
NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Summer 2013 Handout 6

Kill a process

A running program is called aprocess.We usually let a process live out its life and die a natural
death. To kill it prematurely, typecontrol-c ; see Handout 1, p. 20, ¶ (3).But some programs (e.g.,vi)
are immune to this keystroke, and in any case the keystroke affects only a process running on your current
terminal. How can we kill a process that is immune tocontrol-c or running on another terminal?

Our example of a process on another terminal will be a shell.Supposewho says that you’re logged
into two different terminals,/dev/pts/62 and/dev/pts/64 . Apparently, you never logged out cor-
rectly the last time you logged in.

1$ who | sort | more
abc1234 pts/62 May 28 10:30 (DIALN-ASYNC600.DIAL.NET.NYU.EDU)
abc1234 pts/64 May 28 11:00 (HCGPC.EDLAB.ITS.NYU.EDU)
dube pts/51 May 28 12:01 (DATA.ACF.NYU.EDU)

To log out from the terminal you are not using, kill the shell running there. Here are two ways to dis-
cover which terminal youare using:

2$ tty Handout 5, pp. 17−18
/dev/pts/62

3$ who am i or who is god or who -m
abc1234 pts/62 May 28 10:30 (DIALN-ASYNC600.DIAL.NET.NYU.EDU)

They agree that I’m currently using terminal/dev/pts/62 . Therefore/dev/pts/64 is the one I want
to log out of.

4$ ps -f | more too few: only your programs running on your current terminal
5$ ps -Af | more too many: everyone’s pro grams everywhere
6$ ps -Af | awk ’NR == 1 || $1 == "abc1234"’ | more just right

UID PID PPID C STIME TTY TIME CMD
abc1234 13545 13544 0 11:46:40 pts/64 0:00 -ksh
abc1234 14651 13545 0 12:22:59 pts/64 0:00 vi handout6.ms
abc1234 15000 13544 0 12:22:59 pts/62 0:00 -ksh
abc1234 15050 15000 0 12:34:39 pts/62 0:00 ps -Af

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 1 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

13544

13545
ksh

14651
vi

15000
ksh

15050
ps

To log out of terminal/dev/pts/64 , kill the shell that is running there. This will alsokill all
of that shell’s descendants, e.g., thevi handout6.ms . Minus Nine is the strongest kind of signal (‘‘ter-
minate with extreme prejudice’’), pp. 150, 152.For the complete list of signal numbers, see
signal (3head), the file/usr/include/sys/iso/signal_iso.h , or the shell commandkill -l
(minus lowercase L) inksh (1) pp. 43−44. Handout 2, p. 3 lists the sections of the manual.

7$ kill -9 13545 thePID number of theksh on /dev/pts/64
8$ ps -Af | awk ’NR == 1 || $1 == "abc1234"’ | more make sure it was killed
9$ who | sort | more

After killing the shell and its descendants, you can recover the partially editedhandout6.ms by

10$ mail A letter will tell you the name of the temp file.
11$ cd back to the directory in which you were editing
12$ vi -r handout6.ms the ‘‘recover’’ option

Run http://i5.nyu.edu/˜mm64/INFO1-CE9545/src/zombie.c to see a process that
has turned itself into a zombie.

The dæmonic (DÆMONIC) ancestry of a process

Read from the bottom up to see the ancestry of a Korn Shell process.It may be different on other
versions of Unix.STIME is starting time;TIME is cumulative elapsed time.ps (1) says theCfield is obso-
lete. sched is the kernel; /etc/init is its only child. sshd is the Secure Shell dæmon. The dash in
front of ksh means that thisksh is the shell that was launched when you logged in, not one that is merely
running a shellscript.

1$ ps -Af | more output doctored by hand
UID PID PPID C STIME TTY TIME CMD

root 1655 1655 0 Mar 29 ? 0:00 zsched
root 2761 1655 0 Mar 29 ? 1:14 /usr/lib/ssh/sshd
root 15976 2761 0 15:11:11 ? 0:00 /usr/lib/ssh/sshd
mm64 15977 15976 0 15:11:11 ? 0:00 /usr/lib/ssh/sshd
mm64 15978 15977 0 15:11:15 pts/9 0:00 -ksh

A process’s PID is usually greater than its PPID, but it doesn’t hav eto be.

2$ ps -Af | awk ’NR == 1 || $2 <= $3’
UID PID PPID C STIME TTY TIME CMD

root 1655 1655 0 Mar 29 ? 0:00 zsched
root 2480 2761 0 Apr 07 ? 0:00 /usr/lib/ssh/sshd

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 2 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

▼ Homework 6.1: print out the ancestry of your shell

Direct the output ofps -Af into a file. Usevi to remove all of the processes except your shell and
all of its ancestors, and to reorder these processes in order of ancestry, as in the above example.

1$ cd
2$ pwd

3$ ps -Af > temp
4$ vi temp Doctor the output by hand.

5$ lpr temp
6$ rm temp or use theescape-. in Handout 2, p. 12

▲

Tr ap a signal

Control-c (signal number 2) usually kills a program immediately (Handout 1, p. 20, ¶ (3)).But if
the following program is killed with acontrol-c , it will clean up after itself before it dies. See p. 151.

#!/bin/ksh
#Do lots of work. Clean up if interrupted by a signal.

trap ’
echo
echo I received control-c, which is signal number 2.

if [[-f ˜/junk]]
then

echo removing ˜/junk
rm ˜/junk

fi
exit 2

’ 2

date > ˜/junk
echo Doing lots of work.
sleep 10
echo All done.
rm ˜/junk
exit 0

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/lots

1$ lots
Doing lots of work.
ˆC you type acontrol-c
I r eceived control-c, which is signal number 2.
removing /home1/a/abc1234/junk

!! commands in vi

PressESCbefore typing the colon to make sure you’re not in insert mode. Then move the cursor to
an empty or superfluous line and type two exclamation points, a command, andRETURN. Only the second
exclamation point will appear on the screen—the first one moves the cursor to the bottom line of the screen.
The output of the command will replace the line where the cursor was.

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 3 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

1 ! !date
2 ! !cal 5 2013
3 ! !fonts Insert output of yourfonts shellscript into web page: Handout 4, pp. 11−12.

4 ! !cat clipboard Insert a copy of another file into the one you’re editing.
5 ! !cat -n clipboard Insert a copy, with line numbers.
6 ! !head clipboard Insert only the first 10 lines of the file.
7 ! !tail clipboard
8 ! !tail ˜/clipboard Looks forclipboard in your home directory, not your current directory.

9 ! !grep word clipboard
10 !!grep word clipboard | head
11 !!grep word clipboard | head | cat -n

‘‘ Write’ ’ commands in vi, ed, and sed

PressESCto make sure you’re not in insert mode. There must be one blank before the filename.See
theed examples on pp. 12−13, 327−328, and thesed example on p. 112.To find the line number where
the cursor is, use thecontrol-g in Handout 3, p. 2.

1 : 20,30w clipboard Create a file namedclipboard containing a copy of lines 20−30.
2 : 20,30w! clipboard Overwrite the file if it already exists & you have permission to do so.
3 : 20,30w >> clipboard Append extra lines to an existing file.
4 : 20,30w ˜/clipboard The file can be in any directory.

5 : 20w clipboard Copy only one line into the file.
6 : 1,$w clipboard Copy every line into the file.
7 : 1,$-1w clipboard Copy every line except the last one.
8 : 1,$-2w clipboard Copy every line except the last two.

9 : 1,.w clipboard Copy every line from the first line down to where the cursor is.
10 :.,$w clipboard Copy every line from where the cursor is down to the last line.

11 :.,.+9w clipboard Copy 10 lines, starting at the line where the cursor is.
12 :.-9,.w clipboard Copy 10 lines, ending at the line where the cursor is.

See/ and? in Handout 3, p. 2:

13 :.,/moe/w clipboard Copy every line from the cursor down to the nextmoe.
14 :?moe?,.w clipboard Copy every line from the previousmoe to the cursor.

Write any regular expression within the// or ?? . The following three lines are not completevi com-
mands.

15 /ˆmoe/ the next line that starts withmoe
16 /moe$/ the next line that ends withmoe
17 /ˆmoe$/ the next line that consists entirely ofmoe

18 :?ˆ{?,/ˆ}/w clipboard Copy the C function where the cursor is.
19 :?ˆ{?-1,/ˆ}/w clipboard Copy the C function, including the line before the{ .

The lines you copy do not have to be consecutive:

20 :g/moe/.w! >> clipboard Copy every line that containsmoe.
21 :g/moe/.+1w! >> clipboard Copy every line that is one line after one that containsmoe.
22 :g/moe/.+2w! >> clipboard Copy every line that is two lines after one that containsmoe.
23 :g/moe/.-1w! >> clipboard Copy every line that is one line before one that containsmoe.
24 :g/ˆ{/.-1w! >> clipboard Copy the name of every function in a C program.

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 4 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

25 :v/moe/.w! >> clipboard Copy every line that doesn’t containmoe.

Instead ofw clipboard , you can also print at the bottom of the screen.This has no effect on the
file being edited. Then pressRETURNagain to make the list go away:

26 :g/moe/p Print every line that containsmoe.
27 :g/re/p where the wordgrep comes from: ‘‘global regular expression print’’
28 :g/ˆ{/-1p Print the name of every function in a C program.

The prefixes in front of thew andp commands can be used in front of any of thevi commands that
start with a colon. Examples are thes command invi in Handout 3, p. 4, and they command insed in
Handout 4, p. 14.

Edit a C or C++ program

The leading number and blank at the start of each line are not part of the C program: they’re printed
only for your convenience.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 v oid f(void);
5 v oid g(void);
6
7 i nt main(int argc, char **argv)
8 {
9 blah blah blah;

10 blah blah blah;
11 blah blah blah;
12 return EXIT_SUCCESS;
13 }
14
15 void f(void)
16 {
17 blah blah blah;
18 blah blah blah; {
19 blah blah blah; }
20 }
21
22 void g(void)
23 {
24 blah blah blah;
25 blah blah blah;
26 blah blah blah;
27 }

Stop and start programs with the Korn shell

Seeksh (1) pp. 25−26, 39, 42, 43.

1$ cd ˜mm64/45/handout
2$ vi handout6.ms
control-z Signal number 20;ksh (1), p. 26; Handout 1, p. 20, ¶ (1)
Stopped It saysStopped and the prompt reappears.

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 5 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

3$ cd ˜mm64/45/lecture
4$ vi lecture6.ms Start a second command running.
control-z Stop the second command, too.
Stopped It saysStopped with an uppercaseS and the shell prompt reappears.

5$ jobs List the stopped jobs: Handout 2, p. 14, ll. 64−65.
[1] - Stopped vi handout6.ms The[1] is not a PID number.
[2] + Stopped vi lecture6.ms

6$ fg %1 to start job[1] running again (‘‘foreground’’)
7$ fg to start the most recently stopped job running again

The most recently stopped command is marked with a plus; the next-to-most-recent with a minus.The
commandfg (for foreground) will re-start the most recently stopped command. This is thefg in ‘‘What
can go wrong’’ in Handout 1, p. 20, ¶ (1).

Run commands in the background: pp. 33−34

You can run two commands simultaneously by running the first onein the background with the
ampersand inksh (1) p. 1. The prompt will reappear immediately, allowing you to type the second com-
mand while the first is still running.A background command should always send its output to a file, not
onto the screen.

1$ prog1 > ˜/prog1.out &
[1] 12345 It shows you the process ID number of the background process.
2$ prog2

3$ ps -f See ifprog1 is still running.

#!/bin/ksh
#What would go wrong without the quotes?

echo Please type 1 or 2 ’&’
echo press RETURN.
read n

exit 0

bg re-starts the most recently stopped program, this time in the background. This gives you a way to
retroactively apply an ampersand to a previous command:

4$ prog > ˜/prog.out
control-z
Stopped
5$ bg You could also sayfg .
6$ The prompt reappears immediately because you saidbg .

Outline of part 1 of this course

I. Thefile system

A. Directorycommands:cd , pwd, mkdir , rmdir .

B. Specialdirectories:

1. / the root directory

2. . your current directory

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 6 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

3. .. the parent of your current directory

4. ˜ your home directory

5. ˜abc1234 that person’s home directory

C. Thearguments and output ofls -l ; chmod the nine permission bits.

D. Copy, move, rename, remove files; hard and symbolic links.

E. Device ‘‘files’’ i n /dev .

F. Text files:

1. /etc/passwd and/etc/group

2. Messageof the day:/etc/motd

3. /usr/dict/words and/usr/dict/websters

4. Web server:/var/apache2/2.2/logs/access_log ,
/etc/apache2/2.2/httpd.conf , ˜/public_html/index.html

II. Runa program

A. Redirectthe standard input, output and error output:| , >, <, >>, <<, 2>, 1>&2, ‘ back
quotes‘ .

B. Produceand detect exit status:$? , exit 0 , exit 1 , if , set -e .

C. Jobcontrol:control-c , control-z , fg , bg , &.

III. Unix utilities (tools)

A. Programsthat do output but no input:date , cal , who, ls -l , etc.

B. Programsthat do input and output (filters):sort , tr , grep , awk, wc -l , etc.

IV. Setting up a shellscript

A. $PATH, which , whereis , ˜/bin , #!/bin/ksh , chmod, set -x .

B. Commandline arguments of a shellscript:$1 , $2 , $3 , $* , $0 , $# .

C. World Wide Web gateways (CGI):Content-type , ˜/public_html/cgi-bin .

D. Programsin other languages: C, C++, Perl, PHP, Python, Ruby, Java.

V. The shell language

A. The.profile file.

B. Localand environment variables:echo $x , export X=hello , env , let , read .

C. Controlstructure:for , while , do , done , if , then , else , elif , fi , trap .

VI. vi

A. vim -g -geometry=80x36 (GUI)

Some Unix utilities that use regular expressions

grep, egrep search for a regular expression
more, less, pg, man, view display text on the screen
ed, ex, vi, emacs text editors
sed, awk classic programmable filters: p. 101
Perl, Ruby, PHP newer programming languages
dbx, lex, expr, csplit miscellaneous
archie, nn Internet

In Java, import thejava.util.regex package.

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 7 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

grep

1$ grep word filename
2$ grep word filename1 filename2 filename3

3$ cd /usr/share/groff/1.19.2/font/devps
4$ pwd

5$ grep internalname * | more
AB:internalname AvantGarde-Demi
ABI:internalname AvantGarde-DemiOblique
AI:internalname AvantGarde-BookOblique

6$ grep -h internalname * | more
internalname AvantGarde-Demi
internalname AvantGarde-DemiOblique
internalname AvantGarde-BookOblique

ˆ means ‘‘start of the line’’: p. 102

Search for your favorite prefixes: macro, mega, micro, octo, over, under, Italo, para, pre, pseudo,
quasi, turbo, voodoo, etc.:

1$ grep -i ’ˆanti’ /usr/dict/words
2$ grep -i ’ˆanti’ /usr/dict/websters | more
3$ grep -i ’ˆanti’ /usr/dict/words /usr/dict/websters | more
4$ grep -i ’ˆanti’ /usr/dict/w*s | more easier way to do the same thing
5$ awk ’/ˆanti/’ /usr/dict/w*s | more case sensitive
6$ perl -ne ’print if /ˆanti/i;’ /usr/dict/w*s | more case insensitive

7$ ls -l | tail +2 | grep ’ˆ-’ Output only the names of files: Handout 1, p. 10; 4:17; 5:16
8$ ls -l | tail +2 | grep ’ˆd’ Output only the names of subdirectories.

9$ grep ’ˆ#’ prog.c | lpr Print the lines that start with#
10$ grep -v ’ˆ#’ prog.c | lpr Print lines that don’t start with #; Handout 5, p. 15 for-v

$ means ‘‘end of the line’’: p. 102

Search for you favorite suffixes: able, mania, maniac, ocracy, oid, phobiac, oxide, tomy (as in ‘‘lobot-
omy’’), ist, ity, esque, fish, etc.:

1$ grep ’phobia$’ /usr/dict/words
2$ grep -i ’phobia$’ /usr/dict/w*s | more

3$ grep ’ˆ$’ file.txt | wc -l How many empty lines doesfile.txt contain?
4$ grep -v ’ˆ$’ file.txt | wc -l How many non-empty lines?

5$ grep ’\$100’ search for a dollar sign and a hundred
6$ grep ’\ˆ’ search for a caret
7$ grep ’\\’ search for a backslash
8$ grep ’\\\\’ search for two consecutive backslashes

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 8 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

9$ grep ’ˆ\ˆ’ lines that begin with a caret
10$ grep ’ˆ\\\ˆ’ lines that begin with a backslash and a caret
11$ grep ’\$$’ lines that end with a dollar sign
12$ grep ’\\\$$’ lines that end with a backslash and a dollar sign

The . wildcard: p. 103

Example 3 would output all the lines output by examples 1 or 2, but it wouldn’t outputseptirate
or seprate .

1$ grep ’seperate’ /usr/dict/words
2$ grep ’separate’ /usr/dict/words
3$ grep ’sep.rate’ /usr/dict/words
4$ grep ’\.’ /usr/dict/words search for a dot

5$ grep -hi ’ˆ...u.$’ /usr/dict/w*s | more Why do I need the anchors?
6$ grep -hi ’...u.’ /usr/dict/w*s | more

7$ grep -i ’ˆb.g$’ /usr/dict/words
8$ grep -i ’ˆp.t$’ /usr/dict/words

In Handout 6, p. 8, second line 5, the backslash turned off the special meaning that a character ($)
had togrep . In the following line 11, the backslashes turnson the special meaning that the characters{
and} have to grep . The curly braces were added togrep as an afterthought.

9$ grep ’ˆ.....$’ Output all lines consisting of exactly five characters.
10$ grep -v ’ˆ.....$’ Output all lines consisting of more or less than five characters.
11$ grep -v ’ˆ.\{5\}$’ regexp (5) pp. 2−3, ¶ 2.3

12$ grep ’.....’ Output all lines consisting of 5 or more characters.
13$ grep -v ’.....’ Output all lines consisting of less than 5 characters.

14$ grep ’......’ Output all lines consisting of more than 5 characters.
15$ grep -v ’......’ Output all lines consisting of 5 or less characters.

We listed the terminals and wrote to them in Handout 2, pp. 19−20.A terminal not in use is owned
by root . List the terminals in use that anyone can write to (i.e., whose thirdwbit is on):

16$ ls -l /dev/pts | awk ’NR >= 2 && $3 != "root"’ |
grep ’ˆc.\{7\}w’ | more

The-d option ofls was in Handout 1, p. 10:

17$ awk -F: ’{print $6}’ /etc/passwd | head -3
/root
/
/usr/bin

18$ ls -ld ‘awk -F: ’{print $6}’ /etc/passwd‘ | grep ’ˆd.\{7\}w’ | more
drwxrwxrwx 4 yb610 users 35 Aug 5 2012 /home1/y/yb610

19$ ls -ld ‘awk -F: ’{print $6}’ /etc/passwd‘ | grep ’ˆd.\{7\}w’ |
awk ’{print $3}’ > ˜/names

20$ mail ‘cat ˜/names‘ < ˜/letter
21$ rm ˜/names

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 9 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Av oid creating̃ /names by nesting the back quotes.The$() notation in Handout 5, p. 15 is eas-
ier to nest:

22$ mail $(ls -ld $(awk -F: ’{print $6}’ /etc/passwd) |
grep ’ˆd.\{7\}w’ | awk ’{print $3}’) < ˜/letter

▼ Homework 6.2: Capitalism, Communism, Nationalism

The Twentieth Century was a battleground of conflicting isms, from absenteeism to Zionism. List the
97 isms (words ending with ‘‘ism’’, either upper or lowercase) in/usr/dict/words that are at least six
characters long.You get no credit if you use more than onegrep , or if you usetr , or if your regular
expression contains an asterisk, or if you print the wrong number of isms, or if you don’t hand in a printout
of the output, or if your output contains the word ‘‘Page’’. You get no credit if you printed ‘‘prism’’ or
‘‘ numismatic’’, or if you failed to print ‘‘sadism’’ and ‘‘fascism’’. Pipethe output ofgrep into apr whose
second option is minus lowercase i quote blank quote one, third is minus lowercase L 25 (Handout 4, pp.
2−3), and fourth is minus lowercase W eighty.

pr -4 -i’ ’1 -l25 -t -w80

to output the isms in four columns of 25 lines each. The output must be printed in a monospace font to
make the columns line up.You get no credit if you do not givepr the five arguments shown above.
▲

The [] wildcard: pp. 102−103

. any character at all
[ABCDEFGHIJKLMNOPQRSTUVWXYZ] a more selective wildcard: any uppercase letter
[A-Z] any uppercase letter; no space on either side of dash, can’t say [Z-A]

#!/bin/ksh
#Output the last name of each student, one per line.
#It’s the last word on the second line of each bio file.
#Why do we {print $NF} (p. 115) instead of {print $2} or {print $3}?

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

awk ’NR == 2 {print $NF}’ $filename
done

Berezovskiy
chennankara
sarika
Panopoulos
Poltiyelov

1$ grep -i ’ˆ[A-L]’ ˜/names > ˜/al
2$ grep -i ’ˆ[M-Z]’ ˜/names > ˜/mz

3$ grep ’[a-z]’ any lowercase letter; can’t say [z-a]

4$ grep ’[0123456789]’ any decimal digit (10 possibilities)
5$ grep ’[0-9]’ any decimal digit (10 possibilities)
6$ grep ’19[0-9][0-9]’ prepare for the millennium; not necessarily two copies of the same digit
7$ grep -hi ’[ct][sz]ar’ /usr/dict/w*s | sort | uniq in search of Russia’s imperial past

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 10 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

8$ grep ’[0-7]’ any octal digit (8 possibilities)
9$ grep ’[0-9A-Fa-f]’ any hexadecimal digit (22 possibilities: 10 + 6 + 6); can also use-i
10$ grep ’[A-Za-z0-9_]’ any char allowed in shell variable name (63 possibilities: 26 + 26 + 10 + 1)

11$ grep ’[02468]$’ search for an even number (assume each line ends with a number)
12$ grep ’ˆ[0-9][0-9][0-9][0-9][0-9]$’ United States zip code:10040
13$ grep ’ˆ[0-9]\{5\}$’
14$ grep ’ˆ[A-Z][0-9][A-Z] [0-9][A-Z][0-9]$’ Canadian postal code:A2B 3C4

15$ grep ’ˆ[A-CEGHJ-NPR-TV-Z][0-9][A-CEGHJ-NPR-TV-Z] [0-9][A-CEGHJ-NPR-TV-Z][0-9]$’

Line 16 is a simpler way to do line 15.But to output one copy of each line that is not output by 15,
we can add a-v to 15. There is no easy way to output one copy of each line that is not output by 16.

16$ grep ’ˆ[A-Z][0-9][A-Z] [0-9][A-Z][0-9]$’ | grep -v ’[DFIOQU]’ 6 forbidden letters

17$ grep ’\[’ search for a [

Theawk outputs the nine characters starting with the second character on each line of input:

18$ ls -l | awk ’NR >= 2 {print substr($1, 2, 9)}’ | more
rw-r--r-- okay
rwx------ okay
---r--r-- bad: heavier on the right
r--r-xrw- bad: heavier on the right

The -- argument means that none of the following arguments are options, even if they begin with a minus.

19$ ls -l | awk ’NR >= 2 {print substr($1, 2, 9)}’ | grep -- ’-..[rwx]’ | more
20$ ls -l | tail +2 | grep ’ˆ.\{1,6\}-..[rwx]’ | more

A trick question

Would a line consisting of only the three charactersABCbe output if you fed it into the following
grep ?

echo ABC | grep ’ˆ[ABC]$’

What if you removed the square brackets? Whatif you restored the square brackets but omitted one or both
of the anchorŝ and$? What if you removed the square brackets and the anchors?

▼ Homework 6.3: social security numbers

The file $S45/socialsecurity should contain one social security number per line: just nine
digits, with no blanks, dashes, or anything else. Write a shellscript which outputs the 7 out of the 9 lines in
this file that do not match this pattern. Usegrep -v .
▲

▼ Homework 6.4: Bonfire of the Vanities (Tom Wolfe)

Before losing consciousness, he was able to give his mother the first letter—R—
and five possibilities for the second letter—E, F, B, R, P—of the license plate of
the luxurious Mercedes-Benz that ran him down on Bruckner Boulevard and sped
off.

—Chapter 12

Write a shellscript that will output the number of words in/usr/dict/words and
/usr/dict/websters that match the above description and that are at most seven characters long.
Output only one line, containing only one number. Do not output the words themselves.

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 11 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Use exactly onegrep and noawk. Giv e it -h and-i options, combined to-hi . You get no credit
unless you end up with 1270 such words after yousort +0f +0 (p. 106) anduniq them. Searchfor both
upper and lowercase: don’t missRPM. Do not impose a minimum length of three: don’t missre .
▲

▼ Homework 6.5: 1−800−737−3783

Write a shellscript namedspelledby to output all the words in/usr/dict/words and
/usr/dict/websters that are spelled by your seven-digit phone number. Use someone else’s number
if yours contains a zero or one. This shellscript should take no input and no command line arguments.
Search for both upper and lowercase. Usesort +0f +0 (p. 106) anduniq to output only one copy of
each word, in alphabetical order. Do not output the name of any dictionary.

No luck? Try your first three and last four digits separately; or your first four and last three, etc.
Remove theˆ and$ only as a last resort.

2 abc 6 mno
3 def 7 pqrs
4 ghi 8 tuv
5 j kl 9 wxyz

▲

▼ Homework 6.6: administrative aid for the NYU School of Continuing and Professional Studies

Write a shellscript nameddaycount that will output how many of the specified week days there are
in a given month. Thefirst argument must consist of exactly one uppercase letter followed by exactly two
lowercase letters. Output only one line, containing only one number. For example,

1$ daycount Tuesday 5 2013
4

This shellscript must take exactly three command line arguments: output an error message otherwise.Do
not write separate error messages for ‘‘too many’’ and ‘‘too few’’. An error message must have the three
trimmings on the error message in the shellscript in Handout 5, p. 5; you get no credit otherwise.

(1) Theerror message must begin with the name of the program ($0), a colon, and a blank.

(2) Theerror message must be directed to the standard error output (1>&2) not the standard output.

(3) Theprogram must yield a non-zero exit status in case of error, 0 otherwise.

Do not use aread statement or aset statement. Donot forget Saturday and Sunday. Do not useawk. If
the user typed the three command line arguments correctly, daycount must output only one line, contain-
ing only one number and nothing else.

To count how many Sundays there are, count the lines that have a digit as their second character:

2$ cal 5 2013
May 2013

S M Tu W Th F S
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

3$ cal 5 2013 | tail +3 | grep ’ˆ.[0-9]’ | wc -l
4

To count the Mondays, search for lines that have a digit as the fifth character. (This number may be differ-
ent on other machines.) Write a chain ofif-then-elif statements as in Homework 5.8 (Handout 5, pp.
22−23) to compare the first argument with each day:

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 12 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

if [[$1 == Sunday]]
then

Format and indent your chain ofif-then-elif-else-fi statements in exactly the same way as
the last box in Handout 4, p. 20; you get no credit if there is any difference at all.

Add a finalelse containing another error message in case the user types a bad first argument, which
you must output as part of the error message.You get credit only if the error message includes the bad first
argument. Thiserror message must also have the three trimmings listed above. Use sixelif ’s instead of
six else if ’s—you get no credit if your shellscript has more than twofi ’s.

Which way to find the Saturdays is the easiest to proofread?grep has\{ \} but no parentheses,
egrep has parentheses but no\{ \} . Perl has both, and you don’t even need the backslashes.

4$ grep ’ˆ...................[0-9]’
5$ grep ’ˆ..[0-9]’
6$ grep ’ˆ.\{19\}[0-9]’
7$ perl -ne ’print if /ˆ(..){6}.\d/;’

✎ For a more compact notation, usecase instead ofif-then-elif . See pp. 134−135,ksh (1)
p. 2.
▲

[ˆ] wildcard: pp. 102−103

The whitespace in line 2 is one blank and one tab; the\’ stands for one single quote.The \’ is sur-
rounded by a pair of single quotes, and is therefore outside of the single-quoted territory.

1$ grep ’[A-Z]’ any uppercase letter
2$ grep ’[] !"#$%&’\’’()*+,./0123456789:;<=>?@[\ˆ_‘abcdefghijklmnopqrstuvwxyz{|}˜-]’
3$ grep ’[ˆABCDEFGHIJKLMNOPQRSTUVWXYZ]’ any character except an uppercase letter
4$ grep ’[ˆA-Z]’ any character except an uppercase letter

5$ grep ’[ˆacgt]’ any character except a lowercasea, c , g, or t
6$ grep ’[ˆA]’ any character except an uppercaseA

7$ grep -hi ’q[ˆu]’ /usr/dict/w*s | sort | uniq | more
QED
Qatar

8$ grep -hi ’q$’ /usr/dict/w*s | sort | uniq | more
IQ
Iraq

9$ awk -F: ’{print $1}’ /etc/passwd | grep ’[ˆa-z0-9]’

The difference between [ˆ and -v

1$ echo ABC | grep ’[ˆA]’ every line that contains a character other thanA
2$ echo ABC | grep -v ’A’ every line that has noA; quotes unnecessary

Search for a number or word that is not part of a longer number or word

To search for the number100 without finding longer numbers such as2100 or 21003 ,

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 13 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

1$ grep 100
2$ grep ’[ˆ0-9]100[ˆ0-9]’ Does this output every line that contains100?
3$ grep ’ˆ100[ˆ0-9]’
4$ grep ’[ˆ0-9]100$’
5$ grep ’ˆ100$’

To search for a variable namedmax without finding longer names such asmaximumor xmax, see Handout
6, p. 10, line 11.

6$ grep max
7$ grep ’[ˆA-Za-z0-9_]max[ˆA-Za-z0-9_]’
8$ grep ’ˆmax[ˆA-Za-z0-9_]’
9$ grep ’[ˆA-Za-z0-9_]max$’
10$ grep ’ˆmax$’

11$ grep -w max a word all by itself
12$ grep ’\<max\>’ in other versions of Unix

Search for a non-printable character

base 2 base 8 base 10 base 16
character binary octal decimal hexadecimal

’A’ 01000001 101 65 41

BEL 00000111 7 7 7

The character’A’ has ASCII code 65. The invisible character that rings the bell has ASCII code 7.
Seeascii (5) in Handout 2, p. 1.echo requires a backslash and a zero in front of an octal number:

1$ echo ’\0101’
A

2$ echo ’\07’ Beep the terminal (or’\a’).

Not counting the tab character, the printable characters with the smallest and largest ASCII codes are
the blank and tilde.Their ASCII codes are 32 and 126 respectively. Unfortunately, the ASCII code of the
tab is 9.

The wildcard

3$ grep ’[-˜]’ one blank after the[

would therefore match any printable character except for the tab, and the wildcard

4$ grep ’[-˜]’ one blank after the[, one tab before the]

would match any printable character. To search for lines containing a non-printable character,

5$ grep ’[ˆ -˜]’ one blank after thê, one tab before the]

▼ Homework 6.7: search for unusual execute permission

The fourth character of every line (except the first) output byls -l is a dash or a lowercasex , right?

1$ cd ˜mm64/45/handout
2$ ls -l | tail +2
-r--r--r-- 1 mm64 users 59587 Aug 25 2012 handout6.ms
-r-xr--r-- 1 mm64 users 1122 Aug 24 2004 indexscript

grep for all the lines in the output ofls -l /usr/bin | tail +2 whose fourth character is neither a
lowercasex nor a dash.On May 28, 2013, the fourth character of 14 of the 1078 lines of output was

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 14 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

neither a lowercasex nor a dash. See set-uid on pp. 54−55.

Use only a singlegrep . Do not use the-v option of grep . You get no credit if your regular
expression contains the letterswor y . You get no credit if you make the ☞mistake in Handout 6, p. 14, the
second line 3.

Verify that your grep outputs 94 of the 98 lines in the file$S45/unusual.execute . Don’t
hand it in until it does. Do not hand in any line from the file$S45/unusual.execute .
▲

What can go wrong with a wildcard with [square brackets]

Never use[square brackets] unless you are writing more than one character in them:

1$ grep ’[ABC]’ a wildcard to match any one of the 3 charactersA, B, or C
2$ grep ’[AB]’ good
3$ grep ’[A]’ bad ☞
4$ grep ’A’ good

The dash has a special meaning only when it is within[square brackets] . You need no dash when
the surrounding characters are consecutive:

5$ grep ’[ABC]’ a wildcard to match any one of the 3 charactersA, B, or C
6$ grep ’[A-C]’ good
7$ grep ’[A-B]’ bad
8$ grep ’[AB]’ good

The three characters-ˆ] are the only ones that have a special meaning within square brackets. Lines
11, 14, and 17 below show how to turn off their special meaning. See the top of p. 103 in the textbook and
regexp (5) p. 2.

9$ grep ’[A-C]’ match any one of the 3 charactersA, B, or C.
10$ grep ’[AC-]’ match any one of the 3 charactersA, C, or - .
11$ grep ’[-AC]’ match any one of the 3 characters- , A, or C.

12$ grep ’[ˆBC]’ match any character except aB or C.
13$ grep ’[BˆC]’ match any one of the 3 charactersB, ˆ , or C.
14$ grep ’[BCˆ]’ match any one of the 3 charactersB, C, or ˆ .

15$ grep ’[AB]]’ matchA or B, followed by] .
16$ grep ’[]AB]’ match any one of the 3 characters] , A, or B; Handout 6, p. 12, first line 2
17$ grep ’[ˆ]]’ match any character except] .

18$ grep ’[]ˆ-]’ match any one of the 3 characters] , ˆ , or -
19$ grep ’[][]’ match either] or [
20$ grep ’[ˆ[]’ match any character except[
21$ grep ’[ˆ][]’ match any character except] or [

Never use a\ within square brackets to turn off the special meaning of any regular expression char-
acter such as. , ˆ , $, etc.:

22$ grep ’[ˆ.]trash’ Search for trash preceded by a character other than a dot.
23$ grep ’[ˆ$]’ lines that contain a character other than a dollar sign
24$ grep ’[ˆˆ]’ lines that contain a character other than a caret
25$ grep ’ˆ[ˆˆ]’ lines that begin with a character other than a caret
26$ grep ’ˆ[ˆˆ]\ˆ’ lines that begin with a character other than a caret, followed by a caret

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 15 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Asterisk in a regular expression: p. 103

A blank and an asterisk mean ‘‘zero or more consecutive blanks’’. Never write an asterisk in a regu-
lar expression without a character or wildcard immediately to the left of it..* (i.e., dot star) in a regular
expression has the same meaning as* in the shell language.

1$ grep -i ’ˆ[A-L]’ ˜/names > ˜/al no leading blanks
2$ grep -i ’ˆ [A-L]’ ˜/names >> ˜/al one leading blank
3$ grep -i ’ˆ [A-L]’ ˜/names >> ˜/al two leading blanks
4$ grep -i ’ˆ [A-L]’ ˜/names >> ˜/al three leading blanks

5$ grep -i ’ˆ *[A-L]’ ˜/names > ˜/al zero or more leading blanks

6$ grep ’21210040’ separated by no characters
7$ grep ’212.10040’ separated by one character
8$ grep ’212..10040’ separated by two characters
9$ grep ’212...10040’ separated by three characters

10$ grep ’212.*10040’ separated by zero or more characters

11$ grep -i ’ˆanti.*ism$’ /usr/dict/websters
12$ grep -i ’ˆanti’ /usr/dict/websters | grep -i ’ism$’

13$ grep ’*’ search for an asterisk

Assuming that any space in the sixth field is surrounded by two words,

14$ awk -F: ’{print $5}’ /etc/passwd | grep ’ .* .* ’ | more
SendMail Message Submission Program
ZFS Automatic Snapshots Reserved UID
UPnP Server Reserved UID
NFS Anonymous Access User

Regular expressions using [ˆ] and *: pp. 102−103

To output the lines that contain phone numbers in area code 212 (i.e., lines that contain212 with no
digits ahead of them), see Handout 1, p. 8.

To output the lines in the file/etc/passwd with no password,

1$ grep ’::’ /etc/passwd
2$ grep ’ˆ[ˆ:]*::’ /etc/passwd
3$ awk -F: ’$2 == ""’ /etc/passwd awk is easier: Handout 4, p. 18, lines 9−10

Fold long lines (Handout 5, p. 11, Homework 5.4, ¶ (3)) at a width of 90 bytes:

4$ tail -3 /var/apache2/2.2/logs/access_log | fold -b -90
100.2.35.247 - - [28/May/2013:15:13:53 -0400] "GET /˜ajg494/Final/paperbackground.jpg HTTP
/1.1" 200 89233
128.122.108.95 - - [28/May/2013:15:17:38 -0400] "GET / HTTP/1.1" 200 6311
99.186.96.72 - - [28/May/2013:15:22:41 -0400] "GET /˜ajg494/Final/paperbackground.jpg HTTP
/1.1" 200 89233

Does every line have exactly two double quotes, no more and no less? In other words, is every line in
the format—"—"—, where each—represents a region that has no double quotes?

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 16 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

5$ grep -v ’ˆ[ˆ"]* "[ˆ"]* "[ˆ"]* $’ /var/apache2/2.2/logs/access_log |
tail -3 | fold -b -90

6$ awk ’-F"’ ’NF != 3’ /var/apache2/2.2/logs/access_logNF is the number of fields
49.212.155.117 - - [23/May/2013:19:14:44 -0400] "GET /˜myd212/works.html\\\\\" HTTP/1.1" 4
04 224
49.212.156.175 - - [24/May/2013:14:33:30 -0400] "GET /˜myd212/works.html\\\\\" HTTP/1.1" 4
04 224

Does every line have exactly one left square bracket followed by exactly one right square bracket,
with no other square brackets? Inother words, is every line in the format—[—]—, where each—represents

a region that has no square brackets?

7$ grep -v ’ˆ[ˆ][]* \[[ˆ][]* \][ˆ][]* $’ /var/apache2/2.2/logs/access_log |
tail -3 | fold -b -90

98.14.224.61 - - [06/May/2013:10:57:49 -0400] "GET /˜sws272/a[i];}} HTTP/1.1" 404 213
98.14.224.61 - - [06/May/2013:10:57:50 -0400] "GET /˜sws272/a[i+2];} HTTP/1.1" 404 214

One or more

Seeregexp (5), pp. 2−3, ¶ 2.3. Output the lines that have a neg ative number (a dash followed
immediately by one or more consecutive digits) followed immediately by a blank.

1$ grep -- ’-[0-9][0-9]* ’
2$ grep -- ’-[0-9]\{1,\} ’ Handout 6, p. 9, line 11; Handout 6, p. 11, lines 22−23
3$ egrep -- ’-[0-9]+ ’
4$ grep -- ’-[1-9][0-9]* ’ disallow negative zero-0

▼ Homework 6.8: a facetious example

Write a shellscript to output all the words in /usr/dict/words and /usr/dict/websters
that contain all five vowels in alphabetical order, with each vowel appearing exactly once (e.g.,
abstemious). ‘‘Y’ ’ is not a vowel. Searchfor both upper and lowercase.

These words are in the format—a—e—i—o—u—, where each—represents a region that has no vowels.
[Square brackets] are unnecessary around a single character: use them only around a group of characters.
You get no credit if you make the ☞mistake in Handout 6, p. 14, the second line 3. Do not use
\(\) \1 . You must specify that the part of the word before the ‘‘a’’ consists only of zero or more con-
sonants. Andyou must specify that the rest of the word after the ‘‘u’’ consists only of zero or more conso-
nants. Outputonly those lines in/usr/dict/words and /usr/dict/websters that are occupied
entirely by the characters you specified. Add whatever is necessary to ensure that these characters stretch
from the beginning of the line to the end.

Split a long command line with\ betweenarguments, not in the middle of an argument. grep
should output one line of/usr/dict/words and 16 lines of/usr/dict/websters . Verify that it
outputs 8 of the 24 lines in the file$S45/vowel . Don’t hand it in until it does.
▲

grep for the most common bug in C, C++, Jav a, and Perl

To output the lines inprog.c that containif (a = b) , wherea andb are any expressions,

1$ grep ’if *(.*=.*)’ prog.c
2$ grep ’if *(.*[ˆ=]=[ˆ=].*)’ prog.c
3$ grep ’if *(.*[ˆ=!<>] =[ˆ=].*)’ prog.c

Allow zero or more blanks between the word if and the left parentheses. The firstgrep finds lines such
as

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 17 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

if (a = b)

but unfortunately it also finds correct lines such as

if (a == b)

—exactly what we want to avoid. Thesecondgrep is smart enough to avoid if (a == b) , but unfortu-
nately it still finds correct lines such as

if (a != b)
if (a <= b)
if (a >= b)

(C connoisseurs will recognize that we must also avoid if (a += b) , etc.)

How not to use *

Here are three ways of doing the same thing. Write only the first one.

1$ grep ’moe’ good
2$ grep ’moe.*’ bad
3$ grep ’moe.*$’ bad

Similarly, here are three ways of doing the same thing. Write only the first one.

4$ grep ’moe’ good
5$ grep ’.*moe’ bad
6$ grep ’ˆ.*moe’ bad

Why aren’t the following lines three ways of doing the same thing?

7$ echo 3212 | grep ’212’
8$ echo 3212 | grep ’[ˆ0-9]*212’
9$ echo 3212 | grep ’ˆ[ˆ0-9]*212’

Examples of touch-sensitive client-side imagemaps

http://i5.nyu.edu/ ∼ mm64/imagemap.html
http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/00120132.html Unix Section 1 (Tuesday)
http://i5.nyu.edu/ ∼ mm64/INFO1-CE9264/00120132.html C++ Part I Section 1 (Monday)
http://i5.nyu.edu/ ∼ mm64/INFO1-CE9236/00120132.html iPhone and iPad App Development Section 1 (Thursday)

Official documentation for HTML 4.0 client-side touch-sensitive imagemaps

http://www.w3.org/TR/REC-html40/struct/objects.html#h-13.6

Create a client-side touch-sensitive imagemap

Let’s assume you have a picture in a file named̃/public_html/picture.gif . Write the fol-
lowing in your˜/public_html/index.html file.

Within the pair ofMAPtags you can have as manyCIRCLE’s and RECTangle’s as you like, but only
at most oneDEFAULT. Put theDEFAULTlast; it’s the ‘‘none of the above’’ area.

Coördinates are measured in pixels and are always greater than or equal to zero. Put no space adja-
cent to a comma in the coördinates. The three coördinates of aCIRCLE are

(1) thehorizontal distance from the left edge of the image to the center of the circle;

(2) thevertical distance from the top edge of the image to the center of the circle;

(3) theradius of the circle.

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 18 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

The four coördinates of aRECTangle are

(1) thehorizontal distance from the left edge of the image to the left edge of the rectangle;

(2) thevertical distance from the top edge of the image to the top edge of the rectangle;

(3) thehorizontal distance from the left edge of the image to the right edge of the rectangle;

(4) thevertical distance from the top edge of the image to the bottom edge of the rectangle.

The coördinates of aPOLYgon are

(1) Thecoördinates of one vertex.

(2) Thecoördinates of the next vertex, etc.

The statements within the" double quotes" are written in the language JavaScript. Thestring
assigned tostatus is displayed in the status bar at the bottom of the browser window. See

https://developer.mozilla.org/En/DOM:window.status

1 <!-- Excerpt from your ˜/public_html/index.html file. -->
2
3 <MAP NAME = "mymap">
4
5 <AREA
6 SHAPE = CIRCLE
7 COORDS = 253,146,10
8 HREF = "http://i5.nyu.edu/ ∼ abc1234/"
9 onMouseOver = "status = ’Visit my home page.’; return true;"

10 onMouseMove = "status = ’Visit my home page.’; return true;"
11 onMouseOut = "status = ’’;">
12
13 <AREA
14 SHAPE = RECT
15 COORDS = 10,10,20,30
16 HREF = "http://i5.nyu.edu/cgi-bin/cgiwrap/abc1234/mygateway"
17 onMouseOver = "status = ’Run my gateway.’; return true;"
18 onMouseMove = "status = ’Run my gateway.’; return true;"
19 onMouseOut = "status = ’’;">
20
21 <AREA
22 SHAPE = POLY
23 COORDS = 10,10,20,10,20,20
24 HREF = "http://i5.nyu.edu/cgi-bin/donothing"
25 onMouseOver = "status = ’Not a touch-sensitive area.’; return true;"
26 onMouseMove = "status = ’Not a touch-sensitive area.’; return true;"
27 onMouseOut = "status = ’’;">
28
29 <AREA
30 SHAPE = DEFAULT
31 HREF = "http://i5.nyu.edu/other.html"
32 onMouseOver = "status = ’Visit some other page.’; return true;"
33 onMouseMove = "status = ’Visit some other page.’; return true;"
34 onMouseOut = "status = ’’;">
35
36 </MAP>
37
38 <P>
39 Click on various points in this image:
40

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 19 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

41 <IMG
42 SRC = "http://i5.nyu.edu/ ∼ abc1234/picture.gif"
43 ALT = "[Picture of my dog in Colorado]"
44 USEMAP = "#mymap">

How do you discover t he coördinates?

Before you do any of the above, put the image in your home page with the following ISMAP instead
of USEMAP = "#mymap" . And temporarily surround theIMG tag with the following pair ofA tags. This
makes it a ‘‘server-side’’ rather than a ‘‘client-side’’ i magemap:

45 <!-- Excerpt from your ˜/public_html/index.html file. -->
46
47 <P>
48 Click on various points in this image:
49

50
51 <IMG
52 SRC = "http://i5.nyu.edu/ ∼ abc1234/picture.gif"
53 ALT = "[Picture of my dog in Colorado]"
54 ISMAP>
55

Then press the browser’sReload button. Click on the image and write down thex, y coördinates
that you see after the? at the end of theLocation field at the top of the browser window.

When you’ve discovered the coördinates of all the points you need, remove the pair ofA tags, change
the ISMAP to USEMAP = "#mymap" , and write the list ofAREA’s within the pair ofMAPtags. Remember
to Reload again.

Output a list of HTML areas

abc1234 100 200
def5678 300 400
ghi9012 500 600

Within a " double quoted" string in the argument ofawk, there must be a backslash immediately
before each double quote.A long print statement can be split into two lines with a backslash.There
must be nothing to the right of the backslash, not even a blank. For the absence of a comma between the
items given to print , see Handout 3, p. 26; Handout 4, p. 16; Handout 5, p. 12.

#!/bin/ksh

awk ’{print "<AREA SHAPE = CIRCLE COORDS = " $2 "," $3 \
",10 HREF = \"/˜" $1 "/\">"}’

exit 0

<AREA SHAPE = CIRCLE COORDS = 100,200,10 HREF = "/˜abc1234/">
<AREA SHAPE = CIRCLE COORDS = 300,400,10 HREF = "/˜def5678/">
<AREA SHAPE = CIRCLE COORDS = 500,600,10 HREF = "/˜ghi9012/">

Summer 2013 Handout 6printed 5/28/13
3:22:34 PM − 20 − All rights

reserved ©2013 Mark Meretzky

