables are bound at compile time and evaluated at runtime.

In the following example, ‘‘bound at compile time’’ means that when the function declared in line 7
is called with one argument, the default argument will be thedefault_base whose declaration has been
seen before line 7: the variable in line 6, not the one in line 12.‘‘ Evaluated at runtime’’ means that the
default value used in line 14 will be the value ofdefault_base as line 14 is executed: the value in line
11, not the one in line 6.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/default/bound.C

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt default_base = 10;
7 v oid print(int n, int base = default_base);
8
9 i nt main()

10 {
11 default_base = 16; //Change value of variable declared in line 6.
12 int default_base = 8; //Create another variable with the same name.
13
14 print(255); //variable declared in line 6, with value assigned in line 11.
15 return EXIT_SUCCESS;
16 }
17
18 void print(int n, int base)
19 {
20 if (base == 8) {
21 cout << oct << n << "\n";
22 } else if (base == 10) {
23 cout << dec << n << "\n";
24 } else if (base == 16) {
25 cout << hex << n << "\n";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

26 } else {
27 cerr << "base " << base << " must be 8, 10, or 16\n";
28 exit(EXIT_FAILURE);
29 }
30 }

ff base 16

1.7.6 InlineFunctions
This program has a chunk of repeated code: lines 9 and 11 have the same computation for computing

the average of two integers.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inline/outline.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt i = 10;
8 i nt j = 20;
9 i nt k = (i + j) / 2; //Let k be the average of i and j.

10
11 cout << (j + 40) / 2 << "\n";
12 return EXIT_SUCCESS;
13 }

30

One way to eliminate the repetition in the above lines 9 and 11 is with a macro. But macros are dep-
recated in C++ because they are so different from the rest of the language in their definition and usage.

For example, whitespace is optional in front of every left parentheses in C and C++ (p. 101).The
one exception is in front of the first left parentheses in line 5, where whitespace is forbidden.If we had
whitespace there, we would be defining a macro with no arguments.

For another example, it is never necessary to parenthesize an individual variable in C or C++.The
one exception is in thereplacement text of a macro definition—the string(((a) + (b)) / 2) in line
5. In a replacement text, each argument of the macro must be parenthesized. (These are the pairs around
thea andb.) Theentire replacement text must also be parenthesized if it consists of more than one token.

More macro anomalies are on pp. 649−652, where we consider another alternative to a macro: a
‘‘ template function’’.

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inline/macro.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 #define AVERAGE(a, b) (((a) + (b)) / 2)
6
7 i nt main()

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.6 Inline Functions 97

98 Before Objects Chapter1

8 {
9 i nt i = 10;

10 int j = 2 0;
11 int k = AVERAGE(i, j);
12
13 cout << AVERAGE(j, 40) << "\n";
14 return EXIT_SUCCESS;
15 }

A function is a much nicer notation for eliminating the repetition:

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inline/function.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt average(int a, int b); //function declaration
6
7 i nt main()
8 {
9 i nt i = 10;

10 int j = 2 0;
11 int k = a verage(i, j);
12
13 cout << average(j, 40) << "\n";
14 return EXIT_SUCCESS;
15 }
16
17 int average(int a, int b) //function definition
18 {
19 return (a + b) / 2; //3 fewer pairs of parentheses than line 5 of macro.C
20 }

The macro has no effect on the executable program’s size and speed, but the function makes it
smaller (good) and slower (bad).Paradoxically, the loss of speed is most galling when the body of the
function takes very little time.For example, imagine that it takes a millionth of a second to call the func-
tion, a millionth to execute its body, and a millionth to return. Then we’re spending fully two-thirds of our
time in transit.

To retain the original speed when using the function notation, make the functioninline. Combine the
function declaration and definition, write them where the declaration used to go, and add the keyword
inline .

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inline/inline.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline int average(int a, int b) //function declaration and definition
6 {
7 r eturn (a + b) / 2;
8 }
9

10 int main()

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

11 {
12 int i = 1 0;
13 int j = 2 0;
14 int k = a verage(i, j);
15
16 cout << average(j, 40) << "\n";
17 return EXIT_SUCCESS;
18 }

When we write the above program, the computer behaves as if we had written the original program
outline.C . There are no longer any function calls or returns. It behaves as if we wrote the entire body
of the inline function,(a+b)/2 , in place of each call to the function.

In greater detail, line 14 of the above inline.C behaves as if we had written lines 19−22.The
temporary variablesa, b, and retval are destroyed after line 22.

19 int a = i ; / /a and b are the arguments of the inline function
20 int b = j ;
21 int retval = (a + b) / 2; //(a+b)/2 is the body of the inline function
22 int k = r etval;

For extra speed, most computers would then ‘‘optimize’’ the a, b, and retval out of existence, leaving
line 14 as if we had written

23 int k = (i + j) / 2 ;

Only a small function of one or two statements should be inline. If a ten-page function was inline
and we called it in ten different places, we would be inserting 100 pages into our program.Remember that
excessive size can slow down a program because of slower loading and more frequent paging.

Inline functions are static

A global variable is one that is defined outside the body of any function. If a global variable is
defined (not merely declared) in a header file, we will get a ‘‘multiply defined’’ error if the header file is
included in more than one.C file of the same program.We can fix this by declaring the variable to be
static. Themultiple definitions will still be there, but they won’t interfere with each other.

1 / /Declaration of non-static variable: can go in header file even if
2 / /the header file is included in more than one .C file of the same program.
3 extern int i;
4
5 / /Definition of non-static variable: cannot go in header file that is
6 / /included in more than one .C file ofthe same program.
7 i nt i = 10;
8
9 / /Definition of static variable: can go in header file even if

10 //the header file is included in more than one .C file of the same program.
11 static int i = 10;

The same rules apply to a function.If a non-static function is defined (not merely declared) in a
header file, we will get a ‘‘multiply defined’’ error if the header file is included in more than one.C file of
the same program.That’s why we usually write only the function declaration, not its definition, in a header
file. But an inline function is static by default, so it can be defined in a header file. The multiple definitions
will not interfere with each other.

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.7.6 Inline Functions 99

100 Before Objects Chapter1

An even simpler example of an inline function

—On the Web at
http://i5.nyu.edu/ ∼ mm64/book/src/inline/stark.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nline int maxwindowsize() {return 100;}
6
7 i nt main()
8 {
9 c out << maxwindowsize() << "\n";

10 return EXIT_SUCCESS;
11 }

The above line 9 behaves as if we had written

12 cout << 100 << "\n";

100

Why would anyone write a function that merely returns the value of a variable or literal?We’l l see
when we do classes and private data members.

1.8 Spacingand Indentation

Spacing rules

A group of one or more consecutive blanks, tabs, and/or newlines is calledwhitespace.There is one
rule about where whitespace is prohibited, and one rule about where it is required. These rules are stated in
terms oftokens,which are the words, numbers, quoted characters or strings, operators, or other punctuation
marks that make up the source code of the program.The tokens fall into two groups, alphanumeric and
non-alphanumeric. Hereare examples of both kinds.

alphanumeric tokens non-alphanumerictokens

main 10 + [
int 010 -]
void 0x10 . ?
const 10U -> :
sizeof 10L ++ ::
if 10UL == ;
for 10.0 *= ,
typedef 10.0F &= {
extern 10.0L && (
cout 10.0e5 << <
i 1 0.0e5F <<= ’A’
my_func 10.0e5L "a quoted string"

Here are the spacing rules.

(1) Whitespace is prohibited inside a token. Don’t try to write

1 ma i n
2 c o ut
3 < <

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

4 10 e 5

A comment delimiter is not a token. Even so, do not write

5 / / bad comment delimiter
6 / * b ad opening comment delimiter */
7 /* b ad closing comment delimiter * /

(2) Whitespace is required between two consecutive tokens that would otherwise be mistaken for a
single token or a comment delimiter. There are three cases.

(2a) If the two tokens are alphanumeric, whitespace is always required between them.For example,
whiespace is required between theint and thei in line 9. If we forget the whitespace, line 9 might still
compile (thanks to line 8) but it would have a different meaning.

8 i nt inti = 10;
9 i nt i = 20;

(2b) If the two tokens are non-alphanumeric, whitespace is required between them only in the follow-
ing exceptional combinations. The first four are present in both languages; the rest are new in C++.

With no space in line 10 between the ‘‘plus’’ and the ‘‘positive’’ , the computer would read the++ as
an increment and the line would not compile.With no space in line 11 between the plus and the increment,
the computer would read the+++ as an increment and an addition: it always thinks that the leftmost token
is the longest one. The line would still compile, but it would have a different meaning.With no space in
line 14, the computer would think that the// was a comment delimiter. With no space in lines 15−16, the
computer would think that the leftmost two colons were the global scope operator and the lines would not
compile. Thefunction declarations in lines 17−19 have a default value but no name for each argument.
Without the space in line 17, the computer would read the*= as the multiply-and-assign operator.

10 a = b + +c; //"b plus positive c"; ditto for "b minus negative c"
11 a = b + ++c; //the computer would read a = b +++c; as a = b ++ +c;
12 a = b & &c;
13 a = b / *p;

14 quotient = dividend / /* comment */ divisor;
15 label: ::f(); //unary :: is the global scope operator
16 a ? b : ::c;
17 void f(int * = 0); //this argument is a pointer
18 void f(const int & = 0); //this argument is a reference
19 void f(vector<int> = v); //this argument is a template
20 vector<vector<int> > v; //nested template
21 b = operator< <int>(10, 20); //explicit template argument

(2c) If the two tokens are alphanumeric and non-alphanumeric, in either order, whitespace is required
between them in only one pathological case. See the definition of the macro with arguments in p. 97.

(3) White space is optional everywhere else: between two non-alphanumeric tokens (with the excep-
tions in ¶(2b)), or between an alphanumeric and a non-alphanumeric token (with the exception in ¶ (2c)).
For example, both of the following are lexically correct:

22 if (i == j) { //easy to read
23 if(i==j){ //harder to read

(4) The above rules do not apply to preprocessor lines: those that start with#. Type them exactly the
way I do.

(5) Although the rules ofdo not require it, be consistent or the user will think that the source code
has been corrupted.

24 a + b / /good

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.8 Spacing and Indentation 101

102 Before Objects Chapter1

25 a+b //almost as good
26 a+ b / /annoying
27 a +b //annoying

(6) Although the rules ofdo not require it, space your punctuation as in English. Put a space after a
comma, but none before it. Put no space before a semicolon. Put no space after a(or before a) .

Indentation rules for C or C++

A control structure is a for or while loop, if or else , etc. If the body of a control structure
contains only one statement, the curly braces around it are optional. But pretend you never heard me say
that. Iwant you to always write the pairs of{ } around the body of a control structure.The { goes at the
end of the line immediately before the body, and the matching} goes at the start of the line immediately
after the body. The} at the end of afor , while , and if should always be on a line by itself.

1 f or (;;) {
2 body
3 }
4
5 while () {
6 body
7 }
8
9 do {

10 body
11 } while ();
12
13 if () {
14 body
15 }
16
17 if () {
18 body
19 } else {
20 body
21 }
22
23 class c {
24 private members
25 public:
26 public members
27 };

(1) Do not indent the following lines at the beginning of every program.

1 i nt main()
2 {

Similarly, do not indent the first line of the definition of any other function nor the{ line immediately
below it.

3 v oid f()
4 {

(2) If a line ends with a{ , then the following line should be indented one tab stop farther (e.g., lines
7−8, 8−9, 10−11, 15−16, 20−21 below). If a line begins with a} , then it should be indented one tab stop
less than the previous line (e.g., lines 11−12, 12−13, 17−18, 21−22, 24−25). If neither of these rules apply,
simply indent the line to the same tab stop as the previous line (e.g., lines 9−10, 13−15, 16−17, 18−20,

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

22−24). Ifyou did everything right, the} at the end of each function will not be indented.

1 / /Print the end of the Beatle’s "She Loves You".
2 #include <iostream>
3 #include <cstdlib>
4 using namespace std;
5
6 i nt main()
7 {
8 f or (int i = 1; i <= 2; ++i) {
9 c out << "She loves you\n";

10 for (int y = 1; y <= 3; ++y) {
11 cout << "Yeah!\n";
12 }
13 }
14
15 for (i = 1; i <= 3; ++i) {
16 cout << "With a love like that\n";
17 cout << "You know you should be glad.\n";
18 }
19
20 for (i = 1; i <= 10; ++i) {
21 cout << "Yeah!\n";
22 }
23
24 return EXIT_SUCCESS;
25 }

(3) The above rules for{ and} cancel each other when writing an empty loop:

26 //Empty loop to waste time if you have no sleep function.
27 for (int i = 0; i <= 30000; ++i) {
28 }

(4) If a statement does not fit on one line, indent the continuation line(s) one more tab stop than the
first line:

29 cout << "With a love like that\n"
30 << "You know you should be glad.\n";

31 cout << month << "/" << day << "/" << year << "\n";
32
33 cout << month << "/" << day << "/" << year
34 << " " << h our << ":" << minute << ":" << second << "\n";
35
36 cout << month << "/" << day << "/" << year
37 << " " << h our << ":" << minute << ":" << second
38 << " " << s tar_date << " " << warp_factor << "\n";

(5) Tab stops must be at equal intervals. Any distance is okay, as long as you use the same distance
for each tab stop.Indent with tabs, not blanks.

39 for (int i = 0; i < 10; ++i) { //good
40 for (int j = 0; j < 10; ++j) {
41 for (int k = 0; k < 10; ++k) {
42 cout << i << ", " << j << ", " << k << "\n";

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

Section 1.8 Spacing and Indentation 103

104 Before Objects Chapter1

43 }
44 }
45 }

46 for (int i = 0; i < 10; ++i) { //bad
47 for (int j = 0; j < 10; ++j) {
48 for (int k = 0; k < 10; ++k) {
49 cout << i << ", " << j << ", " << k << "\n";
50 }
51 }
52 }

printed 5/10/14
10:14:10 AM

All rights
reserved ©2014 Mark Meretzky

