Before Objects

1.1 Introduction: C++ as a superset of C

Es ist das dudnste Los einer physikalischen Thepwenn sie selbst zurufstel-
lung einer umfassenden Theorie deegWeist, in welcher sie als Grenzfall weit-
erlebt.

The fairest destinof any physical theory is to point theay to the introduction of
a nmore comprehengg theory in which it lives on as aimiting case.

—Albert Einstein Relativity: the Special and the General The@918), Chapter 22

C++ is a superset of C: it hagegything that C has, plus mor&€orversely, C is a sibset of C++, in
which it lives on as aiimiting case. Here are avierepresentatie words from each language, sting C
nestled snugly within C++.

C++

C
#include class
main operator
int new
for virtual
struct throw
typedef template

But it's not really this simple. C++ has better altermegifor mary of the characteristic features of
C, including#define , malloc andfree , and the input and output functions in the C Standard Library
A better diagram would exclude these old war horses from C++.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

2 Before Objects Chapter1

C++
C
#include class
main operator
int new
for virtual
struct throw
typedef template
0| #define
0| printf
superseded in C+%];‘Fg;r;]t{f
B scanf
0| malloc

I know that the reader is eager to learn about objects. But before we do, Chapter Ivevith ha
present the e machinery for input and output. After all, if we cado autput, we cart’even tell if our
program is running. This chapter will also round up all the other pre-object topics ofGheapter 2 will
introduce objects and thevill occupy the rest of the book.

In C, i/o is performed by passing arguments to a function.

printf("%d %d %d\n", i, j, K); [* C example */
In C++, i/o is performed by giving operands to an operator.

cout<<i<<""<<j<<""<<k<<"\nY [IC++ example

In C, the operators were used only for arithmelicC++ they will have many more applications, including
i/o and formatting, dynamic memory allocation, and data structure adee$act, all of the glamorous,
high-profile features of C++ will ultimately be written in terms of operat®¥e terefore begin with a
review of operators, operands, and expressions.

1.2 Expression Evaluation

The rules for edluating an expression are the same for C and C++. The gaps where there are no
rules are also the same.

Operators and their arity
An operator is a symbol that performs an operation.

+ add

- subtract
* multiply
[divide

The walues that are added, subtracted, or otherwise operated upon, aremaiéadls. The number of op-
erands is called the operatarity, a term derved from the vords unarybinary, ternary Here are a f&
examples.

The addition operator takesdwperands; we therefore say it iBiaary operator.
a+b

The “negadion operator’(negaive sgn) takes one operand; it isiaary operator.

PIOEaT0 AN hesenea ©2014 Mark Meretzky

=Y

Section 1.2 Expression Ewaluation 3

-a
The “conditional operatortakes three operands; it is the otdynary operator.
a?b:c
The value of the alwe expression id if a is true,c if a is false.
The “throw” operator can takzero arguments or one argument.

t hrow /Ino arguments
t hrow x /lone argument

The pair of parentheses in thepeessionf() are also an operatdike the pair of plusses in the
expressiona++. This “function call” operator can enclose ywmumber of aguments, so it can a ay
arity. It can equally well be unarpinary, ternary or worse.

() unary

f(a) binary

f(a, b) ternary
f(a, b, c) quaternary
f(a, b, c, d) quinary

The increment and decrement operators can be written before their operand or aftey @re the
only operators that can be eithpgefix or postfix.

++a increment can be prefix or postfix
a++

--a decrement can be prefix or postfix
a--

Expressions and subexpressions
A literal is a numbercharacteror gring. Examplesre

10 a literal of typeint

3.14 a literal of typedouble

A a literal of typechar

"hello" a literal of typearray of 6 const char (including the terminating0’)

The smallesexpressionsare the indiidual literals and variables of the progra.lamger epres-
sion, such as

a+hb
is built by pasting together smaller ones with operatd/s.say thata andb aresubexpressionsf the
a+b, gnce the are little expressions in their own right.

Every expression in C and C++ has a value, except for those of dateofgpe When computing
this value, orewaluating the expression, the operators axeceted one at a timeA problem will therefore
arise when an expression has more than operéthich one goes first?

In some cases the answer is simple. In the expression
a*-b

the multiplication and the getion are competing for the operabd The n@aion wins, because it has
elbowved its way closer to the. Theb is therefore an operand of thegagon, the-b is a subexpression of
thea*- b, and the ngation is executed first.

Let’'s ennotate our xpressiona*- b to shav how it is parsedinto sub&pressions. W will draw a
box around each expression and subexpression.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

4 Before Objects Chapter1

When one box contains anoth#re expression in the inner box will bevauated before the one in
the outer box. The innermost boxes hold the individaalables, so each variable will beaeiated before
ary other expression that contains Ih our example, thé is evaluated before theb , which is eauated
before thea*- b.

When neither of tw boxes contains the othahe expressions in the boxes can auated in either
order (exceptions on pp. 12-13jor example, neither of the boxes farandb contains the otheso we
cannot predict which will beveluated first. But these expressions are meraljables. Theievduation
consists only of fetching their values from memaxyit does not matter which one is first.

Of the four boxes in the diagram, the one aroundhihshavs that the executes before th&. The
other four boxes are redundant, drawn only for completensssay that the* is theoutermostoperator
of the expression, since it is enclosed by only the outermost Bb&. outermost operator isvalys
executed last.

Incidentally other textbooks use a tree diagram tovslow an expression is parsed. In that nota-
tion, an operator at a lower node (branching point)xeewged before its parent (the node immediately
above it).

/\

b

Some operators surround one of their operandsemtiiag ary other operator from being adjacent to
the operand. The subscripting operafor example, consists of baeparate ‘tokens’ (p. 100). It is a
binary operator that surrounds its second operand.

a[b]
Another operator that engulfs an operandtiéic_cast<>() . In C, we wote the old-fashioned cast
operator to form an expression whose value is that of an operaraitedrto another data type.
(int)a

In C++, the nes notation for this is
static_cast<int>(a)

The parentheses are part of gatic_cast operatorso it surrounds its operand.

v Homework 1.2a: draw the boxes

Each of the following expressions haotagperators competing for a disputed operahmeach case,
one of the operators has elbowed its/weloser to the operandraw the boxes showing the articulation of
each expression into supessions. Domworry yet about what the operators mean.

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.2 Expression Ewaluation 5

at+*b

a* ++b

a:: b

afb] +c

a[b]++

a() +b

a()++

*++a
-static_cast<int>(a)

a + static_cast<int>(b)
static_cast<int>(a) + b
static_cast<int>(static_cast<double>(a))

A

Operator precedence

Here are addition and multiplication competing for theThis time, both operators are adjacent to
the disputed operandlo evaluate the expression correctlye must knav which one will get to sink its
teeth into théo.

a+b*c

Since thg are both adjacent to the same disputed operand, we capelséor precedenceo deter
mine the outcome. Each operator haswel lef precedence, listed in the folling table. The * has a
higher level of precedence than the(level 13 vs. level 12), so theb is an operand of the. Think of the*
as having a greater gravitational pull or chemical valence than tlbe* is executed first.

The pictures she that theb*c is a subepression ofa+b*c . The haplessi+b is not a sube
pression at all, just as the Delmameninsula is not a state and Russia is not a continent. Of ehkokes
in the diagram, the one around thh&éc shaws us that thé is executed before the. The other four are
drawn only for completeness.

I\
b/ \c

Table of operators

The operators are listed with the higheselef precedence at the top. The operators within each
level share the same precedendear example, the]] and++ in level 16 have equal precedencefor
“Ivalues’ and “rvalues”, see pp. 11-12.

TheT stands for the name of a data type, éng.,.

PIOEaT0 AN hesenea ©2014 Mark Meretzky

6 Before Objects

The 60 Operata of G-+

Chapter1

prec. | associativity| arity value | opemtor description
18 none unary | halue global scope operator
17 | left-to-right | binary | halue | : class or namespace scope
binary | halue | [] subscripting
binary | halue | . - > access a field of a structure
ary | rvalue | () function call operator
unary | nalue | ++ -- postfix increment, decrement
16 | left-to-right unary | nalue | static_cast<T>() safe cast
unary | nalue | reinterpret_cast<T>() unsafe or unportable cast
unary | nalue | const_cast<T *>() remove the read-only’ness
unary | nalue | dynamic_cast<T *>() runtime type identification
unary | nalue | typeid(T or expressioh runtime type identification
value | ++ -- prefix increment, decrement
Ivalue | * dereference a pointer
rvalue | & address of
rvalue | + - positive, negdive 2's omp.)
rvalue | ~ bitwise not (15 complement)
15 | right-to-left unary | rvalue | ! not
rvalue | sizeof size in bytes
rvalue | new dynamic memory allocation
none | delete and deallocation (scalar)
none | delete] and deallocation (array)
rvalue | (T) old-style cast (type camrsion)
14 | left-to-right | binary | halue | .* ->* dereference pointer to member
13 | left-to-right | binary | nalue | * /| % multiply, divide, remainder
12 | left-to-right | binary | nalue | + - add, subtract
11 | left-to-right | binary | nalue | << >> left and right shift
10 | left-to-right | binary | nalue | < <= > >= compare
9 | left-to-right binary | rvalue | == I= equality inequality compare
8 | left-to-right binary | rvalue | & bitwise and
7 | left-to-right binary | rvalue | © bitwise exclusre a
6 | left-to-right binary | rvalue | | bitwise or
5 | left-to-right binary | rvalue | && and
4 | left-to-right binary | rvalue | || or
ternary | halue | ?: conditional operator
3 | right-to-left b?nary halue :_ S assignment
binary | - halue | *= /= %= += -= Bassign back to same variable
binary | halue | <<= >>= &= "= |= 0
2 none unary| none | throw throw an eception
1 | left-to-right binary | Ivalue | , comma operator (sequencing)

As in C, the same symbol can representsdififerent operators. There are four groupsxamaples.

(1) The++ and--
postfix ones.

in level 15 are the prefix increment and decrement; the onesvieh 16 are the

(2) The- in level 15 is the ngation operator (the rygtive $gn) because it is unary; the one inde
12 is the subtraction operator (the minus sign) because it is bifarijarly, the + in level 15 is the *posi-
tive 9gn” because it is unary; the in level 12 is the “plus sign” (the addition operator) because it is
binary The positve sgn does nothing, merely yielding the value of its operasfD is the same as a plain
old 10.

printed 5/10/14
10:14:10 AM

hesenea ©2014 Mark Meretzky

Section 1.2 Expression Ewaluation 7

(3) The unary* in level 15 is the dereferencing operator; the bin&rin level 13 is the multiplication
operator Similarly, the unary& in level 15 is the “address df o perator; the binarg in level 8 is the “bit-
wise and’operator.

(4) The:: 'sin levds 18 and 17 are wvdifferent ‘scope’ operators, unary and binaryfhese are
new in C++.

A digression on unfamiliar operators

The *non-bitwise’ operatord , &&, and|| know only the two values of data typkool . They treat
ary non-zero operand dsue , and ary zero operand alse . For examplel||2 vyields the value
true .

The *bitwise” operators™, & ~, and | know about multi-bit operands and resultBor example,
1|2 vyields the alue3. To se this, write the operands one abdhe other in binarydraw a horizontal
line, and write the answer underneatfor “‘bitwise or”, each bit of the answer will b@ if all the bits
above it were0Q, and 1 otherwise.

00000000000000000000000000000001 one
| 0 0000000000000000000000000000010 two
00000000000000000000000000000011 three

Precedence of unary operators
Returning to operator precedence, the same rules apply wbemany operators are adjacent to a
disputed operand. The expression
*p++

has tw operators competing for thge the postfix increment operatet at level 16, and the dereferencing
operator* at level 15. Dueto its higher precedence, the wins. Thep is an operand of the+, thep++
is a subexpression of thp++ , and the++ is executed first.

So because the+ has higher precedence, the computer wikicate the++ before the*. But
because the+ is postfix, the computer should perform the dereference before the incréfaeatoncile
these requirements, we must analyze ttakiation of the subexpressi@++ into three steps.

(1) Thepostfix++ creates an invisible, nameless variable calledrsonymous tempary, and copies
the value op into it.

(2) Thepostfix++ adds 1 t@.

(3) Theanorymous temporary is used as the value of #pressiorp++. (This value becomes the oper
and of the next operatdhe*, which dereferences the value.)

The*p++ therefore does beba s if it dereferenced the original value pfand then incrementga
What it actually does, heever, is to incrementp and then dereference a gopf the original value ofp.
The net effect is the same. (The three steps will become explicit in lines 50e&#® &f on p. 274.)

Establishing that the+ executes before th&, even though thet+ is postfix, is no emptyxercise in
metaplysics. Whenwe do “operator werloading’, we will see that each operator in an expression may
actually call a function (sneak piew, p. 18; full-blown example, pp. 291-292Pur *p++ might call two
functions, with the bizarre namegperator++ and operator* . operator++ will be called first
because the+ operator is ¥ecuted first. Thus, the rules of precedence can dictate the order in which our
functions are calledWithout knowing this ordeeny atempt at debugging would be hopeless.

PO T0 AN hesenea ©2014 Mark Meretzky

O©oo~NO O~ W

8 Before Objects Chapter1

v Homework 1.2b: operator precedence

The operators in the following expression are binddyaw a box around each sukgression, bt
don't bother with the box around each individualiable. Ifthere is no room to dnathe boxes, just num-
ber the operators in order ofeeution. Dont worry about the meaning of the operators.

a=b&&k c " d==e<<f*g->h:ii- >*j+k<l&m|nj|lo,p
The operators in the following expression are un&maw the boxes.

--a ()

The following expressions @ wnary and binary operators. Dvahe boxes.

-a-b
-a>b
a->b
anb
cacl b+
cout<<a+b
cin >> ali]

A

Parentheses
Consider the expression
a+b*c
Theb is an operand of the, theb*c is a subexpression, and the multiplicatiomorites before the addi-
tion. Thehaplessa+b is not an expression at all: it is bits and pieces wdrakexpressions.

To cause thé to be an operand of the we surround thea + b with parenthesesThea+b is hov a
subepression ofatb)c . As a onsequence of the fact that thés an operand of the, the addition
now executes before the multiplication.

(at+b)*c

These parentheses are not operatory;riferely change the way the expression is parsed intoxsube
pressions. Wterefore embed them in the walls of the boy ttreate.

Similarly, in the expressiofp++ we can force thé& to execute before the+.

.
*lp)+t

L —

Thep is nowv an erand of the, and the*p is a subexpression ¢fp)++ . We dereferencep and then
increment the resulting value.

Let's wse the termbinding paenthesedfor these parentheses thataide which operator a gén
expression is an operand ofVe an easily distinguish between the binding parentheses and the function
call operatar The function call operatorwbys is immediately preceded by an expression; the pair of bind-
ing parentheses wer is. Inthe last gample, the left pair of parentheses are the function call operator
becausa is an expression; the right pair of parentheses are also function call operator b€caissan
expression.

PO 0 AN hesenea ©2014 Mark Meretzky

abhwNRE

abhwN

Section 1.2 Expression Ewaluation 9

*a(b) function call operator becauseis an expression

a*(b) binding parentheses because neitheror a* is an expression
a++(b) function call operator becauser+ is an expression

a+(b) binding parentheses because neithearor a+ is an expression

a()0

Note that the binding parentheseséa effect other than tov@rride which operator an exression is
an operand of For example, the following parentheses/bap fect at all, sinceven without them thea
andb would still be operands of the left In particulat they haveno effect on which multiplication is
executed first. See pp. 1-3.

(a*b)+c*d

v Homework 1.2c: operator precedence and parentheses

Kernighan and Ritchie once remarked that in C, “[slJome of the operatwes tha wrong prece-
dence’* Which ones did the havein mind? What would go wrong here without the ordepperations
parentheses? Notkat the outermost parentheses belong tdf thetatement, not the expression.

if ((@a&b)==c){

The following examples call functions in the C Standard Libraxgeptterm_key). Inwhat order
do the three operators of eactpeession gecute? Whatvould go wrong without the ord@f-operations
parentheses?

while ((c = getchar()) !I= EOF) {

i f ((p=malloc(n)) == NULL) {

i f ((fp =fopen(“filename"”, "w")) == NULL) {
while ((c = term_key()) '="\0") {

A

Operators that act as parentheses

Here are tw operators adjacent to, and competing fbeb. The[] has higher precedence, so it
wins. Theb is an operand of thg , and theb[c] is a subexpression.

Here are the same onoperators adjacent to, and competing the sameéb. We would expect the
[] to win a@in. Butan operator that surrounds an operand acts as a pair of order-of-operations parenthe-
ses, forcing the enclosed material to be aqut@ssion. Thisime, theb is an operand of the, and the
b +c is a subrpression. Thiss true @en though thg] and+ are both adjacent to tlieand the[] has
higher precedence.

Another operator that acts dilarentheses is thatatic_cast<>() operator It surrounds its op-
erand, since the parentheses are part of the opefdten + b is a subexpressioven though the
static_cast<>() and the+ are both adjacent to tleeand thestatic_cast<>() has higher prece-
dence.

* The C Pogramming Languge, 2xd ed.,p. 3.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

N

10 Bebre Objects Chapter1

static_cast<int>(al+|bll)

Another eample is the conditional operater . Like the[] , it surrounds its second operandhe
b,c is a subexpression trugem though the?: and the, are both adjacent to thieand the?: has higher
precedence.

Operator associativity

Operator precedence cannot help us when tbheatjacent operators kia equal precedence. In this
case, we resort toperator associativity Like precedence, it can be used only when the dperators are
adjacent to a disputed operand. Here are four examples.

(1) The epressionl-2+3 has two operators of equal precedence competing fo2th&ince their
associatiity is left-to-right, the2 is an operand of the, the1-2 is a subexpression, and thés executed
before thetr. The value of the whole expression is 2, not —4.

(2) The epressionc=b=a has tw assignhment operators competing for the They have equal
precedence since thare the same operatofhis time the associatty is right-to-left, so the= on the right
wins. We assign thea to b and then thé to c.

(3) The apressiorp->f++ has a unary and a binary operator competing fof th€hey haveequal
precedence since the is postfix. Their associativity is left-to-right, so tire wins.

(4) The epressiolm?b:c?d:e has tw ternary operators competing for the They haveequal
precedence since there the same operatoifheir associatity is right-to-left, so the one on the right
wins.

Here are examples of adjacent ternaries. The pgniinitialized to the address of one of three possible
strings.

const char *p =
i <j?" lessthan":
i >j ? " greaterthan":

PIOTaT0 AN hesenea ©2014 Mark Meretzky

OO~ U

abhwNPE

~N O

8
9

Section 1.2 Expression Ewaluation 11

" equal;

/ lordinal suffix for number in range 1 to 10 inclusive
const char *suffix =

n ==17?"st":

n ==27?"nd":

n ==37?"rd":
“th";

See p. 776 for another example.

Connoisseurs of grammar will notice that one of the C operators has@etwedence in C++The
conditional operato?: used to hee Hgher precedence than the assignment operatart they are naw at
the same lel. We hasten to assure the reader thanelegd expression in C will still be parsed (bect)
the same way in C++, although the reasons may sometimes ferelit. Thesimplest example is the fol-
lowing, which executes the?: before the= in both languagesin C, this was because tRe had higher
precedence. II€++, it is because tlgehavethe same precedence and right-to-left assediati In both
cases, we get the same parse.

v Homework 1.2d: operator associativity
Draw the boxes for the followingxpressions. Domworry about their meanings.

The first example requires both precedence and assigiafrecedence tells us that thas an op-
erand of the left, not of the=. Associativity tells us that theis an operand of the left, not of the right
+.

d=a+b+c
cout<<a<<b<<c
cout<<a<<b<<c+d
cout<<a<<b<<(c&d)
cin > a > b > c

a[i]ll
alilf

c.d(e)
b(c).d(e)

10 a.b(c).d(e)

A

v Homework 1.2e: operator associativity

Integer division yields an integer resulbo won't the epression5/9 be zero, giving us a Celsius
temperature of zero? Is this a bug or “merdhdd style?

double fahrenheit = 72;
double celsius = (fahrenheit - 32) *5/9;

PIOTaT0 AN hesenea ©2014 Mark Meretzky

[

o0k w

12 Bebre Objects Chapter1

Other uses of precedence and associativity

The multiplication operatofr needs a Mgl of precedence and a direction of associativity because it
can compete with other operators for an adjacent operand.

a+b*c

But why did they bother to assign a precedence and associativityatic_cast<>() ? The cast sur
rounds its operand, so no other operator can compete with it.

a + static_cast<int>(b) * ¢

WEell, precedence and associativity do more than just determimeahaxpression is parsedThey
also can be used to disalleertain illegd combinations of operatorsA C example would be the folle-

ing.
a?b:c=4d

In that language, the: had a higher precedence tharleading us to expect the following parse.

a|?|b|: |c||=]d|| doesnotcompileinC

But the grammar of C stipulates that the left operaned @dnnot be anx@ression whose outermost opera-
tor (p. 4) has a precedence lower than that of prefix This disqualifies thexpressiona?b:c from
being the left operand ef, so he “expression”a?b:c=d will not compile in C.

Lvalues and wvalues

The expression does compile in C++, with the following parse. The operatord?: have equal
precedence and right-to-left associativity.

The expression

(@a?b:c)=d
also compiles in C++Let’s introduce the terminology for talking aboutwihcompiles in C++ but not in
C.

An lvalue is an &pression that can be used as the left operand of the assignment operator
rvalue is an expression that can be used as the right operand of the assignment. oferatable for
example, can be an Ivalue or an rvalue; a literal can be only an rvalue.

a =10 [/ Ivariable used as Ivalue, literal used as rvalue
a=»> | Ivariables used as Ivalue and rvalue

More preciselyan halue is an expression whose address can be taken and whose value can be changed by
=or++ and-- (prefix or postfix), or whose valwuld be changed were it not ofcanst data type.

A literal is not an lalue. Noneof the following will compile.
10 = a
++20

--30
&40

Several operators build an expression that can be eitheraunehor an ralue. Theoperator?:
always yields an rvalue in C, but can yield an Ivalue or an rvalue in C++.

PO 0 AN hesenea ©2014 Mark Meretzky

B
P O w© o~

12

13
14
15
16

=Y

g b~ w

Section 1.2 Expression Ewaluation 13

afi] =10 x = ali
s.f=20 x = s.f
p->f =30 x = p->f

*q = 40 X = *q

a ?b:c)=x X=a?b:c
(

But most operators yield only anatue. Theparentheses are needed to attempt to applythe , and&
to the entire expressiatb.

c =a+b / /a+ b can be an rvalue

a +b=10 / /a + b cannot be an Ivalue: won't compile
++(a + b)

~@ +b)

&@ + b)

With heroic effort, imolving “operator overloading’ and “references; almost aly operator in C++
can be forced to yield andiue. Thetable on p. 5 identifies the ones that can do so withguedraordi-
nary machinery The other operators yield only rvalues.

Lvalues and rvalues will reappear when we do operamtaading on p. 284.

Exceptional operators that ealuate their left operand first
Four operators alays evaluate their left operand before the other(s).

a&& b
all b
a?b:c
a, b

The&& evduates its left operand first, and thesmlaates its right one only if the left one was trdee||

also eauates its left operand firstubthen gauates its right one only if the left oneawfalse. The ?:
evduates its left operand first, and theralaates one of its other twoperands: the second if the first is
true, the third if the first issfse. Thecomma operatorvaluates its left operand first, and themlaates its
right operand. Our only example will be on pp. 263-264.

The rules for&& and|| gives us a hortcut or checking if it safe to perform a dangerous operation.
A division by zero, for example, will result @undefinedbehavior a polite way of saying that the program
may crash. The following expression will perform the division only if thésdr b is non-zero.If b is
zero, the division will be skipped and tifie will be false.

if(b!=0&%& a/b==2¢c{
[/ larrive hereifa/b==c

Unfortunately our box notation has no way to shthat the left operand @& is evaluated first, and
the right operand possibly notatuated at all. We will just have b remember it.

In a language offering no guarantee that the left opera&é: &f evaluated first, we would he © evauate
theb!=0 andthea/b==c intwo sparate statements.

if (b !=0) {
if(@/b==nc{
[/ larrive hereifa/b ==

See p. 64 for another example.

PO T0 AN hesenea ©2014 Mark Meretzky

14 Bebre Objects Chapter1

Using|| , we @an perform the opposite test. Once again, we perform the division only ifvikerdi
b is non-zero. Ib is zero, the division will be skipped and ihe will be true.

6 if(b==0]|a/b!=c{
7 / larrive hereifal/bl=c

In a language offering no guarantee that the left operafjd of evaluated first, we would he © evauate
theb==0 and thea/b!=c in two sparate statementde would need &ool variable as well as

anotherf .
8 boolx=b==0; [ltrue if b ==
9
10 if ('x) {
11 [larrive hereifb!=0
12 x =albl!=c; | Ixstaystrueifa/bl=c
13 }
14
15 if) {
16 [larrive hereifa/b!=c
Ambiguity

Armed with the rules of precedence and assedigtian expression can be parsed (boxed) in only
one vway. This would lead us to beilre tat there is a uniquely determined order for trauation of the
subepressions and thexecution of their operatorsSurprisingly this is not the case. Each of the fallo
ing examples has a pair of subexpressions, drawn with dashes, that do not contain ea®teothsr-
tioned on p. 4 that in this case, it is impossible to predict which of theutvexpressions will bealuated
first. (For the time being, we’ll ignore the four exceptional operators in the previous s&id,
Subexpressions joined by these operators de Aaniquely determined order okecution.)

(1) The following expression has three operatdiise addition goes last because it has lower prece-
dence than the adjacent multiplicatiorut there is no way to tell which multiplication goes firdte an-
not rely on operator precedence or assagigtfor this decision, because theawnultiplications are not
adjacent to each other: there is no operand thatateeboth touching and for which there both compet-
ing. Themultiplications’ order of gecution could be different on different platforms.

r-----_-=- a1l r=-_-"---_-= 1
[a]* [o]i+i[c]* [da]
L _ T C J L TT_ - T2 J

C and C++ permit this freedom (a.k.a. anarchy) because of their lust for sBeate machines are
faster when the perform the left multiplication first, others the right one firGtand C++ let each machine
pick the order that is best for iflava, on the other hand, isxecuted on only one platform, thdava Virtual
Machine’. It always follows the same ordehe left multiplication first.

Admittedly, it makes no difference which of the alm nultiplications is ®auated first. That's
because thehaveno side efects: they do not change the value of mwariable or perform I/O But multi-
plications might hee sde effects in the future. When we do operategrioading, the* and+ operators
might call functions namedperator* andoperator+ . These functions could fia sde efects, so
the order in which theare called could maka bg difference. Ifthey produce output, for example, the
order will be visible to the user.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

N

w

(6]

o

N -

N -

Section 1.2 Expression Ewaluation 15

(2) The following expression has three operators. As before, the addition goes last because it has the
lowest precedence. The dasheddmraev contain expressions that certainly call functions. Precedence or
associatiity cannot tell us which function call goes first. The order could Herdiit on different plat-
forms.

To ensure that is called beforg on all platforms, we wuld hare © Flit the expression into twseparate
statements.

const int temp = f();
t emp +g();

(3) Thedramatis pesonaefor the following &le are an array with 12 elements anargablei
that holds a subscriptVe will declare subscripts to be of data tygiee t ; see p. 66.

i nta[l12];
size ti=10;

As usual, the following expression has three operafbing = will go last because it has the lowest prece-
dence. Butve cannot tell whether tj¢ or the++ will go first. On platforms where the subexpression
ali] is evaluated before the+i , the assignment will put 11 ingf10] . On platforms where the+i is
evduated before tha[i] , the assignment will put 11 in@[11] . In dther casej will be left with the
value 11.

Changing ther+ to postfix would not remae the ambiguity On platforms where tha[i] is evalu-
ated before the++ , we would just be putting 10 inta[10] . On platforms where thé++ is evaluated
before thea[i] , we would put 10 intca[11] . In dther casej would once again be left with thale
11.

Once again, the solution is to split the expression intostatements,

++i;

ali] =1i; /[Put 11 into a[11] on all platforms.
or

const size_ttemp =1i;

aftemp] = ++i; /[Put 11 into a[10] on all platforms.

I’'m not encouraging you to write ambiguouspeessions. want you to recognize them and stay
away from them. For other examples, see pp. 393, 688.

v Homework 1.2f; unpredictable output
(1) Why can't we predict the following output? What are theahpossibilities in each case?

i nti=10;
cout << ++i <<

<<j<<"\n";

i ntj=10;
Cout << ++j <<

<< ++) << "\n";

PIOTaT0 AN hesenea ©2014 Mark Meretzky

16 Bebre Objects Chapter1

The moral is that we should vee increment or decrement a variable whose value is used elsewhere in the
same expression.

(2) Why can't we predict the following sums? What are theotpossibilities in each case?

1 i nti=10;
2 i ntsuml = ++i+i;
1 i ntj=10;
2 i ntsum2 =i+ ++i;
(3) Why can't we predict the ne value ofa[9] ?
1 i nta[10];
2 size ti=8;
3 size_tj=9;
4
5 ali=jl =i

1.3 Outputand Input

“[I]t is not enough to discharge a projectile and thewe tak urther notice of it.
We nust follow it throughout its course, until the moment it hits its tatget.

“What?’ shouted the general and the maplit taken aback by this idea.

“Absolutely’ replied Barbicane with self-assuranceibsolutely Otherwise our
experiment would produce no restilt.

—Jules VernelFrom the Earth to the Moo(iL865), Chapter 7

A C program to be translated into C++

Every program in this book is on the weBee if you can download the one belolt accepts one
command line argument and echoes it to the standard output.

Many platforms rely on the filename d$ixfto determine what language the program is written in.
Our cowention will be to end the name of a C program with(dot lowercase c¢) and a C++ program with
.C (dot uppercase C). If your platform has differentvamtions, you will hae © rename the denloaded
files before you compile them.

The line numbers, and the blank after each line nunaleenot part of the source code.
—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/prog/prog.c

1 #include <stdio.h>
2 #include <stdlib.h>

3
4 i nt main(int argc, char **argv) /* char *argv[] would mean the same thing */
5 {
6 i f (argc!=2){
7 f printf(stderr, "%s: requires 1 command line argument\n”, argv[0]);
8 r eturn EXIT_FAILURE;
9 }
10
11 printf("l received the argument %s.\n", argv[1]);
12 return EXIT_SUCCESS;
13}

PO 0 AN hesenea ©2014 Mark Meretzky

Section 1.3 Output and Input 17

The \ariableargc in the abee line 6 gives the number of words constituting the command line that
launched the programThe first word is the name of the program itself; the remaining ones atcerthe
mand line aguments.The value ofargc is therefore one more than the number of command loe ar
ments. Ifthe program is supposed to reesetne command line argumeiar,gc should be 2.

Theprintf in the abwee line 11 is an abbreviation for
fprintf(stdout, "l received the argument %s.\n", argv[1]);
Thisstdout and thestderr in the abee line 7 are tw destinations for output, calldde pointes in C.
stdout stands for “standard outputstderr stands for “standard error output”.

The wordsprintf | fprintf | andstderr are part of the C Standard Libranpt the C language
itself. We nust therefore include the header fitdio.h in which the are declared. The GNU C com-
piler on our Unix machine i5.nyu.edu is namgnt . For this compilerthe stdio.h file is in the direc-
tory /usr/include . I discovered this by giving theH option togcc when compiling the program.

On some platforms (idows), you might hee o insert the following function call immediately
before line 12 to preent the prograns autput from disappearing before you can read it.

system("PAUSE");

If you have b make this call in mag places, consider doing it automatically with @itexit function in
the C Standard Library.

The integer returned by theain function in line 12 tells the operating systemirfdéws, Macin-
tosh, Unix) whether the program succeeded or failed at its primary miskhencode number for success
is represented by the macEXIT_SUCCESS This macro belongs to the C Standard Librand is
defined in the header fistdlib.h . If the programdils, we return thealueEXIT_FAILURE in line 8.

To remove the leading whitespace from each line so you can insert your own, Unix people can use
the following “global substitutécommand invi :

al’[sl one blank and one tab inside the squbnackds

To =e the online manual fgce , give the following command. The$ is the Unix shell prompt.
1$ man gcc

To e the manual on the web, visitp://i5.nyu.edu/ Omm64/man/ and typegcc .
To se the version number géc ,

2% gcc-v

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/Ito-wrapper

Target: sparc-sun-solaris2.11

Configured with: /export/home/hudson/workspace/nightly/build/sparc/components/gcc45/gcc-4.5.2/configure CC-
Thread model: posix

gcc version 4.5.2 (GCC)

We will tell the compiler to place thexecutable file in theébin directory of your home directary
The following command will gie an error message if you do not alreadyéabin .

3% Is -Id “/bin “list” with lowercase Is
If you do not already he it, create it by saying

4$ mkdir “/bin “ male drectory”
5% Is -Id “/bin

Compile the programprog.c and place thexecutable fileprog in thebin subdirectory of your
home directory.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

18 Bebre Objects Chapter1

6$ gcc -o “/bin/prog prog.c minus lowercas®©

7$ Is -1 "/bin/prog Verify that we created an executable file narf¥ééh/prog

8% prog hello Run the pogram, giving it the argumertello

9% echo $? See the mogram’s &it status; should be zefor EXIT_SUCCESS

Our cowention will be to shar output in a box.With the argumertello , the output will be

| r eceived the argument hello.

Direct the output to a file in Windows

To gore the standard output of a C or C++ program into a file on the diskaos, go to the com-
mand prompt and specify the filename aftersttsymbol.

Start — Programs - Accessories —» Command Prompt
C:\> cd to the directory that containsrog.exe

C:\> prog.exe hello send output to screen
C:\> echo %errorlevel% See the mgram’s &it status; should be zefor EXIT_SUCCESS
C:\> prog.exe hello > prog.out send output to the filerog.out

C:\> type prog.out
Keep theprintf in the abee line 11; do not change it fprintf

The same program, in C++

Since this is a C++ program, its name ends in upper€as&kename it if your platform demands a
different cowention.

The leywords are the same in both languagesin, if , and return . So ae the parentheses,
curly braces, quotation marks, and exit status codes. But the output statements are compbessly dif
The std::cout in lines 12-14 and thstd::cerr in lines 7-8 are tw destinations for output, called
output steamsin C++. They lead to the same destinations as the C file poistdmit andstderr
Thec in cout andcerr stands for‘tharacter’; we also hae wcout andwcerr for “wide characters’
such as Chinese and Unicode. The annoying psadix ~ will be removed on p. 2.

C C++
file pointes | input and output streams

standad input stdin std::cin
standad output stdout std::cout
standad error output || stderr std::cerr

Like stdout andstderr , the wordscout andcerr belong to the C++ Standard Libranpt to
the language itselfWe must therefore include the header fdstream in which the are declared.The
GNU C++ compiler on our Unix machine iymedu is named++. For this compilertheiostream file
is in the directoryusr/gcc/4.5/include/c++/4.5.2 . | discovered this by giving theH option
to g++ when compiling the programThe file used to be naméastream.h or even stream.h , but
the names of the C++ Standard Library header files no longer endhwith

The operatok< is pronounced “put td’ It represents output because it pointsaul the destina-
tion: thecout in line 12 or thecerr in line 7. Forthcoming will be a lengthexplanation. Br now, recall
that an operator maynder certain circumstances, call a function (p.TRis << operator calls a function
namedoperator<< , which is (roughly) the C++ equalent of the functiorprintf

A one-line comment may be delimited with the double slash in lin€he comment starts at the
double slash (no whitespace between them) and ends at the end of tholiterminating delimiter is
necessaryFor multi-line comments, you can still use the old-fashiatieand*/ .

As in C, you might hee o insertsystem("PAUSE"); immediately before line 16 to prent the
programs autput from disappearing before you can read it.

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.3 Output and Input 19

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/prog/prog.C

1 #include <iostream>
2 #include <cstdlib>

3
4 i nt main(int argc, char **argv) //char *argv[] would mean the same thing
5 {
6 i f (argc!=2){
7 std::cerr << argv[0];
8 std::cerr << ": requires 1 command line argument\n”;
9 r eturn EXIT_FAILURE;
10 }
11
12 std::cout <<"| received the argument ";
13 std::cout << argv[1];
14 std::cout <<"\n";
15
16 return EXIT_SUCCESS;
17}
To se the online manual fgr-+, give the following command.
1$ man g++
To e the manual on the web, visitp://i5.nyu.edu/ Omm64/man/ and typeg++.

To se the version number gf-+,

2% g++-v

Using built-in specs.

COLLECT_GCC=g++

COLLECT_LTO_WRAPPER=/usr/gcc/4.5/lib/gcc/sparc-sun-solaris2.11/4.5.2/Ito-wrapper

Target: sparc-sun-solaris2.11

Configured with: /export/home/hudson/workspace/nightly/build/sparc/components/gcc45/gcc-4.5.2/configure CC-
Thread model: posix

gcc version 4.5.2 (GCC)

We will tell the compiler to place thexecutable file in thebin directory of your home directory
The following command will gie an error message if you do not alreadyéabin .

3% Is -Id “/bin “list” with lowercase Is
If you do not already he it, create it by saying

4$ mkdir “/bin “ male drectory”

5% Is -Id “/bin

Compile the programprog.C and place thexecutable fileprog in thebin subdirectory of your
home directory.

6$ g++ -0 “/hin/prog prog.C minus lowercas®
7$ Is -1 "/bin/prog Verify that we created an executable file narf¥ééh/prog

8% prog hello Run the pogram, giving it the argumertello

9% echo $? See the moram’s &it status; should be zero.

| r eceived the argument hello.

PO T0 AN hesenea ©2014 Mark Meretzky

©CoOo~NOOOUOTA,WNPE

10
11

12
13

20 Bebre Objects Chapter1

How can << mean “output” as well as “left shift"?

An owerloaded operator is one that hasdver more meanings, depending on the data type(s) of its
operand(s). Operatawverloading is presentven in C, kut no one talks about it-or example, thet in line
7 means ‘integer addition’ because its operands are gees; thet+ in line 8 means “double addition’
because its operands awuble ’'s. Although we write them with the same operatioese are very ddr-
ent operations(The + in line 9 also means double addition. Line 9 copies the valueimtfo an anoy-
mous temporary of typgouble , and then adds the temporary ahdBoth operands amouble 's.

In C, we need to ko the data types of these sums if wanivto output them with the correct format
of printf . This will be cleaned up in C++.

i nti=10; /* C example */

i ntj=20;

double d = 3.1415926535897932385;
double e = 2.7182818284590452353;

printf("%d\n", i + j); [* int addition */
printf("%f\n", d + e); /* double addition */
printf("%f\n", i + d); /* double addition */

Operator gerloading is more noticeable in C++he << operator in line 12 means “left shift’
because its left operand is an gee The<< in line 13 meansdutput” because its left operand is an out-
put stream.

int i =10; //IC++ example
int j=20;

int k=1i<<j; [Neft shift
std::cout <<i /loutput

Two variables with the same first name

The purpose of a last name is to alittvo or more people to hee the same first name. Examples in
English are in column 1.

Bill Clinton std::cout
Bill Gates different::cout

For exactly the same reason, a C++ variable care lsahst name.Examples are in column 2 al®
The last name ofout is std becauseout belongs to the C++ Standard Libraiye ould also hee
anothercout with a different last name.

In English the first name is written first, with a space between the first and last names. In C++ the
last name is written first, with the class scope operator (the double colon) between theN@syEaECce is
allowed between the mwoolons.

A family of variables with the same last name is calledrmespaceThe most common example is
the namespacgtd , mary of whose members are declared in the headeiofiteeam . For the present,
however, the variables that we create willMgaro last names.

Remove the std::

| wish we didnt haveto call std::cout andstd::cerr by their full names all the time. And in
fact, we dont. Theusing diectivein line 3 will put us on a first-name basis with all the members of the
std namespace.

This directve is arvenient for our small programs, but might produce unexpected resultsder lar
ones. Namespastd contains hundreds of variables, functions, data types,tantgplates’. Seep. 1023
for a way to be seleet.

PO T0 AN hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA~,WNPE

Section 1.3 Output and Input 21

In older versions of C++gout andcerr had no last name at allhe using directve was not
needed oren permitted.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/namespace/using.C

#include <iostream>
#include <cstdlib>
using namespace std; /lusing directive: may not be needed on your platform.

i nt main(int argc, char **argv)
{
i f (argc!=2){
cerr << argv[0];
cerr << ": requires 1 command line argument\n”;
return EXIT_FAILURE;

}

cout <<"lreceived the argument ";
cout <<argv[l];

cout <<"An"

return EXIT_SUCCESS;

| r eceived the argument hello.

The << operator

Now that weve smplified thestd::cout , let's work on the<< operator We will walk through
two examples with the familiar operatorsand=, and then treat< the same way.

(1) + is a binary operator whose operands must both be numBerse the resultingxpression
a+b has a value, it can be an operand of another

(2) Another binary operatpthis time with right-to-left associaity, is the assignment operatet
The «pressiorb=a installs a n& value intob. But the expression does more: it has a value ofwits o
(Every nonvoid expression in C and C++ has alwe.) Thisvalue is the ne value of the left operandb,
We @an easily verify this in C.

double a = 3.14159265358979323846;
i ntb=10;

PO T0 AN hesenea ©2014 Mark Meretzky

(€3]

22 Bebre Objects Chapter1

printf("%d\n", b = a); [* The value of the expression b = a is 3. */

Since the expressidn=a has a value, it can be the operand of ancther

b|=]a
c|l=|lb|=|a
d|=|lc|=]||b|=]|a

(3) << is a binary operator with left-to-right assooidyi. If its left operand is an irger, it means
left shift; if its left operand is an output stream, it means outpat.example, the ¥pressioncouk<a
outputs the value &f. But the expression does more: it has a value ofaits dtsvalue is the value of the
left operandgout .

Since the gpressioncouk<a has a value that is an output stream, it can be used as the left oper
and of anothex< that performs output.

cout << a

cout < | a ||<<| b

cout < | a ||<<| b ||<<]| C

Therefore the lines 8-9 on p. 21

cerr << argv[0];
cerr << ": requires 1 command line argument\n”;

can be combined to
cerr << argv[0] << ": requires 1 command line argument\n";

The two << operators in the abe line 7 will be &ecuted from left to right, because yhare adjacent to a
common operand and Ve left-to-right associatity. They are adjacent\en though thg are separated by
an[] operator The subgpressiorargv[0] is evaluated first, i.e., boiled dm to a single value, and the
two <<’s are left competing for thisalue. Thg becomeadjacent after thg is gone. Another example is
on p. 24.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

(0]

11

Section 1.3 Output and Input 23

Similarly, lines 13-15 on p. 21

cout << "l received the argument ";
cout << argv[1];
cout <<"An"

can be combined to

cout <<"lreceived the argument " << argv[l] <<".\n";

v Homework 1.3a: rewrite expressions
Each of the following questionsvgs avay anothers answer.

(1) Write the following three expressions as one big expression that has the sanfectisi¢pefl4)
in the same order.

b=a
c=0Db
d =c

(2) Write the follaving expression as three separate expressions tathtegasame side effects in the
same order.

d=c=b=a

(3) Write the following three expressions as one big expression that has the same side effects in the
same order.

cout << a
cout<<b
cout << ¢

(4) Write the follaving expression as three separate expressions tatheasame side effects in the
same order.

cout<<a<<bx<c

Answer the next pair of questions after seeingrth@perator on pp. 30-31.

(5) Write the following three expressions as one big expression that has the same side effects in the
same order.

cin >> a
cin>>Db
cin >>c

(6) Write the follaving expression as three separate expressions tatheasame side effects in the
same order.

cin>>a>b>>c

A

v Homework 1.3b: combine consecutie autput statements
It is very difficult to be king when the gods are changing.
—James A. MicheneHawaii, Chapter I

Compile and run the “I recegd the agument’ C++ program in pp. 20-21You may hae o change
the prograns filename suffix fromC to .CPP, .CXX, or amething else.You may have o #include
iostream.h instead ofiostream , and/or stdlib.h instead ofcstdlib . The using directive
might not be needed; in fact, in might not® be dowed. You may need aystem("PAUSE)";

PO T0 AN hesenea ©2014 Mark Meretzky

24 Bebre Objects Chapter1

immediately before eadleturn from main .

Combine consecwt autput statements into one big output statement as on pp. 22-23. Do this for
bothcout andcerr .
A

Output an expression with an operator of its own

We will walk through an example with the multiplication operatpand then treat the output opera-
tor << the same way.

Line 1 multiplies2 and 3, and uses their product as the operand of the next opetta¢ot. No
parentheses are required @@ute the* before thet, becausé has higher precedence than

inti=1+2*3;

We dagram only the expressidnt 2*3 , not the rest of the statement.

Similarly, Line 2 multiplies2 and3, and uses their product as the operand of the next opettator
<<. No parentheses are required t@®eute the* before the<<, becausé& has higher precedence theq.

cout<<2*3;
cout << "\n";

cout |[<<|| 2 |* |3

The abee lines 2—-3 should be combined to

cout << 2 *3<<"\n";

cout |[<<|| 2 |* |3 << ["\n"

The subgpression2 * 3 is boiled down into the single numb@tbefore the two <<’s are executed. This
causes the<’s to become adjacent (p. 22), allowing precedence and associativity to determineytiaes the
executed from left to right.

Output a low-precedence expression

Line 1 “bitwise ands’ 2 and3 and uses the result as the operand of the next opdteter Paren-
theses are required tgeeute the& before thet, because binarg has lower precedence than binarty

Similarly, line 3 “bitwise ands’2 and3 and uses the result as the operand of the next opdtetor
<<. Parentheses are required te@eute the& before the<<, because binar§ has lower precedence than
<<. Another example is in line 17 efatic_cast on p. 65.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

A WNPEP

O©CoOoO~NOOOUTPA,WNPE

e
N O

Section 1.3 Output and Input 25

inti=1+(2&23);

cout<< (2 & 3);
cout << "\n";

The abee lines 3—4 should be combined to

cout << (2 & 3) << "\n";

v Homework 1.3c: insert parentheses only whernecessary

Each statement shouldatuate and output the right operand of the. Insert parentheses where
necessary to force this operand to beryghing between the< and the semicolonFor example, in line 1
the right operand of the< should bea + b, not merelya. Are parentheses need to accomplish this?

The two <<’s in line 11 should bexecuted from left to right. Each one should output its right -oper
and. Theight operand of the first< should bed; that of the second should be

d==17?"d ollar": " dollars"

Line 12 is a silly gample. Theright << should be a shift operator; the left, the output operdtor
want to left-shift the 10 three times and output the result. Each left-shift should double the,rmantivee
left-shifts should octuple it. The result should be &Mnfortunately it prints 103 because the righk
means "output. By inserting parentheses in the correct place, you will change the meaning of the right
<< to “left-shift".

cout<<a+b;
cout << a +=b;
cout<<p-a;
cout << a[iJ;
cout << f(x); /IThese parentheses are the function call operator.
cout << -i;
cout << i & OxF; /[Output the four least significant bits of i.
cout << d ==10; [lprints as 1 for true, O for false; see p. 354
cout << old[y][x] ? ' X" : "%
cout <<d==17?"dollar": "dollars";
cout <<d<<d==17?"dollar":"dollars";
cout <<10<<3; /lwant to multiply 10 x 8.
A

All operators obey the same rules
The i/o operators and the arithmetic onesydhe same rules.

(1) Why can line 1 string together as nyag<’s as we want? er the same reason that line 2 can
string together as manys as we want: little expressions may be combined to form bigger ones.

(2) Why are the<<’s in line 1 executed from left to right?For the same reason that this in line 2
are executed from left to rights< and+ have left-to-right associativity.

(3) Why is the* in line 1 performed before the éwaurrounding<<’s? For the same reason that the
* in line 2 is performed before thedvaurrounding+’s: * has higher precedence then and+.

(4) Why does line 1 need parentheses to perforn&hefore the<< in front of it? For the same rea-
son that line 2 need parentheses to perfor lisfore thet in front of it: & has lower precedence thar
and+.

cout<<b<<c<<d*e<<(f&Q);

PO T0 AN hesenea ©2014 Mark Meretzky

=Y

b~ w

(e}

=Y

26 Bebre Objects Chapter1

a =b +c+d*e+(f&aqg)

Quotation marks and newlines

C++ has the same single and double quotes that CSilagle quotes must enclose exactly one-char
acter; double quotes can enclose zero or more.

| usually write double quotesen when thg enclose only one charactelt’s easier to write only one
kind of quote, and | would ke © change the single quotes to double quotgsvay when | add extra char
acters:

cout << "The coordinates are " << x <<’ <<y << '\n’;

cout << "The coordinates are " << x << ", " <<y << ".\n";

Although it does tad longer to place a double quoted character into the output streanxtréndirae is

insignificant compared to that needed for the character to be read on a screen by a human being or written

to a disk.

Lines 3-5 do the same thing. Please damite 3 or 4: thg would just anng people. Line5 is 9m-
pler.

cout << "hello" << '\n’; //bad

cout << "hello" << "\n"; //bad

cout << "hello\n"; /lgood

Line 6 would be bad in gnlanguage. Whatvould be the point of outputting whitespace (e.g., a
blank or tab) immediately before awlee? Noone would ger see the whitespace. Write line 7 instead,
but not because it s@s ane byte of memory and a millionth of a secoftb it because anyone seeing line
6 would think thg havea orrupted version of the source code, since no one in their right nontt w
write like that.

cout << "hello \n"; //bad
cout << "hello\n"; /lgood

Flush the output buffer
Theres another way to output the newline characheit we hae © talk aboutbuffering first.

We dten imagine that each output statem@nintf in C or<< in C++, sends data directly to a
destination in the outsideasld. Butin real life, the outgoing data may spend time in a holding area in the
computers memory called anoutput luffer. Each output statement places more data inufferb When it
is full, all the data in the buffer is flushed to the outside world in one bigogon

Buffered output is faster than performing a separate output operation for each stafsnexam-
ple, each write to a file on the disk wes the read/write head in the diskdi If we consolidate seeral
small disk writes into one big write, fewer motions will be required.

Sometimes, heever, we want to flush the differ before it is full. For example, a critical message
cannot be allowed to languish in affer before it is displayedin C, we can flush the standard output
buffer at ag time by callingfflush

printf("All bomber groups have reached their Fail-Safe points.\n");
f flush(stdout);

In C++, we flush an outpuulffer by outputting a mysterious something nareadl (*‘end line”, with a
lowercase L). Outputting thendl causes tw things to happenlt outputs a newline charactend then
flushes the output buffer.

cout << "All bomber groups have reached their Fail-Safe points." << endl;

endl is an example of ailo manipulator: something that causes a side effect when it is output or
input. Therewill be mary others.

PO t0 AN hesenea ©2014 Mark Meretzky

Section 1.3

Output and Input 27

Output the various data types

The fourteerbuilt-in data types are thoseili into the language. C++ has all the built-in types that

C has (except thionglong
wchar_t for large sets of characters such as Chinese or Uniddslechar andwchat_t
andunsignedchar

ters;signedchar

types in the more recent versions of C), plus a “wide charatypg

for charac-
for narrav integers.

bool

wchar_t

char unsigned char signed char
short unsigned short

int unsigned int

long unsigned long

float

double

long double

C++ also hasiser-defineddata types such as enumerations and cla$seally, it hasderived data types:
pointers to, references to, arrays of, and functions thataakreturn, all of the alwe. They are declared
the same way as in C, but an initial value shouldayd be provided for eachaxiable. Moreon this
shortly.

Theprintf function in C depends on tBéformats to tell what type of output to perforfédfor
integer,%f for double,%sfor string. The << operator in C++ gets this information from the data types of
its operands. There are no formats for us to write.w(Has works is on pp. 349-350.)

Consider the first (leftmos®< in line 19. Its left operandout is of data type‘6utput stream”, so
the << means output rather than left shift. Its right operans of data typent , so he << means‘inte-
ger output”, like the Cprintf("%d" . Now consider the secongk in line 19. lIts left operand
coukd is of data type “output stream”, so tk& means output. Its right operafd” is of data type
“ string of chars’because of the double quotes, sotkemeans “string output”, lile the C
printf("%s"

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/io/builtin.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4
5 i nt main()
6 {
7 / NIf you don’t have bool, uncomment line 8 to implement it.
8 / lenum bool {false, true};
9
10 bool b = true; llor false
11 char ¢ ="A]
12 int i=10;
13 double d = 1.0/3.0;
14 long doubleld =1.0L/3.0L;
15 char s[] ="hello"; /[Array of 6 char’s; put \0’ into s[5].
16
17 cout <<b<<"\n“
18 cout <<c<<"\n%
19 cout <<i<<"\n%
20 cout <<d<<"\n"
21 cout <<lId<<"\n"
22 cout <<s<<"\n" /[Print up to, but not including, the "\0’ in s[5].

printed 5/10/14
10:14:10 AM

hesenea ©2014 Mark Meretzky

23
24
25

28 Bebre Objects Chapter1

cout << &i<<"\n";

return EXIT_SUCCESS;

26}

27
28

29
30
31
32
33
34
35

=

OO, WN B

By default, abool prints asl or O; to print as the wrdstrue orfalse , see p. 354.A double
prints with six significant digits; to change this, see pp. 355-356.

1 Line 17:bool prints asl or 0.

A

10

0.333333 Line 20:double prints as 6 significant digits.

0.333333

hello

Oxffbff1d4 Line 23: pointes print in hexadecimal on most platforms.

Warning: the value ofl is slightly less than one third because the machine is bimzriernary A
double is stored as a peer of 2, times a fraction whose denominators ZWe say that thedouble
has a <I>matissa</I> of 53 bits.) The closest we can get to one third is
N 6,004, 799, 503, 160, 661 6,004, 799, 503, 160, 661

253 " 18,014, 398,509, 481, 984
=.333333333333333314829616256247390992939472198486328125

2—1

Seenumeric_limits on pp. 745-747.
The abee lines 17-23 should be combined to one statement.

cout <<b<<"\n"<<c<<"\n"<<i<<"\n"<<d<<"\n" << Id
<< Il\nll << S << ll\nll << &i << ll\nll;

Then split the statement up the way the output appears.

cout <<b<<"\n"
<< ¢ << "\n"
<< ji<< " \n"
<< d << "\n"
<< |d <<"\n"
<< § << "\n"
<< &i<<"\n";

Three more reasons why< in C++ is better than printf in C
(1) The most commoprintf mistakes are not caught until runtime, if at all.

charc="A’; /* C example */
printf("%s\n", ¢); /* error message (unlikely) or garbage at runtime */
The most commor< mistales are caught at compile tim&/herever possible, C++ mees the error mes-
sages from runtime to compile time.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/io/error.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main()

{

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.3 Output and Input 29

7 charc="A’
8
9 cout<<c<"\n"
10 cout <<c"\n"
11
12 return EXIT_SUCCESS;
13}

Here are the error messages on my platforican't pretend that theare of much help, Wt at least
you knav at compile time thasomethingis wrong.

error.C: In function 'int main()":
error.C:9:14: error: no match for 'operator<’ in 'std::operator<< [with _Traits
= std::char_traits<char>](((std::basic_ostream<char>&)(& std::cout)), ((int)c))

< n \012"1

error.C:9:14: note: candidates are: operator<(const char*, const char*)
<built-in>

error.C:9:14: note: operator<(void*, void*) <built-in>

error.C:10:12: error: expected ';’ before string constant

(2) << also eecutes faster thaprintf . Each call toprintf ~ has to loop through all the charac-
ters in its first argument and search for percent si@@ased on the character after the percent sign, it
decides upon the output format. In effquintf is an interpreter for a little language.

14 /¥ simplified outline of what printf does */

15

16 char *p;

17

18 for (p = address of first argument of printf; *p = "\0’; ++p) {
19 if (p=="%"){

20 switch (*++p) { [* Examine the character after the '%’. */
21 case 'd:

22 output an integer in decimal;

23 break;

24

25 case 'f:

26 output a f loat or double;

27 break;

28

29 case s

30 output a string until the terminating "\0’;
31 break;

32

33 I etc.*

34 }

35 }

36 }

The << operatoy on the other hand, does this decision making once and for all at compile time, without all
the looping and switching. This is important if the statement is inside a loop (which it usually is).

(3) printf is not etensible. Thigproblem is bigger in C++, where we wilhient mary new data
types:

37 struct blood_pressure { /* a new data type */
38 int systolic; [* bigger number: contract */
39 int diastolic; [* smaller number: expand */

PIOTaT0 AN hesenea ©2014 Mark Meretzky

30 Bebre Objects Chapter1

40 };

41
42
43
44
45
46

47
48

©CoOo~NOOOUTA, WNPE

/¥ Create a variable of the new data type. */
struct blood_pressure b = {120, 80},

printf("%b\n", b); * Can't invent %b. */
printf("%d/%d\n", b.systolic, b.diastolic); /* Must do this instead. */

After we do operatorwerloading, well be able to output Alood_pressure with the same< that we
use for the built-in types See p. 335.

blood_pressure b(120, 80); //Don’t even need the keyword struct.
cout <<b<<"n" /[Output a blood_pressure.

The >> operator

Input is the counterpart of output, but more can go wroHge cin in lines 11, 14, and 17 is a
source of input, called @nput steam, analogous to the €tdin

The operatop> is pronounced “get from’ It was chosen to represent input because it poiniaya
from the source, in this casen . Ifits right operand is aint , as n line 14, it will performint input. If
its right operand is a string, as in line 11, it will perfatring input. C++string input is just lik the C
scanf("%s", ...) : it will input only one vord, not necessarily the entire line of input. And if the user
inputs a word in line 11 that is longer than the array in line 10;*haill overwrite the memory after the
array We'll fix this later when we do classring

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/io/input.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main()
{
cout << "Please type the date and press RETURN.\n"
<< " For example, January 1 2014\n";

char month[256]; //uninitialized variable

cin >> month; //[Put a "\0” into month after the last character.

int day; /luninitialized variable

cin >>day; /Iscanf("%d", &day); would have needed an ampersand.
int year; /luninitialized variable

cin >>year;

cout << "month ==" << month << "\n"
<< Ilday et n << day << Il\nll
<< year =="<<year <<"\n";

return EXIT_SUCCESS;

PIOTaT0 AN hesenea ©2014 Mark Meretzky

N -

AW

Section 1.3 Output and Input 31

Please type the date and press RETURN.

For example, January 1 2014

May 10 2014 The user types this line.
month == May

day == 10

year == 2014

>> is a binary operator because it requires tyerands. Ifits left operand is an inger, it means
right shift; if its left operand is an input stream, it means infiar. example, the ¥pressioncin>>a
installs a ne value intoa. But the expression does more: it has a value ofaits dtsvalue is the value of
its left operandgin .

Since the expressiaiin>>a has a value, it can be the left operand of ancther

cin »> | a

cin »> | a||>>]|Db

cin »> | a|[>]|b||[>]c

Therefore lines 11, 14, 17 of the &bgrogram could be combined to

cin >>month >> day >> year;

Concatenate strings at compile time
C lets us write a double-quoted string irotar more parts:

printf("hello"); [* output 5 characters */
printf("hel" "lo"); [* output 5 characters */

This lets us write a long string on separate source lines:

printf("hel"
"10"); /* output 5 characters */

o Ol

~

(o]

printf("supercalifragilistic"
" expialidocious");

char a[] = "hel" "lo"; /* an array of 6 characters, including one "0’ */

C++ lets us do the same thing, so thevebimes 7-8 could be written with only or& operator:

cout << "Please type the date and press RETURN.\n"

" For example, January 1 2014\n";

In fact, we could een get rid of the<<'’s at the start of lines 20 and 21. But dbdb it—people would just

get confused.

printed 5/10/14
10:14:10 AM

All rights
reserved

©2014 Mark Meretzky

=
CQOwoo~NOOUODWNLPE

11
12

A WNPEP

o O

10
11
12

32 Bebre Objects Chapter1

Why >> is less error prone than scanf

scanf andprintf agree on the same format letter ifar input and output (th&oedin lines 8-9).
But for other data types, hheometimes use different formats.

short s; [* C example */

i nti;

double d;

s canf("%hd", &s); I* "%s" was already taken for "string". */

printf("%d\n", s);

scanf("%d", &i);
printf("%d\n", i);

scanf("%lf", &d); [* can’t input a double with "%f" */
printf("%f\n", d); * but can output a float or double with "%f" */

1.4 Declarationsand their Placement

Declare a variable in a block

A block is a group of zero or more statements enclosé¢aumly bracey. The most commonxam-
ples are the body of a function, loadp,, or else .

void f(int n)
{

}

/ IThe body of a function is the most common example of a block.

for(i=1;i<=10; ++i) {
/ IThe body of a for loop is a block.

}
if(a==n){
/ [This is a block.
} else{
/IThis is another block.
}

In C and C++, a variable declared in a block can be mentioned only within that bleckay that
the \ariable’sscope (habitat) &tends only from the declaration to the closing curly bjae the end of
the block.

In versions of C prior to C99, a declaration in a block must be at the start of the Weckill
demonstrate whthis is bad with a program that takes an integer as its command line argument and outputs
the sum of the posite integers from 1 up to that one.

The epressionargv[1l] in line 15 is the address of the first character of the first command line
argument. Thefunction atoi examines this character and the fellng ones, hopefully all digits, and
returns the number that is spelled out by these ditfithe characters are not digi&toi returns zero,
making it impossible to tell the d#rence between a legitimate argument'@f and an argument of
gabage. V& oould remedy this ne with thestrtol ~ function or later with amstringstream object.

In the block thatx@ends from lines 5 to 23, the declarations (lines 6—8) must come before the state-
ments (lines 10-22). But this rule often forces us tedem@p between theaviables declaration and its
initialization. For example,n contains garbage from line 6 to line 15¢ontains garbage from 7 to 1it's
dangerous to le@ garbage in variables for such long periods.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.4 Declarations and their Placement 33

There is one variable, treim in line 8, that can be initialized in its declaration. Buivnee have
the opposite problem: the initialization will beasted if the program ends prematurely in lines 1041S.
not our ault. Cis rigid.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/declare/sum.c

1 #include <stdio.h> /* C example */

2 #include <stdlib.h> [* for atoi */

3

4 i nt main(int argc, char **argv)

5 {

6 i ntn; /* not initialized until line 15 */

7 i nti; * not initialized until line 17 */

8 i ntsum =0; [* This initialization is wasted effort if argc = 2. */

9
10 if (argc!=2){
11 fprintf(stderr, "%s: requires one command line argument\n®, argv[0]);
12 return EXIT_FAILURE;
13 }
14
15 n = atoi(argv[l]);
16
17 for (i=1;i<=n;++i){
18 sum +=i; [* means sum = sum + i */
19 }
20
21 printf("The sum of the numbers from 1 to %d is %d.\n", n, sum);
22 return EXIT_SUCCESS;
23}

prog 10 This is the command line that launches theg@am.

The sum of the numbers from 1 to 10 is 55.

In C++, a variable declaration in a block need not be at the start of the block, although it must still be
written before the variable is use@on’t declare the ariable until you are ready to initialize it; then
declare and initialize it in the same stateméht/ou find yourself declaring a variable without initializing
it in the same statement, you have declared it too soon.

An extra benefit is that theaxiablen in line 13 is nav initialized rather than assigned to. It can
therefore be aonst . (See pp. 302-303 for a weighty discussion of the other advantages of initialization
over assignment.)

C++ permits us to tuck the declaration fointo thefor loop at line 15. By declaring at this
point, we're announcing that it will be used only inside the loop. On the other hand, the declarations of
sum andn in lines 12-13 announce that yheill be used outside the looplhe position of a declaration
documents your intent. Position the declaration toerfa& scope of theariable as small as possible: no
variable should outlie its usefulness.

In older versions of C++, the scope of tleiablei extended from line 15 to line 21. In newesrv
sions, the scope of extends from 15 only to 17. Some versionggyou a choice, e.g., with the
-ffor_scope option of the GNU compileg++. The same rule applies to ariable declared within the
parentheses of ah orwhile .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/declare/sum.C

1 #include <iostream> //C++ example
2 #include <cstdlib>

PO T0 AN hesenea ©2014 Mark Meretzky

©CoOo~NOOOUTA,WNPE

34 Bebre Objects Chapter1

using namespace std;

i nt main(int argc, char **argv)

{

i f (argc!=2){
cerr << argv[0] << ": requires one command line argument\n";
r eturn EXIT_FAILURE;

}

int sum=0;

const int n = atoi(argv[1]);

for (inti=1;i<=n;++){
sum +=i;

}

cout << "The sum of the numbers from 1to " << n <<"is" << sum <<".\n";

return EXIT_SUCCESS;

prog 10

The sum of the numbers from 1 to 10 is 55.

v Homework 1.4a: is the induction variable still in scope after the end of the for loop?

In C and C++, we cahhavetwo variables with the same name in the same scMake whatever
changes are necessary tmid compilation errors. On p. 183, we will Ve a easier way of seeing o
long a variable lasts.

In newer version of C++, no change should be needé&é. scope of the in line 7 extends only as
far as ine 15, permitting us to declare anothein line 17. Similarly, the scope of thg in line 8 extends
only as far as line 10, permitting us to declare angthiedine 12.

But in older ersions of C++, the scope of then line 7 extends all the way to line 24, yaeting us
from declaring another in line 17. You could rename the in line 17. Or simply remee te keyword
int from line 17, so that the in 17 will be the same variable as ihén 7. Similarly, the scope of thg
in line 8 extends all the way to line 15, ymeting us from declaring anothg¢rin line 12. You could
rename thg in line 12. Or simply remee the keyword int from line 12, so that the in 12 will be the
same variable as tljein 8.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/declare/forscope.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main()
{
for(inti=0;i<3;++){
for(intj=0;j<3;++){
cout<<i<<" "<<j<<"\n"

}

for (intj=0;j<3;++j){
cout <<i<<" "<<j<<"\n%

}

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.4 Declarations and their Placement 35

15 }

16

17 for (inti=0;i<3;++i){

18 for (intj=0;j<3;++){

19 cout <<i<<" "<<j<<"\nY
20 }

21 }

22

23 return EXIT_SUCCESS;

24}

A

The real reason to declae and initialize in the same statement
Suppose that C implicitly initializedsery int to 0 unless you said otherwise:

1 i nti; /*PutOintoi. */

2 i ntj=10;
Then it would be wasteful to say lines 3-4, since the 0 that line 3 puis woald be wiped out by the 10
in line 4.

3 i nti; /*PutOintoi. */

4 i = 10; I* Replace the 0 with 10. */

Instead of lines 3—4, it would be better to say
5 i nti=10;
Now let's come back to reality: amt is not implicitly initialized to 0 in C and C++. But an

“ object’” may be initialized to O or to some other defadtiue. Inthat case, the initialization in line 6
would be wasted because of line 7.

(3}

obj ob; /[Put O (or some default value) into ob.
7 ob = 10; /IReplace the 0 with 10.

It takes only a millionth of a second to initialize ia , but it might tale a lundredth of a second—an
eternity—to initialize an objectWe reve want to do it unnecessarilfnstead of lines 6-7, the program
would execute faster if we said

8 obj ob = 10;

Even if youte usingint ’s, please write in the object style by declaring and initializing a variable in
the same statement. This will neak possible later to use the same codeirfibr ’'s and objects by means
of a “template’. Seep. 634.

Five stuations in which we can’t declae and initialize in the same statement

C++ is not perfect. Here are éwases in which we caninitialize a variable in its declaration.
Nonetheless, we should assign a value to Hreakble as soon as possible after declaring it. Do this by
declaring it just before the assignment.

(1) A variable declared outside the body oy danction is said to bglobal. A global can be men-
tioned by all the functions defined beldts declaration.But if its initial value comes from a functiongar
ment, it must recee the value inside the body of the function.

const char *progname; /lglobal variable must be declared outside main

i nt main(int argc, char **argv)

{

abhwWwNRE

progname = argv[0]; /Ivalue must be assigned inside main

PO T0 AN hesenea ©2014 Mark Meretzky

36 Bebre Objects Chapter1

(2) The variable is an array whose initial values are assigned in a loop. (Use the daizetype
for the number of elements in an array and for an array subscript. See p. 66.)

6 const size_t n = 1000000;
7 i nta[n]; /luninitialized variable
8
9 f or (size_ti=0;i<n;++i){
10 ali] =i;
11 }
(3) The variables initial value comes from input. There is no way to combine lines 12 and 13.
12 int n; /luninitialized variable
13 cin >>n;
(4) The wariables initial value comes from a function via pass-by-reference (pp. 69-70). There is no
way to combine lines 18 and 19.
14 void f(int *p); [/[function declaration or prototype
15
16 int main(int argc, char **argv)
17 {
18 int i /luninitialized variable
19 f(&i); /lgive value to i
Here's the same example, with the argument changed from a pointer to a “refefppc&l1-72).
20 void g(int& r); /[function declaration or prototype
21
22 int main(int argc, char **argv)
23{
24 int i /luninitialized variable
25 a(i); /lgive value to i
(5) The variable is gen its initial value inside a loop or other block, but must be declared outside
because it will be used after the loop or blockvier.o
26 int firstarg; /luninitialized variable
27
28 if (argc<2){ //If there were no arguments
29 firstarg = 0;
30 } else{
31 firstarg = atoi(argv[1]);
32 }
33
34 cout << "The first argument is " << firstarg << ".\n";
35 int /luninitialized variable
36
37 while ((r = rand()) <=100) {
38 }
39
40 cout << "The first random number greater than 100 was " << r << ".\n";
Since thethen and theelse each consist of one assignment statement (lines 29 and 31), we could
use the?: operator instead of @h . This permits the variablie to beconst .
41 const intfirstarg = argc <2 ? 0 : atoi(argv[1]);

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.4 Declarations and their Placement 37

Dead values
Except for the abee five @ses, eery C++ variable should be initialized at its moment of birfBut
some initializations are worse than useless.

A deadvalue is one that will neer be wsed agin. Inthe following example, the values 10, 30, and
50 are dead. Ner store a dead value into a variable.

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4
5 i nt main()
6 {
7 i nti=10; /IDead value: never used because wiped out in line 8.
8 i = 20;
9 cout <<i<<"\n"
10
11 i = 30; //[Dead value: never used because wiped out in line 12.
12 i = 40;
13 cout <<i<<"\n%
14
15 int j=50; //[Dead value: never used because program ends in line 16.
16 return EXIT_SUCCESS;
17}

No variable should outlive its usefulness

No variable should be born before wevda hitial value for it. Similarly, no variable should lie
beyond its last use. That is wiwe declared the in the parentheses of tifier loop in line 15 ofsum.C
in pp. 33—-34. Here is another example.

In C, we often assign alue to a variable and test it in the samjression. ThiC++ program is in
the same style (line 9).

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/declare/if1.C

1 #include <iostream>
2 #include <cstdlib> [[for rand, exit, EXIT_SUCCESS
3 using namespace std;

4
5 i nt main(int argc, char **argv)
6 {
7 i ntr; /luninitialized variable
8
9 if ((r=rand())!'=0){ //assign and test
10 cout << "The first random number was " <<r << ".\n";
11 } else{
12 cout << "The first random number was zero (" << r << ").\n";
13 }
14
15 return EXIT_SUCCESS;
16}

The output will be the same each time we run the program because we made no call to the function
srand before the call toand .

PO T0 AN hesenea ©2014 Mark Meretzky

=

O©CoOoO~NOOOUOTPA,WNPE

38 Bebre Objects Chapter1

The first random number was 16838.

In the abwe line 9, the function call operator goes first because of its higher precedence; the assign-
ment operator goes second; and the comparison goes last because it its outside the paventieses.
example is on pp. 86-87.

| |

r |= |[|lrand () I= 10

| |

The most common examples of this idiom in C are

i ntc;
while ((c = getchar()) != EOF) {

char *p;
i f ((p=malloc(n)) == NULL) {

FILE *out;
i f ((out=fopen("outfile”, "w")) == NULL) {

But C++ does not share £¥age to cram as much code as possible into a sirgtession. Th&€++
style would be to separate the assignment and the test. The assignmewntis inbialization, which per
mits the variable to be@nst in line 7.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/declare/if2.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main(int argc, char **argv)

{
const int r = rand(); /linitialize
if(r!l=0){ [ltest
cout << "The first random number was " <<r << "\n";
} else{

cout << "The first random number was zero (" << r << ").\n";

}

return EXIT_SUCCESS; /Ir s still alive at this point

The first random number was 16838.

The variabler is intended for use only within the bodies of theandelse in lines 9-13 of the
abore pogram. Ithas no business beingwvaidl the way down to the last line ahain. To restrict its
scope to the bodies of tife andelse , the following line 7 tucks its declaration and initialization into the
parentheses of the . Theif will be true if the wariable declared in the parentheses has a non-zero initial
value; more preciselyf it has atrue vaue when cowerted to abool . Nowr will no longer outlve the
if andelse .

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/declare/if3.C

PIOEaT0 AN hesenea ©2014 Mark Meretzky

Section 1.5 Translate a C Program into C++ 39

1 #include <iostream>

2
3

©O© oo~NO OA~

10
11
12
13
14}

abhwNRE

13
14
15
16
17

#include <cstdlib>
using namespace std;

i nt main(int argc, char **argv)
{
i f (constintr=rand()){ //initialize and test
cout << "The first random number was " <<r <<".\n";
} else{
cout << "The first random number was zero (" << r << ").\n";

}

return EXIT_SUCCESS; /Ir no longer exists at this point

The first random number was 16838.

Why is it so important to extinguish a variable as soon as we are done witditittedly, the death
of an integer will free up no resources. But a more complicated variabl®l§grt”) might hold mary
things during its life: open files and netk connections, dynamically allocated memaogks of \arious
kinds. Killing the variable (“destructing the object”) will makit surrender these resourceBlease get
into the habit of killing df all your variables, een integers, as soon as you are done with them. As we
mention in p. 634, programming in the same style withyedata type will ease our transition to templates.

We haveseen that aariable can be declared and initialized in the parenthesefoof #oop orif
statement. W can also do it in the parentheses aifldle loop. Anr is born each time we ave & line
13; it dies each time we reach thén line 15. There is actually a whole seriecohst variables, each
with the same name. Contrast thewhile loop in p. 36, in which there is only onariabler whose
value keeps changing.

for(inti=0;i<10; ++i){
cout << i<<"\n";

}

/ i no longer exists here (in modern versions of C++)

i f (constintr=rand()) {
cout << "The first random number was " << r << ".\n";
} else{
cout << "The first random number was zero (" << r << ").\n";

}

IIr no longer exists here

while (const int r = rand()) {
cout << "The random number was " <<r << "\n";

}

IIr no longer exists here

1.5 Translate a C Program into C++

PIOTaT0 AN hesenea ©2014 Mark Meretzky

40 Bebre Objects Chapter1

J. H. Conway’s Game of Life

John Horton Conay’s “Game of Life’ is the classic example of a “cellular automatorThis soli-
taire game s unleashed upon the world in Martin Gardn&vlathematical Gamestolumn inScientific
Americanmagazine.

223 (October 1970): pp. 120-1ZIhe fantastic combinations of John Convgagw ®litaire game “life”
224 (February 1971): pp. 112-110n cellular automata, self-reproduction, the Garden of Eden, and the game “life”

The playing board is made of rows and columns of square cells. Each cell is occupied orlertiygy
days before computers, thased checkers on a checkerboard.

Initially, the user draws whater picture striles their &ing/; three examples are shown lweloThe
user plays no other réle. He or she simply sits back and watches the piotuee e

This happens according to threeda We will pretend that the playing board is infinite, so we tlon’
have o worry about edge cells. Each cell has eight neighbors.

(1) Thelaw of Survival says that the contents of a cell remain unchanged if exactyofvits eight
neighbors are occupied.

(2) ThelLaw of Birth says that a cell becomes occupiedxdctly three of its eight neighbors are occu-
pied. Ifthe cell is already occupied, it remains occupied.

(3) ThelLaw of Death says that a cell becomes empty if less thanotwrore than three of its eight
neighbors are occupied. If the cell is already epiptgmains empty.

The hard part is that thewa must be applied to each cell simultaneauslf wsually leae te pic-
ture untouched and build up theangicture, orgeneration, in a temporary array.

In the initial generation behg the occupied cell in the center of the blinker has vacupied neigh-
bors. Bythe Lav of Survival, it remains occupied in the next generation. The othercedls in the blinler
each hae me occupied neighboBy the Lav of Death, thg become empty in the regeneration.The
two empty cells to the left and right of the central one eacle ltaee occupied neighbors. By theviaf
Birth, they become occupied in the next generation. All the other cells remain unoccupied, byvthefLa
Survival or Death.

A blinker has period 2. It repeats itselfeey two generations.

I/ I/
LI LI
Cee® Cee®

A paw printis a still life.

CICIC CICIC
Clee Clee
Ce e Ce e

A glider oozes to the lwer right, exuding pseudopodia. It resumes its original shape after four gen-
erations.

O I/
CICIe e LI
ccs ccs
[l Cies
CCe®

To amplify lines 35-42, we print the generationsrtically. The characterX and ‘dot” represent
the occupied and unoccupied cell® smplify lines 54-62, the 1& 10 playing board that the user sees is

PIOTaT0 AN hesenea ©2014 Mark Meretzky

NRPRRRRRERRRRE
QOO ~NODUDWNROOON®UAWNEPR

NN
N

WNDNNDNDNNDN
QOWoO~NOO U bW

w w
N -

WWwWwwwww
©oo~NO O W

A D BAD
WwN RO

[P S S SN S S
SQwWwowo~NO O b

Section 1.5

surrounded with a border of permanently unoccupied cells. This means that the underlying array has to be

12x12.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/srcllife/life.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* for strcmp */
#define LIFE_YMAX 10
#define LIFE_XMAX 10

nt main()

i
{

int old[LIFE_YMAX + 2][LIFE_XMAX + 2] = {

{0, 0000000000 O}

{0, 0,00,0,0,0,0,0,0,0, 0},
{0, 0,10,0,0,0,0,0,0,0,

{0, 0,01100,0,0,0,0, 0},
{0, 0,110,0,0,0,0,0,0, 0}
{0, 0,00,0,0,0,0,0,0,0, 0},
{0, 0,00,0,0,0,0,0,0,0, 0},
{0, 0,00,0,0,0,0,0,0,0, 0},
{0, 0,00,0,0,0,0,0,0,0, 0},
{0, 0,00,0,0,0,0,0,0,0, 0},
{0, 0,000,0,0,0,0,0,0, 0},

{0, 0,0,0,0,0,0,00,00, O}
J

in new[LIFE_YMAX + 2][LIFE_XMAX + 2];

int generation;
char buffer[256];
size t X, Y;

int count;

size t x1, y1;

for (generation = 0;; ++generation) {

/* Print the matrix. */
for (y=1;y<=LIFE_YMAX; ++y) {

for (X =1; x <= LIFE_XMAX; ++x) {

[* sorryy before x */
putchar(old[y][x]
}
putchar(’\n’);
}

printf("%d:
generation);

scanf("%s", buffer);

if (strcmp(buffer, "c") 1= 0) {
break;

}

printed 5/10/14
10:14:10 AM

0, M

20XV

Translate a C Program into C++

/* sorry y before x */

a glider */

/* loop through all elements in the array */

/* subscript of each of the 8 neighbors of x, y */

Press c to continue, g to quit, and RETURN.\n",

41

hesenea ©2014 Mark Meretzky

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90}

91

42 Bebre Objects Chapter1

for (y=1;y<=LIFE_YMAX; ++y) {
for (x =1; x <= LIFE_XMAX; ++x) {

/* How many of the 8 neighbors of element x, y
are turned on? Don't count the element itself.*/
count = -old[y][x];

for (yl=y-1,yl<=y+1;++yl){
for (x1=x-1;x1<=x+1;++x1){
count +=old[y1][x1];

}
}

/* Law of Survival */
if (count==2){
} new[y][x] = old[yl[x];

/¥ Law of Birth */
else if (count == 3) {
new[y][x] =1

/* Law of Death */
else {

new[y][x] = 0;
}

}

/¥ Copy new into old. */

for (y=1;y<=LIFE_YMAX; ++y) {
for (X =1; x <= LIFE_XMAX; ++x) {
} old[y][x] = newly][x];

}

return EXIT_SUCCESS;

The abee lines 64-77 may be combined to the single expression
newly](x] = count == 2 ? old[y][x] : count == 3;

But dontdo it. C++does not share €tage to cram as much code as possible into a single expression.

¥ Homework 1.5a: translate C to C++

Translate the alve pogram from C to C++.We havenot done classes yet, so do not use class
string . Print the output in a monospace font.

Make these changes:
(1) Rename the program to tell the computer that itvsinaC++.

(2) Includeiostream instead ofstdio.h . If you dont have iostream , you will have ©
includeiostream.h

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.5 Translate a C Program into C++ 43

(3) Includecstdlib instead oftdlib.h . If you dont havecstdlib , you will have © include
stdlib.h

(4) Includecstring instead oftring.h . If you dont havecstring , you will have © include
string.h

(5) Do all i/fo with>> and<<. Theusingnamespacestd; may not be needed oven dlowed.
Do not call ag of the C i/o functionsprintf |, putchar , scanf , fprintf , etc.

(6) Use the C++ comment delimitér for one-line comments.

(7) You cant use a leyword as the name of aaxiable, arrayfunction, or anything else that has a
name. Herare the 74 C++dywords.

and continue goto public try
and_eq default if register typedef
asm delete inline reinterpret_cast typeid
auto do int return typename
bitand double long short union
bitor dynamic_cast mutable signed unsigned
bool else namespace sizeof using
break enum new static virtual
case explicit not static_cast void
catch export not_eq struct volatile
char extern operator switch wchar_t
class false or template while
compl float or_eq this xor
const for private throw Xor_eq
const_cast friend protected true

(8) Change the macros to variables of data tgestsize_t . And nawv that the are no longer

macros, let their names be alMercase. @ keep their scope as small as possible, declare them inside the
main function.

(9) Theint ’s that represent numbersont , x, y, etc.) shouldremainint ’'s. But theint ’s that
represent on/éfor true/false (the array elements) should becdmel 's. Set them totrue or false
instead of tdl or O in lines 71 and 76. But toelep the picture legible, let the initial values of the array ele-
ments remairi’s and 0's even though thg are nowbool ’s in lines 11-24.bool s can be initialized with
1'sandO’s:

bool a[]={1,0, 1, 0}; /I={true, false, true, false};

If your version of C++ has nbool , usebool anyway Simply insert line 8 ofbuiltin.C in p.
27 (without the comment delimiter) after thieclude 's.

(10) Unfortunatelythe arrayshew andbuffer cannot be initialized in their declarations; see p. 36,
1 (2). Butat least you should me their declarations down to the last possible moment, sowiiecon-
tain garbage for the shortest possible time.

(11) Every other ariable must be initialized in its declaration. Declare the loop counters ¢1,
etc.) immediatelyafter the left parenthesis of eafdn loop if your version of C++ permits thistou dis-
covered if it does in Homeork 1.4a (pp. 34-35).

(12) Extra credit. Instead of writing to the standard output, write onto the screen by calling the
term.h functions on p. 86If the game is small enough to fit on the screen, display it in the upper left cor
ner (‘upperleft justified’). If the game is too big to fit on the screen, display as much of it as wibDifit
play the prompt"Press c to continue, ...") below the game.

Call themin function to find which is smaller: the number of columns in ta@e or on the screen.
(Ditto for the number of ms). Includethe header fileealgorithm> for min. Like cout , min belongs
to namespacstd ; be sure to sayusingnamespace .std ; In some versions of Microsoft Visual C++,
min andmax are named cpp_min and_cpp_max.

PO T0 AN hesenea ©2014 Mark Meretzky

44 Bebre Objects Chapter1

The two aguments ofmin have b be he same data type (explanation on p. 652). The number of
columns in the game will besize t (1 (8) abwee); the number of columns on the screen will be an
unsigned (the return type oferm_xmax). If size_t is not another name famsigned on your
machine, you will hee o cast one of the argumentsrain to the type of the other.

Warning: the first argument dérm_get andterm_put is the column numbebut the first sub-
script of a two-dimensional array is thewaumber.

For speed, you shoulterm_put a rew dharacter only when it is different from the old character at
that location. Call term_get to find out what the old characteas: Donotterm_put a rewline onto
the screen.

For the extra credit, do not bother to display the generation number: it is too much troubleetb con
it into a series of digit characters. But if you feel compelled to displayitan construct an object of the
classostringstream on pp. 454-456Thestr member function of classstringstream returns a
“string object”, and thec_str member function of the object returns a pointer thar .

93 #include <sstream> [ffor ostringstream
94 using namespace std;
95
96 ostringstream ost;
97 ost << generation << ": Press c to continue, g to quit, and RETURN.";
98 term_puts(x, y, ost.str().c_str());
A

1.6 Pointers and References

The introduction of object is the tadoff point from C into C++. Ultimately this will be a meway
to think about programmingnitially, however, our objects will merely be a notation for tying together the
structures, pointers, and functions familiar from T visualize an object we will need a structure, a
pointer thereto, and a function to which the pointer will be passed. Here isva oétigs machinery.

1.6.1 Reiew of Pointers

A pointer to a stand-alone variable

We will begin by considering atand-alonevariable, one that is not an element of an arrayvari-
able in memory occupies one or more byt€he addressof a variable is the address of the byte that has
the lowest addressThe value of a variable may change as the program runs, but its address and number of
bytes stay the samé\ variable cannot ooze around in memory.

Line 10 outputs the addressiaf Line 13 stores this address intp@inter, a variable that can hold
an address. Since the valuepak the address af, we sy thatp points toi .

The unary operator in line 15dereference®: it uses the value gf to get the value of theaviable
to whichp points. The* fetches annt from memoryas g@posed to alouble or some other data type,
because of the declarationpfn line 13. The value of the expressign in line 15 is the value df.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer/pointer.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main()

{
i nti=10;

O~NO O WNPE

PO T0 AN hesenea ©2014 Mark Meretzky

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24}

25
26

Section 1.6.1 Review of Pointers 45

cout << "The value of iis " <<i << "\n"
<< "The address of i is " << &i << ".\n"
<< "The size in bytes of i is " << sizeof i << ".\n\n";

int *p=&i //Let the value of p be the address of i.

cout <<"Thevalue ofiis" <<*p<<"\n"
<< "The address ofiis " << p <<"\n"
<< "The size in bytes of i is " << sizeof *p << ".\n\n"

<< "Thevalue of pis" << p <<"An"
<< "The address of pis " << &p <<".\n"
<< "The size in bytes of p is " << sizeof p << ".\n";

return EXIT_SUCCESS;

You can split the abee line 13 into
int *p;
p = &;

But why would you want to allovp to momentarily hold garbage?

The value of i is 10. All platforms output intgers in decimal.
The address of i is 0xffbff194. My platform outputs addresses in hexadecimal.
The size in bytes of i is 4. May be different on other platforms.

The value of i is 10.
The address of i is 0xffbff194.
The size in bytes of i is 4. May be different on other platforms.

The value of p is 0xffbff194.
The address of p is Oxffbff190.
The size in bytes of p is 4. May be different on other platforms.

Here is a diagram af andp in memory showing that the glue ofp is the address aof. There vas
room to shw only the last tw hex dgits of the address of each byte. Although my platformppumme-
diately beford in memory our corvention will be to drav a pointer to the right of theariable to which it
points; we'll see wi when we talk about constant pointers and pointers to pointers on pp. 51 ahide52.
address and size of thanable will be different on each platform. In particulam integer and a pointer to
an integer may be different sizes.

i p

10 Oxffbff194
94 95 96 97 ‘ ‘ 90 91 92 93

T T

A pointer to an array element

Three more operators can be applied to a pointer that points to an element of artarray:and
[l

Here are tw ways to loop through an arrayn lines 10-13, theariablei holds the subscript of

each element of the arrajo get the value of each element, the subscripting op€iatan line 12 has to
do a lot of arithmetic. It multiplies the subscriptimes the width of each element (the number of bytes in

PIOEaT0 AN hesenea ©2014 Mark Meretzky

1
2
3

©O© oo~NO OA~

46 Bebre Objects Chapter1

anint .) Thenit adds this product to the address of the first element of the gielding the address of
the desired element. The elemen#lue is then fetched from that address.

Is there a way towaid this hidden multiplication and addition each time aroundfdhe loop? In
lines 17-20, the pointgy holds the address of each element of the arflg dereferencing operatbrin
line 19 does not & o do ay aithmetic at all: the address of the desired element is already sittpng in
This is one of the reasons Wi was gven pointers in 1970. Is it still rel@nt? Whenwe write lines
10-13, some contemporary compilers are smart enough teebahé we had written lines 17-20. Is your
compiler one of them?

As usual, thet+p in line 16 mean@=p+1. This malesp point at the next array element, not at
the next byte. In l levd terms, we say that an integer added to a pointer is implicitly multiplied by the
number of bytes in the pointed-taniable. Sincéine 17 declareg to be a pointer to aimt , the++ adds
sizeof (int) to the value op.

Other examples of this multiplication are theessiona + i anda + ninlines 11 and 17The
name of an arrayunencumbered by a subscript, is a pointer to its first element. Thyeisteandn are
therefore multiplied by the number of bytes in that element. The address, for example, would be
x sizeof (int) bytes from the start of the arra¥his is the address of the (non-existent) first element
beyond the end of the array.

The subtraction in line 18 yields the distance from the first element to the elemgnistipatinting
to. Thisdistance is measured in array elements, not in bytes; it is therefore the subscript of the element that
p is pointing to. In lev levd terms, we say that an thefdifence of tw pointers is implicitly divided by
the number of bytes in the pointed-tariables. Thesubtraction will compile only when both pointers are
declared to point to the same type of variable.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer/array.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nt main()
{
i ntaf] ={10, 20, 30},
const size_t n = sizeof a / sizeof a[0];
for (size_ti=0;i<n; ++i){
cout <<"a['<<i<<"]:addressis"<<a+i
<< " valueis" << a[i] <<".\n";
}
cout <<"\n"
for (int*p=a;p<a+n;++p){
cout <<"g["<<p-a<<"]:addressis"<<p
<< " valueis" << *p<<"\n";
}
return EXIT_SUCCESS;

POTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.1 Review of Pointers 47

a[0]: address is 0xffbff050, value is 10. the start of the array
a[l1]: address is 0xffbff054, value is 20. sizeof (int) bytes from start of array
a[2]: address is 0xffbff058, value is 30. 4 * s izeof (int) bytes from start of array

a[0]: address is 0xffbff050, value is 10.
a[l1]: address is 0xffbff054, value is 20.
a[2]: address is 0xffbff058, value is 30.

Any pointerp can access the variable to which it is pointing: simply apply the dereferencing operator
*p . A pointer to an array element can also access the neighboring elements with the subscripting operator

[1 .- p[O] is another way to sap , the element to which is pointing. p[1] , p[2] ,p[3] ,andp[-1] ,
pl-2] ,p[-3] , ae the neighbors in each direction. Be careful not to go beyond the ends of the array.

The following program uses this notation to sort an array ofj@éngeinto ascending orderhe strat-
egy is calledbubble sort.Line 11 initializesp to point to the first element of the arrajhe first time we
execute line 12p[0] andp[l] are therefore the first tvdements. Sinceve want to sort the elements
into ascending ordewe hope thatp[0] is less than or equal 1] . If this is not the case, lines 13-15
swap the values of the bordements.

The second time wexecute line 12p points at the second element of the arralis time,p[0]
andp[l] are the second and third elements. The third timexseuge line 12p points at the third ele-
ment;p[0] andp[l] are the third and fourth elements. Line 12 makes it lo@kik fad a little portable
array name@ that we could superimpose on each pair of elemdnts. a considerable notational con-
venience.

When thefor loop in line 11 exhausts itself, thedast number in the array has been borne along to
the last element. The other numbersyéager, may still be in disarrgyso we laveto go back to the lggn-
ning of the array and startaig. Thats why the loop in line 11 is enclosed in thedar loop in line 10; it
decrementend so we dort go dl the way to the last element again.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/pointer/sort.C
1 #include <iostream>
2 #include <cstdlib>
3 using nhamespace std;
4
5 i nt main()
6 {
7 i ntaf] = {20, 10, 50, 30, 40};
8 const size_t n = sizeof a / sizeof a[0];
9
10 for (int*end=a+n-1;a<end;--end){
11 for (int*p=a; p <end; ++p){
12 if (p[l]<p[O]){ //if p[0] and p[1] in wrong order,
13 const inttemp = p[0]; //swap them
14 pl0] = p[1];
15 p[l] = temp;
16 }
17 }
18 }
19
20 for (int*p=a;p<a+n;++p){
21 cout <<*p<<"\n“
22 }
23
24 return EXIT_SUCCESS;
25}

PIOEaT0 AN hesenea ©2014 Mark Meretzky

26

©CoOo~NOOOUTA,WNPE

48 Bebre Objects Chapter1

10
20
30
40
50

If C++ did not hae the subscripting operatdhe abee line 12 would hee o be

it ((p+1)<*p){
The expressiop + 1 is the address of the element after the one to whistpointing; the expression
(ptl) s the value of that elementVe would need parentheses taeute thet before the.

But C++ does hae the subscripting operatmo do mt write the abee line 26. Thep[1] in line 12
is a simpler way to do the same thing. The operdtodoes the work of the and*. And nawv that the
two operators are gone, we no longer need the parentheses edimaakeecute in the correct ordel(At
the end of line 12, | wrotp[0] instead ofp for stylistic consistencwith the expressiop[1] .)

The same rule applies to an array and a subscriptyslwrite afi] instead of*(aH) . The
name of an array is a pointer to the first element of the,amdya subscript can be applied ty qointer
to an array element.

We will turn this function into an “algorithmon pp. 761-763.

A pointer to a structure
One more operator can be applied to a pointer that points to a structure: the eperator

Line 14 creates a structuré C program would need to sasfructstr here (p. 30, line 43)ub
we need only thetr . Line 15 accesses the structure fields with tleperator.

Line 17 creates a pointer to the structure. The dereferencing operanrbe applied to grpointer.

But the structure is not an element of an arsayhe operators+, -- , or [| cannot be applied to this
pointer.
Let's walk through the order in which the subeessions of thé€p).i in line 19 are wecuted. V¢

use the pointep by applying the* operator to it, retrieving to the pointed-tariable. Inthis case, the
variable turns out to be a structuré/e wse a structure by applying the dot operator which weisdine
15. The* operator must therefore be applied before the dot. Since kias lower precedence, we need
the parentheses to mate* go first. See p. 112 for a similar sequence of subexpressions.

But never write the epression(*p).i . The single operatot> in the expressiomp->i will do all
the work of the tw operators in*p).i . And nav that the tvo operators are gone, we no longer need the
parentheses to makhem eecute in the correct order.

Line 22 passep to a function. We will see on pp. 111-112 that C++vgs us a letter notation for
this.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer/struct.C

#include <iostream>
#include <cstdlib>
using namespace std;

struct str {
i nti;
double d;
}s

10 void f(str *p);

11

12 int main()

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.1 Review of Pinters 49

13{
14 str s = {10, 3.14}; //don't need the keyword "struct"
15 cout <<s.i<<""<<s.d<<"\n"
16
17 str *p=4&s; /[Let the value of p be the address of s.
18
19 cout << (*p).i<<""<<(*p).d <<"\n"
20 << p->i<<"" << p->d << "\n";
21
22 f(p);
23
24 return EXIT_SUCCESS;
25}
26
27 void f(str *p)
28 {
29 cout << p->i<<""<<p->d<<"\n"
30}

10 3.14

10 3.14

10 3.14

10 3.14

v Homework 1.6.1a: two ways to simplify the same expression

The folloving program has an array of structures. Tkgression(*(at2)).d
field named of the structure at subscript 2. It can be simplified io ways.

(1) changehe+ and* to the operatof]
(2) changehe* and dot to the operater

in line 19 is the

Try both. Whichway lets us get rid of the most parentheses? Which way yields the simpler result?

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer/simplify.C

#include <iostream>
#include <cstdlib>
using namespace std;

1
2
3
4
5 struct str {
6 i nti;
7 double d;
8 };
9
10 int main()
11
12 str af] ={
13 {10, 15.0},
14 {20, 25.0},
15 {30, 35.0}
16 3
17 const size_t n = sizeof a/ sizeof a[0];
18
19 cout << (*@a+ 2)).d<<"\n"

printed 5/10/14
10:14:10 AM

All rights
reserved

©2014 Mark Meretzky

50 Bebre Objects Chapter1

20
21 return EXIT_SUCCESS;
22}
35
A

1.6.2 ConstantsConstant Pointers, andconst _cast

Constants

A variable whose alue is not supposed to change should be dectanest . This designation will
malke the program easier to understand and debug.

A constant cannot be assigned to (line 2). It must therefore be initialized at its moment of birth (line

1).
1 constinti=10;
2 i = 20; /lwon’t compile: can’t assign to a const
3
4 constint j; /lwon’t compile: a const must be initialized

Please use @onst variable instead of a macro. The rules for parentheses are simplerdnalale.

5 #define TAX (610 + 395 + 15) /Imacro needs parentheses
6 constinttax =610 + 395 + 15; /lconst doesn’t need parentheses

And a variable can be made local to a function or other block.

7 void f()
8 {
9 #define TAX (610 + 395 + 15)
10 const inttax = 610 + 395 + 15;
11} /[The variable tax disappears at this point.
12
13 void g()
14 {
15 /[The macro TAX still exists at this point,
16 /lbut the variable tax does not.
17}

A pointer can be constant in tve different ways.

Constants that are pointers are twice as complicated as plain old constants; those that are pointers to
pointers are four times as complicated. But tordrry: we will never go beyond two levds. Pointergo
pointers to pointers are rarely used.

The variable to which a pointer points will be calledttrget variable. The strings in lines 1-2 will
be our target ariables. Thaliagram shows the first string at address 1000 and the first pointer at address
2000, but these numbers will be different on each platform.

Lines 4-8 she what a pointer can do. Line 5 reads the target variable; line 6 writS€snite our
pointer can do both, it is @ad/write pointer Line 7 shows that a pointer can access not only tgettar
variable, but also the targeainables reighbors. LineB shows that a pointer can bevegn a rew vdue. It
now points to a different target.

We row demonstrate the twdifferent types of constant pointers. In the name of a data type, the
keyword const may appear at the beginning (lines 10 and 22) or immediately aftestanisk (lines 16

PIOTaT0 AN hesenea ©2014 Mark Meretzky

O©CoOoO~NOOOUTEA,WNPE

Section 1.6.2 Constants, Constant Pointers, armbnst _cast 51

and 22).

In the name of a pointer data typegamst at the beginning of the name means that the pointer can-
not write its target ariable. Inthis case we say that the pointeraad-only. For example, the pointgpl in
line 10 can be used to read the target variable in line 11, but not to write the target variable or its neighbors
in lines 12 and 13. It can, vaver, ill have its value changed in line 14t now points to a different tar
get. (‘Read-only’ refers not to the value of the pointbut to the what the pointer can do to tladue its
target variable.)

Note that a “pointer to a functiontannot beconst in this sense A function cannot beverwrit-
ten.

In the name of a pointer data typesanst immediately after an asterisk means that the pointer can-
not be gven a rew vdue. lttherefore akays points to the same tmt. For example, the pointgr2 in line
16 alvays points to the targst It can, howeer, gill read and write the target in lines 17-19.

We haveseen the tw positions where thedyword const can be inserted in the name of a pointer
data type. The tavareas of memory in the following diagram correspond to thesgisaitions. Aconst
in the left position means that we cannot use the pointer to changaukeof the target variable (the data
in the left part of the diagram)A const in the right position means that we cannot change the value of
the pointer (the data in the right part of the diagram).

A pointer can be madeonst in both ways simultaneously (line 22).

Even with all these various types of constant pointers aimed at it, tet $ais still not constant.
Line 29 demonstrates thatcan be changed very easilWe just cannot change by means of the read-
only pointerspl andp3.

S p

Ih! Ie! 1|1 1|1 10! !\01 1000

1000 1001 1002 1003 1004 1005 2000
char s[] = "hello";
char t[] = "goodbye";
char*p =s; /Is means &s[0]
cout << *p << "\n"; /[Output the 'h’.
*p = ' H; /[Change the 'h’ to 'H'.
p[l] ="E’; /[Change the 'e’ to 'E’.
p =t; / /Make p point to t.
const char*pl=s; /Ip1 gives read-only access to s
cout <<*pl<<"\n"
*pl = 'H; [lwon’t compile: can’t use pl to change s[0]
pl[1] ='E, /lwon't compile: can’t use pl to change s[1]
plL =1t; | lokay
char *constp2=s; //p2 must be initialized
cout <<*p2<<"\n";
*p2 = ' H; /lokay
p2[1] = "FE; /lokay
p2 =1t; / Iwon’t compile: can’t make p2 point away from s

const char *const p3 = s; //[p3 must be initialized because of 2nd const
/lin line 22
cout <<*p3<<"\n";

PIOTaT0 AN hesenea ©2014 Mark Meretzky

25
26
27
28
29
30

O©CoOoO~NOOOUTA,WNPE

52 Bebre Objects Chapter1

*p3 =" H; [lwon’t compile because of 1st const in line 22

p3[1] ='E; /lwon’t compile because of 1st const in line 22

p3 =1t; | lwon’t compile because of 2nd const in line 22

s[0] =" H; /lokay, even with all the const pointers
/Ipointing at s[0].

A pointer to a pointer can be constant in three different ways.

The strings in lines 1 and 2 will be theger variables for our pointepsandqg. These pointers are
themselves targets for the pointer to poipier Let’s say thatp andq will be theimmediate tagets of
pp, ands andt will be theultimate tages of pp.

Lines 8-10 she what a pointer to pointer can do with differing numbers of asterigks.acess
three areas of memgqrgorresponding to the three areas in the following diagram. Line 8 writes into the
ultimate target opp (the data in the left part of the diagram); line 9 writes into the immediaget tafpp
(the data in the middle of the diagram); line 10 writes pgoaitself (the data in the right part of the dia-
gram).

Once again, we can insert theyword const at the start of the name of a data type, or immediately
after aly asterisk. Thughere are three positions where we can insertefedcd into the name of the type
of a pointer to pointerThe three areas of memory in the following diagram correspond to these three posi-
tions. Aconst in the left position (lines 12-13) means that the pointer to pointer cannot be used to
change the value of the ultimategar (the data in the left part of the diagram).const in the middle
position (lines 15-16) means that the pointer to pointer cannot be used to change the value of the immedi-
ate target (the data in the left part of the diagrafgonst in the right position (lines 18-19) means that
we cannot change the value of the pointer to pointer itself (the data in the right part of the diagram).

S p pp
'h’ e’ T T 0’ 0’ 1000 2000
1000 1001 1002 1003 1004 1005 2000 3000
char s[] = "hello";
char t[] = "goodbye";
char*p =s; /Ip points to the string s.
char*q=t;
char **pp = &p; /lpp points to the pointer p in line 4.
**pp ='H’; /IChange the 'h’ to 'H'.
*pp =t; /IMake p point to a different string.
pp = &q; /IMake pp point to a different pointer.
const char **ppl = &p;
*»*ppl = ' H’ [lwon’t compile: can’t use ppl to change s[0].
char *const *pp2 = &p;
*pp2 = t; / Iwon’t compile: can’t use pp2 to change p.
char **const pp3 = &p; /Ipp3 must be initialized
pp3 = &q; /lwon't compile: can’t make pp3 point away from p

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.2 Constants, Constant Pointers, armbnst _cast 53

A realistic example

The following program starts in English mode (line 19), but we can change it to Spanish in line 26.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer/language.C

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;

4
5 i nt main()
6 {
7 const char *const english[] = { /[constant in 2 out of 2 ways
8 " Monday",
9 " Tuesday",
10 "Wednesday"
11 3
12
13 const char *const spanish[] = {
14 "Lunes",
15 "Martes",
16 "Miercoles"
17 3
18
19 const char *const *language = english; /[constant in 2 out of 3 ways
20
21 cout << "The first days of the week are " << language]0]
22 << " and"<<language[l] << "\n"
23 << "The first characters of the first day are "
24 << language[0][0] << " and " << language[0][1] << ".\n\n";
25
26 language = spanish;
27
28 cout << "The first days of the week are " << language][0]
29 << " and"<<language[l] << "\n"
30 << "The first characters of the first day are "
31 << language[0][0] << " and " << language[0][1] << ".\n";
32
33 return EXIT_SUCCESS;
34}
The array in the alve line 7 contains three pointers. Because of the dghst in line 7, the point-
ers alvays point to the same place. Thisyeets the following from compiling.
35 /ITry to make the first pointer in the array point somewhere else.
36 english[0] = " Bloomsday";
Because of the leftonst in line 7, the pointers gé s read-only access to the characters to whick the
point. Thisprevents the following from compiling.
37 /ITry to use the pointer english[0]
38 /Ito change the 'M’ in "Monday" to lowercase.
39 english[0][0] ='m);

The \ariablelanguage in line 19 is a pointer to a pointdike theargv in line 4 ofsum.c on p.
33. Itpoints to the first element of one or the other ariidys first element is a pointexhich is why
language has to be a pointer to a pointer.

PO 0 AN hesenea ©2014 Mark Meretzky

40
41
42

43
44

45
46

47
48
49
50
51
52
53
54
55

54 Bebre Objects Chapter1

Lines 21-24 demonstrate wdanguage can be used. Since it is a pointer to a pojritezan be
dereferenced once or twic®ereferencing it once, with the application of a leadingr a trailing sub-
script, will access a pointer in one of the arrays. Think of this as a jourtige abe@e dagram starting at
pp and following one arrow; we land at a pointer to a chara@ereferencing it twice, with tagpplica-
tions of these operators, will access a character in one of the strings. Think of this asyssjariing at
pp and following both arrows; we land at a character.

Line 26 demonstrates thizinguage can be pointed at a t&fent \ariable. Itwill compile because
of the absence of@nst after the right asterisk in line 1But language cannot be used to damage the
pointers in the arrays or the characters to which point. Becaus@®f theconst after the left asterisk in
line 19, language is read-only with respect to its immediate target, which is a pointer in one of the
arrays. Line42 will not compile.

/[Try to make the first pointer in one of the arrays
/Ipoint somewhere else.
language[0] = " Bloomsday";

And because of theonst at the start of line 19anguage is also read-only with respect to its ultimate
target, which is a character in one of the strings. Line 44 will not compile.

/ITry to change the 'M’ in "Monday" or 'L’ in "Lunes".

language[0][0] ="A;

The first days of the week are Monday and Tuesday.
The first characters of the first day are M and o.

The first days of the week are Lunes and Martes.
The first characters of the first day are L and u.

To get the abwee line 39 to compile, we would tx@ remove the leftconst from line 7. To get
line 44 to compile, we would also V& remove the leftconst from 19. But to get lines 39 and 44 to
execute, we hee o do ezen more.

A double-quoted string literal is an array of constariisr example, theé'Monday” in the aboe
line 8 is of typeconstchar[7] . Thanks to a loophole in C++, a non-const pointer can to point at a
string literal. This is wi line 7 will still compile @en without the leftconst . But if we try to use such a
pointer to @erwrite the characters, we get undefined behavior.

char *const p = "Monday"; /Nlegal but deprecated

p[0] ='m}; /lundefined behavior
To execute lines 39 and 44 correctihe character arrays must be changed from arragsrudt
char to arrays othar . For example,

char monday[] = "Monday"; /[The array monday can be overwritten.
char tuesday[] = "Tuesday";
char wednesday[] = "Wednesday";

char *const english[] = {
monday,
tuesday,
wednesday

Subvert a read-only pointer

The pointer in line 2 ges us ead-only access to the target variable in line 1. If line 4 tries to use the
pointer to write the target variable, it will not compile.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

abrwWwNRE

A WNBEF

Section 1.6.3 Type Corversion, including Pointer Corversion 55

The amateur knows foto follow the rules; bt the professional knows Wwao break the rulesWith
due caution, the professional can use the pointer as if wecemstt by writing theconst_cast in line
5. Thiskind of cast temporarily remves the ‘read-onlyness$from a pointer (See pp. 63-65 for the other
kinds of cast.) It can be applied to a read-only pojtugronly if the target variable is nobnst . If the
target isconst , the program will still compile it its behavior will be undefined. If you're lugkit will
blow up.

char s[] = "hello"; /ltarget variable is not const

const char *p = s; /Ip normally gives read-only access to s

*p = H; [lwon’t compile: try to change the 'h’ to 'H’
* const_cast<char *>(p) ='H’; //will compile: change the 'h’ to 'H’

Who can point to a const variable?
Only a read-only pointer can point t@@enst object:

const char s[] = "hello";
const char *p = s; /Iwill compile: p is a read-only pointer
char*q=s; /lwon’t compile: q is a read/write pointer
If the abare line 4 were lgd, the user could then say

* q = H,,

circumventing theonst in line 1.

1.6.3 Type Corversion, including Pointer Corversion

Unsigned integers
An 8-bit integer can hold 256 28 different \alues. Nev which 256 values should thé&e?

An integer that we use to hold only norgaeve values, starting at zero and working upwards, is
called arunsigned intger. An 8-bit unsigned integefor example, can count from 0 to 255 inchasi

binary decimal
111111121 255 =28-1
11111110 254
11111101 253
11111100 252
00000011 3
00000010 2
00000001 1
00000000 0

A 16-bit unsigned integer can count from 0 to 65,535 ingtusi

PIOTaT0 AN hesenea ©2014 Mark Meretzky

56 Bebre Objects

binary decimal
1111111111111111 65,535 =2%-1
1111111111111110 65,534
1111111111111101 65,533
1111111111111100 65,532
0000000000000011 3
0000000000000010 2
0000000000000001 1
0000000000000000 0

A 32-bit unsigned integer can count from 0 to 4,294,967,295 inelusi

Chapter1

binary decimal
111111111111111212222111111111111 4,294,967,295 =2%-1
111111111111112121212221111111111110 4,294,967,294
111111111111111212222111111111101 4,294,967,293
111111111112111212122221111111111100 4,294,967,292

00000000000000000000000000000011

3
00000000000000000000000000000010 2
00000000000000000000000000000001 1
00000000000000000000000000000000 0
A 64-bit unsigned integer can count from 0 to 18,446,744,073,709,551,615vaclusi
binary

decimal

111111111111112121221211111112121212211111111212122271111111212122121717111111111
11111111111111212221211111112121212211111111212122217171111112121221211111111110
1111111111111121222121111111212121221111111121212221717111111212122111111111101
1111111111111121222121111111212121221111111121212227171111112121221211111111100

0011
0010
0001
00

v Homework 1.6.3a: do you hae these data types?

18,446,744,073,709,551,615 = 2% — 1
18,446,744,073,709,551,614
18,446,744,073,709,551,613
18,446,744,073,709,551,612

OFrLNW

Does your C++ ha& an 8-bit unsigned integer data typd®s probably the typainsignedchar

Do you hae a B-bit one? It5 probably the data typensignedshort

To find out, use theclimits> macros. (The will be superseded by theumeric_limits

“class’ on pp. 745-747.)

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/cast/char_bit.C

1 #include <iostream>
2 #include <cstdlib>
3 #include <climits> /lfor CHAR_BIT, UCHAR_MAX, USHRT_MAX

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.6.3 Type Corversion, including Pointer Corversion 57

using namespace std;

4
5
6 i nt main()
7
8

{
cout
9 << " On my platform, a byte contains " << CHAR_BIT

10 << " bits.\n\n"
11
12 << "On every platform, a char is by definition 1 byte.\n"
13 << "On my platform, the largest number that an unsigned char"
14 << " canholdis" << UCHAR_MAX << "\n\n"
15
16 << "On my platform, an unsigned short contains "
17 << sizeof (unsigned short) << " bytes or "
18 << CHAR_BIT * sizeof (unsigned short) << " bits.\n"
19 << "The largest number that an unsigned short can hold is "
20 << USHRT_MAX << "\n";
21
22 return EXIT_SUCCESS;
23}

On my platform, a byte contains 8 bits.

On every platform, a char is by definition 1 byte.
On my platform, the largest number that an unsigned char can hold is 255.

On my platform, an unsigned short contains 2 bytes or 16 bits.
The largest number that an unsigned short can hold is 65535.

For 32 hts, try the data typeinsigned with the macroUINT_MAX For 64 bits, trylong
unsigned with the macrdJLONG_MAX
A

Signed integers and the twe complement representation

An integer that we use to holdgative and non-ngative rumbers is called aigned intge. A neg
ative rumber is usually written with a gdive dgn (-1). But hev can the ngative ke represented when
the computes memory holds onlyl’s and 0's?

Automobile manufacturers solved this problem a long time ago. In an odometer running backwards,
99999999 represents —1 ar@P999998 represents —2.

00000003
00000002
00000001
00000000
99999999 negative one
99999998 negative two
99999997 negative three

In the binary world, the moral eqalents of 99999999 and 99999998 are 11111111 and
11111110 . This way of representing gaive rumbers is called thievo’s complementnotation. Vé will
assume our hardware uses it, although other representations are possible.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

58 Bebre Objects Chapter1

00000011
00000010
00000001
00000000
11111111 negative one
11111110 negative two
11111101 negative three

Does11111111 mean 255 or —11t depends on whether the 8-bit integer is unsigned or signed.
The range of unsigned values starts at zero and goes up. The range of signed values is centered as nearly as

possible around zerd-or an 8bit signed integeiit goes from —128 to 127 inclus.

binary decimal
01111111 127 =2"-1
01111110 126
01111101 125
01111100 124
00000011 3
00000010 2
00000001 1
00000000 0
11111111 -1
11111110 -2
11111101 -3
10000011 -125
10000010 -126
10000001 -127
10000000 -128 =-2'

The two's cmomplement notation gés us an asy way to tell if a signed integer isgagve. The left-
most bit will bel for a n@aive rumber,0 otherwise. V& all it thesign bit.

We atually had no choice when representing —1 as “all éné€t’s use 8-bit integers to sihowhy.
If we want zero to b80000000 and 1 to béd0000001 , and if we want the sum of 1 and —1 to be zero,
then the representation of —1 as “all onésforced upon us. No other bit pattern wilvgius a aim of
zero.

00000001 positive one
+ 11111111 negative one

00000000 Zero

Similarly, if we want the sum of 2 and -2 to be zero, the representation of 2148110 is forced
upon us.

00000010 positive two
+ 11111110 negative two
00000000 zero

For a 16-bit signed integethe range of values goes from —32,768 to 32,767 inausi

PO 0 AN hesenea ©2014 Mark Meretzky

Section 1.6.3 Type Corversion, including Pointer Corversion 59

binary decimal
0000000001111111 32,767 =2%-1
0000000001111110 32,766
0000000001111101 32,765
0000000001111100 32,764
0000000000000011 3
0000000000000010 2
0000000000000001 1
0000000000000000 0
11111111111111121 -1
11111112222111110 -2
11111111211111101 -3
1000000000000011 -32,765
1000000000000010 -32,766
1000000000000001 -32,767
1000000000000000 -32,768 =-2%°
For a R-bit signed intger, the range goes from goes from -2,147,483,648 to 2,147,483,647 inclu-
sive.
binary decimal
011111221111222111222111122211123211 2,147,483,647 =2°1-1
01111122111222111222111222111212210 2,147,483,646
011111221112221112221111222111213101 2,147,483,645
011111221112221112221112221111100 2,147,483,644

00000000000000000000000000000011

3
00000000000000000000000000000010 2
00000000000000000000000000000001 1
00000000000000000000000000000000 0
1111111111111111211212111111111111 -1
11111111111111112112121111111111110 -2
11111111111111112112121111111111101 -3
10000000000000000000000000000011 -2,147,483,645
10000000000000000000000000000010 -2,147,483,646
10000000000000000000000000000001 -2,147,483,647
10000000000000000000000000000000 -2,147,483,648 =-2%

For a 64-bit signed intger, the range goes from goes from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 inchusi

PO T0 AN hesenea ©2014 Mark Meretzky

60 Bebre Objects Chapter1

binary decimal
01111112111121221112221122211122211122111222111221112211112211111212 9,223,372,036,854,775,80
01111121111121221112221122211122211122111222112122111221111221111110 9,223,372,036,854,775,80
011111211111212211122211222111222111221112221112211122111122111101 9,223,372,036,854,775,80
011111212111121221112221122211122211212211122211122111221111211111100 9,223,372,036,854,775,80
0011 3
0010 2
0001 1
00 0
1111111112221122222211111111122122221221222221111111111111211112121111 -1
11111111221112122111212211122211212211122211222111222111221111211110 -2
1111111122111212211112211122211212211122211222111222111221111111101 -3
100011 -9,223,372,036,854,775,80
100010 -9,223,372,036,854,775,80
1001 -9,223,372,036,854,775,80
1000 -9,223,372,036,854,775,80

v Homework 1.6.3b: do you hae these data types?

Does your C++ hae sgned integers of 8, 16, 32, and 64 bifERe macracCHAR_BITis the number
of bits in aty type ofchar , signed or unsignedEach signed data type has a pair of macros, giving the
minimum and maximum values for that type.

data type minimum maximum
signed char SCHAR_MIN SCHAR_MAX
int INT_MIN INT_MAX
long LONG_MIN LONG_MAX

A

v Homework 1.6.3c: infinite loops
Why do the following loops iterate fover? Fixthem.

1 / /Should iterate 11 times.

2 f or (unsigned char c = 10; ¢ >=0; --¢c) {

3 / Ido something

4 }

5 / /IShould iterate UCHAR_MAX + 1 times.

6 f or (unsigned char ¢ = 0; ¢ <= UCHAR_MAX; ++c) {

7 / /do something

8 }

The problem is not limited to the unsigned data types:

9 / /IShould iterate CHAR_MAX - CHAR_MIN + 1 times.
10 for (char c = CHAR_MIN; ¢ <= CHAR_MAX; ++c) {
11 //[do something
12 }

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.6.3 Type Corversion, including Pointer Corversion 61

A

Integral conversions

Theintegral data types armt (signed and unsigned, long and shartar (signed, unsigned, and
neither),wchar_t , and bool . They are the built-in data types that are neither fractional nor pointers.
Enumerations are integral in @tmot in C++, since thyewill take “overloaded operatorsin C++. Inthe
following rules, howeer, enumerations will beha a dgned integers.

When conerting one data type to anothéine values are called ttsmurce and destination. If the
source and destination types are both integral, theecsian is called aintegral corversion. An integral
conversion from a narrower source type to a wider destination type is calletening.

(1) In an integral corersion that is a widening, the result is determined by the source By, the
bit pattern of the source is copied into the rightmost bits of the destindtan if the source is unsigned,
the nev bits will be all zeroes.We sy that an unsigned sourcezero-extendedThis ensures that a non-
negdive value will remain non-rgative. Here is a widening from 8 to 32 bits.

11111111 unsigned source is 255
0000000000000000000000001111112121 destination, whether signed or unsigned, is 255

If the source is signed, thewebits will be copies of the sourcedgn bit. We sy that a signed
source issign-extendedand that its sign bit ipropagated. This ensures that a nongave value will
remain non-ngative, and a ngaive \alue will remain ngative if it possibly can (i.e., if the destination is
signed).

01111111 signed source is 127
0000000000000000000000000111121212 destination, whether signed or unsigned, is 127

11111111 signed source is -1
11112112112112112112112112111111 see below

The last destination abwe will represent -1 if signed, 294, 967, 295 2°2 — 1 if unsigned. (Mathemati-
cians can tak cmfort that these tovpossibilities, seemingly so dérent, are actually congruent motf.2

(2) In an integral corersion that is not a widening, the result is determined by the destination type.
A source that is too big or too small to fit in a signed destination yields an “implementation deésat.
Otherwise, the bit pattern of the source, or as much of it as will fit, is simply copied into the destination.
Here are tw conversions from 32 to 32 bits.

11111111111111112112121111111111111 signed source is -1
111111212111111111212222111111111111 unsigned destination & 294, 967, 295 232 - 1
111111121111111112121221111111111111 unsigned source &, 294, 967, 295 2°2 - 1
PPV signed destination is implementation defined

The last destination ale is implementation defined because a signed 32-bit integer cannot dloésb v
beyond 2147, 483, 647 21 - 1.

Here are four carersions from 32 to 8 bits.

1111111111221221122122122122111211 unsigned source 4, 294, 967, 295 2% -1
11111111 unsigned destination B55=2° - 1

1111211211211221211221211212121211 signed source is -1
11111111 signed destination is -1

111111111111121111111111111111111 signed source is -1
11111111 unsigned destination B55= 2% - 1

PIOTaT0 AN hesenea ©2014 Mark Meretzky

62 Bebre Objects Chapter1

1111211211121121121121121111111111 unsigned source i, 294, 967, 295 2%% - 1
29?9?7777 signed destination is implementation defined

The last destination abe is implementation defined because a signed 8-bit integer cannot dlakes v
beyond 127 27 - 1.

Implicit type conversion

Four kinds of comersion can be performed simply by assigningalue of one type to a variable of
another type.We all themimplicit corversions, since thecan be written without a cast. The last three
are pointer corersions; another pointer ceersion will be on p. 486.

(1) Corvert between the dilt-in data types (p. 27). The ceasion in line 4 goids integer diision
in line 5 and the resulting truncation.

1 i ntdividend = 22;
2 i nt divisor =7;
3
4 double d = dividend; /[convert int to double
5 double quotient = d / divisor;
(2) Corvert theint value O to ary pointer type.
6 i nt*pl=0; /[convert O to "pointer to int"
(3) Corvert ary pointer type tdbool . The result will befalse if the pointer is zeroirue other-
wise.
7 i nti=10;
8 i nt*p = &i;
9 bool b = p; /[convert "pointer to int" to bool
We sy that a data type torvertible to bool if it can be implicitly conerted tobool . This corvertibil-
ity makes it easy to write a statement that checks if a pointer is zero. The expression in the parentheses of
anif , while , or for is alWways cowverted to abool if it is not one already We can therefore use a
pointer in this contd. TheC tests in lines 14 and 17 will continue to work in C++.
10 #include <stdio.h> /* for fopen: C example */
11 #include <stdlib.h> * for malloc */
12
13 FILE *const fp = fopen(“filename”, "r");
14 if (fp) { /* convert "pointer to FILE" to bool; true if fopen succeeded */
15
16 char *const p = malloc(10);
17 if (p){ /*convert "pointer to char" to bool; true if malloc succeeded */
(4) Corvert ary “‘pointer to variablé'to ‘‘pointer tovoid * "
18 int i =10;
19 int *p=4&i
20 void *q=p; /[convert "pointer to int" to "pointer to void"
A “‘pointer to function” cannot be coverted implicitly to a “pointer tovoid * "
21 void f(); /[function declaration
22 void (*p)() =f; //pointer to the function
23 /Ivoid *q=p; [lwon’t compile

PIOEaT0 AN hesenea ©2014 Mark Meretzky

abrwWwNRE

A WN PP

0o ~NO O

1

Section 1.6.3 Type Corversion, including Pointer Corversion 63

A new notation for a cast
The abeoe mrversions are usually performed more easily by casting than by assign@enthas
six different notations for casts. Here we will endorse &md reject two; elsewhere we will oer
const_cast (pp. 54-55) andlynamic_cast (pp. 1012-1015).
The C cast in line 4vaids integer division and the resulting truncation. The C++ cast in line 5 does
the same thing. The expression to bevetied must be irf parenthesgsand the desired data type in
<angle brackets This punctuation is borrowed from the “explicit template argumentpp. 659-660.

To find every cast in the program, we canwaearch for the conspicuousovd static_cast
This is one advantage of the C++ castrdhe C cast.

i nt dividend = 22;
i nt divisor = 7;

double quotient = (double)dividend / divisor; *C*
double quotient = static_cast<double>(dividend) / divisor; [IC++

Explicit type conversion

There is one comrsion that could be implicit in C but must be explicit in C+@.can cowert a
“ pointer tovoid " to any aher type of pointer without a cast; see pp. 68-B&.example, line 3 coverts
the return value ahalloc from “pointer tovoid ” to “pointer tochar ”.

#include <stdlib.h> /* for malloc: C example */
char *p = malloc(10); [* convert "pointer to void" to "pointer to char" */
if(p{
But in C++ astatic_cast is needed to camrt a “pointer tovoid ” to a “pointer to \ariable’. (We

will get rid of themalloc entirely when we doew on p. 394.)

#include <cstdlib> /lfor malloc: C++ example

c har *p = static_cast<char *>(malloc(10));

if(p{

A static_cast that prevents a program from crashing

Lines 10 and 14 of the following program are realistic examplesgadt_cast . We autput a
character if it is printable, or its character code (probably an ASCII code) if it is not.

Line 8 of the follaving static_cast.C deliberately puts a non-printable bit pattern, “all ohes’
into the \ariablec. Writing the pattern a8xFF or 255 would have gven us ‘all ones’ only on platforms
where thechar was no wider than 8 bits. Writing the pattern @sFFFF would have put an implementa-
tion defined result into thehar on platforms where the data typlear is signed an@xFFFF is outside
the range of values forchar . Instead, we took aint zero, guaranteed to be at least as widedsa ,
and made a photographicgaive with the “bitwise not’ operator (We ould hare written -1 , but the
intent of thischar is to hold a pattern of bits rather than a signed integer.)

Since achar is signed on some platforms, we mustetatare when passing it to the function
isprint in the following line 10. This function belongs to the C Standard Library (declared in
<ctype.h>), and therefore also to the C++ Standard Library (declareddtype>). Theargument of
isprint is anint ; a marrower value will be implicitly widened.

isprint returns a non-zerimt if the character is printable, zero otherwise. It would enakre
sense forisprint to returnbool . But isprint was ariginally written in C, and C has nbool .
Without the!=0 in line 10, theint return value ofsprint would be implicitly cowerted tobool ,
causing a warning message on some compilers.

/ [Excerpt from the header file <cctype>

PIOEaT0 AN hesenea ©2014 Mark Meretzky

64 Bebre Objects Chapter1

2 [/ I(or from another header file included therein).
3
4 i ntisprint(int c);

Although a ngaive dharacter code might be printable (pp. 1032-1034), we must gee a reg
ative agument toisprint . This function is gpected to work only if its argument is the end-of-file indi-
catorEOF(probably —1) or aalue in the range of amsignedchar . Any aher argument could delly
crash the programisprint was gven this latitude so that it could be implemented by the Valg
array lookup.

isprint verifies that its argument is n&OFand then looks it up in an artayhe array has one
element for each value in the range ofuasignedchar . The \alue of each element is non-zero if the
character is printable, zero otherwis#e an nav see wly the argument oisprint must beEOFor a
value in the range of annsignedchar . Any ather value wuld be an out-of-range subscript in line 7
and could crash the prograniThe && operator will @aluate its right operand only if its left operand is
true; see pp. 13-14.)

5 i ntisprint(int c)
6 {
7 static const int a[] = {0, 0O, 0O, /* etc. */ };
8 r eturn c != EOF && a]c];
9}
Let’'s assume that the data typbar is an 8-bit signedht on our platform. If the following line 9
gave c directly toisprint
10 if (isprint(c) !=0) {
¢ would be sign extended tot , resulting in a value of 1.
11111111

11111111111111112121227111111111111

If EOFwere —1l,isprint would mistale this argument foEOF Even worse, ifEOFwere not -1, this
argument would be outside the range of values farremignedchar ~ and could crash the program in the
above line 7.

By castingc to unsignedchar |, line 10 ensures that it will be zero extendeéto. The result-
ing value is in the range of amsignedchar and is a lgd argument forisprint
11111111

000000000000000000000000111111112

The «pressiorc in line 11 is of data typehar , so he preceding< displays it as a characteBut
we dont want to attempt this in lines 13-17, where th&e ofc is known to be unprintable. Instead, line
14 will output the character code®fis a number in the range of @amsignedchar

To do this requires tw casts. Theentire expression in line 14 is of data typesigned , so e pre-
ceding<< will display it as a non-rgtive integer in decimal. First, hower, we must cast to
unsignedchar to ensure that it will be zero extended when widenathgigned . (The same double
cast will appear in line 40 ¢érminal.C on p. 161.) Lines 15 and 16 shavhat goes wrong if only one
cast is used; we will va remember this on pp. 877 and 892.

Line 17 is a fast and dirty way of printing a character code as a wativeeinteger It trims avay
all but the bottom 8 bits af with “bitwise and’. (The parentheses are required because the precedence of
& is lower thar<<; see pp. 24-25.) But the bit pattedmFF works only if achar is exactly eight bits,
which is precisely the kind of assumption that should not be embedded in ourRtedse program with
data types (line 14) not arithmetic (line 17).

—On the Web at
http://i5.nyu.edu/ COmm64/book/src/cast/static_cast.C

PIOEaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.3 Type Corversion, including Pointer Corversion 65

1 #include <iostream>

2 #include <cstdlib>

3 #include <cctype> /ffor isprint
4 using namespace std,;

5
6 i nt main()
74
8 charc="0; //0 is all zeroes; "0 is all ones.
9
10 if (isprint(static_cast<unsigned char>(c)) !=0) {
11 cout << "The characteris ™ << ¢ <<".\n";
12 } else{
13 cout << "The character code is "
14 << static_cast<unsigned>(static_cast<unsigned char>(c)) << ".\n"
15 << static_cast<unsigned>(c) << "\n"
16 << static_cast<int>(c) << "\n"
17 << (¢ & OxFF) << "\n";
18 }
19
20 return EXIT_SUCCESS;
21}
The character code is 255. line 14:28 -1
4294967295 line 15:2%%- 1
-1 line 16
255 line 17

Why not avoid the whole problem of sign extension by declaring all our character variables to be
unsignedchar ? Well, mary of the standard library functions expect arguments that are pointers to
plain oldchar .

/ [Excerpts from <string.h> in C, <cstring> in C++

size_t strlen(const char *);
¢ har *strcpy(char *dest, const char *source);

A WNBE

We @an implicitly corvert from unsignedchar to char , but not from “pointer tounsignedchar
to “pointer tochar ”. As we ae about to seeyen an &plicit static_cast cannot perform this con-
version.

Dangerous conersions with r ei nt er pr et _cast
Certain pointer casts must be marked with a differegpivierd because tlyeare so dangerouswWe

write reinterpret_cast instead ofstatic_cast in the following three situations.
(1) We reed areinterpret_cast to corvert between pointers to different types ariables.
Line 11 of the following program cwearts the &pressiona from “pointer to unsignedchar " to

“ pointer tochar ” (see p. 81 for another way to do this). Line 14vedos the &pression&s from
“ pointer toshort " to “pointer tochar " ; it then dereferences the latter to access thecfiest of the
short . This tells us the order of the bytes within 8fert , which is of concern when we do netrk-
ing. Thelnternet expects to rese the bytes of dhort in big-endian order.

(2) We reed areinterpret_cast to corvert between pointers to ddrent types of functions.
Thef in line 2 is a pointer to a function that retukwéd ; thep is a pointer to a function that returimg .
1 void f();
2 i nt (*p)() = reinterpret_cast<int (*)()>(f);

PIOTaT0 AN hesenea ©2014 Mark Meretzky

O©oo~NO O~ W

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

66 Bebre Objects Chapter1

(3) We saw an p. 62 hat a pointer to aariable can be implicitly caerted to abool . But all other
corversions between a pointer and a non-pointer requietngerpret_cast

#include <cstddef> [[for size_t

i nti=10;
i nt*p = &i

size_t s = reinterpret_cast<size_t>(p);//convert pointer to non-pointer
p = reinterpret_cast<int *>(s); /lconvert non-pointer to pointer

The data typesize_t should be used for grvariable that holds an array subscript, or the number
of elements in an arragr the number of bytes in a block of memosjze _t s therefore the data type of
the return value of the C functistrlen , the argument of the C functionalloc , and the value of the
sizeof operator It ought to be big enough to hold the value of a pointer.

Do not use the data tyfpet for these purposes: it might not be big enoufjfhe one exception is
theargv array which was inented beforesize_t . For this arraythe number of elementsrgc) has
always been aint .)

size_t is another name faunsigned or unsignedlong , depending on the harase. Itis
defined in the header fitkestddef.h> in C, <cstddef> in C++. But we usually dohnheed to include
these files directly They are already included bystdio.h> in C and by<iostream> in C++.

We anphasizesize t , and its signed counterpaptrdiff t , because there will be a parallel
pair of typedefs for “containersh C++: size_type anddifference_type

One kind of cowersion is so dangerous that neithestatic_cast nor areinterpret_cast
will do it. This is a cowmersion between a “pointer to functidr@nd a ‘pointer to non-function’(including
a “pointer tovoid). Anexample is in line 24 of the folleing program, which print the address of the
functionf in hexadecimal (or whater the platforms cornventional address format is).

Line 20 tries to gie the address df directly to the<< operator But the<< in the C++ Standard
Library will not accept a pointer to a functioifhe only acceptable data type to which the pointer can be
implicitly converted isbool , a sibstantial loss of informatiorbool is printed ad or 0.

Line 22 cowerts the pointer into aize t , the integer type that should be big enough to hold it.
Like any integerasize_t is printed in decimal. But we would Ekaur pointer to print in headecimal.
Line 24 therefore casts theze t into avoid *

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/cast/reinterpret_cast.C

#include <iostream>

#include <cstdlib>

#include <cstring> //for strlen
using namespace std;

void f();
i nt main()
{
unsigned char a[] = "hello";
cout << "The length is " << strlen(reinterpret_cast<char *>(a)) << ".\n";
short s = 0x1234;
if (*reinterpret_cast<char *>(&s) == "\x12’) {
cout << "Hostis big endian.\n";
} else{
cout << "Hostis little endian.\n";
}

POTaT0 AN hesenea ©2014 Mark Meretzky

19
20
21
22
23
24
25
26

27}

28

Section 1.6.4 Write O instead ofNULL 67

cout <<f<<"\n"
<< "The address of f in decimal is "
<< reinterpret_cast<size_t>(f) <<".\n"
"The addressoffis”
<< reinterpret_cast<void *>(reinterpret_cast<size t>(f)) <<".\n";

return EXIT_SUCCESS;

29 void ()

30 {

31

32}

=Y

cout <<"f\n";

The length is 5.
Host is big endian.

1 line 20: abool prints asl or 0
The address of f in decimal is 69320. lines 21-22: asize t prints in decimal
The address of f is 0x10ec8. lines 23—-4: avoid * prints in hex on my patform

Casts we will not use

C++ has one cast we will not use, and one we will not uae fibe first is the C cast wewdack
on p. 63.

double quotient = (double)dividend / divisor;

It is capable of doing anything thastatic_cast or reinterpret_cast can do. In fact, it can do
more. Thecorversions in the abee line 24 could be written with a single C cast.

<< (void *)f << "\n";
But dont use this cast in C++. It is of no help when weéd search for gery place where a cast is per
formed. Therés no conspicuous word or combination of punctuation marks.
The other notation for a cast looksdik unction.

double quotient = double(dividend) / divisor;

It is not really a cast at all; we will see that it is a orgesarent ‘constructor’. Lik e the C cast, it is hard to
search far Furthermore, it can be used only when the name of the destination type is a sirthldtwan
corvert an expression tmt , but not tounsignedlong ortoint* . Itis intended for use only in a
“ template”, where the data type will whys hare a me-word name.Don't use it yet. (It will appear in
passing on p. 134.)

1.6.4 Write O instead of NULL
A pointer can lgdly point to three places.
(1) A pointer can point to a variable, including an array element or a structure member.
i nti=10;
i nt*p = &i;
However, a pinter cannot point to a structure bit-field.

(2) A pointer can point to the location after the last element of an array where the next elealént w
be.

POTat0 AN hesenea ©2014 Mark Meretzky

b~ w

PO OWoOoONO®

B

12
13

W N

68 Bebre Objects Chapter1

const size_tn = 10; /Inumber of elements in the array

i nta[n];

i nt*p =a + n; //point to where the element with subscript 10 would be
However, a pinter cannot point to the location before the first element.

(3) A pointer can point to a functioryem if the function is “inline’ (pp. 97-100).

void f(); /[function declaration
void (*p)() =f; //Let p point to f.
(*p)O; /lone way to call f
pQ); /la simpler way to call f
f(); /lthe simplest way to call f (of course)

A pointer that is supposed to not point ty afithe abee three places should & the value zero, to
ensure that it is not accidentally pointing to one of them. In C, this zZsawitten as the macMULL In
C++, we write it as a plain old. TheO is an intger, but it can be coverted implicitly to a pointer in both
languages.

int *p=NULL,; /* pointer in C */
int *p=0; /lpointer in C++

The definition of NULL in C

How was the macrdlULL defined in C, and whdon't we wse it in C++?A first attempt at definition
would be

#define NULL O [* provisional: doesn’t work yet */

But this runs into trouble when we pa¢idLLto a function whose arguments are not declared. The
printf function, for example, is declared with the ellipsis dots in line 2. Because @dhad%pfor-
mats in line 4, the first zero must be passed as ageingggument, the second zero (writterNas L) as a
pointer agument. Onegeason the data types must be correct is because geriatal a pointer are thf-
ent sizes on some platformmjntf would be confused if we passed the wrong amount of data Tdé.

definition of NULL in the abwe line 1, havever, will make the computer think that the second argument is

an intger The computer pays no attention to ##rmats in the first argument pfintf |, and the ellip-
sis dots are certainly of no help.

i nt printf(const char *format, ...); /* declaration in <stdio.h> */

printf("%d %p\n", 0, NULL); /* pass an int and a pointer */

For this reasonNULL is defined in C as an expression of type pointer:
#define NULL ((void *)0)

Now the computer will kne that the last argument in the aledine 4 is indeed a pointer.

In C++ this is not an issue, because function arguments in that language are abaysstietlared.
In fact, the only common functions that use ellipsispairetf ~ andscanf , and their cousingprintf |
sprintf , etc.

Why we don’t use NULL in C++

In both languages, a casrsion from one type of pointer to anotheway}s requires an explicit cast,
with the one exception discussed belo

i nti=10;

i nt*p = &i;

char *q = (char *)p; /* explicit cast to convert int * to char * */

PO T0 AN hesenea ©2014 Mark Meretzky

o O b~

=

(20 &) I SN b}

B
P O w© o~

A WN PP

Section 1.6.5 Pass-by-Value vs. Pass-by-Refence 69

The loophole is that in C, a oamsion between goid * and another type of pointer can be done implic-
itly, with no cast:

i nti=10;
i nt*p = &i;
void *q = p; [* convert int * to void * */

Now that we knav the definition ofNULL, we an see that the ab®line 12 performs a pointer caasion,
from “pointer tovoid ” to “pointer toint ”. The loophole allows line 12 to compile in C without an
explicit cast. But the loophole is closed in C+tine 12 will not compile in that language unless we
change the definition MiULL back to zero. The integer zero can bevetied, without a cast, to grype

of pointer.

#define NULL O
It would be possible to e wo dfferent definitions oNULL, one for each languageubit’'s smpler to
dispense wittNULLin C++.

The other type of zero
A zero of data typehar should be written with single quotes and a backslash in both languages.

char c ="0’; /la char, not a pointer
wchar_t wc = L'\O’; /la wide char, not a pointer

In C, the quotes and backslash are merely helpful documentationviatthantent of the zeroO is an
integer/\O’ is a character.

void f(int i); /* C example: declare a function */
f (0); * Call the function in line 3. */
f (\0"); * Call the same function. */

In C++, havever, the quotes and backslash could m#ie program do something different because of unc-
tion name werloading’ (pp. 89-94).

void f(int i); /[C++ example: declare two functions with the same name
void f(char c);

f(0); /[Call the function in line 7.
f(\0"); /[Call the function in line 8.

1.6.5 Rass-by-Value vs. Pass-by-Reference

C and C++ hae wo ways of passing an argument to a function. The most compass-by-value,
creates a cogpof the value of the gument and passes this go the function. The function cannot
change the value of the argument, because the functienneeeves the agument. Onlya copy falls into
the functions hands.

To permit a function to change thalue of an argument we must perfopass-by-referencein
which the address of thegaiment, rather than a cppf its value, is passed to the functioknowing
where the original argumentvés, the function can install awevalue into it.

The classic example of pass-by-valugiimtf , not counting the format stringThe classic xam-
ple of pass-by-referencessanf , agan not counting the format string which only coincidentally is passed
by reference.

i nti=10; /* C example */
printf("%d\n", i); [* printf can use the value of i but can’t change it. */
scanf("%d", &i); /* scanf can change the value of i. */

PIOEaT0 AN hesenea ©2014 Mark Meretzky

70 Bebre Objects Chapter1

Here is the definition of a function whose first argument is passed by value and whose second is
passed by reference.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/pointer/byvalue.C
1 #include <iostream> /[C++ example
2 #include <cstdlib>
3 using namespace std;
4
5 void f(int copy, int *p); [/[function declaration
6
7 i nt main()
8 {
9 i nti=10;
10 int j=20;
11
12 (i, &j);
13
14 cout <<"i=="<<i<<"\n"
15 << "j=="<<j<<"\n"Y
16
17 return EXIT_SUCCESS;
18}
19
20 void f(int copy, int *p) /[function definition
21
22 ++copy; /Ihas no effect on i
23 ++*p; /ladds 1toj; means*p=*p + 1
24}
i==10
j==21

Pass-by-alue is usuallywided where we can getvay with pass-by-reference-or a celiberate use
of pass-by-value, see lines 75-7Mate.n on p. 274.

Read-only pointer arguments

When called from line 12, the functidn has read and write access to the aaayut read-only
access to the arrdy

See theonst argument(s) in the declarationgifcpy and the other familiar string functions.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/pointer/pointer_argument.C

#include <iostream>
#include <cstdlib>
using namespace std;

void f(int *p, const int *q);

i nt main()

{
i ntaf] ={10, 20, 30};
int b[] ={40, 50, 60};

PO OWoOoO~NOOUOD»WNLPE

B

POTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.6 References 71

12 f(a, b);

13 return EXIT_SUCCESS;

14}

15

16 void f(int *p, const int *q)

174

18 p[0] = 70; /lchange the 10 to 70

19 /1q[0] = 80; /lwon't compile: try to change the 40 to 80
20}

1.6.6 Refeences

References an alternatie notation for pointers

Column 1 creates theriablei , initializes and assigns to it, and outputs its value, address, and size.
Column 2 performs the same operations on the sama@ble, accessing it via the poinfer When we put
the address of a variable into a pointee nmust alvays apply the operator to theariable. Sedine 7 of
column 2. When we dereference the pointer to get back to the target variable, we wayst apply the*
operator to the pointeiLine 9 of column 2 puts 20 inta

A referenceis another notation for a pointeDeep inside the machine, the referende column 3
is exactly the same as the poinpein column 2. The pointer and the reference contain the address of the
same wariable,i . The only tw differences between them are on the surface: in the source code of the pro-
gram.

(1) When we put the address ofaxiable into a reference, we do not apply&wperator to theari-
able. Line7 of column 3 appears to be putting the valué afitor . Butr cant hold anint : it can hold
only an addressWe ae actually putting the addressiofntor .

(2) When we dereference the reference to get back to tet tariable, we do not apply theoper-
ator to the reference. Line 9 of column 3 appears to be putting 20.iBatr cant hold anint : it can
hold only an addres3iVe ae actually putting 20 intd.

Why did they invent a way to ta& the address of a variable without apply#atp it, and dereference
a pointer without applying to it? A hint will come on p. 76, but the real story willJga wait until we
do “operator eerloading”.

A reference abays contains the address of t@mevariable. Ourreference is therefore like the
*const pointerp in column 2.

A reference has no memory address ofvts.oLine 13 of column 3 therefore prints the address of

i, notofr.
—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/reference/reference.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i nt main()
6 {
7 i nti=10; int *const p = &i; int& r =i;
8
9 i = 20; *n = 20; r = 20;
10 ++i; ++*p; ++r;
11
12 cout <<i<<"\n" cout << *p << "\n"; cout << r << "\n";
13 cout << &i<<"\n" cout << p << "\n"; cout << &r << "\n";

PIOTaT0 AN hesenea ©2014 Mark Meretzky

14
15
16
17}

NOoO o~ WNPRE

b~ w =

(e}

72 Bebre Objects Chapter1

cout <<sizeof i <<"\n"; cout << sizeof *p << "\n"; cout << sizeof r << "\n";

return EXIT_SUCCESS;

23 line 12: the value af
23

23

Oxffbff07c line 13: the address of
Oxffbff07c

Oxffbff07c

4 line 14: thesizeof i

4

4

Read-only reference
A read-only reference is just &ka ead-only pointer.

i nti=10;

const int *const p = &i;

*p = 20; Ihry to change i to 20: won’t compile due to 1st const in line 3
constint&r =1i;
r = 30; Iltry to change i to 30: won’t compile due to const in line 6

The word “reference” now means two different things.
(1) Pass-by-value vs. pass-by-reference:

printf("%d\n", i); /*iis passed by value. */
scanf("%d", &i); /*iis passed by reference. */

(2) Pointer notation vs. reference notation:

i nti=10;
i nt*const p = &i; //pis a pointer to i.
i nt&r=1i; [Ir is a reference to i.

To avoid confusion, we will no longer use theomd “reference’ in the first sense. Instead, we will
now say

printf("%d\n", i); /*iis passed by value. */
scanf("%d", &i); /* pass the address of i to the function */

When to use a reference

There are tw reasons for passing the address of a variable to a function. Each reasomhiivieo
a parate notation.

(1) We want to let the function change the value of a variable; the classic exarapsais. In this
case, let the argument be a read/write pointer to the variable as in C. See the gugnrieat?2.

(2) We want to sae time by aoiding the construction, and/entual destruction, of a cgpf the \ari-
able. Inthis case, let the argument be a read-only reference tatiadbdle. Se¢he agumentr in line 22,
In this case, the variable is merelyiah . But if the \ariable was layer, it would be worthwhile to pass it
as a reference.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.6 References 73

If both reasons applyet the argument be a read/write pointer to the variable.

Deep in the machine, the lastdnarguments in line 13 are passed the sarag Wn both cases we are
passing the address of the variable to the function.

—On the Web at

http://i5.nyu.edu/ Cmmé64/book/src/reference/pass_int.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 void f(int copy, int *p, const int& r);
6
7 i nt main()
8 {
9 i ntil=10;
10 int 2 =20;
11 int i3 =230;
12
13 f(i1, &i2, i3);
14
15 cout <<"il=="<<il<<"\n"
16 << "i2=="<<i2<<"\n"
17 << "i3=="<<i3 << "\n";
18
19 return EXIT_SUCCESS;
20}
21
22 void f(int copy, int *p, const int& r)
23
24 cout <<"Arguments are " << copy << ", " <<*p<<""<<r<<"\n"
25
26 ++copy; /Ihas no effect on il
27 ++*p; /ladd 1t0i2; means*p=*p+1
28 [[++r; /lwon’t compile: r is a read-only reference
29}

Arguments are 10, 20, 30.

i1==10
i2==21
i3==30

A read/write reference argument is decepte

A reference argument should almostals be read-onlike ther in the abee line 28. It can be a
read/write only when the name of the function clearly indicates that the function changaki¢hefvts
argument.

Here are the only examples we will encounter in this book. All but the lasrésfrom the C++ lan-
guage itself or its standard library.
(1) theoperator++ functions for enumerations on p. 290;

(2) Thesecond argument of theperator>> function is the variable that reves a rew vdue from
input via the operator>. (The first argument obperator>> and operator<< is also a
read/write reference. In fact, &tream’ argument is alays a read/write referenceSee pp.
324-326.)

PO T0 AN hesenea ©2014 Mark Meretzky

74 Bebre Objects Chapter1

(3) theget member function on p. 329;

(4) theswap algorithm on pp. 648-649;

(5) theadvance algorithm on p. 914;

(6) theput member function of a facet on p. 1048;

(7) myterminal::next member function on p. 158, abolished on p. 96Bis function is a stop-
gap measure until we acquire the machinery to do the job correctly.

(8) mydecrement function object on p. 880. The author hopes the name is sufficiently explicit.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/reference/readwrite_reference.C

1 #include <iostream>

2 #include <cstdlib>

3 using namespace std;

4

5 void increment(int *p, int& r);

6

7 i nt main()

8 {

9 i nti=10;
10 int j=20;
11
12 //Obvious that line 14 can change i,
13 /[dangerously unobvious that line 14 can also change j.
14 increment(&i, 0);
15
16 cout <<"i=="<<i<<"\n"
17 << Mj=="<<j<<"\nY
18
19 return EXIT_SUCCESS;
20}
21
22 void increment(int *p, int& r)
23
24 ++*p; /Imeans*p=*p +1
25 ++1; /lImeansr=r+1
26}

i==11
] == 21

Return the address of a variable from a function
An expression that can be used as the left operand of the assignment epeyataiied arvalue
(pp. 12-13); the L stands for “left’ For example, a variable is an Ivalue.

1 X = 10;

For reasons we will explain on p. 76, the return value of a function must sometimes be used as an
Ivalue. Wherline 17 tries to do this with thexpressionf() , howeve, it does not compile A value that
has been returned by value is not an Ivalue.

But a value that has been returned by reference isalirellines 18 and 19). Deep in the machine,
the functiongy andh both return the addressiof The return value af needs the dereferencing operator
* before it can be used as an Ivalue in line 18. The return valuendine 19 doesr’need the asterisk.

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.6.6 References 75

For even more arcane reasons, also to be explained on p. 76, the ratumof a function must
sometimes be used as an Ivalue without an astevigkwill therefore declare the return type to be the ref-
erence in line 38 rather than the pointer in line 33.

To qualify as an lalue, it must also be possible to apply the “addre$pkrator& to the apres-
sion. Onceagain, theg() in line 22 must hee an asterisk before it can be used as alule. (The& and*
in this line can cancel each other out.) Tife in line 23 needs no asteriskor an exkample, see p. 900.

—On the Web at

http://i5.nyu.edu/ Ommé64/book/src/reference/return_int.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 inti=10; /Istatically allocated so it won’t be destroyed by a return
6
7 intf();
8 int*g();
9 i nt& h();
10
11 int main()
12 {
13 cout <<"f() =="<<f() <<"\n"
14 << "fg() =="<<*g() <<"\n"
15 << "h() =="<<h() <<"\n";
16
17 () = 20; /lwon't compile
18 *a() = 30; /[Change the value of i to 30. Must have the asterisk.
19 h() = 40; /[Change the value of ito 40. Don't need asterisk.
20
21 /[cout << &f() << "\n"; /lwon’t compile
22 cout << &*g() <<""<<g() <<"\n"; //Print the address of i.
23 cout << &h() <<"\n"; /[Print the address of i.
24
25 return EXIT_SUCCESS;
26}
27
28 int f()
29 {
30 return i; /[Create a copy of the value of i and return the copy.
31}
32
33int *g()
34 {
35 return &i; //Return the address of i.
36}
37
38 int& h()
39 {
40 return i; //[Return the address of i.
41}

PO T0 AN hesenea ©2014 Mark Meretzky

=

PO OoOo~NOOUOD»WNLPE

B

76 Bebre Objects Chapter1

f() == 10
*g() == 10

h() == 10
0x21380 0x21380
0x21380

Why did Stroustrup invent references?
Why is it so important to be able to use the return value of a function, without an asterisk, as an
Ivalue (line 19 abee)? Itseems like an wnatural thing to do:

X = sqrt(y); //Natural: X is an | value.
sgrt(x) =y; //Unnatural: sqgrt(x) is not an lvalue. Won’t compile.

But when we perform operatov@loading with ‘objects’, we’ll have o do his all the time.Let’s
assume that an object is ariable. Vi will apply a subscript to an objeat (n the following example) just
like we do to anay. We then use the subscripted object as an Ivalue:

/ /Store the number 20 inside the object v at position 10.

v[10] = 20;
When we write the alwe line 4, the computer bels as if we lad written line 5, calling a function with
the admittedly strange nameoperator(] . The subscript in thg square braaktqg in line 4 is passed
as the argument to this function:
v.operator[](10) = 20; /[This is what line 4 actually does.
To make it possible to use the return value as aiue,v.operator]] must return an address. (lact,
the function returns the address withinvirwhere the number 20 is to be stored.) One way to return an
address is as a pointdf the return type of.operator[] were a pointerwe would have o write line 4
as
*v[10] = 20;

to male the computer belva & if we had written
* v.operator[](10) = 20;

But we want the syntax of line 4 to mimic the familiar syntax of an affag return type of
v.operator[] is therefore a reference. This permits us to write line 4 without the asterisk.

Never r eturn the address of a non-static local variable.

A non-static local variableveporates as we return from the function in which it is definédve
return its address, we are returning the addressrtiage. W should return the addresses of only those
variables that dmot evgporate as we return.

The following functions are wrong for the same reasdfe row havetwo different notations in
which to write the same mistakn C++.

#include <iostream>
#include <cstdlib>
using namespace std;

i nt*g();
i nt& h();

i nt main()

{

cout << "*g() ==" << *g() << n\nn
<< "h()=="<<h() <<"\n";

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.6 References 77

12

13 return EXIT_SUCCESS;

14}

15

16 int *g()

174

18 int i=10;

19 return &i; /i evaporates as g returns.
20}

21

22 int& h()

23

24 int i=10;

25 return i; I evaporates as h returns.
26}

A reference to a structure

The notation for a pointer to a structure is different from the notation for a pointer to a non-structure.
For example, thep->f1 in line 14 of column 2 mear®p).f1 : the operator> does the wrk of the
operators asterisk and dot. Andamnthat the expression has only one operdl@re is no longer a need for
the parentheses.

Since the notation is so different, here is the original pointer vs. refergeac®le again, this time
with pointers and references to a structure.

—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/reference/structure.C

1 #include <iostream>

2 #include <cstdlib>

3 using namespace std;

4

5 struct str {

6 i ntfl;

7 i ntf2;

8 };

9
10 int main()
114
12 str s = {10, 20} str *const p = &s; Str&r=s;
13
14 s.fl = 30; p->fl = 30; r.fl = 30;
15 ++s.f1; ++p->f1; ++r.f1;
16
17 cout <<s.fl<<"\n" cout << p->fl << "\n"; cout << r.f1 <<"\n";
18
19 cout << &s<<"\n" cout << p << "\n"; cout << &r << "\n";
20 cout << &s.fl <<"\n"; cout << &p->f1 << "\n"; cout << &r.f1 << "\n";
21
22 cout << sizeof s << "\n"; cout << sizeof *p << "\n"; cout << sizeof r << "\n";
23 cout << sizeof s.f1<<"\n";cout << sizeof p->f1<<"\n";cout << sizeof r.f1<<"\n";
24
25 return EXIT_SUCCESS;
26}

PO T0 AN hesenea ©2014 Mark Meretzky

78 Bebre Objects Chapter1

The ++ in line 15 of column 1 adds 1 ®©fl , not tos. The box around the sukgressions.fl
causes the.f1 to be treated as a unit by the operators outside @hie++ cannot reach into the box and
single out the sub-subexpressin

++|| s |. |fl
33 line 17
33
33
Oxffbff108 line 19
Oxffbff108
Oxffbff108
Oxffbff108 line 20: the same address
Oxffbff108
Oxffbff108
8 line 22
8
8
4 line 23
4
4

Pass the address of a structue to a function
—On the Web at

http://i5.nyu.edu/ Ommé64/book/src/reference/pass_structure.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 struct str {
6 i ntfl;
7 i ntf2;
8 };
9
10 void f(str copy, str *p, const str& r);
11
12 int main()
13{
14 str al={10, 20};
15 str a2 ={30, 40};
16 str a3 ={50, 60};
17
18 f(al, &a2, a3);
19
20 cout <<"al.fl=="<<alfl<<"\n"
21 << "a2.fl =="<<a2.fl <<"\n"
22 << "a3.fl =="<<a3.fl <<"\n";
23
24 return EXIT_SUCCESS;
25}

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.6.6 References

79

26
27 void f(str copy, str *p, const str& r)
28{
29 ++copy.f1; /Ihas no effect on al.f1; means copy.fl = copy.f1 + 1
30 ++p->f1; /ladds 1 to a2.f1; means p->f1 = p->f1 + 1
31 /[++r.f1; /lwon’t compile
32}
al.fl==10
a2.fl1==31
a3.f1==50

Return the address of a structue from a function
Deep inside the machine, the functignandh return the address of
—On the Web at

http://i5.nyu.edu/ COmmé64/book/src/reference/return_structure.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 struct str {
6 i ntfl;
7 i ntf2;
8 };
9
10 str s = {10, 20};
11
12 str f();
13 str *g();
14 str& h();
15
16 int main()
174
18 cout <<"f().fl ==" << f().f1 <<"\n"
19 << "g()->fl ==" << g()->fl <<"\n"
20 << "h().f1 ==" << h().f1 <<"\n";
21
22 g()->f1 = 30; /IChange s.flto 30. Must use arrow.
23 h().f1 = 40; /IChange s.f1to 40. Must use dot.
24
25 return EXIT_SUCCESS;
26}
27
28 str f()
29 {
30 return S;
31}
32
33 str *g()
34 {
35 return &s;
36}

PIOTaT0 AN hesenea ©2014 Mark Meretzky

80 Bebre Objects Chapter1

37

38 str& h()

39{

40 return S;
411}

f().f1 == 10
g()->f1 == 10
h().f1 == 10

References to the detvied types
There are references to pointers.

i nti=10; /lan int
i nt*p = &i /la pointer to the int
i Nt*&r=p; /la reference to the pointer to the int

cout << "The address of i is " << r << ".\n" //the value of p
<< "Thevalue of iis " << *r<<"\n"; //the value of *p (i.e., i)

OO, WN B

Another example is in line 17 pbint.C in p. 373.
There are references to arrays.

7 i nta[3] ={10, 20, 30}; /lan array
8 i nt (&nN[3] = a; //a reference to the array: () and 3 required
9
10 cout << r[0] <<"\n" /lthe value of a]0]
11 << 1] <<"\n" /lthe value of a[1]
12 << 1[2] <<"\n"; /lthe value of a[2]
There areen references to functions:
13 void f(); /[function declaration
14
15 void (&n() =f; /la reference to the function
16 rQ; /[Call the function.

But we are neer alowed to tak the address of a reference. The address might exist, buinlik
object behind thevent horizon of a black hole, we areveeallowed to see it.This is not as strange as it
sounds. W dready knav mary things whose memory address we are not allowed toFs@eaxample, a
literal such a40 or’A’ has no visible address:

17 const int*p = &10; /lwon’t compile
18 const char*p = &A’; /lwon’t compile

If we do try to tak the address of a reference, all we get is the address of the oraggiagle. Line21 out-
puts the address of not the address of. r has no address, or at least no address that we can see.

19 int i =10;
20 int& r =1 ;
21 cout << &r<<"\n" /[Output the address of i.

Since we are not allowed to &athe address of a reference, there are no pointers to references, refer
ences to references, or arrays of references. By definition, an array is a series of elements at equally spaced
memory addresses. But a reference has no visible address, so it cannot be an arrayleltameve. will
see an impneed aray called avector . There will be novector ’s of references, or gother containers
of references.

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.7.2 Call a C Function from a C++ Program 81

v Homework 1.6.6a: a cast to a reference
Line 14 ofreinterpret_cast.C on p. 66 casts one type of pointer into another type of pointer.

1 i f (*reinterpret_cast<char *>(&s) == "\x12') {
Change it to cast a variable into a reference to another tyeiable. (Thids calledtype punning)
2 i f (reinterpret_cast<char &>(s) == "\x12’) {

Does it still work? Isit simpler? Is it easier to understand—which is not at all the same thing? Can you
get used to it? Other examples will be on pp. 655 and 857.
A

1.7 Enhancement$o Functions

1.7.1 Functionswith No Arguments

1 /* C e xample */

2

3 void f(void); [* This function takes no arguments. */

4 void f(); /* This function could take any arguments (obsolete). */
5 void f(...); [* This function could take any arguments (current). */

In C++, the follaving line 8 declares a function that takes rguarents. Lin&® does the same thing,
but don’t write it until p. 84.

/ IC++ example
void f(); /[This function takes no arguments.

void f(void); /[This function takes no arguments.
void f(...); /[This function could take any arguments.

O Ooo~NO®»

1

1.7.2 Calla C Function from a C++ Program

In real life, a C++ program has to call functions written in other languages. Hene & Got pro-
gram can call a function written in C.

A C function and a C++ function cannot be defined in the sameTiie implies that a C++ pro-
gram that calls C functions must be split into at leastswrce files.

A program that comprises two or more urce files

Let’'s begn with a multi-file program all in the same language. If the same declarations need to be
present at the start of each file,yttvan be written once and for all in a header file.

A header file might contain statements that age i® write once but not twiceWe might therefore
get error messages if wiinclude the same header file twice.

=Y

#include <stdio.h> /* C example */
2 #include <stdio.h>

The same problem would occuwrea if we #include 'd two dfferent header files

3 #include <stdio.h>
4 #include <another.h>

if another.h contained the linéinclude<stdio.h>

PO T0 AN hesenea ©2014 Mark Meretzky

OO, WN P

O©CoOo~NOOOUTA, WNPE

82 Bebre Objects Chapter1

The preprocessor direess in line 1, 2, and 6 alle the header file to be compiled only the first time
it is #include 'd in a gven .C file. Thefirst time the computer reads line 1, théndef s true: no
macro name@GHhas yet been definedhe computer then readgeeything from line 1 to thétendif in
line 6, and the first thing it does in these lines is to define the macro in l{i&&.macro counts as being
defined gen though it contains only the null string.) If the header filevir ¢include 'd agan in the
same.C file, line 1 will now be false. V¢ will skip directly to the#endif , ignoring the entire header file.

The#ifndef trick will be our only use of a macro in C+Newer versions of the language might
have an easier way to accomplish the same thing, buy #ne not yet standard.
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sources/fg.h

#ifndef FGH
#define FGH

void f(); /[function declaration
i ntg(int i);
#endif

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sources/fg.C

#include <iostream>
#include "fg.h"
using namespace std;

void f() //function definition

{
}

cout << "f\n";

10 int g(int i)

11
12
13}

O©CoOoO~NOOOUTA, WNPE

10
11

return 2 *i;

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/sources/main.C

#include <iostream>
#include <cstdlib>
#include "fg.h"

using namespace std;

i nt main()
{
f0;

cout << g(10) << "\n";

return EXIT_SUCCESS;

12}

When compiling on Unix we mention only the names of. @diles, not the names of thie files.

1% g++ -0 “/bin/prog main.C fg.C
2% Is -1 “/bin/prog
3% prog

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.7.2 Call a C Function from a C++ Program 83

f
20

Call C functions from a C++ program
The name of each file tells the computer what language the file is written in.

(1) In Unix, define the C++ functions in files whose names end with uppe@asad the C func-
tions in files whose names end with lowercase

(2) In Microsoft Visual C++ and the Project Builder IDE, define the C++ functions in files whose
names end wittcpp , and the C functions in files whose names end wveith

(3) In Borland Tirbo C++, define the C++ functions in files whose names end @R, and the C
functions in files whose names end with.

Here is the half that is written in C+4A function must avays be declared before it is called. If the
function is written in C, use the fupdeclarations in lines 6-7.

—On the Web at

http://i5.nyu.edu/ Cmm64/book/src/callC/main.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 / IThese 2 declarations should be written in a header file, and soon will be.
6 extern "C" void f(); /luppercase C in double quotes
7 extern "C"int g(int i);
8
9 i nt main()
10{
11 f0);
12 cout << g(10) <<"\n";
13
14 return EXIT_SUCCESS;
15}
We will probably be calling manC functions. Insteadf writing a separatextern"C" for each

declaration in the alve lines 6—7, we can write a singd&tern"C" with curly braces.

16 extern "C" {

17 void f();

18 int g(inti);

19} /Ino semicolon

Here is the other half of the program, written inThevoid ’s in the parentheses in the declaration
in line 4 and the definition in line 7 are optional in C++ but required in C.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/callC/fg.c

#include <stdio.h>

I* T hese 2 declarations should be written in a header file, and soon will be. */
void f(void);

i ntg(int i);

void f(void) /* function definition */

OCO~NOOOTLA,WNPEP
—~~

printf("fin");

PO T0 AN hesenea ©2014 Mark Meretzky

84 Bebre Objects Chapter1

10}

11

12 int g(int i)

13{

14 return 2 *i;
15}

The-c option tellsgcc that the filefg.c is not intended to be a complete progrdtrisn’t—it has
nomain function. Itis only one file of a larger program.

1$ gcc-cfg.c Create the “objectfilefg.0 .
2% Is-Ifg.0 minus lowercase L
3$ g++ -0 “/bin/prog main.C fg.o Create the executable filin/prog
4$ Is -l "/bin/prog
5% prog

f

20

A header file acceptable to both languages

We dkclared the functionk andg twice, in lines 5-7 of the alve main.C and lines 3-5 ofg.c
Instead of writing the declarations in each file, we should write them once and for all in a header file.

The following header can be included in both of thevaliides because we restricted ourselves to
features that aredel in both languages.

(1) Commentsare delimited by* and*/ , not by// .
(2) Functionswith no arguments are declared with an argument ligtaifl)
(3) Cfunctions are declared without thgtern"C"

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/callC/fg.h

#ifndef FGH
#define FGH

void f(void); [* The void in parens is optional in C++ but required in C. */
i ntg(int i);
#endif

OO, WN P

We @an nav change lines 3-5 dfy.c to
7 #include "fg.h"
and lines 5-7 omain.C to

8 extern "C" {
9 #include "fg.h"
10}

The abee lines 8-10 shw the real purpose of trextern"C" with curly braces in the ale lines
16-19. Ithas nothing to do withvaiding the repetition of the eardsextern"C" . The real intent is to
banish these words from the lines that declare the functidfisat remains on those lines will wudie
acceptable to both languages, and can beethto a reader file. The (void) in the header file is permit-
ted in C++ for the same reason: so we can write a declaration acceptable to both languages.

PIOTat0 AN hesenea ©2014 Mark Meretzky

Section 1.7.3 A Portable Interface to the Terminal 85

1.7.3 APortable Interface to the Terminal

We will write a video game toxplore object-oriented programming, inheritance, templates, and the
C++ Standard Library To focus on these imposing topics, we will ignore copixels, and sound files.
Our came will treat the screen as a monochrome display of rows and columns of characters, emitting a
monotone beep. Input will come only from thekoard, not from the mouse.

Each platform—Unix, Microsoft, Borland—provides functions for graphics and other spdecisef
Unfortunately these natie functions hae dfferent names, arguments, and return types on each platform.
To keep the game independent of platform, we will ena& drect calls to these functions. Instead, we will
call the follaving term_ functions which will call the nate functions for us.Theterm_ functions con-
stitute the platform-independent base upon which the game willitte Bhey are written in C. Their
header filgerm.h can be included in a C or a C++ file; ytean be called from either language.

The functionterm_put in line 15 writes one character at theegi (x, y) position on the screen.
Theterm_puts in line 16 writes a string of characters, not counting the terminafing , sarting at the
given position. Thex'’s are the column numbers; thyes, the rav numbers. Onlyprintable characters can
be written—those for which the C Standard Library funcigmmint returns non-zero. All other charac-
ters will cause an error messadexr example, the newline and tab characters are unprintable, but there is
never any need to write them on the screeWe @n space horizontally and vertically by providing the
appropriatex andy values.

A character that has been written on the screen can be read badkermitlyet in line 19. It
returns the charactesr a Hank if no character has been written there yet.

On every platform, thex’s go from left to right and thg’s from top to bottom. Both start at zero, so
the origin Q, 0) is at the upper left corner of the screefhe number of columns and rows will befeient
on each platform. But on grplatform, the functiongerm_xmax andterm_ymax in lines 11-12 will
return these numbers. If the number of columns is 80, for examplegthgdies of thex aguments will
range from 0 to 79 inclug. An out of rangex ory will cause an error message.

When representing coodrdinates that start at zero we widlyal follow the comwention of the C++
Standard Library and use unsigned numbers. This willeptethe codrdinates fromver being neative.
Examples in this group of functions are thandy arguments oferm_put ,term_puts , and
term_get , and the return values aierm_xmax andterm_ymax . A previous example was the
unsigned data typsize t used for array subscripts (p. 66).

Calls to the functionerm_key in line 23 return the characters typed at tegbkard. Ifevey char
acter has already been returned, or befoyecharacter has yet been typed, it will return the character
\0' . term_key differs from the C functiometchar in that it avays returns immediatelywithout
waiting for the user to pres®ETURN In other words, it gies us aive keyboard.

The functionterm_wait in line 25 pauses for the specified number of millisecomeisn_beep
in line 26 beeps the terminal.

We sava the two most importanterm_ functions for last. Before we can doyaspecial efects,
there is alvays some setup to be done. On some platforms we tbagut the screen into graphics mode;
on others, we hee © pop up a graphics windo Smilarly, there is alvays some cleanup at the end: we
have © put the screen back into text mode, or m#ile graphics winde disappear.

On every platform, the functionserm_construct andterm_destruct in lines 5 and 6 will
do whateer setup and cleanup are necessarkiey must be the first and lasdrm_ functions called.The
otherterm_ functions are guaranteed to work correctly only between the calls to these two.

Falure to callterm_destruct may leae your terminal in an unusable statéor example, under
normal conditions\eery character that we type is echoed onto the screen. But during the interval between
term_construct andterm_destruct , this echoing is turned bf To see the characters as yhare
typed, we must write them on the screen ourselves (line 32 of the follavaimgC).

In C, it is up to the programmer to neakaure that both functions are called once,
term_construct beforeterm_destruct . In C++, the language will pair these function calls for us
when we hge “constructors’and “destructors. Seepp. 164-166, 163.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

86 Bebre Objects Chapter1

For the time being, we will restrict ourselves tovimg only one terminal. The first stepatard lift-
ing this restriction will be on pp. 994-999.

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/term/term.h

1 #ifndef TERMH

2 #define TERMH

3

4 [* M ust be called before and after the other term_ functions. */

5 void term_construct(void);

6 void term_destruct(void);

7

8 /* L egal x values go from 0 to term_xmax() - 1 inclusive.

9 Legal y values go from 0 to term_ymax() - 1 inclusive. */
10

11 unsigned term_xmax(void); /* number of columns of characters */

12 unsigned term_ymax(void); /* number of rows of characters */

13

14 /* Display a character or string on the screen. */

15 void term_put (unsigned X, unsigned y, char c);

16 void term_puts(unsigned x, unsigned y, const char *s);

17

18 /* Return the character at the given position on the screen. */

19 char term_get(unsigned X, unsigned y);

20

21 /* Return immediately with the key the user pressed. If no key was pressed,
22 return immediately with \0’. */

23 char term_key(void);

24

25 void term_wait(int milliseconds); /* 1000 milliseconds == 1 second */
26 void term_beep(void);

27 #endif

v Homework 1.7.3a: test the terminal interface
Run the following C++ program on your machine to testeh@_ functions.

Lines 10 and 39 set up and clean up the terminal. Lines 11-12 get the dimensions of the screen; lines

14-15 compute the cotrdinates of the center point.

Line 17 writes ariX’ at this position and 18 reads it back. Line 19 writes the read-back character
next to the original one.You should see the name of the Mexican beer Dos Eqi 4t the center of the
screen. Lin@1 writes a string of characters, starting at the upper left corner of the screen.

Theterm_key function alvays returns immediatelyTo wait until a character is typed, we must
call it in the littlewhile loop in lines 25-26 We remain trapped in this loop until we are\wanough to
type a characterThis wastes processingwer, but is a simple way to get the job done. Thpression in
line 25,

| |

c | = [|term_key (= [\’

| |

executes the same operators (substitutirgfor I=), in the same ordeas the following classic idiom in C.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

1
2
3
4
5
6

© 00~

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Section 1.7.3 A Portable Interface to the Terminal 87

| |

c | = || getchar (I= |EOF

| |

Earlier examples of this idiom were on p. 38.

We lreak out of thewvhile loop when we type a charactend write it onto the screen in line 32.
(Rememberthe normal echoing of characters is turneiefween the calls tterm_construct and
term_destruct .) Whathappens if you type an unprintable character such as newline or tab?

The code we hee just walked through in lines 25-32 is inside of the classic nested p#r ofoops
in lines 23-24. It isxecuted oer and over, writing each character we type onto the screen at the next posi-
tion. Whenwe break out with &’ , lines 37-38 test the wait and beep.

A C program would hee © declare all its ariables immediately after tHein line 9. Our C++ pro-
gram declares its variables when weésalues to put into them in lines 11-15 and 18.

For the time being, we are passing a groupafables X andy) to a ®ries of function calls.The
code will become simpler and faster whernythee merged into a single variable (p. 177). Also for the time
being, we need tavfor loops with tw counters (the same andy) because the screen isawlimen-
sional. Wherthey are merged into a single variable (called ‘#erator”), we will be able to loop through
the screen with only one loop and one counter.

The filemain.C is not the complete progranWe dso need theerm.h file of function declara-
tions, and théerm.c file of function definitions. These twfiles are in the same directory on the web.

—On the Web at
http://i5.nyu.edu/ Ommé64/book/src/term/main.C

#include <iostream>
#include <cstdlib>

extern "C" {
#include "term.h"
}
using namespace std;
i nt main()
{
term_construct();
const unsigned xmax = term_xmax();
const unsigned ymax = term_ymax();
unsigned x = xmax/2; /lcenter of screen
unsigned y = ymax/?2;
term_put(x, y, ' X); /[Draw XX at center of screen.
char ¢ =t erm_get(x, y);
term_put(x + 1, y, ¢)
term_puts(O0, 0, "Please type printable characters ending with a g.");
for (y=1;y <ymax; ++y){
for (x=0; x < xmax; ++x) {
while ((c =term_key()) =="0") {
}
if (c=="q){ /quit
goto done;

PO T0 AN hesenea ©2014 Mark Meretzky

88 Bebre Objects Chapter1

30 }
31
32 term_put(x, y, ¢); //[Echo the character the user typed.
33 }
34 }
35
36 done:;
37 term_wait(1000); /lone full second
38 term_beep();
39 term_destruct();
40 return EXIT_SUCCESS;
41}
A

List of the three source files that constitute the test program

(1) term.h andterm.c (both online in the same directory on pp. 86—8IMey are the only tw writ-
ten in C; the other is in C++.

(2) main.C (pp. 87-88)

Select the platform.

Theterm.c file is written in C. Be sure that you doatcidentally tell your computer thatstiarit-
ten in C++ by giing it the wrong filenamex¢ension. Beforecompiling, uncomment (i.e., reme te
comment delimiters from) exactly one of the following three macro definitions at the top of this file:

1 /* # define UNIX */
2 [* # define MICROSOFT */
3 /* # define BORLAND */

For example, if you were compiling under Microsoft, you would change line 2 to
4 #define MICROSOFT

Make no dher change teerm.c . Unix pros can use thd option ofgcc andg++ instead of uncom-
menting.

Compile under Unix
Seecurses (3curses) ahttp://i5.nyu.edu/ Cmm64/man/, or Programming with cusesby
John Strang; O'Reilly & Associates, 1986; ISBN 0-937175-02-1.

http://www.oreilly.com/catalog/curses/

The “minus uppercask dot” option tellsgcc andg++ to #include theterm.h file in the cur
rent directory instead of artgrm.h file that might be in other directories.

The -DUNIX= option defines the macrdNIX to be the null string, eliminating the need for the
abore tncommenting. Bloombgrpeople should also ¢ the compiler the optiorD_WIDEC_H=to pre-
vent the compiler from including the filasr/include/widec.h . Remember to use this option
whene&er compilingterm.c

The minus lavercasec option tellsgcc to create ao file instead of anecutable file. The minus
lowercase L option tellg++ to link in the librarylibcurses.a

1$ gcc -I. -DUNIX= -c term.c Create the object filerm.o .
2$ Is -l term.o minus lowercase L

POTat0 AN hesenea ©2014 Mark Meretzky

Section 1.7.4 Function Name Owrloading 89

3$ g++ -l. -0 “/bin/tester main.C term.o -lcurses
4$ Is -l “/bin/tester
5$ tester Run it; but first mad sure your terminal is set t@t100 , bit ansi .

If you do not see the twi's, set yourTERMenvironment variable tet100 (lowercase VT one hun-
dred) D do this, Korn shell users should say

6% echo $STERM See whas dready inTERM

7$ export TERM=vt100

8% echo $TERM Veify that we puwt100 into TERM
C dhell users should say

9% echo $TERM See whas dready inTERM

10$ setenv TERM vt100

11$ echo $TERM Veify that we puwt100 into TERM

Then try again.

Compile under Microsoft

Create a'Win32 Console Applicatioh’ In Microsoft Visual C++ (part of Mual Studio), you hse
to create a blank project with no files in it. If you try to modify inein.cpp file of their “Hello, world”
program, you get “unresolved external symboCrtDbgReport "

1.7.4 FunctionName Overloading

An overloaded function name

In a C program,\ery function has to hae a dfferent name.*Lines 17-19 call functions with three
different names to print arguments of different data tyipés; char , anddouble .

The printf in line 31 outputs the ASCII code of the character in deciribk first argument of
printf is declared to be a string. The remaining argumens hadeclarations.

1 i nt printf(const char *format, ...); /lellipsis dots

A char amgument passed torintf ~ would therefore be widened iat . If the data typehar were
signed on this platform, the widening would be accomplished by gtgnston. Br example, an 8-bit

char would appear as a number in the range —128 to 127 imelulsine 31 prgents this by casting the

char to unsignedchar , which will be widened by zeroxéension. Nev thechar will appear in the
range 0 to 255 incluge. We saw the same cast in C++ in line 14 siftic_cast.C on p. 65.The%u
format, without the cast, would not be enoudee what a pain it is to call a function whose arguments are
undeclared?

. . . 65
Line 41 breaks thdouble into its mantissa and exponent: 651?3 x 128=.5078125x% 2’.
—On the Web at

http://i5.nyu.edu/ Cmmé64/book/src/foverload/print.c
1 #include <stdio.h> /* C example */
2 #include <stdlib.h>
3 #include <ctype.h> [* for isprint */
4 #include <math.h> [* for frexp */

5
6 void print_int(inti); /* function declaration */

* One exception: atatic function defined in oneC file could hae the same name as a function defined in another
.C file.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

90 Bebre Objects

7 void print_char(char c);
8 void print_double(double d);

Chapter1

9
10 int main()
114
12 int i =65
13 char ¢ ="A]
14 double d = 65.0;
15
16 print_int(i);
17 print_char(c);
18 print_double(d);
19
20 return EXIT_SUCCESS;
21}
22
23 void print_int(inti) /* function definition */
24 {
25 printf("%d\n", i);
26}
27
28 void print_char(char c)
29 {
30 /¥ Output the character code of ¢ as a non-negative decimal integer. */
31 printf("%u", (unsigned char)c); [* cast to avoid sign extension */
32 if (isprint((unsigned char)c)) {
33 printf("\t'%c™, c);
34 }
35 printf("\n");
36}
37
38 void print_double(double d)
39 {
40 int exponent;
41 double mantissa = frexp(d, &exponent);
42
43 printf("%g, mantissa == %g, exponent == %d\n", d, mantissa, exponent);
44}

65
65 A

65, mantissa == 0.507812, exponent ==

Our functions hee the names in column 1. But other namingwamtions are possible: column 2 has

embedded uppercase letters, and column 3 hapritie at the end of the identifierSome data types

have nore than one naméngunsigned
have © be onsistently enforced.

print_int
print_char
print_double

print_long_unsigned
print_unsigned_long

printed 5/10/14
10:14:10 AM

printint
printChar
printDouble

printLongUnsigned
printUnsignedLong

vs. unsignedlong

. Whichever corvention we adopt will

int_print
char_print
double_print

long_unsigned_print
unsigned_long_print

hesenea ©2014 Mark Meretzky

Section 1.7.4 Function Name Owrloading 91

If there are maydata types (and there will be), it is just not practical W@ @i dfferent name to each
function. Andin C++ we dort haveto. C++can hae sveal functions with the same name if theigar
ments are of different data types or ifyavedifferent numbers of guments. Thehared name is said to
beowerloaded;the functions that share the name are calledw#doads of the name.

To make aur example simplerwe @an use the same name for all thpent functions. Lines
18-21 call different functionsyen though thg havethe same name.

Had there been a function whose argument wstsoat |, line 21 would hee alled it. Since there
isn't, it selects thentprint rather than theharprint . The computer prefers cearsions that do
not thrav away information: promotions, rather than truncations.

The inner cast in line 34 prents sign extension, lkthe cast in the previous program. The outer
cast causes the< to print the value as a decimal integ@t as a character.

—On the Web at

http://i5.nyu.edu/ Cmme64/book/src/foverload/print.C
1 #include <iostream> //C++ example
2 #include <cstdlib>
3 #include <cctype> [ffor isprint
4 #include <cmath> [ffor frexp
5 using namespace std;
6
7 void print(int i);
8 void print(char c);
9 void print(double d);
10
11 int main()
12 {
13 int i =65
14 char ¢ ="A]
15 double d = 65.0;
16 short s = 65;
17
18 print(i); /lthe function declared in line 7
19 print(c); /lthe function declared in line 8
20 print(d); /lthe function declared in line 9
21 print(s); /lthe function declared in line 7
22
23 return EXIT_SUCCESS;
24}
25
26 void print(int i)
27 {
28 cout <<i<<"\n%
29}
30
31 void print(char c)
32
33 /[Output character code of ¢ as a non-negative decimal integer.
34 cout << static_cast<unsigned>(static_cast<unsigned char>(c));
35 if (isprint(static_cast<unsigned char>(c)) !=0) {
36 cout <<"\t"<<c<<™MY
37 }
38 cout <<"\n"
39}
40

PO T0 AN hesenea ©2014 Mark Meretzky

92 Bebre Objects Chapter1

41 void print(double d)

42 {
43
44
45
46
47
48
49}

int exponent; //uninitialized variable
double mantissa = frexp(d, &exponent);

cout <<d<<" mantissa ==" << mantissa
<< ", exponent ==" << exponent << "\n";

65

65 A

65, mantissa == 0.507812, exponent ==
65

Recall the functiongerm_put andterm_puts in lines 15-16 oferm.h on p. 86. They needed
different names because yheere written in C.To a G-+ programmerthe different names would be an
annoying redundagc The arguments suffice to distinguish the functions.

If you remain unconvinced, consider thebsolute alue’ functions in the C Standard Librarfach
one has to he a dfferent nameabs, labs , fabs , with the recent addition diabs , fabsf , and
fabsl . Which one is fofloat ? Which one is fodouble ?

The compiler considers only the number and data types of the fuscaigmments, not the data type
of the return value, when deciding which function to call:

1 i ntf(inti); /[This pair is okay.
2 i nt f(double d);
3
4 i ntg(inti);
5 double g(int i);
6
7 i nt main()
8 {
9 i nti=10;
10 double d = 3.14159265358979323846;
11
12 f(i); /lthe function declared in line 1
13 f(d); /Ithe function declared in line 2
14
15 a(i); /lwon’t compile: can't tell which g to call
The number of arguments, as well as the data type of guenants, can distinguish dafunctions
with the same name.
16 void f(int i); [Ithis pair is okay
17 void f(double d);
18
19 void g(int i); /Ithis pair is okay
20 void g(int i, int j);
21
22 void h(int i, double d); /lasking for trouble
23 void h(double d, int i);
24
25 int main()
26 {
27 int i=10;

PIOEaT0 AN hesenea ©2014 Mark Meretzky

28
29
30
31
32
33
34
35
36
37
38
39
40

Section 1.7.4 Function Name Owrloading 93

double d = 3.14159265358979323846;

f(i); [/Ithe function declared in line 16

f(d); /Ithe function declared in line 17

a(i); /Ithe function declared in line 19

a(i, i); /lthe function declared in line 20

h(, d); /lthe function declared in line 22

h(d, i) /lthe function declared in line 23

h(, i); /lwon't compile: can’t tell which h to call
h(d, d); /lwon’t compile: can’t tell which h to call

Function name @rloading plays three important réles in the C++ Standard Libdatgts us do i/o
without the%formats ofprintf andscanf (pp. 349-350). It lets us establish afeliént pair of mem-
ory allocation and deallocation functions for each data type (pp. 415-#18)the hidden machinery for
“ dispatching’the different categories of iterators in the Standard Template Library (p. 915).

“ Intersection of sets of functions”

If a feature is so unusual or unclear that to understand it you need to consult a
“ language lawyer"—an expert in reading language definitions—tdsg’it.

—Brian W Kernighan & Rob Pike, The Practice of Programming, p. 191

The rules for deciding which function to call are complicated. My advice is to use the same name
only for functions whose arguments are so different that yeer haveto consult the rules.

Let's £e hav line 14 decide which function to call. First, the function in line 8 is disqualified
because the secondgament in line 14 cannot be aa@nted to the data typmt* without an eplicit
cast.

Then we find the function that best matches the first argument in line 14, or the ones that are tied for
being the best match. The function in line 8 would be the best match, but it has already been disqualified.
We =ttle for the functions in lines 5 and 6, andwleecircle around themThey are better than the one in
line 7, which would require short -to-int promotion followed by amt -to-double corversion.

Next we consider the second argument in line 14. It can be promoted it thin lines 6-7, or
truncated to thehar in line 5. We prefer promotion because no information is lost, and indicate this by
drawing the second circle.

For each agument, we form the set of functions that best match therant. Ifthe intersection of
the sets is exactly one function, then that function is called. Otherwise, we get an error message.

1st arg 2nd arg

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/foverload/intersection.C

1 #include <iostream>
2 #include <cstdlib>

PIOTaT0 AN hesenea ©2014 Mark Meretzky

94 Bebre Objects Chapter1

using namespace std;

void f(int i, char c);
void f(int i, int j);
void f(double d, int i);
void f(short s, int *p);

O©oo~NOOLPA~W

10 int main()

114

12 short s = 10;

13

14 f(s, s); /lcall the function declared in line 6
15 return EXIT_SUCCESS;

16}

17

18 void f(int i, charc) {cout << "int char\n";}
19 void f(int i, int j) {cout << "int int\n";}

20 void f(double d, int i) {cout << "double int\n";}
21 void f(short s, int *p) {cout << "short int *\n";}

int int

1.7.5 DefaultValues for Function Arguments

Default value for a function argument

Here is another example of function namvertmading. Theoct , dec, and hex in lines 23, 25, and
27 are i/o manipulators, Etheendl on p. 26. They are invisible, lnt outputting them causes all subse-
guent integers output to the same destination to be written in the specified base (pp. 350-351).

—On the Web at

http://i5.nyu.edu/ COmm64/book/src/default/overload.C
1 #include <iostream> //for cout, cerr, <<, oct, dec, hex
2 #include <cstdlib>
3 using namespace std;
4
5 void print(int n, int base);
6 void print(int n);
7
8 i nt main()
9 {
10 int i = 2 55;
11
12 print(i, 10); /ithe function in line 5
13 print(i, 8); Ilthe function in line 5
14 print(i, 16); /ithe function in line 5
15 print(i); /Ithe function in line 6
16
17 return EXIT_SUCCESS;
18}
19
20 void print(int n, int base)
21

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.7.5 Default Values for Function Arguments 95

22 if (base ==28){
23 cout <<oct<<n<<"\n"
24 } elseif (base == 10) {
25 cout <<dec<<n<<"\n"
26 } elseif (base == 16) {
27 cout <<hex<<n<<"\n"
28 } else{
29 cerr << '"base" << base << " must be 8, 10, or 16\n";
30 exit(EXIT_FAILURE);
31 }
32}
33
34 void print(int n)
35{
36 print(n, 10); /lcall-through to the function in line 20
37}
The function in line 34 is merelyall-through: a function that does all its work by calling another
one.

255 line 12: base 10

377 line 13: base 8

ff line 14: base 16

255 line 15: base 10

But we do not hee o bother with the call-through in the al®line 34. A simpler way to get the
same effect is to puide a default value for the last argument in the following line 5. The defaluié v
must be written in the function declaration in line 5, not in the function definition in line 19.

Only trailing arguments can & a céfault value. Inother words, eery argument with a dafilt
value must come to the right ofery argument without a defaulblue. Wherl write a nav function, this
influences the order in which | declare thguements. Iput an argument at the end of the list if I think it
may hae a efault value in the future.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/default/default.C

#include <iostream> [/[for cout and <<
#include <cstdlib>
using namespace std;

void print(int n, int base =10); //only one print function

el ol
ORWNRPOOONOODWNR

i nt main()
{
i nti=255;
print(i, 10);
print(i, 8);
print(i, 16);
print(i);
16 return EXIT_SUCCESS;
17}
18
19 void print(int n, int base)
20 {

PIOTaT0 AN hesenea ©2014 Mark Meretzky

21
22
23
24
25
26
27
28
29
30
31}

O©CoOoO~NOOOUTA, WNPE

96 Bebre Objects Chapter1

if (base ==28){
cout <<oct<<n<<"\n"
} elseif (base == 10) {
cout <<dec<<n<<"\n"
} elseif (base == 16) {
cout << hex<<n<<"\n"
} else{
cerr << "base " << base << " must be 8, 10, or 16\n";
exit(EXIT_FAILURE);
}
255 line 11: base 10
377 line 12: base 8
ff line 13: base 16
255 line 14: base 10

Bound at compile time, @aluated at runtime

The default value does notuyeab be a onstant. Ifthe default value is a variable or axpeession
containing variables, the variables are bound at compile timevahug&d at runtime.

In the folloving example, “bound at compile timeheans that when the function declared in line 7
is called with one argument, the delt argument will be thdefault_base whose declaration has been
seen before line 7: the variable in line 6, not the one in line" BXaluated at runtimémeans that the
default value used in line 14 will be the valuedafault base as line 14 is»ecuted: the value in line
11, not the one in line 6.

—On the Web at
http://i5.nyu.edu/ Cmmé64/book/src/default/bound.C

#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

i nt default_base = 10;
void print(int n, int base = default_base);

10{

11
12
13
14
15

i nt main()
default_base = 16; /[Change value of variable declared in line 6.
int default_base = 8; /ICreate another variable with the same name.
print(255); /Ivariable declared in line 6, with value assigned in line 11.

return EXIT_SUCCESS;

16}

17

18 void print(int n, int base)
19 {

20
21
22
23
24
25

if (base ==28){

cout <<oct<<n<<"\n"
} elseif (base == 10) {

cout <<dec<<n<<"\n"
} elseif (base == 16) {

cout <<hex<<n<<"\n"

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.7.6 Inline Functions 97

26 } else{
27 cerr << "pase " << base << " must be 8, 10, or 16\n";
28 exit(EXIT_FAILURE);
29 }
30}
ff base 16

1.7.6 Inline Functions
This program has a chunk of repeated code: lines 9 andvéthigasame computation for computing
the arerage of tvo integers.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inline/outline.C

1 #include <iostream>
2 #include <cstdlib>

3

using namespace std;

i nt main()

{
i nti=10;
i ntj=20;
intk=(@+))/2; /ILet k be the average of i and j.
cout << (j+40)/2<<"\n"
return EXIT_SUCCESS;

30

One way to eliminate the repetition in the eddnes 9 and 11 is with a macro. But macros are dep-
recated in C++ because yhare so different from the rest of the language in their definition and usage.

For example, whitespace is optional in front afesy left parentheses in C and C++ (p. 10The
one exception is in front of the first left parentheses in line 5, where whitespace is forbdiddenhad
whitespace there, we would be defining a macro with no arguments.
For another example, it is ner necessary to parenthesize an individuaiiable in C or C++.The
one exception is in theeplacement te& of a macro definition—the strin(a) + (b)) /2) in line
5. Ina replacement text, each argument of the macro must be parenthesized. (These are the pairs around
thea andb.) Theentire replacement text must also be parenthesized if it consists of more than one token.
More macro anomalies are on pp. 649-652, where we consider another a#ematinmacro: a
“ template function”.

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inline/macro.C

#include <iostream>

#include <cstdlib>

using namespace std;

#define AVERAGE(a, b) (((a) + (b)) / 2)

i nt main()

PIOTaT0 AN hesenea ©2014 Mark Meretzky

98 Bebre Objects Chapter1

8 {
9 i nti=10;
10 int j=20;
11 int k = AVERAGE(, j);
12
13 cout << AVERAGE(j, 40) <<"\n";
14 return EXIT_SUCCESS;
15}
A function is a much nicer notation for eliminating the repetition:
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inline/function.C
1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 i ntaverage(int a, int b); //function declaration
6
7 i nt main()
8 {
9 i nti=10;
10 int j=20;
11 int k = average(,));
12
13 cout << average(j, 40) <<"\n";
14 return EXIT_SUCCESS;
15}
16
17 int average(int a, intb) //function definition
18{
19 return (a + b) /2; /I3 fewer pairs of parentheses than line 5 of macro.C
20}

CQowoo~NOOUODWNPE

1

The macro has no fett on the recutable prograns’ sze and speed, but the function makes it
smaller (good) and slower (badPaadoxically the loss of speed is most galling when the body of the
function takes very little timeFor example, imagine that it tals a millionth of a second to call the func-
tion, a millionth to &ecute its bodyand a millionth to return. Then we’re spending fully two-thirds of our
time in transit.

To retain the original speed when using the function notationgrthakfunctioninline. Combine the
function declaration and definition, write them where the declaration used to go, and aslavtird k
inline
—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inline/inline.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nline int average(int a, intb) //function declaration and definition

{
}

int main()

return (a+b)/2;

PIOTaT0 AN hesenea ©2014 Mark Meretzky

Section 1.7.6 Inline Functions 99

114

12 int i=10;

13 int j=20;

14 int k = average(,));

15

16 cout << average(j, 40) <<"\n";
17 return EXIT_SUCCESS;
18}

When we write the abe program, the computer beles as if we tad written the original program
outline.C . There are no longer griunction calls or returns. It bebws & if we wrote the entire body
of the inline function(a+b)/2 , in place of each call to the function.

In greater detail, line 14 of the alminline.C behaes as if we lad written lines 19-22The
temporary variables, b, andretval are destroyed after line 22.

19 int a=1i; / /a and b are the arguments of the inline function
20 int b =j;

21 int retval = (a + b) / 2; //(a+b)/2 is the body of the inline function

22 int k = r etval;

For extra speed, most computers would theptimize” thea, b, andretval out of existence, leéng
line 14 as if we had written

23 int k= (+j)/2 ;

Only a small function of one or twsatements should be inline. If a ten-page function was inline
and we called it in ten different places, we would be inserting 100 pages into our pré&tamamber that
excessve gze can slav down a program because of slower loading and more frequent paging.

Inline functions are datic

A global variable is one that is defined outside the body of famction. If a dobal variable is
defined (not merely declared) in a header file, we will get a “multiply defieedr if the header file is
included in more than on€ file of the same programiWe @n fix this by declaring the variable to be
static. Themultiple definitions will still be there, but thevon't interfere with each other.

/ [Declaration of non-static variable: can go in header file even if
/ Ithe header file is included in more than one .C file of the same program.
extern int i;

/ IDefinition of non-static variable: cannot go in header file that is
/ fincluded in more than one .C file ofthe same program.
i nti=10;

©CoOoO~NOOOUTA,WNPE

/ IDefinition of static variable: can go in header file even if
10 /Ithe header file is included in more than one .C file of the same program.
11 static int i = 10;

The same rules apply to a functiolf.a non-static function is defined (not merely declared) in a
header file, we will get a “multiply definéderror if the header file is included in more than o@efile of
the same programThat’s why we wsually write only the function declaration, not its definition, in a header
file. Butan inline function is static by d&idlt, so it can be defined in a header file. The multiple definitions
will not interfere with each other.

PIOTaT0 AN hesenea ©2014 Mark Meretzky

100 Bebre Objects Chapter1

An even simpler example of an inline function

—On the Web at
http://i5.nyu.edu/ COmmé64/book/src/inline/stark.C

#include <iostream>
#include <cstdlib>
using namespace std;

i nline int maxwindowsize() {return 100;}

i nt main()

{
cout << maxwindowsize() << "\n";
return EXIT_SUCCESS;

[
CQowo~NOOUODWNPE

11}

The abee line 9 behwaes as if we tad written

12 cout <<100<<"\n"

100

Why would aryone write a function that merely returns the value of a variable or litd¥alll see
when we do classes andvate data members.

1.8 Spacingand Indentation

Spacing rules

A group of one or more consectgidanks, tabs, and/or newlines is callgditespace.There is one
rule about where whitespace is prohibited, and one rule about where it is required. These rules are stated in
terms oftokens,which are the wrds, numbers, quoted characters or strings, operators, or other punctuation
marks that ma& up he source code of the programhe tokens fall into tew groups, alphanumeric and
non-alphanumeric. Her@e examples of both kinds.

alphanumeric to&ns non-alphanumeriokens
main 10 + [
int 010 -]
void 0x10 . ?
const 10U -> :
sizeof 10L ++
if 10UL == ;
for 10.0 *= ,
typedef 10.0F = {
extern 10.0L && (
cout 10.0e5 << <
[1 0.0e5F k<= A
my_func 10.0e5L "a quoted string"

Here are the spacing rules.
(1) Whitespace is prohibited inside a¢ok Dont try to write
1 main

2 c out
3 < <

printed 5/10/14 All rights

10:14:10 AM reserved©2014 Mark MeretZky

Section 1.8 Spacing and Indentation 101

4 10 e 5
A comment delimiter is not a tek. Een so, do not write

5 / /| bad comment delimiter
/ * b ad opening comment delimiter */
7 I* b ad closing comment delimiter * /

(o2}

(2) Whitespace is required betweeroteonsecutie kens that would otherwise be mistaken for a
single token or a comment delimitéfhere are three cases.

(2a) If the tvo tokens are alphanumeric, whitespace vgagt required between thenfror example,
whiespace is required between the and thei in line 9. If we forget the whitespace, line 9 might still
compile (thanks to line 8) but it wouldVea dfferent meaning.

(0]

i ntinti = 10;
9 inti=20;

(2b) If the two tokens are non-alphanumeric, whitespace is required between them only in the follo
ing exceptional combinations. The first four are present in both languages; the regtiar€fe.

With no space in line 10 between th@us” and the “positive” , the computer would read the- as
an increment and the line would not compi#ith no space in line 11 between the plus and the increment,
the computer would read the-+ as an increment and an addition: waJs thinks that the leftmost tek
is the longest one. The line would still compile, but it wouldeha dfferent meaning.With no space in
line 14, the computer would think that thile was a @mment delimiter With no space in lines 15-16, the
computer would think that the leftmostdwolons were the global scope operator and the lines would not
compile. Thefunction declarations in lines 17-19veaa efault value but no name for eactgament.
Without the space in line 17, the computer would read=thas the multiply-and-assign operator.

10 a=b + +c; /I"b plus positive c"; ditto for "b minus negative c"
11 a = b + ++c; //the computer would read a = b +++c; as a = b ++ +¢;

12a=Db & &c;

13a=b/*p;

14 quotient = dividend / /* comment */ divisor;

15 label: ::f(); /lunary :: is the global scope operator
16a?b::c;

17 void f(int * = 0); /lthis argument is a pointer

18 void f(const int & = 0); /lthis argument is a reference

19 void f(vector<int> = v); /lthis argument is a template

20 vector<vector<int> > v; /Inested template

21 b = operator< <int>(10, 20); //explicit template argument

(2c) If the two tokens are alphanumeric and non-alphanumeric, in either, evdiéespace is required
between them in only one pathological case. See the definition of the macro with arguments in p. 97.

(3) White space is optionaverywhere else: between oawnon-alphanumeric tokens (with thzoep-
tions in §(2b)), or between an alphanumeric and a non-alphanumaesit (wkh the exception in § (2c)).
For example, both of the following are lexically correct:

22if (i==j){ /leasy to read
23 if(i==j{ /Iharder to read
(4) The abwe mles do not apply to preprocessor lines: those that startfwillype them exactly the
way | do.

(5) Although the rules ofdo not require it, be consistent or the user will think that the source code
has been corrupted.

24 a +b / Igood

PO T0 AN hesenea ©2014 Mark Meretzky

25
26
27

O©CoOoO~NOOOUTA, WNPE

[N
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1
2

102 Bebre Objects Chapter1

a+b /lalmost as good
at b / lannoying
a +b /lannoying

(6) Although the rules oflo not require it, space your punctuation as in English. Put a space after a
comma, but none before it. Put no space before a semicolon. Put no spacé afteetore g .

Indentation rules for C or C++

A contol structue is afor or while loop,if orelse , etc. If the body of a control structure
contains only one statement, the curly braces around it are optional. But pretenderdieasd me say
that. lwant you to alvays write the pairs of } around the body of a control structurehe{ goes at the
end of the line immediately before the bpdyd the matching goes at the start of the line immediately
after the body The} at the end of or , while , andif should alvays be on a line by itself.

for(;){
body
}

while () {
body

}

do {
body
} while ();

it 0f
body
}

it 0f
body

} else{
body

}

class ¢ {

private members
public:

public members

h
(1) Do not indent the following lines at the beginning g program.

i nt main()
{

Similarly, do rot indent the first line of the definition of yalther function nor thg line immediately
below it.

void f()
{

(2) If a line ends with &, then the following line should be indented one tab stop farther (e.g., lines
7-8, 8-9, 10-11, 15-16, 20-21 belo If a line begins with &, then it should be indented one tab stop
less than the pwéous line (e.g., lines 11-12, 12-13, 17-18, 21-22, 24-25). If neither of these rules apply
simply indent the line to the same tab stop as theiqure line (e.g., lines 9-10, 13-15, 16-17, 18-20,

PO T0 AN hesenea ©2014 Mark Meretzky

Section 1.8 Spacing and Indentation 103

22-24). Ifyou did everything right, the} at the end of each function will not be indented.

1 / /Print the end of the Beatle’s "She Loves You".
2 #include <iostream>

3 #include <cstdlib>

4 using namespace std,;

5
6 i nt main()
7
8 for(inti=1;i<=2;++i){
9 cout << "She loves you\n";
10 for (inty=1;y<=3;++y){
11 cout << "Yeahl\n";
12 }
13 }
14
15 for (i=1;i<=3;++i){
16 cout << "With a love like that\n";
17 cout << "You know you should be glad.\n";
18 }
19
20 for (i=1;i<=10; ++i){
21 cout << "Yeahl\n";
22 }
23
24 return EXIT_SUCCESS;
25}
(3) The abwe wles for{ and} cancel each other when writing an empty loop:
26 [[Empty loop to waste time if you have no sleep function.
27 for (inti=0;i<=30000; ++i) {
28 }
(4) If a statement does not fit on one line, indent the continuation line(s) one more tab stop than the
first line:
29 cout << "With a love like that\n"
30 << "You know you should be glad.\n";
31 cout << month <<"/" << day << "/" << year <<"\n";
32
33 cout << month <<"/" << day << "/" << year
34 << " " << h our <<"" << minute << "' << second << "\n";
35
36 cout << month <<"/" << day << "/" << year
37 << " " << h our <<":" << minute << ":" << second
38 << " " << s tar_date <<"" << warp_factor << "\n";
(5) Tab stops must be at equal intdsv Ary distance is okayas bng as you use the same distance
for each tab stoplndent with tabs, not blanks.
39 for (inti=0;i<10; ++i) { /lgood
40 for (intj=0;j<10; ++){
41 for (intk =0; k < 10; ++k) {
42 cout <<i<<" "<<j<<" "<<k<<"\nY

PIOTaT0 AN hesenea ©2014 Mark Meretzky

43
44
45

46
47
48
49
50
51
52

104 Bebre Objects

for
for

printed 5/10/14
10:14:10 AM

(inti=0;i<10; ++i){
(intj=0;)<10; ++){
(int k = 0; k < 10; ++k) {

for

}

cout

<<i<<" "<« <<k <<"\n"Y

All rights
reserved

Chapter1

//bad

©2014 Mark Meretzky

