
NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Summer 2013 Handout 7

Build your own version of . . .

If you wrotewho instead of/bin/who in the pipeline in the following shellscript, it would go into
an infinite loop and crash the machine without outputting anything.

1$ which who
/bin/who

#!/bin/ksh
#This shellscript is ˜/bin/who, my own version of who.
#Pass the arguments along, unchanged, to the real who.

echo This is my own version of who. 1>&2 #Handout 5, p. 5 for 1>&2
/bin/who $* | sort #Handout 4, pp. 22, 24; Handout 5, p. 18 for $*
exit 0

2$ chmod a+rx who after you’ve gotten out of the editor; Handout 3, p. 18
3$ ls -l who Make sure thechmod worked.

4$ which who
/home1/a/abc1234/bin/who Nowwhich gives us different output.

5$ who
This is my own version of who. and the following output is in alphabetical order

#!/bin/ksh
#This shellscript is ˜/bin/vim, my own version of vim
#(Handout 3, p. 6).

/bin/vim -g -geometry=80x36 $*

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 1 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This shellscript is ˜/bin/vi, my own version of vi.
#For -f see p. 140; Handout 4, p. 21; Handout 5, p. 20; ksh(1) p. 19.

if [[ -f "$1" ]]
then

chmod u+w $1 #Turn on the leftmost w; Handout 3, p. 18.
fi

/bin/vi $1

if [[ -f "$1" ]] #double quotes in Handout 5, p. 14
then

chmod a-w $1 #Turn off all three w’s.
fi

exit 0

The shell would normally change-P* into the names of all the things starting with-P in the current
directory, but this is not done within[[ double square brackets]] . Seeksh (1) p. 19. The pattern must be
to the right of the== or != .

#!/bin/ksh
#This shellscript is ˜/bin/lpr, my own version of lpr.
#Pass all the arguments along, unchanged, to the real lpr.
#If an argument starts with -P, pass it to lpq.
#Otherwise, give lpq no arguments.
#"in $*" is optional: pp. 144-145; Handout 4, p. 24; ksh(1) p. 2.

/usr/ucb/lpr $*

for argument in $*
do

if [[ $argument == -P* ]]
then

printer=$argument
break #abandon the "for" loop: p. 160; ksh(1) p. 39

fi
done

lpq $printer
exit 0

If we feed only one input file togrep , it will show us each line that it finds. If we feed it two or
more input files, it will also show us the name of the file where it found each line.We therefore feed it the
permanently empty file/dev/null as well as the file we want to search.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 2 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This shellscript is ˜/bin/gcc, my own version of gcc (Handout 3, p. 24).
#Complain if any .c file contains if (a = b) with a single equal sign.
#See Handout 6, p. 17.

cleanbill=1 #of health

for argument
do

if [[ $argument == *.c ]]
then

if grep -n ’if *(.*[ˆ=!<>]=[ˆ=].*)’ $argument /dev/null 1>&2
then

cleanbill=0
fi

fi
done

if [[ $cleanbill -eq 0 ]]
then

exit 1 #Do not attempt to compile.
fi

#This shellscript’s exit status will be that of the real gcc.
/opt/gcc/bin/gcc $*

Build your own version of the Unix rm command: p. 130, ex. 4−14

1$ cd
2$ pwd

3$ mkdir .trash
4$ ls -l | more Why doesn’tls -l list the.trash subdirectory?
5$ ls -la | more ‘‘ all’’, even the ones whose names start with dot

#!/bin/ksh
#This shellscript is ˜/bin/rm, my own version of rm.
#Instead of destroying the file, move it to my ˜/.trash directory
#in case I change my mind later.

mv $1 ˜/.trash

6$ date > junk Don’t experiment with a valuable file.
7$ rm junk
8$ ls -l junk is gone.

9$ cd ˜/.trash
10$ pwd
/home1/a/abc1234/.trash

11$ ls -l | more Now you seejunk .
12$ /bin/rm junk Run the realrm.
13$ ls -l | more

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 3 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

(1) What goes wrong when you try

14$ rm junk
15$ rm garbage
16$ rm junk

The process ID number$$ will be different each time you run this shellscript. See p. 146; Handout
3, p. 23;ksh (1) p. 12.

#!/bin/ksh
#This shellscript is ˜/bin/rm, my own version of rm.
#Rename the file as you move it to the ˜/.trash directory.

mv $1 ˜/.trash/$1 $$

17$ date
Tue May 28 15:22:52 EDT 2013

18$ date | tr ’ ’ -
Tue-May-28-15:22:52-EDT-2013

#!/bin/ksh
#This shellscript is ˜/bin/rm, my own version of rm.
#Rename the file as you move it to the ˜/.trash directory.

mv $1 ˜/.trash/$1$$‘date | tr ’ ’ -‘

(2) When you say

19$ rm ˜/junk

rm actually sees this:

20$ rm /home1/a/abc1234/junk

each of the two $1 ’s in the first shellscript in ¶ (1) will balloon into/home1/a/abc1234/junk . The
shellscript will therefore attempt to execute the erroneous command

21$ mv /home1/a/abc1234/junk /home1/a/abc1234/.trash//home1/a/abc1234/junk 123

Oddly enough, the double slash is not a problem. The command is wrong because it mentions a subdirec-
tory of /home1/a/abc1234/.trash that does not exist.

It’s okay to use the entire$1 as the first argument of themv, but we want to use only the rightmost
segment of$1 in the second argument ofmv. */ looks for any string ending with a slash.And ## tells the
shell to use the preceding variable (in this case,$1) with the following string (in this case, the longest one
ending with a/ ) removed from the front of the variable. For example,

22$ echo $HOME
/home1/a/abc1234

23$ echo ${HOME##*/}
abc1234

See Handout 4, pp. 3−4, 24;ksh (1) pp. 10−12.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 4 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This shellscript is ˜/bin/rm, my own version of rm.
#Rename the file as it is moved to the ˜/.trash directory.
#Use only the basename from $1.

mv $1 ˜/.trash/${1##*/} $$

24$ mv /home1/a/abc1234/junk /home1/a/abc1234/.trash/junk 123

(3) What goes wrong when you try

25$ rm junk garbage

You can move and rename a file with onemvcommand: we just did it.You can also move sev eral files with
onemv command: see Handout 2, p. 4, ¶¶ (3) and (4). But to move and rename several files, you need a
separatemvcommand for each file:

#!/bin/ksh
#This shellscript is ˜/bin/rm, my own version of rm.
#Rename three files as they are moved to the ˜/trash directory.

mv $1 ˜/.trash/${1##*/}$$
mv $2 ˜/.trash/${2##*/}$$
mv $3 ˜/.trash/${3##*/}$$

#Are three enough? Are three too many?

Write onemv in a loop.

#!/bin/ksh
#This shellscript is ˜/bin/rm, my own version of rm.
#Allow more than one filename.

for filename
do

mv $filename ˜/.trash/${filename##*/}$$
done

(4) What goes wrong when you try

26$ rm -i junk garbage ‘‘ interactive’’ option

We also make our rm accept the-f option, since our.profile passes this option torm (Handout 2, p.
13, line 37).

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 5 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This shellscript is ˜/bin/rm, my own version of rm.
#First argument can be an optional -i or -f.

interactive=0
while [[ "$1" == -i || "$1" == -f ]] #two =s for string compare
do

if [[ "$1" == -i ]]
then

interactive=1 #one = to a ssign
fi
shift #move args left, subtract 1 from $#, p. 155

done

for filename
do

if [[ $interactive -eq 1 ]] #-eq to compare two numbers
then

echo $0: remove $filename’? \c’ #Hand 5, pp. 14, 21 for \c
read answer
if [[ "$answer" != y* ]] #Like -P* in Handout 7, p. 2.
then

continue #go back to top of "for": ksh(1) p. 39
fi

fi
mv $filename ˜/.trash/${filename##*/}$$

done

if [[ -t 2 && ‘ls ˜/.trash | wc -l‘ -ge 20 ]]
then

echo $0: time to empty or compress the .trash 1>&2
fi

exit 0

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/rm

27$ rm -i junk garbage
rm: remove junk? yes
rm: remove garbage? no
rm: time to empty or compress the .trash
28$

(5) What goes wrong when you try to remove a file whose name starts with a dash?

29$ rm -myfile

The -- means that none of the following arguments are options (Handout 6, pp. 10−11, line 19).The fol-
lowing arguments must therefore all be filenames or directory names.

#Change the mv in the above shellscript to
mv -- $filename ˜/.trash/${filename##*/}$$

Run a command once at a future time: p. 35

Give theat command in the directory that should be the program’s current directory when it runs in
the future.Your account must be ‘‘unlocked’’; seeat (1) andshadow (4).

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 6 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This shellscript is ˜/bin/wee.

date > ˜/wee.out

1$ cd
2$ pwd

3$ at -f bin/wee 3:15am
commands will be executed using /bin/ksh
job 1369811700.a at Wed May 29 03:15:00 2013

4$ at -l minus lowercase L to list yourat jobs.
1369811700.a Wed May 29 03:15:00 2013

You can even supply a day, month, and year:

5$ at -f wee 3:15am May 28, 2013

To discover the abbreviation for the month name,

6$ locale -ck LC_TIME | awk -F= ’$1 == "mon" || $1 == "abmon"’
mon="January";"February";"March";"April";"May";"June";"July";"August";"September";"October";"November";"December"
abmon="Jan";"Feb";"Mar";"Apr";"May";"Jun";"Jul";"Aug";"Sep";"Oct";"Nov";"Dec"

Unix was invented at midnight on January 1, 1970:

7$ bc ‘‘ binary calculator’’: Handout 2, pp. 20−21; Handout 4, pp. 25−26
scale = 5 request answers with five digits to right of decimal point
1369811700 / (60 * 60 * 24 * 365.25)
43.40671
control-d
8$

9$ cd /var/spool/cron/atjobs man at told me which directory to go to
10$ pwd
/var/spool/cron/atjobs

For the strange uppercaseS permission, see Handout 6, p. 14, Homework 6.7.

11$ ls -l | more see a list of everyone’sat jobs
-r-Sr--r-- 1 mm64 users 4377 May 28 15:22 1369811700.a

12$ grep ’ˆcd ’ 1369811700.a | head -1
cd /home1/a/abc1234

13$ rm 1369811700.a
rm: 1369811700.a: Permission denied

To see whyrm refused to remove your file1369811700.a ,

14$ ls -ld | more
drwxr-xr-x 2 root sys 4 May 28 15:22 .

15$ at -l minus lowercase L for ‘‘list’’
16$ at -r 1369811700.a ‘‘ remove’’
17$ at -l Make sure the file was removed.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 7 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Run a shellscript with command line arguments

The program that you run withat cannot have command line arguments or I/O redirection.That’s
one of the reasons why the following command fails.

1$ at -f mail 3:15am abc1234@hostname.com < ˜/letter wrong

The workaround is to create a shellscript containing the arguments and redirection. Then run the shellscript
with at :

#!/bin/ksh
#This shellscript is named latemail.

mail abc1234@hostname.com < ˜/letter

2$ at -f latemail 3:15am

Run a command at regular intervals forev er: p. 129

Why do you now hav eto say/bin/rm instead ofrm?

#!/bin/ksh
#This shellscript is named cleanup.
#It removes all the files in the ˜/.trash directory.

at -f cleanup 3:15am tomorrow
/bin/rm ˜/.trash/*

The first line of the shellscript could also be one of

at -f cleanup now + 2 days
at -f cleanup now + 48 hours sounds more operational
at -f cleanup now + 15 minutes
at -f cleanup midnight next week

In your .profile you could say

if [[ ‘at -l | wc -l‘ -le 0 ]]
then

echo Your at job is no longer scheduled. 1>&2
fi

Mor e selective versions of the cleanup shellscript

The above shellscript has a bug: it tries to remove subdirectories as well as files.To fix it, pipe the
output ofls -lat into grep ’ˆ-’ to list only the files, not the subdirectories.See therm examples in
Handout 5, p. 16.

#!/bin/ksh
#Remove the five oldest files in the ˜/.trash directory.

at -f cleanup 3:15am tomorrow
/bin/rm ‘ls -tr ˜/.trash | head -5‘

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 8 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Remove the five largest files in the ˜/.trash directory. This is
#harder than the previous example because ls has no "size order"
#option. sort +4nr ignores the first 4 fields on each line (p. 106).

at -f cleanup 3:15am tomorrow

/bin/rm ‘ls -l ˜/.trash | tail +2 |
sort +4nr | awk ’NR <= 5 {print $NF}’‘

#!/bin/ksh
#Remove the files in the ˜/.trash directory that belong to people
#other than abc1234.

at -f cleanup 3:15am tomorrow

/bin/rm ‘ls -l ˜/.trash | tail +2 | awk ’$3 != "abc1234" {print $NF}’‘

Run a command at regular intervals for a finite number of times

To print 10 copies of a file at 15-minute intervals, create a file named˜/count and write the num-
ber 10 in it:

1$ echo 10 > ˜/count faster thanvi ˜/count

Then run the following shellscript.

#!/bin/ksh
#This shellscript is ˜/bin/multi. Print multiple copies of myfile
#at 15 minute intervals. The number of copies is read from the file
#˜/count.

if [[ ! -f ˜/count ]] #p. 140 for -f, 143 for !
then

echo $0: must first create ˜/count 1>&2
exit 1

fi

n=‘cat ˜/count‘ #Handout 5, pp. 19-22 for =‘‘

if [[ $n -gt 0 ]]
then

at -f ˜/bin/multi now + 15 minutes
lpr ˜/myfile
let n=n-1 #Handout 4, pp. 24 for let
rm ˜/count #noclobber: Handout 2, p. 13, ll. 57-58
echo $n > ˜/count

else
rm ˜/count

fi

exit 0

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 9 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

A gateway that counts how many times it’s been executed

Create arw-rw-rw- file named̃ /public_html/cgi-bin/count , containing the number0.

#!/bin/ksh
#This file is /home1/a/abc1234/public_html/cgi-bin/home_page

echo Content-type: text/html
echo
echo ’<HTML>’
echo ’<HEAD>’
echo ’<TITLE>John Doe</TITLE>’
echo ’</HEAD>’
echo ’<BODY>’
echo "<H1>John Doe’s Home Page</H1>" #doubles around single
echo Welcome to my home page.
echo You are visitor number

n=‘cat /home1/a/abc1234/public_html/cgi-bin/count‘
let n=n+1
rm /home1/a/abc1234/public_html/cgi-bin/count
echo $n > /home1/a/abc1234/public_html/cgi-bin/count

echo $n.
echo ’</BODY>’
echo ’</HTML>’
exit 0

Your index.html file could then be

<HTML>
<HEAD>
<TITLE>John Doe</TITLE>
</HEAD>
<BODY>
Click
<A HREF = "/cgi-bin/cgiwrap/abc1234/home_page">here</A>
to enter.
</BODY>
</HTML>

grep vs. egrep

/usr/xpg4/bin/grep has a-E option that makes it smart enough to do everything thategrep
can do. Perl can do everything thatgrep andegrep can do, and does not require (or permit) the back-
slashes in\( \) \{ \} .

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 10 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

grep egrep

ˆ
$
.

[ˆ-]
*
\

\( \) \1
\{,\}

|
( )

?
+

1$ egrep ’ˆ(..)*$’ lines that consist of an even number of characters
2$ egrep ’ˆ..*$’ lines that consist of one or more characters
3$ egrep ’ˆ.+$’ lines that consist of one or more characters

A | in the argument ofegrep means ‘‘or’’; see p. 104.

4$ egrep ’prochoice|prolife’ No blanks around the| . Why do we need quotes?
5$ egrep ’pro(choice|life)’ a*b+a*c = a*(b+c) Why do we need parentheses?
6$ egrep ’ˆ(anti|pro)(choice|life|abortion)’ six combinations, no space

7$ egrep -i ’q([ˆu]|$)’ needed 2grep ’s in Handout 6, p. 13, first lines 7−8
8$ egrep ’(ˆ|[ˆ0-9])100([ˆ0-9]|$)’ needed 4grep ’s in Handout 6, p. 13, last lines 1−5

9$ egrep ’how you have to look for \(parentheses\) or \| bars in egrep’
10$ egrep ’A|B|C|D|F’ Don’t use| if each alternative is exactly one character.
11$ grep ’[ABCDF]’ shorter way to do the above; no longer needegrep
12$ grep ’[A-DF]’ even shorter way to do the above

13$ egrep ’colou?r’ optionalu: Handout 1, p. 8, line 5
14$ egrep ’Homoi?ousian’ decline_and_fall_21 optional i
15$ egrep ’dialog(ue)?s’ optionalue
16$ egrep ’Oh No+!’ Mister Bill: one or more consecutiveo’s
17$ egrep ’Tra( la)+!’
18$ egrep ’:\+\)’ look for the smiley face:+)

RFC (Request for Comments) 1034 domain name: one or more dot-separated labels, each starting
with a letter. If the label contains additional characters, the last character must be a letter or digit.The
characters in the middle of the label could be letters, digits, or hyphens. Alabel must be less than 64 char-
acters long.

19$ perl -ne ’print if /ˆ[a-z]([a-z0-9-]{0,61}[a-z0-9])?$/i;’

20$ perl -ne ’print if
/ˆ[a-z]([a-z0-9-]{0,61}[a-z0-9])? (\.[a-z]([a-z0-9-]{0,61}[a-z0-9])? )*$/i;’

21$ perl -ne ’$w = "[a-z]([a-z0-9-]{0,61}[a-z0-9])?"; print if /ˆ$w(\.$w)*$/i;’

RFC 5322, §3.4.1 says that an email address has a@in the middle.Let’s assume that we can have at
most 64 characters before the@. The first and last characters before the@cannot be periods. Other than
that, the characters can be letters, digits, or any one of#$%’*+/=?ˆ_‘{|}.- . You can’t hav econsecu-
tive periods. To put a$ or @into the middle of a double-quoted Perl string or into a diagonal-slashed regu-
lar expression, you have to write a backslash in front of them.To put a single quote into a single-quoted
argument in the Korn shell, you have to write a backslash in front of it.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 11 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

22$ perl -ne ’
$c = "a-z0-9#\$%\’*+/=?ˆ_‘{|}-";
$w = "[a-z]([a-z0-9-]{0,61}[a-z0-9])?";
print if /ˆ[$c][.$c]{0,62}[$c]\@$w(\.$w)*$/i && !/\.\./;

’

‘‘ Or more’’

means canbe used in

* zero or more consecutive copies grep andegrep

? zero or one copy egrep but not grep

+ one or more consecutive copies egrep but not grep

For repetition counts with\{\} inside the argument ofgrep , seeregexp (5) pp. 2−3, ¶ 2.3.

Tagged regular expressions:\( \) \1

Seeregexp (5) p. 3, ¶¶ 2.5 and 2.6. The text only hints about tagged regular expressions on pp. 105,
326−327.

Output the lines that contain a double character:

1$ grep ’..’ /usr/dict/words Why doesn’t this work?
2$ grep -i ’aa’ /usr/dict/words brute force
3$ grep -i ’bb’ /usr/dict/words
4$ grep -i ’cc’ /usr/dict/words

As in Handout 6, p. 9, the backslashes turnon the special meaning that the characters( and) have
to grep . The parentheses were added as an after thought.

5$ grep -i ’\(.\)\1’ /usr/dict/words a better way
accept
too

It’s illegal to use \1 unless you have a \(\) somewhere to its left—otherwise, the computer wouldn’t
know what \1 is asking for another copy of. And it’s unnecessary to use\(\) unless you have a \1
somewhere to its right—there’s no reason to name part of the regular expression unless you’re planning to
mention the name farther on.

Output the lines that begin with a double character:

6$ grep -i ’ˆ\(.\)\1’ /usr/dict/words
eel
ooze

Output the lines that begin and end with the same character:

7$ grep -i ’ˆ\(.\).*\1$’ /usr/dict/words
algebra
Celtic

Output the lines that contain a triple character:

8$ grep -i ’\(.\)\1\1’ /usr/dict/words
IEEE Institute of Electrical and Electronics Engineers
viii Roman numeral 8

Output the lines that consist of two or more identical characters:

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 12 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

grep ’ˆ\(.\)\1\1*$’ /usr/dict/words
AAA
ii
iii

Output the lines that contain only a double, but not a triple, character:

9$ grep -i ’\(.\)\1’ /usr/dict/words | grep -iv ’\(.\)\1\1’
vii

▼ Homework 7.1: illegal, immoral, fattening —Alexander Woollcott (1887−1943)

Count the lines in the files/usr/dict/words and /usr/dict/websters that start with a
lowercase ‘‘i’ ’, followed by a double letter. (The two copies of the double letter must be the same case.)
Count only the lines that are at least six characters long.You get no credit if you count ‘‘inner’’ or if y ou
fail to count ‘‘immune’’. On May 28, 2013, 91 of the 25,146 lines in the file/usr/dict/words , and
744 of the 234,936 lines in the file/usr/dict/websters , matched this pattern.

Use exactly onegrep . What do most of these words have in common?
▲

Give names to two or more sections

1$ grep -i ’\(.\)\1\(.\)\2’ /usr/dict/words
raccoon
Tallahassee

2$ grep -i ’ˆ\(.\)\1\(.\)\2’ /usr/dict/websters
eellike

3$ grep -i ’ˆ\(.\)\1.*\(.\)\2$’ /usr/dict/words
eelgrass

4$ grep -i ’\(.\)\1.*\(.\)\2.*\(.\)\3’ /usr/dict/words
committee
Mississippi
Tennessee

▼ Homework 7.2: repeated strings of characters

Find all the lines in/usr/dict/words and/usr/dict/websters that contain two consecu-
tive copies of the same group of four characters. Use this method:

1$ grep -i ’\(...\)\1’ /usr/dict/words
alfalfa
clinging
instantaneous
murmur

▲

▼ Homework 7.3: lines composed of three identical parts

Find all the lines in/usr/dict/words and/usr/dict/websters that are composed of three
identical parts. Each part must consist of one or more characters.Ignore the difference between upper and
lowercase. 8of the 17 lines in the file$S45/thirds are of this form.Don’t hand it in until you agree
with this result.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 13 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Use this method:

1$ grep -i ’ˆ\(..*\)\1$’ /usr/dict/words
beriberi
ii Roman numeral 2
murmur
tutu

▲

Search for palindromes

Sit on a potato pan, Otis.A man, a plan, a canal: Panama! Ablewas I ere I saw Elba. Dogeese see
God? ATo yota. Νίψον ανοµήµατα µη µόναν όψιν. (Wash your sins, not only your face.)

Output the three-character palindromes:

1$ grep -i ’ˆ\(.\).\1$’ /usr/dict/words
eye
gag

Output the four-character palindromes:

2$ grep -i ’ˆ\(.\)\(.\)\2\1$’ /usr/dict/words
peep
toot

3$ grep -i ’ˆ\(..\)\1$’ /usr/dict/words not palindromes
Mimi
papa

Output the five-character palindromes:

4$ grep -i ’ˆ\(.\)\(.\).\2\1$’ /usr/dict/words
Ababa Addis
madam Madam, I’m Adam.

▼ Homework 7.4: six- and seven-character palindromes: hallah, reviver

Write one grep command to output the six- and seven- character palindromes in
/usr/dict/words and /usr/dict/websters . There are 9 six-character and 8 seven-character
palindromes.
▲

Wildcards in C scanf, fscanf, and sscanf

Thescanf in line 3 inputs all the characters up to but not including the next blank, tab, or newline.
Thescanf in line 4 inputs all the characters up to but not including the next character that is not a letter.
In other words, it keeps inputting characters as long as they are letters.Thescanf in line 5 inputs all the
characters up to but not including the next colon.Seescanf (3c), and the K&R C book, Second Edition,
p. 226.

1 c har string[100];
2
3 s canf("%s", string);
4 s canf("%[A-Za-z]", string);
5 s canf("%[ˆ:]", string);

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 14 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Regular expressions in C

To write a C program that searches like grep for a regular expression, see the functions in
regcomp (3c) andregexp (5).

—On the Web at
http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/regexp.c

1 /* O utput every line of standard input that matches the regular expression. */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <sys/types.h>
6 #include <regex.h>
7
8 i nt main(int argc, char **argv)
9 {

10 regex_t expression;
11 const int error = regcomp(&expression, "ˆmoe[0-9]", 0);
12 char line[1024];
13
14 if (error != 0) {
15 const size_t length = regerror(error, &expression, NULL, 0);
16 if (length == 0) {
17 fprintf(stderr, "%s: regerror not implemented\n", argv[0]);
18 } else {
19 char *const p = malloc(length);
20 if (p == NULL) {
21 fprintf(stderr, "%s: can’t malloc space for error message\n",
22 argv[0]);
23 } else {
24 regerror(error, &expression, p, length);
25 fprintf(stderr, "%s: %s\n", argv[0], p);
26 free(p);
27 }
28 }
29 return EXIT_FAILURE;
30 }
31
32 while (fgets(line, sizeof line, stdin) != NULL) {
33 if (regexec(&expression, line, 0, NULL, 0) == 0) {
34 fputs(line, stdout);
35 }
36 }
37
38 regfree(&expression);
39 return EXIT_SUCCESS;
40 }

What a regular expression can’t do

There are some things that can’t be described with a regular expression. For example, you can’t
grep for the syntactically correct lines in a file of arithmetic expressions, even assuming that each number
is exactly one digit, and that the only operators are plus, minus, times, divide, and parentheses.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 15 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

1+2*3 correct
1+2* incorrect
(1+2)*3 correct
(1+2(*3 incorrect

In fact, you can’t even grep for palindromes of any length, only for palindromes of a specific length.For
these and other searching tasks, useawk, Perl, oryacc . See pp. 233−287.

Archi ve sev eral files into one big .tar file

tar is a utility for writing a group of files onto a tape, creating atape archive. But the output of
tar , like that of any Unix program, can be directed to a file instead of to a hardware device. Give the file a
name ending with.tar .

The following example could have used a device name such as/dev/rmt/0 (raw magnetic tape)
instead of the filenamedate.tar . In that case you’d also need themt rewind command.

1$ cd
2$ echo hello > README
3$ date > date1
4$ date > date2
5$ date > date3

6$ ls -l README date1 date2 date3
7$ ls -l README date[1-3] or use wildcard in p. 28; ksh (1) p. 18
-rw------- 1 mm64 users 6 May 28 15:22 README
-rw------- 1 mm64 users 29 May 28 15:22 date1
-rw------- 1 mm64 users 29 May 28 15:22 date2
-rw------- 1 mm64 users 29 May 28 15:22 date3

8$ tar cvf date.tar README date[1-3] createdate.tar
a README 1K
a date1 1K
a date2 1K
a date3 1K

9$ ls -l date.tar
-rw------- 1 mm64 users 5120 May 28 15:22 date.tar

10$ tar tvf date.tar | more Output a table of contents of the.tar file.
tar: blocksize = 10
-rw------- 50766/15 6 May 28 15:22 2013 README
-rw------- 50766/15 29 May 28 15:22 2013 date1
-rw------- 50766/15 29 May 28 15:22 2013 date2
-rw------- 50766/15 29 May 28 15:22 2013 date3

11$ awk -F: ’$1 == "mm64"’ /etc/passwd
mm64:x:50766:15:Mark Meretzky:/home1/m/mm64:/bin/ksh

The x flag extracts a copy of one or more of the little files archived in the .tar file. To extract
ev erything archived in the .tar file, simply give no arguments after the name of the.tar file. Thefiles
you recreate will be owned by their original owners if you are the superuser. Extraction does not change
the contents of thetar file.

12$ rm README date[1-3]

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 16 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

13$ tar xvf date.tar README recreateREADME
tar: blocksize = 10
x README, 6 bytes, 1 tape blocks

14$ ls -l README
-rw------- 1 mm64 users 6 May 28 15:22 README

Archi ve an entir e directory into one big .tar file

datedir

datedir1 datedir2

date1a date1b date2a date2b

If you give one or more directory names instead of one or more filenames totar cvf after the name
of the.tar file, tar will archive the directories and all of their descendants, including all of the files they
contain.

1$ cd
2$ pwd
/home1/a/abc1234

3$ mkdir datedir

4$ mkdir datedir/datedir1
5$ date > datedir/datedir1/date1a
6$ date > datedir/datedir1/date1b

7$ mkdir datedir/datedir2
8$ date > datedir/datedir2/date2a
9$ date > datedir/datedir2/date2b

10$ tar cvf date.tar datedir
a datedir/ 0K
a datedir/datedir1/ 0K
a datedir/datedir1/date1a 1K
a datedir/datedir1/date1b 1K
a datedir/datedir2/ 0K
a datedir/datedir2/date2a 1K
a datedir/datedir2/date2b 1K

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 17 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

11$ tar tvf date.tar | more
tar: blocksize = 13
drwx------ 50766/15 0 May 28 15:22 2013 datedir/
drwx------ 50766/15 0 May 28 15:22 2013 datedir/datedir1/
-rw------- 50766/15 29 May 28 15:22 2013 datedir/datedir1/date1a
-rw------- 50766/15 29 May 28 15:22 2013 datedir/datedir1/date1b
drwx------ 50766/15 0 May 28 15:22 2013 datedir/datedir2/
-rw------- 50766/15 29 May 28 15:22 2013 datedir/datedir2/date2a
-rw------- 50766/15 29 May 28 15:22 2013 datedir/datedir2/date2b

12$ rm datedir/datedir[12]/*
13$ rmdir datedir/datedir[12]
14$ rmdir datedir

The following tar xvf command will re-create the directorydatedir , its subdirectory
datedir2 , and the filedate2a :

15$ tar xvf date.tar datedir/datedir2/date2a
tar: blocksize = 13
x d atedir/datedir2/date2a, 29 bytes, 1 tape blocks

16$ ls -l | more
drwx------ 3 mm64 users 182 May 28 15:22 datedir

17$ ls -l datedir | more
drwx------ 2 mm64 users 180 May 28 15:22 datedir/datedir2

18$ ls -l datedir/datedir2/date2a
-rw------- 1 mm64 users 29 May 28 15:22 datedir/datedir2/date2a

Include the full pathname in the .tar file

If you specify the full pathnames of the files and directories to be archived, then their full pathnames
will be stored in the.tar file:

1$ rm date.tar
2$ tar cvf date.tar ˜/datedir
a / home1/a/abc1234/datedir/ 0K
a / home1/a/abc1234/datedir/datedir2/ 0K
a / home1/a/abc1234/datedir/datedir2/date2a 1K
a / home1/a/abc1234/datedir/datedir2/date2b 1K
a / home1/a/abc1234/datedir/datedir1/ 0K
a / home1/a/abc1234/datedir/datedir1/date1a 1K
a / home1/a/abc1234/datedir/datedir1/date1b 1K

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 18 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

3$ tar tvf date.tar
tar: blocksize = 13
tar: Removing leading ’/’ from ’/home1/a/abc1234/datedir/’
tar: Removing leading ’/’ from ’/home1/a/abc1234/datedir/datedir2/’
tar: Removing leading ’/’ from ’/home1/a/abc1234/datedir/datedir2/date2a’
tar: Removing leading ’/’ from ’/home1/a/abc1234/datedir/datedir2/date2b’
tar: Removing leading ’/’ from ’/home1/a/abc1234/datedir/datedir1/’
tar: Removing leading ’/’ from ’/home1/a/abc1234/datedir/datedir1/date1a’
tar: Removing leading ’/’ from ’/home1/a/abc1234/datedir/datedir1/date1b’
drwx------ 50766/15 0 May 28 15:22 2013 tmp/23949.dir/datedir/
drwx------ 50766/15 0 May 28 15:22 2013 tmp/23949.dir/datedir/datedir2/
-rw------- 50766/15 29 May 28 15:22 2013 tmp/23949.dir/datedir/datedir2/date2a
-rw------- 50766/15 29 May 28 15:22 2013 tmp/23949.dir/datedir/datedir2/date2b
drwx------ 50766/15 0 May 28 15:22 2013 tmp/23949.dir/datedir/datedir1/
-rw------- 50766/15 29 May 28 15:22 2013 tmp/23949.dir/datedir/datedir1/date1a
-rw------- 50766/15 29 May 28 15:22 2013 tmp/23949.dir/datedir/datedir1/date1b

▼ Homework 7.5: create a tar file

Verify that all of the above works. If you’re allowed to use a tape drive, tar some files to tape
instead of to a.tar file.
▲

▼ Homework 7.6: copy all your files from one machine to another

1$ cd
2$ pwd

3$ tar cvf all.tar .
4$ tar tvf all.tar | more
5$ tar tvf all.tar | lpr

Use sftp to copy the above binary file namedall.tar to your home directory on another
machine. Thenon the other machine,

$ c d
$ pwd

$ ls -l a ll.tar
$ t ar tvf all.tar | more
$ t ar tvf all.tar | lpr
$ t ar xvpf all.tar p ’cause hosts have differentumask (Hand 2, p. 14, ll. 70−73)

▲

Compress and uncompress

1$ cd
2$ cp /etc/passwd . Copy/etc/passwd to your current directory.
3$ ls -l passwd
-rw------- 1 abc1234 users 433820 May 28 15:22 passwd

4$ compress passwd removepasswd and createpasswd.Z
5$ ls -l passwd.Z
-rw------- 1 abc1234 users 138164 May 28 15:22 passwd.Z

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 19 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Do notcat to the screen orlpr a compressed file (in this case, a.Z file). Instead,

6$ zcat passwd.Z | head -3
root:x:0:0:root@i5:/root:/usr/bin/bash
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:

7$ uncompress passwd.Z removepasswd.Z and createpasswd
8$ ls -l passwd
-rw------- 1 abc1234 users 433820 May 28 15:22 passwd

The compression and decompression is not ‘‘lossy’’:

9$ cmp passwd /etc/passwd No output if identical: Handout 2, p. 12.
10$ rm passwd

Other compression programs

suffix compress decompress website

.Z compress uncompress http://en.wikipedia.org/wiki/Compress

.z pack unpack

.zip zip unzip

.gz gzip gunzip http://www.gnu.org/software/gzip/gzip.html

.bz2 bzip2 bunzip2 http://www.bzip.org/

.rar rar unrar http://www.rarlabs.com/

Programs written bywww.gnu.org often start withg. To list the pairs of utilities for compression
and decompression on i5.nyu.edu,

1$ man -k compress | more ‘‘ keyword’’; go on a fishing trip

▼ Homework 7.7: compress and uncompress a file

Compress and uncompress a file (ASCII or binary). Usebc to find the percent by which it was com-
pressed. Whichpair of utilities yields the most compression?Do text files compress further than image
files?

1$ bc Handout 2, pp. 20−21; Handout 4, pp. 24−25; Handout 7, p. 7
scale = 2 Output answers to two decimal places.
100 * 138164 / 433820
31.84
control-d
2$

▲

A web page that contains a form

A form is a part of a World Wide Web page that contains buttons, checkboxes, places to fill-in words,
etc. Hereare the URL’s of pages containing a form:

http://i5.nyu.edu/ ∼mm64/cal.html the example below
http://i5.nyu.edu/ ∼mm64/man/ Unix manpage
http://i5.nyu.edu/ ∼mm64/x52.9232/#gateway C pro gram to output a flag
http://i5.nyu.edu/ ∼mm64/INFO1-CE9264/#gateway C++ program to output a flag

http://zip4.usps.com/zip4/ nine-digit zip codes

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 20 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

The following file is˜/public_html/cal.html . Its URL is therefore
http://i5.nyu.edu/ ∼abc1234/cal.html . It should have the same nine permission bits
(rw-r--r-- ) as your web home pagẽ/public_html/index.html .

The INPUT widgets must be between theFORMtags in lines 8 and 50.To show the user where the
form begins and ends, surround it with horizontal rules in lines 7 and 51. When you press theSUBMITbut-
ton in line 46, the gateway in line 8 will be run.

1 <HTML>
2 <HEAD>
3 <TITLE>Calendar form</TITLE>
4 </HEAD>
5 <BODY>
6
7 <HR>
8 <FORM METHOD = POST ACTION = "http://i5.nyu.edu/cgi-bin/cgiwrap/mm64/cal">
9 <H2>Calendar form</H2>

10
11 <P>
12 This form runs the gateway
13 <CODE>/home1/m/mm64/public_html/cgi-bin/cal</CODE>
14 on the host
15 <CODE>i5.nyu.edu</CODE>.
16 </P>
17
18 <P>
19 Which year do you want to see?
20 <INPUT TYPE = TEXT NAME = "year" SIZE = 5>
21 </P>
22
23 <P>
24 Which month do you want to see?
25 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 1>January
26 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 2>February
27 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 3>March
28 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 4>April
29 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 5>May
30 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 6>June
31 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 7>July
32 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 8>August
33 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 9>September
34 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 10>October
35 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 11 CHECKED>November
36 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = 12>December
37 <BR><INPUT TYPE = RADIO NAME = "month" VALUE = "">All twelve months
38 </P>
39
40 <P>
41 <INPUT TYPE = CHECKBOX NAME = "date">Check here
42 to see the current date and time too.
43 </P>
44
45 <P>
46 <INPUT TYPE = SUBMIT VALUE = "See the calendar.">
47 <BR>
48 <INPUT TYPE = RESET VALUE = "Start again.">

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 21 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

49 </P>
50 </FORM>
51 <HR>
52
53 </BODY>
54 </HTML>

The above line 8 can have a relative URL as in Handout 3, p. 30, ¶ (5):

55 <FORM METHOD = POST ACTION = "/cgi-bin/cgiwrap/mm64/cal">

To make a pop-up menu instead of radio buttons, change the above lines 25−37 to

56 <SELECT NAME = "month">
57 <OPTION VALUE = 1>January</OPTION>
58 <OPTION VALUE = 2>February</OPTION>
59 <OPTION VALUE = 3>March</OPTION>
60 <OPTION VALUE = 4>April</OPTION>
61 <OPTION VALUE = 5>May</OPTION>
62 <OPTION VALUE = 6>June</OPTION>
63 <OPTION VALUE = 7>July</OPTION>
64 <OPTION VALUE = 8>August</OPTION>
65 <OPTION VALUE = 9>September</OPTION>
66 <OPTION VALUE = 10>October</OPTION>
67 <OPTION VALUE = 11 SELECTED>November</OPTION>
68 <OPTION VALUE = 12>December</OPTION>
69 <OPTION VALUE = "">All 12 months</OPTION>
70 </SELECT>

We’l l start with a simple gateway that merely displays the data it received from the above form. As
in Handout 5, p. 27, the permissions of the gateway should berwxr-xr-x .

The environment variable$CONTENT_LENGTHtells the gateway the number of bytes it should read
the standard input. These bytes constitute one long line, without an end-of-file or even a newline character
(\n ) at the end:

year=2013&month=5&date=on

The commandhead -25 inputs 25 lines from the standard input and outputs them to the standard
output. Thecommand/usr/bin/ghead -c25 (g for GNU) inputs 25 characters from the standard
input and outputs them to the standard output; see Handout 4, p. 30, line 13.The /usr/bin/ghead
command in the following gateway therefore inputs$CONTENT_LENGTHbytes from the gateway’s stan-
dard input and outputs them to the standard output, which is displayed in the browser.

1$ man head documentation about/bin/head
2$ man ghead documentation about/urs/bin/head

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 22 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This gateway is ˜/public_html/cgi-bin/cal.

echo Content-type: text/html
echo
echo ’<HTML>’
echo ’<HEAD>’
echo ’<TITLE>Calendar</TITLE>’
echo ’</HEAD>’
echo ’<BODY>’
echo ’<H1>Calendar</H1>’
echo The first $CONTENT_LENGTH bytes of standard input are
echo ’<PRE>’
/usr/bin/ghead -c$CONTENT_LENGTH
echo ’</PRE>’
echo ’</BODY>’
echo ’</HTML>’
exit 0

Here is the output of the above gateway if the user checks theCHECKBOX. If the user doesn’t check
it, the&date=on would not be there.

Content-type: text/html

<HTML>
<HEAD>
<TITLE>Calendar</TITLE>
</HEAD>
<BODY>
<H1>Calendar</H1>
The first 25 bytes of standard input are
<PRE>
year=2013&month=5&date=on</PRE>
</BODY>
</HTML>

It appears in your browser like this:

Calendar

The first 25 bytes of standard input are
year=2013&month=5&date=on

Pipe the standard output ofhead into tr , which chops the long line of bytes into several shorter
lines. Seethetr in Handout 3, p. 15.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 23 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This gateway is ˜/public_html/cgi-bin/cal.

echo Content-type: text/html
echo
echo ’<HTML>’
echo ’<HEAD>’
echo ’<TITLE>Calendar</TITLE>’
echo ’</HEAD>’
echo ’<BODY>’
echo ’<H1>Calendar</H1>’
echo The first $CONTENT_LENGTH bytes of standard input are
echo ’<PRE>’
#Change ampersands to newlines.
/usr/bin/ghead -c$CONTENT_LENGTH | tr ’&’ ’\012’
echo #Output a f inal newline.
echo ’</PRE>’
echo ’</BODY>’
echo ’</HTML>’
exit 0

Here is the output of the above gateway:

Content-type: text/html

<HTML>
<HEAD>
<TITLE>Calendar</TITLE>
</HEAD>
<BODY>
<H1>Calendar</H1>
The first 25 bytes of standard input are
<PRE>
year=2013
month=5
date=on
</PRE>
</BODY>
</HTML>

It appears in your browser like this:

Calendar

The first 25 bytes of standard input are
year=2013
month=5
date=on

Now that we’ve verified that the gateway is receiving data from the form, let’s make the gateway
chop the data up and store it in shell variables. Couldyou use the parentheses from the double extra credit
part of Homework 3.9 (Handout 3, p. 26) to create the file/tmp/$$ more simply?

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 24 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#This gateway is ˜/public_html/cgi-bin/cal.
#It displays a calendar and is executed from the form in the page
#˜/public_html/cal.html
#The URL of that page is
#http://i5.nyu.edu/ ∼mm64/cal.html

echo Content-type: text/html
echo
echo ’<HTML>’
echo ’<HEAD>’
echo ’<TITLE>Calendar</TITLE>’
echo ’</HEAD>’
echo ’<BODY>’
echo ’<H1>Calendar</H1>’
echo ’<PRE>’

/usr/bin/ghead -c$CONTENT_LENGTH | tr ’&’ ’\012’ > /tmp/$$
echo >> /tmp/$$ #append a newline to the end of the /tmp/$$ file

year=‘awk -F= ’$1 == "year" {print $2}’ /tmp/$$‘
month=‘awk -F= ’$1 == "month" {print $2}’ /tmp/$$‘

date=‘awk -F= ’$1 == "date" {print $2}’ /tmp/$$‘
rm /tmp/$$

#Quotes make sure that cal will receive a second argument even if
#$year is the null string. In the absence of a second argument,
#cal would think that the first (and only) argument was the year.

cal $month "$year"
echo ’</PRE>’

#Need double quotes because $date would be the null string if checkbox
#not checked. See double quotes in Handout 5, pp. 14, 19.
if [[ "$date" == on ]]
then

echo ’<P>’
date
echo ’</P>’

fi

echo ’</BODY>’
echo ’</HTML>’
exit 0

The/tmp/$$ file contains three lines:

year=2013
month=5
date=on

Here is the output of the above gateway:

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 25 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Content-type: text/html

<HTML>
<HEAD>
<TITLE>Calendar</TITLE>
</HEAD>
<BODY>
<H1>Calendar</H1>
<PRE>

May 2013
S M Tu W Th F S

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

</PRE>
<P>
Tue May 28 15:22:59 EDT 2013
</P>
</BODY>
</HTML>

It is rendered in your browser like this:

Calendar

May 2013
S M Tu W Th F S

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Tue May 28 15:22:59 EDT 2013

▼ Homework 7.8: write a form that gives input to a gateway

Write a form that gives input to a gateway that doesn’t always produce the same output each time you
run it. It can’t be the gateway and form shown above.

For example, let the user type in a loginname and then tell them if that person is logged in right now.
Or make a guestbook:

<TEXTAREA NAME = "message" ROWS = 24 COLS = 80>
Write your message here.
</TEXTAREA>

Or let the user type in a date, month, and year, and then show the phase of the moon for the midnight at the
start of that date. See Handout 2, p. 14, line 88.

1$ ˜mm64/bin/moon 28 5 2013 day, month, year

Hand in a printout of the.html file that contains the form, your gateway shellscript, and (if possi-
ble) snapshots of the form and the output of the gateway.

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 26 − All rights

reserved ©2013 Mark Meretzky



NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

▲

Summer 2013 Handout 7printed 5/28/13
3:22:51 PM − 27 − All rights

reserved ©2013 Mark Meretzky


