
NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Summer 2013 Handout 4

Use tr (Handout 2, p. 17) as an adaptor between programs

1$ awk ’69745 <= NR && NR <= 69746’ $S45/Shakespeare.complete
QUINCE Bless thee, Bottom! bless thee! thou art

translated.

2$ awk ’69745 <= NR && NR <= 69746’ $S45/Shakespeare.complete |
tr ’[a-z]’ ’[A-Z]’
QUINCE BLESS THEE, BOTTOM! BLESS THEE! THOU ART

TRANSLATED.

3$ prog1 | prog2
4$ prog1 | tr ’[a-z]’ ’[A-Z]’ | prog2
5$ prog1 | tr ’[a-z] [A-Z]’ | prog2 Can’t give it one argument.

6$ compiler | assembler We hoped we could do this,
7$ compiler | tr ’$’ ’#’ | assembler but we had to do this. Why do we need the quotes?

tr example: DNA

A strand ofDNA is a long string of the lettersa, c , g, and t :

1$ more $S45/dna
act
cat
tact

A strand ofDNA can create another strand of the same length. The new strand has
a wherever the original hadt ;
t wherever the original hada;
c wherever the original hadg;
g wherever the original hadc .

Thus a strand such asaagct can create the strandttcga . And thenttcga could create another copy of
the originalaagct .

The following command inputs a file of strands, one per line, and outputs the strands that they create.

2$ tr ’[acgt]’ ’[tgca]’ < $S45/dna | more
tga
gta
atga

To see the input and the output side by side on the screen, put the output into a file and display the
input and output files simultaneously with thepr command. The-i option will make pr space with
blanks, not tabs.(Some browsers do not render tabs correctly.) This option consists of the six characters
minus, lowercasei , single quote, blank, single quote, one. The second option is minus lowercase L one.
The-w80 is minus lowercase W eighty.

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 1 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

3$ tr ’[acgt]’ ’[tgca]’ < $S45/dna > output
4$ pr -i’ ’1 -l1 -m -t -w80 $S45/dna output
act tga
cat gta
tact atga etc.

If you filter data through thetr ’[acgt]’ ’[tgca]’ command twice, you will output a copy of
the original data.Verify this by feeding the original and the twice-processed data tocmp:

5$ tr ’[acgt]’ ’[tgca]’ < $S45/dna | tr ’[acgt]’ ’[tgca]’ > output
6$ cmp $S45/dna output compare: dead silence if identical (Handout 2, p. 12)
7$ rm output

Horizontal concatenation
infile1 infile2

outfile

The first option consists of the six characters minus, lowercasei , single quote, blank, single quote,
one. Thesecond option is minus lowercase L one.

1$ pr -i’ ’1 -l1 -m -t -w80 infile1 infile2 > outfile
2$ ls -l outfile

Vertical concatenation

We did this in Handout 2, p. 24, line 13.
infile1

infile2
outfile

1$ cat infile1 infile2 > outfile
2$ ls -l outfile

▼ Homework 4.1: decryption

I typed a story into a file namedstory and then said

1$ tr ’[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz]’ \
’[BCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzA]’ < story \
> $S45/encrypted

What I actually said was an easier way to write the above tr , with no space adjacent to the dashes
and square brackets.

2$ tr ’[A-Z][a-z]’ ’[B-Z][a-z]A’ < story > $S45/encrypted
3$ rm story

Recreate thestory file. Handin thetr command you used to decrypt it. Side by side on the same page,

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 2 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

usepr to print the first 38 lines of$S45/encrypted on the left and the first 38 lines of your decrypted
reconstruction on the right. Givepr the five options-i’ ’1 -l1 -m -t -w80 that you saw above. Use
head only once; give it the -38 argument. Don’t usederoff or tail . The output will look better in a
monospace font.
▲

Assignment statements in the shell language

When giving a new value to a shell variable, do not write a$ in front of its name. Write the$ only
when youuse the value of a shell variable. Seepp. 36−38, 88−89;ksh (1) pp. 8−9.

#!/bin/ksh
#Put strings into variables.

x=hello #No space around the equal sign: p. 36.
echo $x #Verify that you put "hello" into the variable.
echo x #What happens if you omit the dollar sign?

cf=’chow fon’ #If the string contains blanks or tabs, quote it.
echo $cf

Why there must be no space on either side of the equal sign

right wrong

our point of view x=hello x = hello

computer’s point of view blah=blah blah = blah

With white space on either side of the equal sign inx = h ello , the computer would think that you
were trying to run a program namedx with two command line arguments,= andhello . See p. 88.

Why there must be a dollar sign before a variable: p. 88

In most programming languages, the quotation marks tell you which words are the names of vari-
ables and which words are strings:

x = " hello" /* "hello" is a string of characters. */
x = h ello /* hello is the name of a variable. */

But in a language in which quotes are optional and variables are not declared, there would be no way to tell
which words are the names of variables.

Use only a part of a variable’s value

Seeksh (1) pp. 10−12; and the tail modifier:t in csh (1) pp. 4, 6. Chop off the . . .

prefix suffix

shortest # %

longest ## %%

The* is a wildcard.*/ means ‘‘everything up to and including a slash’’;
.* means ‘‘a dot and everything after it’’.

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 3 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh

directory=/home1/a/abc1234
echo $directory #echoes /home1/a/abc1234
echo ${directory#*/} #echoes home1/a/abc1234
echo ${directory##*/} #echoes abc1234
echo $directory #still echoes /home1/a/abc1234

host=i5.nyu.edu
echo $host #echoes i5.nyu.edu
echo ${host%.*} #echoes i5.nyu
echo ${host%%.*} #echoes i5
echo $host #still echoes i5.nyu.edu

See the##*/ in Handout 2, p. 13, lines 39−42; Handout 4, p. 21, line 36;$PWDin ksh (1) pp. 13,
17.

1$ cd
2$ pwd
/home1/a/abc1234

3$ echo $PWD
/home1/a/abc1234

4$ echo ${PWD#*/}
home1/a/abc1234

5$ echo ${PWD##*/}
abc1234

Tw o kinds of variables: pp. 38, 91−92

For environment variables, see Handout 3, p. 15.$PATH is an environment variable and$PS1 (PS
one) is a local variable; they were created in your.profile file in Handout 2, p. 13, lines 7−8 and
39−42. TheUnix convention is to give uppercase names to environment variables, lowercase to local vari-
ables. Inthe Bourne shell language, creating an environment variable requires two statements:

Korn shell and
Bourne-Again shell Bourn shell C Shell

local x=hello x=hello set x = h ello

environment export X=hello X=hello setenv X hello
export X

To remove either kind of variable in any of the above shells, sayunset x . Environment variables
can be used in programs in any language, not just the shell language:

#!/bin/ksh

echo $HOME
echo $PRINTER #created in Handout 2, p. 13, lines 26-27

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/getenv

—On the Web at
http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/getenv.c

1 #include <stdio.h> /* C */

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 4 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

2 #include <stdlib.h> /* for getenv, EXIT_SUCCESS, EXIT_FAILURE */
3
4 i nt main()
5 {
6 / * P rint the value of $HOME, p. 199. */
7
8 c onst char *const p = getenv("HOME");
9 i f (p == N ULL) {

10 return EXIT_FAILURE;
11 }
12
13 printf("%s\n", p);
14 return EXIT_SUCCESS;
15 }

1$ man -s 3c getenv C functions (printf , getenv) in section3c .
2$ gcc -o ˜/bin/getenv getenv.c minus lowercase O to create˜/bin/getenv

3$ ls -l ˜/bin/getenv
-rwx------ 1 abc1234 users 7080 May 28 15:58 /home1/a/abc1234/bin/getenv

4$ getenv run ˜/bin/getenv
/home1/m/mm64

—On the Web at
http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/getenv.C

1 #include <iostream> //C++
2 #include <cstdlib> //for getenv, EXIT_SUCCESS, EXIT_FAILURE
3 using namespace std;
4
5 i nt main()
6 {
7 i f (const char *const p = getenv("HOME")) {
8 c out << p << "\n";
9 r eturn EXIT_SUCCESS;

10 }
11
12 return EXIT_FAILURE;
13 }

5$ man -s 3c++ cout C++ objects (cin , cout) in section3c++ .
6$ g++ -o ˜/bin/getenv getenv.C minus lowercase O to create˜/bin/getenv

7$ ls -l ˜/bin/getenv
-rwx------ 1 mm64 users 8444 May 28 15:58 /home1/a/abc1234/bin/getenv

8$ getenv run ˜/bin/getenv
/home1/m/mm64

—On the Web at
http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/Getenv.java

1 public class Getenv {
2 public static void main (String[] args) {
3 f inal String home = System.getenv("HOME");

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 5 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

4 i f (home == null) {
5 System.exit(1);
6 }
7
8 System.out.println(home);
9 System.exit(0);

10 }
11 }

9$ cd ˜/bin
10$ javac -help Java compiler
11$ javac -d . $S45/Getenv.java CreateGetenv.class .

12$ ls -l Getenv.class
-rw------- 1 abc1234 users 579 May 28 15:58 Getenv.class

13$ java Getenv FeedGetenv.class to the Java interpreterjava .
/home1/m/mm64

14$ echo $?
0

You must turn on ther andx bits of a script in Perl, Python, PHP, or Ruby, just like a shellscript.

#!/bin/perl
#This script is written in Perl. %ENV is an associative array.
#awk has associative arrays, too. See textbook, pp. 123-124.

$home = $ENV{HOME};
if (!defined $home) {

exit 1;
}

print "$home\n";
exit 0;

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/getenv.pl

15$ man perl
16$ man -M /usr/perl5/man perlfunc See p. 51 forprint .
17$ man -M /usr/perl5/man perlvar See p. 15 for%ENV.
18$ man -M /usr/perl5/man perlop See p. 11 for\n .
19$ getenv.pl
/home1/m/mm64

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 6 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/python
import os #the operating system module
import sys #the system module

if os.environ.has_key(’HOME’):
print os.environ[’HOME’]
sys.exit() #successful termination

sys.exit("environment variable HOME does not exist")

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/getenv.py

20$ getenv.py
/home1/m/mm64

#!/usr/php/5.2/bin/php -q
<?php

$home = getenv(’HOME’);
if (!$home) {

exit(1);
}

echo $home . "\n";
exit(0);
?>

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/getenv.php

21$ getenv.php
/home1/m/mm64

#!/bin/ruby
#This script is written in Ruby.
#ENV is an object that takes the same [] as a hash.

home = ENV[’HOME’]
if home.nil?

exit 1
end

puts home
exit 0

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/getenv.rb

22$ /home1/m/mm64/public_html/INFO1-CE9970/local/bin/ri IO.puts doc
23$ getenv.rb
/home1/m/mm64

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 7 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Loops in a shellscript

When you give a new value to a shell variable, don’t write a$ in front of its name.Write the$ only
when youuse the value of a shell variable. Seepp. 94−97, 144;ksh (1) p. 2; and Donald E. Knuth’s article
‘‘ The Complexity of Songs’’ i n SIGACT News Volume 9 Number 2 (Summer 1977), pp. 17−24, at

http://portal.acm.org/citation.cfm?doid=358027.358042

#!/bin/ksh

echo Where have all the flowers gone?
echo Where have all the young girls gone?
echo Where have all the husbands gone?
echo Where have all the soldiers gone?

Where have all the flowers gone?
Where have all the young girls gone?
Where have all the husbands gone?
Where have all the soldiers gone?

#!/bin/ksh

for things in flowers ’young girls’ husbands soldiers
do

echo Where have all the $things gone?
done

If the list of words after thein doesn’t fit on one line, you can continue it onto another line with a
backslash. Make sure there is nothing after the backslash, not even a blank.

#!/bin/ksh
#Who copied the new .profile file into their home directory?

for loginname in yb610 ic297 bc1478 sum208 mm64 jp3195 up244 \
aw1312 rz665

do
ls -l ˜$loginname/.profile #˜$loginname is their home directory

done

-r--r--r-- 1 yb610 users 2975 Jun 10 2012 /home1/y/yb610/.profile
-r--r--r-- 1 ic297 users 2975 May 29 2012 /home1/i/ic297/.profile
-r--r--r-- 1 bc1478 users 2975 May 29 2012 /home1/b/bc1478/.profile
-r--r--r-- 1 sum208 users 2975 May 29 2012 /home1/s/sum208/.profile
-rw-r--r-- 1 mm64 users 2224 Sep 19 2012 /home1/m/mm64/.profile

Never write a loop that always iterates exactly once.

A word is an island surrounded by whitespace. The filename/usr/dict/words to the right of
the followingin is therefore one word and the loop iterates exactly once.

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 8 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh

for filename in /usr/dict/words
do

grep separate $filename
done

#!/bin/ksh
#A simpler way to do the same thing.

grep separate /usr/dict/words

Nested loops: the crown jewels

The number ofdo ’s must be equal to the number ofdone ’s. Can you output the Republicans before
the Democrats? Can you output the liberals of all parties first, followed by the moderates, followed by the
conservatives?

#!/bin/ksh
#Output all 6 combinations, i.e., the Cartesian product.

for party in Democratic Republican
do

for leaning in liberal moderate conservative
do

echo $party $leaning
done

done

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/cartesian

Democratic liberal
Democratic moderate
Democratic conservative
Republican liberal
Republican moderate
Republican conservative

The name of a variable can contain letters (upper and lowercase), digits, and underscores. See ‘‘iden-
tifiers’’ i n ksh (1) p. 1. You therefore need{ curly braces} around the name of any variable that is immedi-
ately followed by a letter, digit, or underscore. See p. 148−149;ksh (1) pp. 8−9.

#!/bin/ksh

for party in Democratic Republican
do

for leaning in liberal moderate conservative
do

echo $party ${leaning}s
done

done

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 9 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Democratic liberals
Democratic moderates
Democratic conservatives
Republican liberals
Republican moderates
Republican conservatives

Do ‘‘We Shall Overcome’’, ‘‘Gimme that Old Time Religion’’ f rom Inherit the Wind, etc. like this:

#!/bin/ksh
#Output the three choruses of "If I Had a Hammer".

for verb in hammer ring sing
do

for noun in danger warning ’love between my brothers and my sisters’
do

echo Id $verb out $noun #no apostrophe
done

echo Aaaaaaaall over this laaaaaaand.
echo #Output an empty line after each chorus, p. 79.
sleep 5 #Do nothing for five seconds, p. 73.

done

Id hammer out danger
Id hammer out warning
Id hammer out love between my brothers and my sisters
Aaaaaaaall over this laaaaaaand.

Id ring out danger
Id ring out warning
Id ring out love between my brothers and my sisters
Aaaaaaaall over this laaaaaaand.

Id sing out danger
Id sing out warning
Id sing out love between my brothers and my sisters
Aaaaaaaall over this laaaaaaand.

▼ Homework 4.2: output every combination of one from group A and one from group B

Do all of the following, but hand in only one.You get no credit if you hand in more than one.

(1) Write a shellscript with nested loops whose output is

========Beef======================
Beef with Black Bean Sauce
Beef with Broccoli
Beef with Garlic Sauce
Beef with Mixed Chinese Vegetables
Beef with Snow Peas

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 10 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

========Chicken======================
Chicken with Black Bean Sauce
Chicken with Broccoli
Chicken with Garlic Sauce
Chicken with Mixed Chinese Vegetables
Chicken with Snow Peas

========Pork======================
Pork with Black Bean Sauce
Pork with Broccoli
Pork with Garlic Sauce
Pork with Mixed Chinese Vegetables
Pork with Snow Peas

========Shrimp======================
Shrimp with Black Bean Sauce
Shrimp with Broccoli
Shrimp with Garlic Sauce
Shrimp with Mixed Chinese Vegetables
Shrimp with Snow Peas

You get no credit if the wordwith is written more than once in this shellscript.

(2) Write a shellscript namedfonts with nested loops, whose output is

<P>

Size 1 in EM tags

Size 1 in STRONG tags

<CODE>Size 1 in CODE tags</CODE>
</P>

<P>

Size 2 in EM tags

Size 2 in STRONG tags

<CODE>Size 2 in CODE tags</CODE>
</P>

<P>

Size 3 in EM tags

Size 3 in STRONG tags

<CODE>Size 3 in CODE tags</CODE>
</P>

<P>

Size 4 in EM tags

Size 4 in STRONG tags

<CODE>Size 4 in CODE tags</CODE>
</P>

<P>

Size 5 in EM tags

Size 5 in STRONG tags

<CODE>Size 5 in CODE tags</CODE>
</P>

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 11 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

<P>

Size 6 in EM tags

Size 6 in STRONG tags

<CODE>Size 6 in CODE tags</CODE>
</P>

<P>

Size 7 in EM tags

Size 7 in STRONG tags

<CODE>Size 7 in CODE tags</CODE>
</P>

Put " double quotes" around all the text that you echo, to prevent the<’s and >’s from telling the shell to
perform file I/O:

1$ echo "<This is how you can output $variables and angle brackets>"

Use>> to append the output of the shellscript to yourindex.html file. Thenusevi to move the
</BODY> and</HTML> tags down to the bottom of the file.

(3) Write a shellscript with nested loops freely based on Hamlet II, ii, 387−390 (lines
138,703−138,709 in$S45/Shakespeare.complete):

2$ awk ’138703 <= NR && NR <= 138709’ $S45/Shakespeare.complete
LORD POLONIUS The best actors in the world, either for tragedy,

comedy, history, pastoral, pastoral-comical,
historical-pastoral, tragical-historical, tragical-
comical-historical-pastoral, scene individable, or
poem unlimited: Seneca cannot be too heavy, nor
Plautus too light. For the law of writ and the
liberty, these are the only men.

(4) Write anything with nested loops.
▲

Non-song examples

#!/bin/ksh
#Display the status of the i5.nyu.edu laser printers.

echo edlab:
lpq -Pedlab | tail -3

echo ndlab:
lpq -Pndlab | tail -3

#!/bin/ksh
#An easier way to do the same thing.

for printer in edlab ndlab
do

echo $printer:
lpq -P$printer | tail -3

done

The following command will let each recipient know the names of all the others:

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 12 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

1$ mail abc1234 def5678@ibm.com ghi9012@apple.com jkl3456@un.org < ˜/letter

To make each person believe that they are the sole recipient, you must say

2$ mail abc1234 < ˜/letter
3$ mail def5678@ibm.com < ˜/letter
4$ mail ghi9012@apple.com < ˜/letter
5$ mail jkl3456@un.org < ˜/letter

An easier way to do this is

#!/bin/ksh
#Make each person believe they’re the sole recipient.

for address in abc1234 def5678@ibm.com ghi9012@apple.com jkl3456@un.org
do

mail $address < ˜/letter
done

We’l l get the email addresses from a file when we do‘ back quotes‘ .

Loop through all the files in a directory

#!/bin/ksh
#Output the login name of each student in the class:
#the first line of each biography file.

cd ˜mm64/public_html/INFO1-CE9545/bio

for filename in *
do

head -1 $filename
done

#!/bin/ksh
#Output the login name of each student in the class:
#the first line of each biography file.

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

head -1 $filename
done

yb610
bc1478
sum208
jp3195
up244

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 13 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Encrypt the digits on lines 5 and 6 of each bio file (the home and
#work phone numbers). You have no permission to do this.

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

echo $filename #so I can watch the progress on the screen

head -4 $filename > ˜/temp

awk ’5 <= NR && NR <= 6’ $filename |
tr ’[0123456789]’ ’[8906517243]’ >> ˜/temp

tail +7 $filename >> ˜/temp
mv ˜/temp $filename #replace original file with new one

done

The three commands that create the˜/temp file in the above shellscript can be written as a singlesed
command; see they in Table 4.2 on p. 113.

sed ’5,6y/0123456789/8906517243/’ $filename > ˜/temp

Tr av el to many directories

My Handouts on the web are PDF files in several directories:

˜mm64/public_html/INFO1-CE9545/handout
˜mm64/public_html/INFO1-CE9547/handout
˜mm64/public_html/book/ etc.

Each time around the loop, the variable$dirname will contain the full pathname of a different one
of these directories:

#!/bin/ksh
#Make sure that everyone has permission to read the Handouts.

cd ˜mm64
chmod 755 . public_html #chmod these two directories to rwxr-xr-x

for dirname in ˜mm64/public_html/INFO1-CE9*/handout ˜mm64/public_html/book
do

cd $dirname
chmod 755 . #chmod each Handout directory to rwxr-xr-x
chmod 444 *.pdf #chmod the PDF files in the directory to r--r--r--

done

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 14 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Tr av el to many directories with nested loops

#!/bin/ksh
#For each student, see if their 4 directories were chmod’ed correctly.

for loginname in yb610 ic297 bc1478 sum208 mm64 jp3195 up244 \
aw1312 rz665

do
cd ˜$loginname

for dirname in . bin public_html public_html/cgi-bin
do

ls -ld $dirname
done

done

drwxrwxrwx 4 yb610 users 35 Aug 5 2012 .
drwxr-xr-x 2 yb610 users 20 Aug 5 2012 bin
drwxr-xr-x 3 yb610 users 9 J ul 24 2012 public_html
drwxr-xr-x 2 yb610 users 3 May 29 2012 public_html/cgi-bin
drwx--x--x 8 ic297 users 29 Dec 29 17:22 .
drwxr-xr-x 2 ic297 users 13 Jul 26 2012 bin
drwxr-xr-x 3 ic297 users 6 J un 26 2012 public_html
drwxr-xr-x 2 ic297 users 2 May 29 2012 public_html/cgi-bin
drwxr-xr-x 5 bc1478 users 20 Jul 10 2012 .

Redirect all the output produced by a loop: p. 95

The following output file is destroyed and re-created during each trip around the loop.You end up
with an output file that contains only one line, giving the loginname of the last person:

#!/bin/ksh

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

head -1 $filename > ˜/inclass
done

rz665

The following output file is not destroyed and re-created during each trip around the loop. It grows
one line longer during each trip:

#!/bin/ksh
#Output the loginname of each student in the class
#into the file ˜/inclass.

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

head -1 $filename
done > ˜/inclass

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 15 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

yb610
bc1478
sum208
jp3195
up244
etc.

#!/bin/ksh

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

head -1 $filename
done | sort | uniq > ˜/inclass

aw1312
bc1478
jp3195
rz665
sum208

Output one or more lines from the interior of a file: p. 116

1$ awk ’{print $3}’ Print the third field of every line.
2$ awk ’NR == 2 {print $3}’ Print the 3rd field of only line 2; see p. 120 for==. ’ pattern{ action}’

3$ awk ’NR == 2 {print $0}’ Print all of line 2 only.
4$ awk ’NR == 2 {print}’ Print all of line 2 only: p. 114.
5$ awk ’NR == 2’ Print all of line 2 only: p. 114.
6$ awk ’NR == 139069’ $S45/Shakespeare.complete

7$ date
Tue May 28 15:58:15 EDT 2013

8$ date | awk ’{print $2}’ printsMay
9$ cal | awk ’NR == 1 {print $1}’ printsMay

Even if nslookup is not in any of the directories on our$PATH, we can run it anyway if we tell the
computer where to find it:

10$ /usr/sbin/nslookup i5.nyu.edu | awk ’NR == 5 {print $NF}’
128.122.109.53

11$ awk -F: ’$4 == 15’ /etc/passwd | more variable doesn’t have to beNR
sh2895:x:23158:15:Shintaro Hashimoto:/home1/s/sh2895:/usr/local/etc/suspendedshell

See Handout 3, pp. 26−27, for the comma:

12$ awk -F: ’$4 == 15 {print $1, $5}’ /etc/passwd | more
sh2895 Shintaro Hashimoto

13$ awk -F: ’$4 == 15 {print $1 $5}’ /etc/passwd | more
sh2895Shintaro Hashimoto

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 16 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

14$ cd /usr/bin
15$ ls -l | tail +2 | awk ’$2 > 1’ | more files with multiple hard links
-r-xr-xr-x 39 root bin 12124 Jul 5 2012 adb
-r-xr-xr-x 18 root bin 25888 Jul 5 2012 alias
-r-xr-xr-x 4 root bin 60116 Jul 5 2012 apropos

Patterns with ‘‘and’’, ‘‘or’’, and regular expressions

1$ awk ’10 <= NR && NR <= 20’ p. 120 for<= and&&
2$ awk ’127702 <= NR && NR <= 127715’ $S45/Shakespeare.complete

3$ ls -l | tail +2 | grep ’ˆ-’ | awk ’1000 <= $5 && $5 < 2000 {print $NF}’
4$ ls -l | awk ’NR >= 2 && /ˆ-/ && 1000 <= $5 && $5 < 2000 {print $NF}’

5$ /usr/sbin/nslookup 128.122.109.53 | awk ’/name = / {print $NF}’
I5.HOME.NYU.EDU.

Because of the$1 ˜ , the$ in /\.ssh$/ means the end of$1 , not the end of the line.

6$ netstat -a -f inet -P tcp | awk ’2 <= NR && NR <= 4 || $1 ˜ /\.ssh$/’ | head -6
TCP: IPv4

Local Address Remote Address Swind Send-Q Rwind Recv-Q State
-------------------- -------------------- ----- ------ ----- ------ -----------
i5.ssh 3A_IMAC_03.NDLAB.ITS.NYU.EDU.49630 131008 0 128872 0 ESTABLISHED

*.ssh *.* 0 0 128000 0 LISTEN
i5.ssh 3A_IMAC_03.NDLAB.ITS.NYU.EDU.50562 131024 0 128872 0 ESTABLISHED

When not to use awk

A special-purpose tool such ashead is faster and simpler than a multi-purpose, programmable tool
such asawk.

1$ awk ’NR == 1’ The fox knows many little things; the hedgehog knows one big thing.
2$ head -1 faster and simpler way to do the same thing

3$ awk ’NR <= 10’
4$ head -10 faster and simpler way to do the same thing
5$ head even simpler:-10 is the default (Handout 3, p. 26)

6$ awk ’NR >= 13’
7$ tail +13 faster and simpler way to do the same thing

Patterns that compare two strings

Like many languages, awk requires" double quotes" around a string.

1$ awk -F: ’$4 == 15 {print $1}’ /etc/passwd | more
2$ awk -F: ’$7 == "/bin/ksh" {print $1}’ /etc/passwd | more

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 17 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

3$ awk -F: ’$7 != "/bin/ksh" {print $7}’ /etc/passwd | sort | uniq -c
6 / bin/bash

121 /bin/csh
1 / bin/tcsh

19 /usr/bin/bash
1 / usr/bin/csh
1 / usr/bin/pfksh
1 / usr/bin/pfsh
1 / usr/lib/uucp/uucico

3931 /usr/local/etc/expiredshell
3 / usr/local/etc/suspendedshell

4$ awk ’$1 == "UserDir" {print $2}’ /etc/apache2/2.2/httpd.conf

5$ cd /dev/pts On other systems,/dev or /devices/pseudo
6$ pwd
7$ ls -l | awk ’NR >= 2 && $3 != "root"’ | head -5
crw--w---- 1 mm64 tty 36, 1 May 28 15:56 1
crw--w---- 1 yc801 tty 36, 2 Apr 8 18:19 2
crw--w---- 1 esh322 tty 36, 3 Apr 7 23:51 3
crw--w---- 1 yc801 tty 36, 5 Apr 8 18:51 5
crw--w---- 1 yc801 tty 36, 6 Apr 8 18:19 6

Sort the output ofawk into increasing numeric order, ignoring the first 9 fields on each line. See p.
106.

8$ ls -l | awk ’NR >= 2 && $3 != "root"’ | sort +9n | head -5
crw--w---- 1 mm64 tty 36, 1 May 28 15:56 1
crw--w---- 1 yc801 tty 36, 2 Apr 8 18:19 2
crw--w---- 1 esh322 tty 36, 3 Apr 7 23:51 3
crw--w---- 1 yc801 tty 36, 5 Apr 8 18:51 5
crw--w---- 1 yc801 tty 36, 6 Apr 8 18:19 6

9$ grep ’::’ /etc/passwd
10$ grep ’ˆ[ˆ:]*::’ /etc/passwd people with no password: p. 103
11$ awk -F: ’$2 == ""’ /etc/passwd people with no password: pp. 116−117

#!/bin/ksh
#Output the real name of everyone in the class, one per line.
#Each real name is the second line of a bio file.

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

awk ’NR == 2’ $filename
done

Yevgeniy Berezovskiy
Barry chennankara
sarika
Jules Panopoulos
Uri Poltiyelov

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 18 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Output the number of people in the class who work in area code 212.
#Each work number is the sixth line of a bio file.

for filename in ˜mm64/public_html/INFO1-CE9545/bio/*
do

awk ’NR == 6’ $filename
done | grep 212 | wc -l

if-then-else: p. 140

Format and space anif statementexactly as shown below. There must be space before and after the
[[, and before the]] . The number ofif ’s must be equal to the number offi ’s, just as the number of
do ’s must be equal to the number ofdone ’s. Seeksh (1) p. 2.

#!/bin/ksh
a=10 #No space around the = sign! Try it again with a=20.
b=20

if [[$a -eq $b]]
then

echo They are equal.
fi

http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/iftest

If the then andfi are not at the start of their lines, we will need a semicolon in front of them (pp.
140, 95),

if [[$a -eq $b]]; then echo They are equal.; fi

else and elif

Theseif ’s are consecutive and mutually exclusive.

#!/bin/ksh
a=10
b=20

if [[$a -eq $b]]
then

echo They are equal.
fi

if [[$a -ne $b]]
then

echo They are not equal.
fi

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 19 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#An easier way to do the same thing.

a=10
b=20

if [[$a -eq $b]]
then

echo They are equal.
else

echo They are not equal.
fi

#!/bin/ksh
a=10
b=20

if [[$a -eq $b]]
then

echo They are equal.
elif [[$a -lt $b]]
then

echo a is less than b.
else

echo a is greater than b.
fi

A Unix error message always begins with the name of the program, a colon, and a blank, followed by
the message itself.Seeperror (3c); examples are on pp. 17, 57, 61, 67, 84, 92, 178, 182, 191, 207, 224,
240, 339.

#!/bin/ksh
day=2

if [[$day -eq 3]]
then

echo three french hens
elif [[$day -eq 2]]
then

echo two turtle doves
elif [[$day -eq 1]]
then

echo a partridge in a pair tree
else

echo $0: illegal day $day
exit #destroys the local variable day

fi

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 20 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

C, C++, Java, JavaScript, awk, C shell else if

C and C++ preprocessors #elif

Bourne, Korn, and Bourne-Again shells, Rubyelif

Perl elsif

Tcl elseif

troff, nroff .el .if

m4 .ifelse

Logical expressions in if, elif , and while statements

Within the[[square brackets]] , you need whitespace around each operator and operand.Compare
two numbers with the following six relational operators familiar from Fortran:

-eq equals -lt less than—do not use< - le less than or equals
-ne not equals -ge greater than or equals -gt greater than

Compare two strings with

== equals (used to be one=) < less than, i.e., comes before in alphabetical order
!= not equals > greater than

For environment variables such as$LOGNAME, see Handout 3, p. 16; p. 136 in the textbook; and
environ (5). A $LOGNAMEin a shellscript is the loginname of the person running the shellscript, not the
loginname of the person who wrote the shellscript.

if [[$# -eq 3]] Compare two numbers;$# is number of command line arguments.
if [[$LOGNAME == abc1234]] Compare two strings.$LOGNAMEis called$USERon other systems.

if [[007 -eq 7]] true: both are the number seven
if [[007 == 7]] false: three-character string and one-character string

The shell language is inconsistent with theawk language:

$a -eq $b numerical comparison inside the[[double brackets]] of a shellif statement
NR == 10 numerical comparison inside the argument ofawk

Use&&and|| (for ‘‘and’’ and ‘‘or’’) to build compound expressions. For example,

if [[$LOGNAME != abc1234 && $LOGNAME != def5678]]
then

echo $0: Only abc1234 and def5678 have permission to run this program.
exit

fi

if [[$word1 <= $word2]] wrong:ksh has no<=
if [[$word1 < $word2 || $word1 == $word2]] right

The complete list of useful goodies that can go in the[[square brackets]] is in ksh (1) pp. 19−22.
For example,

if [[-e name]] If a file or directory (or anything else) with this name exists
if [[-f filename]] If a file with this name exists
if [[-d dirname]] If a directory with this name exists
if [[! -f filename]] If no file with this name exists

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 21 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

if [[-r name]] If the person running this shellscript hasr permission for this file or directory
if [[-w name]] If the person running this shellscript haswpermission for this file or directory
if [[-x name]] If the person running this shellscript hasx permission for this file or directory
if [[-r name && -w name]]

A shellscript that takes a command line argument

Almost every program takes command line arguments:

1$ ls -l
2$ cal 5 2013
3$ finger abc1234
4$ echo $m little monkeys jumping on the bed--
5$ grep Dunsinane $S45/Shakespeare.complete

$1 the shellscript’s first command line argument, p. 82
$2 the shellscript’s second command line argument
$3 the shellscript’s third command line argument, etc.

$* all the command line arguments, p. 83
$# the number of command line arguments, p. 135
$0 the name of the shellscript, p. 85; Handout 4, p. 20

—On the Web at
http://i5.nyu.edu/ ∼mm64/INFO1-CE9545/src/post

1 #!/bin/ksh
2 #Copy a file to the ˜/public_html directory so it can be seen
3 #on the web. Sample use: post filename.html
4
5 if [[$# - ne 1]]
6 t hen
7 echo $0: requires exactly one argument
8 exit
9 f i

10
11 if [[! -f $1]]
12 then
13 echo $0: there is no file named $1
14 exit
15 fi
16
17 if [[! -r $1]]
18 then
19 echo $0: you must have r permission for the file $1
20 exit
21 fi
22
23 if [[! -d ˜/public_html]]
24 then
25 echo $0: there is no directory named ˜/public_html
26 exit
27 fi
28
29 #$newfilename is the full pathname of the copy we will create in ˜/public_html.

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 22 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

30 newfilename=˜/public_html/${1##*/} #Handout 4, pp. 3-4 for ##
31
32 if [[-e $newfilename]]
33 then
34 echo $0: $newfilename already exists and I will not harm it
35 exit
36 fi
37
38 chmod u+w ˜/public_html #Give cp permission to copy the file into ˜/public_html.
39 cp $1 $newfilename
40 chmod 444 $newfilename #r--r--r--
41 chmod a+rx ˜ ˜/public_html #Turn on all three r’s and all three x’s.

$1 is the entire first command line argument. Theexpression${1##*/} in line 30 is the last word
of the argument. Ifyou typed an argument that contained a pathname,

6$ post /some/directory/filename.html

then$1 would contain/some/directory/filename.html , the value of${1##*/} would be
filename.html , the variable$newfilename in line 30 would contain
/home1/a/abc1234/public_html/filename.html , and lines 39−40 would execute the com-
mands

cp /some/directory/filename.html /home1/a/abc1234/public_html/filename.html
chmod 444 /home1/a/abc1234/public_html/filename.html

You could then point your browser at

http://i5.nyu.edu/ ∼abc1234/filename.html

▼ Homework 4.3: create the ˜/public_html directory

Hand in one copy of post incorporating the following three improvements.

(1) If there is nõ /public_html directory, we execute the above lines 25−26. Replace these two
lines with lines that will create the˜/public_html directory if there is nothing else named
˜/public_html .

The new lines will output an error message and exit if anything else named̃/public_html
already exists (a file, hardware device, symbolic link, etc). The error message should be ‘‘a non-directory
˜/public_html already exists and I will not harm it’’. After that, the new lines will give the person
running the shellscript permission to create a new subdirectory in thẽ directory, if they do not already
have this permission.Finally, the new lines will create the directorỹ/public_html . Do not output
any message confirming that you have created˜/public_html : the new lines must produce no output
other than error messages. The new lines must not exit after creating˜/public_html ; let the shellscript
continue onwards.

(2) Insert anif after line 39 to output an error message and exit if the file$newfilename does not
now exist. Shouldthe if come before or after line 40? Do not output any message confirming that
$newfilename does exist.
▲

while loop

For the while loop, see pp. 144−145 in the textbook; ksh (1) p. 2. For the let command, see
ksh (1) pp. 18−19, 44.

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 23 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Output the lyrics to "100 Bottles of Beer on the Wall".

b=100 #No space around the equal sign.

while [[$b -ge 1]] #pp. 144-145
do

echo $b bottles of beer on the wall
echo $b bottles of beer
echo If one of those bottles should happen to fall
let b=b-1 #or let --b; spaces would need quotes: let ’b = b - 1’
echo $b bottles of beer on the wall

echo #Skip a l ine.
sleep 2

done

Four ways to feed input into any Unix program

sort , grep , sed , awk, lpr , cat , etc., can all take their input from any one of these four sources.
The first three are the various forms of standard input, to which$# , $1 , $2 , etc., are blind (Handout 2, p.
22).

1$ sort standard input from the keyboard
2$ sort < i nfile standard input from one input file
3$ previousprog | sort standard input from a pipe

4$ sort infile1 infile2 infile3 not standard input

The shellscripts we have written, however, can take their input from only the first three of the above
sources. To let them draw input from the fourth,

#!/bin/ksh
#Copy each file named as a command line argument to the ˜/public_html
#directory. Sample use: post filename.html [filename.html ...]

if [[$# -le 0]]
then

echo $0: requires at least one filename as command line argument
exit

fi

for filename in $* #The "in $*" is optional: pp. 144-145.
do

#$newfilename is full pathname of file to be created.
newfilename=˜/public_html/${filename##*/}
cp $filename $newfilename
chmod 444 $newfilename

done

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 24 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Redirect the standard input with <<

#!/bin/ksh
#Output the line in the file ˜/myphone.data containing the command
#line argument. Sample use: myphone Galt

if [[$# -ne 1]]
then

echo $0: requires one command line argument giving a name
exit

fi

grep -i $1 ˜/myphone.data

This file is˜/myphone.data . It is not a shellscript; do not turn on itsx bits.

(212) 999-9999 John Galt
(215) 765-4321 Hank Rearden
(212) 211-1111 Howard Roark

Combine the above into a single file with<<. See pp. 93−94 in the textbook,ksh (1) p. 23.

#!/bin/ksh
#Output the line of data containing the command line argument.
#Sample use: myphone Galt

if [[$# -ne 1]]
then

echo $0: requires one command line argument giving a name
exit

fi

grep -i $1 <<xyxyX7
(212) 999-9999 John Galt
(215) 765-4321 Hank Rearden
(212) 211-1111 Howard Roark
xyxyX7

1

1
√2

45°

Tangent is ‘‘opposite over adjacent’’. To compute the value ofπ,

tan 45°=
opposite

adjacent
=

1

1
= 1 (1)

Another way to say the same thing is

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 25 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

arctan 1= 45° (2)

Instead of measuring the size of the angle in degrees, we can use radians.One degree equals
π

180
radians,

so 45 degrees equals
π
4

radians:

arctan 1=
π
4

(3)

Now you can see why we switched from degrees to radians: it introduced aπ into the equation.To get theπ
all by itself, multiply both sides by 4:

4arctan 1= π (4)

You saw bc in Handout 2, p. 21.In the shell language, put a# in front of each comment. But in the
standard input ofbc , put /* and*/ around each comment.

#!/bin/ksh
#Output the value of pi. Comments in the lines of
#standard input fed to bc are surrounded with /* and */.

bc -l <<xyxyX7 #minus lowercase L for math library
scale = 66 /* number of digits to right of decimal point */
4 * a (1) /* 4 t imes the arctangent of 1 */
xyxyX7

3.141592653589793238462643383279502884197169399375105820974944592304

Examine a program’s exit status

Every Unix program returns anexit statusnumber after it finishes. Zero indicates success; any other
number (positive or neg ative) indicates failure. Theexit status of the last command is held in the variable
$? in the Korn shell language, the variable$status in the C Shell language. See p. 140;ksh (1) p. 14;
Handout 2, p. 2.

1$ cal 5 2013
May 2013

S M Tu W Th F S
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

2$ echo $? echo %errorlevel% in Windows Command Prompt
0 c al terminated successfully.

3$ cal 13 2013
cal: bad month cal outputs an error message
usage: cal [[month] year]
4$ echo $?
1 c al terminated unsuccessfully.

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 26 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

5$ grep ’root’ /etc/passwd Look for the superuser’s login name.
root:x:0:0:root@i5:/root:/usr/bin/bash
jh1997:x:16423:15:Jacqueline Harootian:/home1/j/jh1997:/usr/local/etc/expiredshell
6$ echo $?
0 grep terminated successfully.

7$ grep ’superuser’ /etc/passwd Look for nonexistent login name.
8$ echo $?
1 grep returns 1 to indicate it found nothing.

9$ grep ’root’ /etc/password Misspelled the filename.
grep: can’t open /etc/password
10$ echo $?
2 grep returns 2 to indicate that file does not exist.

To return an exit status number, write the number after theexit keyword in a shellscript (pp.
141−142), or call theexit function in a C or C++ program (pp. 173−174).

▼ Homework 4.4: Examine the exit status of a few commands (not to be handed in)

Give a few commands and examine their exit status:mv, mkdir , cmp -s (Handout 2, p. 12),mail
-e (Handout 2, p. 14, lines 79−83),gcc (Handout 3, p. 24), etc.Do they return 0 for success and non-zero
for failure, e.g., trying tomv a non-existent file? Does theman page for each command mention its exit
status number?
▲

Examine the exit status in an if statement: p. 140

An if statement is ‘‘true’’ when it consists of a command whose exit status is 0.

#!/bin/ksh
#Output the loginname of everyone who has a link in their home page.
#grep -i means "case insensitive"; see -y on p. 85 and grep(1).
#Produce exit status 0 if at least one person has a link, 0 otherwise.

status=1 #Guilty until proven innocent.

for loginname in yb610 ic297 bc1478 sum208 mm64 jp3195 up244 \
aw1312 rz665

do
grep -i HREF ˜$loginname/public_html/index.html > /dev/null

if [[$? -eq 0]]
then

echo $loginname
status=0

fi
done

exit $status

bc1478
jp3195
up244
rz665

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 27 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh

status=1

for loginname in yb610 ic297 bc1478 sum208 mm64 jp3195 up244 \
aw1312 rz665

do
if grep -i HREF ˜$loginname/public_html/index.html > /dev/null
then

echo $loginname
status=0

fi
done

exit $status

If the then andfi are not at the start of a line, we will need a semicolon in front of them (as in Handout
4, p. 17).

if grep -i HREF index.html > /dev/null; then echo $loginname; status=0; fi

The -q option of /usr/xpg4/bin/grep (p. 140) prevents it from producing any output: you get
only the exit status. The following options all do the same thing:

1$ /usr/xpg4/bin/grep -q word filename or -s on other versions of Unix
2$ cmp -s filename1 filename2 Handout 2, p. 12
3$ mail -e Handout 2, p. 14, lines 79−83

If we change thegrep -i in the above shellscript to/usr/xpg4/bin/grep -iq , we could remove the
> / dev/null .

#!/bin/ksh

for loginname in yb610 ic297 bc1478 sum208 mm64 jp3195 up244 \
aw1312 rz665

do
grep -i HREF ˜$loginname/public_html/index.html > /dev/null &&

echo $loginname
done

exit 0 #No longer using exit status to indicate if found HREF.

For &&and|| , see pp. 143−144;ksh (1) p. 1; Handout 2, p. 14, lines 79−83.Get me Mostly Mozart
ticketsand I’ ll love you forever. Get me Mostly Mozart ticketsor I’ ll throw myself out the window. In C
or C++,

if (a == b && c == d) { /* will compare c and d only if a == b */
if (a == b || c == d) { /* will compare c and d only if a != b */

▼ Homework 4.5: check the exit status in post

Remove the if that you added to the shellscriptpost after line 39 in Homework 4.3. Then insert
threeif statements in various places inpost to check the exit status of themkdir , cp , andchmod’s in
post . Because of the exclamation point, the following if will be true if themkdir produced a non-zero
exit status.

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 28 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

if ! mkdir ˜/public_html
then

Output no message confirming that anything has worked correctly. Output nothing except error messages.
▲

Examine the exit status of the command after the keyword ‘‘while’’

#!/bin/ksh
#Go into an infinite loop: "Paul Clifford" (1830)
#by Edward George Earle Bulwer-Lytton (1803−1873)

while true #p. 147
do

echo It was a dark and stormy night.
echo Some Indians were sitting around a campfire.
echo Then their chief rose and said,
echo
sleep 2

done

while grep word file > /dev/null Keep looping as long as a certain word is in a file,
while who | grep abc1234 > /dev/null as long asabc1234 is still loged in,
while ps -Af | tail +2 | grep progname > /dev/null as long as a certain program is still running.

if false
then

The commands on these lines
will always be skipped.

fi

Four ways to put an image file into your public_html subdirectory

A .gif or .jpg file contains a digitized image. Remember to turn on all three of itsr bits to see it
on the World Wide Web.

(1) If you see a.gif file on i5.nyu.edu, simply copy it to your ˜/public_html directory. Then
turn on all three of the file’sr bits if they are not already on.

1$ cd ˜/public_html
2$ pwd

3$ cp $S45/construction.gif .

4$ ls -l construction.gif
-r-------- 1 abc1234 users 541 May 28 15:58 construction.gif

5$ chmod 444 construction.gif Give everyone permission to see it:r--r--r--

6$ ls -l construction.gif
-r--r--r-- 1 abc1234 users 541 May 28 15:58 construction.gif

(2) If you know the URL of a.gif file on another host, you can copy it to your ˜/public_html
directory like this:

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 29 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

7$ cd ˜/public_html
8$ pwd

9$ lynx -source http://www.nyu.edu/images/torch1.gif > torch1.gif
10$ ls -l torch1.gif
-rw------- 1 abc1234 users 835 May 28 15:58 torch1.gif

11$ chmod 444 torch1.gif Give everyone permission to see it:r--r--r--

12$ ls -l torch1.gif
-r--r--r-- 1 abc1234 users 835 May 28 15:58 torch1.gif

To verify that a GIF file arrived intact, don’t peek beyond the first six bytes. The rest of a GIF file is binary.
Thehead we get by default (/bin/head) does not have the -c option, so we use the otherhead . (You
could also saycut -c1-6 .)

13$ /usr/bin/ghead -c6 torch1.gif See the first six characters.
GIF87a

14$ man head documentation for/bin/head
15$ man ghead documentation for/usr/bin/ghead

(3) Mail the picture to youri5.nyu.edu account as an attachment. Then use thealpine in
Handout 2, p. 24 to save the enclosure in a file in your home directory.

16$ cd
17$ pwd

18$ alpine
L FOLDER LIST
I I NBOX
down arrow till you get to the letter with the attachment, thenRETURN
> View Attch
down arrow till you get to the attachment, thenRETURN
S f ilename RETURN
Q
Really quit Alpine?
Y
19$ ls -lt | head
20$ chmod the downloaded file to turn on all three of itsr bits
21$ mv the downloaded file to your˜/public_html directory

(4) Use the ‘‘secure file transfer program’’sftp .

Four ways to put your image into a page

Let’s assume that your image file is named˜/public_html/dog.gif .

(1) To display the image in the page,

My dog in Colorado, 2013:
<IMG SRC = "dog.gif"
ALT = "[My dog in Colorado, 2013]">
Isn’t he cute?

(2) To use the image as your page’s background, change the<BODY>tag (Handout 3, p. 9, line 6) to

<BODY BACKGROUND = "dog.gif">

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 30 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

(3) Instead of displaying the image in the page, you can make a link from your page to the image.

I t ook my
dog
to Colorado in 2013.

I t ook my dog to Colorado in 2013.

(4) Instead of asking the user to click on an underlined word, you can ask him or her to click on an
image:

Click on the thumbnail picture of my dog for more information about him:

<IMG SRC = "littledog.gif"
ALT = "[My dog in Colorado, 2013]">

Summer 2013 Handout 4printed 5/28/13
3:57:56 PM − 31 − All rights

reserved ©2013 Mark Meretzky

