
NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Summer 2013 Handout 2

Message of the day: pp. 4, 64; login(1) pp. 2, 5

1$ cd /etc et cetera: the miscellaneous directory
2$ pwd

3$ ls -l | more List all the files in the current directory.
4$ ls -l motd List the one file namedmotd .
-rw-r--r-- 1 root sys 790 Aug 27 2012 motd

5$ cat motd relative pathname
##
#
- ------------------- Message last updated [2012-08-20] --------------------
#
Welcome to i5.nyu.edu

6$ ls -l /etc | more You can list a directory withoutcd ’ing there: Handout 1, p. 10.
7$ ls -l /etc/motd You can list a file withoutcd ’ing to its directory.
8$ cat /etc/motd full pathname: can read a file withoutcd ’ing to its directory

Other interesting files to read

1$ cat /usr/pub/ascii p. 42; seeascii (5). /usr/share/misc/ascii on Mac OS X
2$ more /usr/pub/ascii press space bar,b, or q
3$ lpr -Pedlab /usr/pub/ascii

4$ more /usr/dict/words p. 104
5$ grep -i atlantic /usr/dict/words case insensitive:-y on p. 85
6$ grep -i atlantic /usr/dict/websters ten times as many lines

7$ grep -n Toad ˜mm64/public_html/INFO1-CE9545/src/Shakespeare.complete
93399:AJAX Toadstool, learn me the proclamation.
118425: I cannot tremble at it: were it Toad, or
151151:APEMANTUS Toad!
159867: Toad, that under cold stone

8$ grep -in Toad ˜mm64/public_html/INFO1-CE9545/src/Shakespeare.complete | more

9$ head -5 /usr/dict/words default is-10
10$ tail -5 /usr/dict/words pp. 19−20

Give two arguments toawk; enclose the first in’ single quotes’ (p. 75). See p. 116 forNR, pp.
116−117 for<=, and p. 120 for&&.

11$ awk ’159865 <= NR && NR <= 159873’ \
˜mm64/public_html/INFO1-CE9545/src/Shakespeare.complete

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 1 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

/etc/passwd (p. 53) and /etc/group (p. 54)

1$ grep abc1234 /etc/passwd
root:x:0:0:root@i5:/root:/usr/bin/bash
daemon:x:1:1::/:
mm64:x:50766:15:Mark Meretzky:/home1/m/mm64:/bin/ksh

2$ grep 15 /etc/group | more better yet,:15:
root::0:
other::1:root
users::15:

▼ Homework 2.1: look at your line in /etc/passwd (not to be handed in)

On each machine where you have an account, look at your line in the/etc/passwd file. Does

1$ finger abc1234

display the text in the fifth field of your line in/etc/passwd ? Can you change this text with the
passwd -f or chfn (‘‘chow fun’’) commands?

What is the name of your shell in the seventh field? Can you change it with thepasswd -s or
chsh commands? Ifso, change it back.

What is the number of the group to which you belong? Look at the line for your group in the
/etc/group file. Whatis the name of the group? Do you belong to any other groups?

2$ grep abc1234 /etc/group

▲

Unix shells: p. 100

exe- howto nameof exit status
name cutable author log out login file variable website

Bourne sh Steve Bourne exit .profile $?

Korn ksh David Korn exit .profile $? www.kornshell.com

Bourne Again bash Brian Fox exit .bash_profile $? www.gnu.org/software/bash/

Z zsh Paul Falstad exit .zprofile $? www.zsh.org

C csh Bill Joy logout .login $status

Tenex tcsh Christos Zoulas logout .login $status www.tcsh.org

bash andzsh have the most features.sh5 is a newer version ofsh .

Read other sections of the online manual: pp. 308−309

To read the manual pages for the files/etc/passwd and/etc/group (and/etc/shadow),

1$ man -s 4 passwd manual for thepasswd file; other systems don’t need the-s .
2$ man passwd manual for thepasswd program
3$ man -s 4 group
4$ man -s 4 shadow Find out where the passwords are stored.

because files are in Section 4 of the manual, programs in Section 1.

The nine sections of the manual

The manual has nine main sections, stored on i5.nyu.edu in the subdirectories of the directories listed
in your$MANPATHvariable.

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 2 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

1$ echo $MANPATH
/usr/apache2/2.2/man:/usr/dtrace/DTT/Man:/usr/gcc/4.5/share/man:/usr/gnu/share/man:/usr/jdk/instances/jdk1.6.0/man:/usr/jdk/instances/jdk1.7.0/man:/usr/man:/usr/mysql/5.1/man:/usr/mysql/man:/usr/perl5/5.12/man:/usr/perl5/man:/usr/php/5.2/man:/usr/php/man:/

To locate them on other systems, sayman man. To see our manual in PDF format, go to
http://i5.nyu.edu/ ∼ mm64/man/ .

(1) Unix programs:who, grep , ls .

(2) Unix system calls:fork , exec , open , close . See pp. 201−231.

(3c) Cfunctions:printf , scanf , getchar , strlen , sqrt . See pp. 171−200.

(3c++)C++ classes, objects, and functions:vector , iterator , sort , greater .

(4) File formats. For example,passwd (1) is the page for thepasswd command;passwd (4) is the
page for the/etc/passwd file.

(5) Miscellaneous:environ (5) describes the environment variables ($HOME, $PATH, etc.);
filesystem (5) describes the most important directories (hier (4) in other systems).

(6) Gamesin the/usr/games directory:backgammon, banner , fortune .

(7) Hardware devices in the/dev directory. For example, termio (7i) for terminals,mtio (7i) for
magnetic tape I/O,null (7d) for /dev/null , etc. Also protocols:tcp (7p) for TCP, etc. Seepp.
65−69.

(8) Systemadministration utilities used mostly by the superuser.

(9) Device drivers.

Each section has an introduction:

2$ man -s 1 intro
3$ man -s 2 intro
4$ man -s 3 intro etc.; also sections1m, 9e , 9f , 9s

Copy a file: pp. 16−17

1$ cd /third/directory (This directory is imaginary.)
2$ pwd Make sure you arrived there.

3$ cp /old/directory/oldfile /new/directory/newfile
4$ ls -l /new/directory/newfile Make sure you copied the file.
5$ chmod the newfile, if necessary orgive the-p (‘‘preserve’’) option tocp

If the /new/directory does not already exist, you must first create it withmkdir . cp will not
create it for you.You must have r permission for theoldfile andwpermission for the
/new/directory .

As shown above, the new file does not have to hav ethe same name as the old file, and does not have
to be in the same directory as the old file.You do not have to be in either of these directories when you per-
form the copy. The following abbreviations are available.

(1) In the above example, the old file was namedoldfile and the new file was namednewfile .
If both files have the same name, you can omit the last slash and the name after it from the end of the com-
mand. For example, line 7 does the same thing as line 6. So does line 8, if you are already in the
/new/directory .

Warning: if the directory/new already exists but the directory/new/directory does not, line 7
will create a copy of oldfile named/new/directory . To avoid this, write line 9.

6$ cp /old/directory/oldfile /new/directory/oldfile
7$ cp /old/directory/oldfile /new/directory
8$ cp /old/directory/oldfile .
9$ cp /old/directory/oldfile /new/directory/

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 3 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

In any Unix command, a single dot stands for the name of the current directory, just as two dots stand for
the name of the current directory’s parent. SeeHandout 1, p. 9.

(2) In any Unix command, you can omit the name of the current directory from the front of the name
of either file. See Handout 1, p. 9.For example, line 13 does the same thing as line 12.

10$ cd /new/directory
11$ pwd

12$ cp /old/directory/oldfile /new/directory/ newfile
13$ cp /old/directory/oldfile newfile

14$ ls -l newfile

In the next example, line 18 does the same thing as line 17.

15$ cd /old/directory
16$ pwd

17$ cp /old/directory/ oldfile /new/directory/newfile
18$ cp oldfile /new/directory/newfile

19$ ls -l /new/directory/newfile

If both files are in the current directory, you can omit the name of the current directory from both names.
See thecp example on p. 17.

(3) You can copy more than one file with a singlecp command, if all of the copies are to be
deposited in the same directory and if they are all to have the same names as their originals.

20$ cd /old/directory for simplicity
21$ pwd

22$ cp oldfile1 oldfile2 /new/directory Copy two files.
23$ cp * /new/directory Copy every file in your current directory.

24$ ls -l /new/directory | more

But to put copies into different directories, you must type a separatecp command for each directory. And
to make the new filename different from the old filename, you must type a separatecp command for each
individual file.

To copy entire directories, together with the files in them, see the-r option ofcp .

Move and/or rename a file or directory

(4) mv is the same ascp , except that the original file does not get left behind. This means thatmv
can move a file from one directory to another, and also rename a file.We will see thatln , p. 59, takes the
same arguments, too.

1$ mv /old/directory/oldname /new/directory/newname move and rename
2$ mv /old/directory/oldname /new/directory move without renaming
3$ mv oldname newname rename without moving
4$ mv * /new/directory move without renaming

(5) You can also move and/or rename a directory as well as a file:

5$ cd
6$ pwd

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 4 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

7$ mkdir public-html Handout 1, p. 13. The dash should have been an underscore.
8$ ls -ld public-html Without-d we’d see the files, not the directory.

9$ mv public-html public_html Correct the mistake.
10$ ls -ld public_html

Remove a file: p. 17

1$ rm file Requireswpermission for file’s directory; question if nor permission for file.
2$ rm file1 file2 file3
3$ rm * Remove all files in the current directory.

4$ rm *.html Remove all files whose names end with.html .
5$ rm junk* Remove all files whose names begin withjunk .
6$ rm *junk* Remove all files whose names containjunk , not necessarily in the middle.

7$ rm -- -filename Remove a file whose name begins with a dash.
8$ rm ’*’ Remove the file whose name is* : pp. 26−29.

An additional hard link to the same directory: pp. 59−60

1$ cd
2$ pwd
/home1/a/abc1234

3$ date > original
4$ ls -l original
-rw------- 1 mm64 users 29 May 28 15:18 original

5$ cat original
Tue May 28 15:18:10 EDT 2013

The line that connects each file or directory to the directory that contains it is called ahard link. The
name of the file or directory is written along the link, rather than in the file or directory itself. That explains
why the size of a file or directory doesn’t change when you rename it. It also explains why the root direc-
tory can have no name: there’s no link extending upwards from it.

directory

file

hard link

o
r
i
g
i
n
a
l

Every file is born with exactly one link, leading to the directory that contains it.At all times, the file
has at least one link.There is no such thing as an unattached file floating on the desktop, because there is
no desktop.

To endow a file with another link, containing another name,

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 5 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

6$ ln original orig lowercase LN: natural logarithm
7$ ls -l original orig Now the file has two hard links.
-rw------- 2 mm64 users 29 May 28 15:18 orig
-rw------- 2 mm64 users 29 May 28 15:18 original

8$ ls -li original orig See the inode (‘‘index node’’) numbers (p. 58).
273711328 -rw------- 2 mm64 users 29 May 28 15:18 orig
273711328 -rw------- 2 mm64 users 29 May 28 15:18 original

9$ cat orig
Tue May 28 15:18:10 EDT 2013

directory

file

two hard links

o
r
i
g
i
n
a
l

o
r
i
g

10$ rm original
11$ ls -l orig orig is still there, but now has only one hard link left.
-rw------- 1 mm64 users 29 May 28 15:18 orig

12$ cat orig
Tue May 28 15:18:10 EDT 2013

13$ rm orig
14$ ls -l | more

Why would you want to give an additional name to a file?

1$ cd /usr/bin
2$ ls -li emacs-x* | more

69273 -r-xr-xr-x 2 r oot bin 25233592 Jul 19 2012 emacs-x
69273 -r-xr-xr-x 2 r oot bin 25233592 Jul 19 2012 emacs-x-23.1

After we installedemacs-x-23.1 , we created an additional name for it like this:

3$ cd /usr/bin
4$ pwd

5$ ln emacs-x-23.1 emacs-x
6$ ls -li emacs-x-23.1 emacs-x

After we installemacs-x-23.2 , we will say

7$ cd /usr/bin
8$ pwd

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 6 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

9$ rm emacs-x
10$ ls -li emacs-x emacs-x-23.1 emacs-x-23.1 will still be there.

11$ ln emacs-x-23.2 emacs-x
12$ ls -li emacs-x-23.2 emacs-x

▼ Homework 2.2: how many files are there?

The directorỹ mm64/public_html/INFO1-CE9545/src containsike andmike . Are they
merely two hard links to the same file? Or are they two separate files that happen to have the same con-
tents, permissions, owner, and date? What aboutbarry andlarry ? What abouted andfred ?
▲

An additional hard link to a different directory

abc1234 your home directory

bin public_html

cgi-bin

o
r
i
g
i
n
a
l

o
r

i
g

original is in ˜/bin , orig is in ˜/public_html/cgi-bin .

1$ cd ˜/bin
2$ pwd
/home1/a/abc1234/bin

3$ date > original
4$ ls -l original
-rw------- 1 mm64 users 29 May 28 15:18 original

5$ cat original
Tue May 28 15:18:10 EDT 2013

6$ cd ../public_html/cgi-bin Go one level up and then two levels down; see below.
7$ pwd
/home1/a/abc1234/public_html/cgi-bin

8$ ln ../../bin/original orig Go two levels up and then one level down.
9$ ls -l ../../bin/original orig
-rw------- 2 mm64 users 29 May 28 15:18 ../../bin/original
-rw------- 2 mm64 users 29 May 28 15:18 orig

10$ cat orig
Tue May 28 15:18:10 EDT 2013

11$ rm orig ../../bin/original

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 7 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

You can break the above line 6 into the following two separate commands, but why would you want
to?

12$ cd ..
13$ cd public_html/cgi-bin

A hard link will stretch only so far

A hard link cannot connect a file to a directory in another disk or filesystem (‘‘file subsystem’’ on p.
67, i.e., disk partition):

1$ cd
2$ date > junk

3$ ln junk /tmp
ln: /tmp/junk is on a different file system

df shows which filesystemjunk and/tmp are on; see Handout 1, p. 3.

4$ df -k junk /tmp
Filesystem 1024-blocks Used Available Capacity Mounted on
i5pool/home1/m/mm64 2097152 1759364 337787 84% /home1/m/mm64
swap 8388608 733184 7655424 9% /tmp

A symbolic link to another file in the same directory

1$ cd
2$ pwd
/home1/a/abc1234

3$ date > original
4$ ls -l original
-rw------- 1 mm64 users 29 May 28 15:18 original

5$ cat original
Tue May 28 15:18:11 EDT 2013

A symbolic link is a one-line file that leads you to (i.e., contains the name of) another file or direc-
tory. It’s like a shortcut in Windows or an alias on a Macintosh.The nine bits of a symbolic link are
always ignored; they’re on all the time and do nothing.ls -l shows you the one-line contents after the
arrow:

6$ ln -s original orig Lowercase LN: createorig .
7$ ls -l original orig Why doesorig contain eight bytes?
lrwxrwxrwx 1 mm64 users 8 May 28 15:18 orig -> original
-rw------- 1 mm64 users 29 May 28 15:18 original

8$ cat orig
Tue May 28 15:18:11 EDT 2013

9$ rm original You should have removedorig before removingoriginal :
10$ cat orig orig is now a dangling link.
cat: cannot open orig: No such file or directory

11$ rm orig

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 8 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

A symbolic link to a file in a different directory

original is in ˜/bin , orig is in ˜/public_html/cgi-bin .

A symbolic link can lead you to a file in a different directory or even in a different filesystem.A hard
link, however, must lead you to a file in the same disk.

1$ cd ˜/bin
2$ pwd
/home1/a/abc1234/bin

3$ date > original
4$ ls -l original
-rw------- 1 mm64 users 29 May 28 15:18 original

5$ cat original
Tue May 28 15:18:11 EDT 2013

6$ cd ../public_html/cgi-bin Go one level up and then two levels down.
7$ pwd
/home1/a/abc1234/public_html/cgi-bin

8$ ln -s ../../bin/original orig Go two levels up and then one level down.
9$ ls -l ../../bin/original orig
-rw------- 1 mm64 users 29 May 28 15:18 ../../bin/original
lrwxrwxrwx 1 mm64 users 18 May 28 15:18 orig -> ../../bin/original

When you follow a symbolic link containing a relative pathname, you start at the directory that con-
tains the symbolic link.A . in a symbolic link therefore stands for the directory that holds the symbolic
link, and a.. in a symbolic link stands for the parent of the directory that holds the symbolic link.

10$ cat orig
Tue May 28 15:18:11 EDT 2013

11$ rm orig

We can also have a symbolic link that contains a full pathname.

12$ ln -s ˜/bin/original orig
13$ ls -l orig
lrwxrwxrwx 1 mm64 users 26 May 28 15:18 orig -> /home1/m/mm64/bin/original

14$ rm orig ../../bin/original

A symbolic link to a directory

Usually ls andls -l output the same number of items. But

1$ cd /
2$ pwd

3$ ls -l bin See the symbolic link itself.
lrwxrwxrwx 1 root root 9 J ul 5 2012 bin -> ./usr/bin

4$ ls bin | head -3 See the files in the./usr/bin directory
2to3
7z
7za

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 9 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

▼ Homework 2.3: where do these symbolic links lead?

Do these symbolic links contain full pathnames (starting with/) or relative pathnames (not starting
with /)? SeeHandout 1, p. 9 for full vs. relative.

Do these symbolic links lead to a file or to a directory?

1 / bin
2 / dev/msglog
3 / usr/man
4 / usr/openwin/lib/rgb.txt

✎✎ For space cadets only. Consider

1$ cd /bin
2$ pwd
/bin

3$ ls -l java
lrwxrwxrwx 1 root root 16 Jul 11 2012 java -> ../java/bin/java

The .. takes us from the directory/bin up one level to the root directory. But then we discover
that the root directory contains nothing namedjava . Did the symbolic link therefore lead us to a nonexis-
tent place? Ditto for/bin/perl .
▲

Create a Korn shell alias:

1$ alias g=grep Create an alias namedg. No space around the equal sign.
2$ alias g Verify that you created it.
3$ alias | more See all youralias ’s.

4$ g atlantic /usr/dict/words
atlantic
transatlantic

5$ unalias g Remove the aliasg.
6$ alias g Verify that it’s gone.

An alias that needs single quotes

An alias needs single quotes when it contains more than one word, i.e., when it contains white space:

1$ alias g=’grep -i’
2$ alias g
3$ g atlantic /usr/dict/words
Atlantic
atlantic
Atlantica
transatlantic

An alias also needs single quotes when it contains the name of more than one program, i.e., when it
contains a semicolon or pipe:

4$ alias g=’date; cal; who | grep abc1234’
5$ alias g
6$ g

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 10 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Aliases vs. variables

An alias is easier to use than a variable: you don’t hav eto type the dollar sign.

1$ alias g=grep Create an alias namedg.
2$ g atlantic /usr/dict/words doesn’t need a dollar sign

3$ g=grep Create a variable namedg.
4$ $g atlantic /usr/dict/words needs the dollar sign

But an alias can be used only as thefirst word of a command, while a variable can be used anywhere in a
command:

5$ cd $S45 The variable$S45 will contain a directory name.

Use an alias for the name of a command; use a variable for the name of a file or directory.

Korn Shell emacs mode abbreviations to retrieve and repeat the previous commands

control-p means ‘‘press the control key at the same time asyou press thep’’ . Do not type the
dash. escape-. means ‘‘press and release the escape key before you press the dot’’. Again, do not type
the dash. See ‘‘emacs Editing Mode’’ i n ksh (1) pp. 28−32.

Line 1 puts you intoemacs mode; seeksh (1) p. 48.

1$ set -o emacs Turn on the Korn Shellemacs option; minus lowercase O
2$ set -o | more See all your options; verify that the above worked.

3$ control-p Go up to the previous command. Then pressRETURN.
4$ control-p control-p control-p no space between thecontrol-p ’s
5$ control-n Back too far? Go down to next command, then pressRETURN.

6$ fortune
7$ control-p You get a different fortune each time.

8$ lpr -Pedlab neuman no longer need name of printer, thanks to$PRINTERvariable
9$ lpq -Pedlab
10$ control-p Has the printer made any progress?

Extra material can be appended to any of the above. For example,

11$ ls -l Too much output to fit on the screen!
12$ control-p | more

13$ ls -l I wish I’d printed the output.
14$ control-p | lpr -Pedlab

To position yourself for inserting and deleting characters, typecontrol-f (‘‘forward’ ’) andcontrol-b
(‘‘back’’) to move left and right across a command, either a command you’re typing now or a previous one
retrieved with control-p .

See ther alias inksh (1) p. 4:

15$ r Repeat the last command.
16$ r gr Repeat the last command that started withgr .
17$ r 25 Repeat the 25th command.
18$ history See a numbered list of your most recent commands.
19$ h You can useh as an abbreviation for history .

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 11 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

The last word of the last command

escape-. is the last word of the previous command. SeeM-. in ksh (1) p. 31. For example,

1$ cat supercalifragilisticexpialidocious
2$ lpr -Pedlab supercalifragilisticexpialidocious
3$ rm supercalifragilisticexpialidocious

4$ cat supercalifragilisticexpialidocious
5$ lpr -Pedlab escape-.
6$ rm escape-.

Three ways to discover which shell you’re using

The Bourne and Korn shells execute the commands in a file named.profile when you login in,
but the C shell executes the commands in a file named.login when you login in (Handout 2, p. 2).
That’s why you must know which shell you’re using. In either case, the file must be in your home directo-
ry.

ps is the Unix equivalent of right clicking on the bottom bar in Windows and selectingTask
Manager... → Processes (or going to theCommand Prompt and runningtasklist to see the
PID numbers).

1$ echo $SHELL
2$ grep abc1234 /etc/passwd Look at the seventh field, p. 53.
3$ ps | more ‘‘ Process status’’: list all the programs you’re running, p. 34.

Create a Korn shell .profile file: pp. 35−38

Your .profile file should be a copy of the file
˜mm64/public_html/INFO1-CE9545/src/.profile :

1$ cd Go to your home directory.
2$ pwd Make sure you arrived there.

3$ ls -l | more all names except those that start with a dot
4$ ls -la | more all names, including those that start with a dot (Los Angeles)

5$ mv .profile old.profile Rename your existing.profile file, if you have one.
6$ ls -la | more

Copy ˜mm64/public_html/INFO1-CE9545/src/.profile into your current directory, which is
now your home directory. For the dot which is the second argument of thecp , see Handout 1, p. 9.The
other dot is merely part of the filename.profile ; it does not mean ‘‘the current directory’’.

7$ cp ˜mm64/public_html/INFO1-CE9545/src/.profile .
8$ ls -la | more

cmp will give you dead silence if the two files are identical, p. 20:

9$ cmp ˜mm64/public_html/INFO1-CE9545/src/.profile .profile
10$ exit The commands in your.profile will be executed when you log back in.

If you change the contents of your.profile file, you must log out and log back in.The com-
mands in your.profile are executed only when you log in, not when you put them into the file.

The contents of your Korn shell .profile file

No backslash is needed to split a long command immediately after a pipe (lines 81−83). See pp.
107−108.

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 12 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

—On the Web at
http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/.profile

1 #This file is named .profile
2 #The Korn shell executes the commands in this file when you log in.
3 #Page numbers in this file refer to the ksh(1) manual page.
4
5 #"export" (p. 41) creates an environment variable (pp. 23-24).
6
7 #Directories shell searches for executables: pp. 16, 27. gcc is C compiler.
8 export PATH=$PATH:/opt/gcc453/bin:.
9

10 #The -t option of man makes man run this program.
11 #˜mm64 is the full pathname of mm64’s home directory: pp. 4-5.
12 export TCAT=˜mm64/bin/tcat
13
14 #The editor to be invoked by mail, mailx, dbx, etc: p. 14.
15 export EDITOR=/bin/vi
16
17 #Make vi display the words INSERT MODE while you’re in insert mode.
18 export EXINIT=’set showmode’ #or export EXINIT=’set showmode number’
19
20 #The name of the computer.
21 export HOST=‘hostname‘
22
23 #The Korn shell will check this file for new mail every 10 minutes: p. 16.
24 export MAIL=/var/mail/$LOGNAME
25
26 #Default printer for the lpr, lpq, lprm programs.
27 export PRINTER=edlab
28
29 #Source code directory on the web at http://i5.nyu.edu/˜mm64/INFO1-CE9545/src/
30 export S45=˜mm64/public_html/INFO1-CE9545/src
31
32 #if necessary to make your screen editor (vi, emacs, pico) work properly
33 export TERM=vt100
34
35 #Make the command numbers in the prompt start at 1 each time you log in:
36 #p. 27 for .sh_history. ˜ is t he full pathname of your home directory: pp. 4-5.
37 rm -f ˜/.bash_history
38
39 #Prompt string one. See pp. 10-12 for chopping, p. 16 for !.
40 #The %%.* chops off the end of $HOST: i5.nyu.edu becomes i5
41 #The ##*/ chops off the beginning of $PWD: /home1/a/abc1234 becomes abc1234
42 PS1=’! ${HOST%%.*}:${PWD##*/} $ ’
43
44 #The following command must come *after* the export EDITOR=/bin/vi.
45 #otherwise the export EDITOR=/bin/vi would turn emacs mode back off (p. 12).
46
47 #Retrieve and edit previous commands with emacs, pp. 28-32.
48 #See pp. 46-50 for set.
49 set -o emacs
50
51 #Make the 4 arrow keys work in emacs mode, pp. 28-32. Only in ksh93, sorry.
52 #/bin/loadkeys ˜mm64/public_html/INFO1-CE9545/src/loadkeys_set

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 13 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

53
54 #Don’t let control-d log you out (p. 48): must type "exit" (p. 41).
55 set -o ignoreeof
56
57 #Don’t let > destroy the existing contents of a file: pp. 22, 49.
58 set -o noclobber
59
60 #For alias, see pp. 3-4, 39.
61 #"history" is itself an alias for "fc -l", pp. 4, 42.
62 alias h=history
63
64 #See all the jobs you’re running, pp. 25, 43.
65 alias j=jobs
66
67 #/bin/mailx is better than /bin/mail. Used in line 81.
68 alias mail=mailx
69
70 #Turn off last 2 r and w bits of a newborn file. For example, date > newborn
71 #will create a newborn file whose bits are rw-------. The octal argument of
72 #the umask command has a 1 in each bit that should be turned off. See p. 55.
73 umask 077
74
75 #Let other people send you messages with the talk program.
76 #It turns on the two rightmost w bits of your terminal.
77 mesg y
78
79 #See new and unread mail in alphabetical order of who sent it.
80 #Can use an alias (mail) as first word of command, and also after | && || ;
81 mail -e && mail -H |
82 grep ’ˆ.[NU]..[0-9]’ |
83 sort +0.6f -0.25 +0.6 -0.25 +0.2n
84
85 #date
86 #cal
87 #who | grep def5678
88 #˜mm64/bin/moon

The central mystery of Unix: pp. 29−33

scanf("%d", &i);
printf("hello\n");

prog

standard
input

standard
output

<

|

>

|

terminal keyboard

input file

previous program

terminal screen

output file

subsequent program

C C++ Ruby Java shelllanguage

standard output printf(cout << puts System.out.print(echo

standard input scanf(cin >> gets System.in.read(read

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 14 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Rows and columns of output

1$ who | more See p. 5. Other systems needwho -M for last column.
esh322 pts/3 Apr 7 22:55 (172-26-196-152.dynapool.nyu.edu)
mm64 pts/1 May 28 14:37 (3a_imac_03.ndlab.its.nyu.edu)
elliott pts/4 May 28 11:40 (njoerd.es.its.nyu.edu)
mm64 pts/8 May 28 14:39 (3a_imac_03.ndlab.its.nyu.edu)
mm64 pts/9 May 28 15:11 (3a_imac_03.ndlab.its.nyu.edu)

The -f argument ofps gives you verbose output, like the -l argument ofls . With the -A argu-
ment (‘‘all’’), ps will output a list of everyone’s programs. Without the-A , it will output only your own
programs. Combine-A and-f to -Af .

2$ ps
3$ ps -f
4$ ps -Af | more p. 34.

UID PID PPID C STIME TTY TIME CMD
root 2360 1655 0 Mar 29 ? 0:01 /usr/sbin/sh /lib/svc/method/svc-dlmgmtd
root 2761 1655 0 Mar 29 ? 1:14 /usr/lib/ssh/sshd

yc801 12235 12228 0 Apr 08 pts/7 0:03 /bin/ksh
root 2407 1655 0 Mar 29 ? 0:01 /sbin/sh /lib/svc/method/net-ipmgmt

Pipe examples

1$ ps -Af
2$ ps -Af | more
3$ ps -Af | sort | more
4$ ps -Af | grep ksh | more

5$ ps -Af | wc -l p. 30; minus lowercase L
6$ ps -Af | grep ksh | wc -l How many copies of the Korn Shell are running?
7$ ps -Af | grep abc1234 | wc -l How many programs isabc1234 running?

8$ ps -Af | grep ksh | sort
9$ ps -Af | grep ksh | sort | more

10$ ps -Af | sort | grep ksh | more Why should you never do this?
11$ ps -Af | sort | wc -l Why should you never do this?

12$ ps -Af | lpr lpr can accept pipe input as happily as file input.
13$ ps -Af | sort | lpr
14$ ps -Af | grep ksh | sort | lpr

15$ who | wc -l

16$ cd ˜mm64/public_html/INFO1-CE9545/homework
17$ pwd
18$ ls | wc -l How many people did Homework 1.5?
19$ ls -l | lpr

20$ cd /home1/a
21$ pwd
22$ ls -l | grep ’ˆdrwxr-xr-x’ | wc -l How many people did Homework 1.2?
23$ ls -l | grep ’ˆdrwxr-xr-x’ | lpr

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 15 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Output all the ‘‘braves’’ i n The Tempest.

24$ awk ’120433 <= NR && NR <= 123831’ $S45/Shakespeare.complete |
grep -i brave Bravo!

With those that I saw suffer: a brave vessel,
PROSPERO Mybrave spirit!

It carries a brave form. But ’tis a spirit.
And his brave son being twain.
And his more braver daughter could control thee,

GONZALO You are gentlemen of brave metal; you would lift
That’s a brave god and bears celestial liquor.

STEPHANO Obrave monster! Lead the way.
TRINCULO Where should they be set else? he were a brave

He has brave utensils,--for so he calls them--
STEPHANO Is it so brave a lass?

And bring thee forth brave brood.
STEPHANO This will prove a brave kingdom to me, where I shall
PROSPERO Bravely the figure of this harpy hast thou

How beauteous mankind is! O brave new world,
Is tight and yare and bravely rigg’d as when

PROSPERO [Aside to ARIEL] Bravely, my diligence. Thou shalt be free.
CALIBAN O Setebos, these be brave spirits indeed!

Output all the ‘‘hands’’ i n Titus Andronicus: http://www.foxsearchlight.com/titus/

25$ awk ’123842 <= NR && NR <= 127608’ $S45/Shakespeare.complete |
grep -i hand

Output all the ‘‘deeps’’ i n Richard III:
http://www.mgm.com/title_title.php?title_star=RICHARD3

26$ awk ’13856 <= NR && NR <= 19631’ $S45/Shakespeare.complete |
grep -i deep

Output all the ‘‘dogs’’ i n Timon of Athens(will never be made into a movie):

27$ awk ’147983 <= NR && NR <= 151955’ $S45/Shakespeare.complete |
grep -i dog

Pipes: pp. 31−33

When you run two programs with a pipe

prog1 | prog2

they start at the same time, end at the same time, and run side-by-side at about the same speed.During the
course of their lives, one or both of the following events may happen any number of times (or maybe not at
all):

(1) prog1 may produce output faster thanprog2 can accept it, causing the pipe to swell. When the
pipe holds 16,384 bytes of data in transit, the operating system will putprog1 to sleep for a little while to
giveprog2 a chance to drain the pipe.

1 /* E xcerpts from the file /usr/include/sys/fs/fifonode.h */
2 #define FIFOHIWAT (16 * 1024)
3 #define FIFOLOWAT (0)

FIFO is ‘‘first in, first out’’. Othersystems use the macroDEFAULT_PIPE_SIZE in the file
/usr/include/sys/fifo.h .

(2) prog2 may process its input faster thanprog1 can provide it.In this case, the pipe will begin
to empty out. When the pipe holds 0 bytes of data in transit, the operating system will putprog2 to sleep

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 16 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

for a little while to giveprog1 a chance to put more data into the pipe.

It is possible for neither of these two events to happen.For example,prog1 may begin by out-
putting data into the pipe.Meanwhileprog2 may have a lot of internal work to do before it begins to
input data from the pipe.Whenprog2 does begin to input, there may already be an ample supply of data
in the pipe, so neither program is put to sleep.

To sum up: both programs begin to run simultaneously, and continue to run simultaneously except in
the cases where the pipe swells to its maximum size or empties completely.

The pig in the python

sort must receive every line of its input before it can begin to produce any line of output. This
restriction was imposed by the author ofsort , not by the Unix operating system.grep labors under no
such restriction.

Write no space around the dash in the arguments oftr . The character to the left of a dash in an
argument oftr must have a lower ASCII code than the character to the right of the dash. See theASCII
code numbers inascii (5).

1$ prog1 | prog2 | sort | prog3 | prog4
2$ prog1 | prog2 | wc -l | prog3 | prog4 p. 30 forwc -l ; minus lowercase L

3$ prog1 | prog2 | grep 212 | prog3 | prog4
4$ prog1 | prog2 | tr ’[A-Z]’ ’[a-z]’ | prog3 | prog4 p. 107 fortr
5$ prog1 | prog2 | tr ’[A-Z] [a-z]’ | prog3 | prog4 needs 2 args

Not every program accepts standard input and/or produces standard output

Data always flows through pipes from left to right.A pipe must be preceded by a program that pro-
duces standard output and must be followed by a program that accepts standard input:

1$ who | sort okay
2$ sort | who sort receives no input fromwho.

In a pipeline, the programs in the left circle can only be the leftmost program. In a pipeline, the pro-
grams in the right circle can only be the rightmost program.For example,lpr produces no standard out-
put; and althoughmore does produce standard output, this output is usefully directed only to the screen.

The programs in the overlap are calledfilters (p. 101). They can be used anywhere in a pipeline.

produce
standard output

accept
standard input

neither

sort
grep
awk
wc
tr

date
cal
who
ls
ps

more
lpr

chmod
cp
mv
rm
ln

Redirect the output to a file: pp. 29−31

To redirect the output of a program to a new file, you must have w permission for the directory in
which the file will be created.Whenever you mention the name of a file with no leading slash, the file is

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 17 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

assumed to be in the current directory as a consequence of Handout 1, p. 9.

1$ cd
2$ pwd

3$ date > junk You see nothing on the screen.
4$ ls -l junk

5$ cat junk Now you see the output ofdate .

6$ rm junk
7$ ls -l junk Make sure you removed thejunk file.

8$ date > /another/directory/junk
9$ ls -l /another/directory/junk

Overwrite vs. append: pp. 29−31

If the output file does not already exist, > and>> will both create it. If the file already exists,> will
overwrite it while >> will append extra data to the end of it without disturbing the existing contents.To
append the output of a program to an existing file, you must have w permission for the file.Make sure
there’s no space between the two>’s.

1$ cd
2$ pwd

3$ date > junk
4$ cal > junk Overwrite (i.e., destroy) the previous contents ofjunk .
5$ cat junk
6$ rm junk

7$ date > junk Let’s start again from the beginning.
8$ ls -l junk See how bigjunk is.
9$ cal >> junk Append to the end ofjunk . No space between the>’s.
10$ ls -l junk junk got bigger, didn’t it?
11$ cat junk
12$ rm junk

Protect a file from accidentally being overwritten

You can deny yourself permission to overwrite one of your own files. See alsonoclobber in
Handout 2, p. 13, lines 57−58;ksh (1) pp. 22, 49.

1$ cd
2$ pwd

3$ date > precious
4$ ls -l precious
-rw------- 1 abc1234 users 29 May 28 15:18 precious

5$ chmod 400 precious
6$ ls -l precious
-r-------- 1 abc1234 users 29 May 28 15:18 precious

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 18 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

7$ cal > precious attempt to overwrite a write-protected file
precious: Permission denied message anyone else would get, even though it’s your file

Hardwar e devices disguised as files: pp. 65−69

The earliest Unix systems had all their devices in the/dev directory, so a typical device name would
be/dev/ttypa . But our system has the devices scattered in many directories.

This semester, we’re not allowed to see the underlying hardware because we’re in a Solaris ‘‘zone’’.
But if we were the superuser, we would be able to see the following disks.

Disks are block devices.

1$ cd /dev/md/dsk filesystem (5) says this stands for ‘‘meta-disk’’.
2$ pwd
/dev/md/dsk

3$ ls -l d10 Get disk names fromdf (Handout 1, p. 3).
lrwxrwxrwx 1 root root 37 Aug 9 18:04 d10 -> ../../../devices/pseudo/md@0:0,10,blk

5$ cd ../../../devices/pseudo
6$ pwd
/devices/pseudo

7$ ls -l md@0:0,10,blk
brw-r----- 1 root sys 85, 10 Aug 10 09:49 md@0:0,10,blk

Terminals are character devices.

pts stands for ‘‘pseudo-terminal’’; seepts (7d).

1$ tty Which terminal are you currently logged in on?
/dev/pts/10

2$ cd /dev/pts
3$ pwd
/dev/pts

4$ ls -l 0 9
crw--w---- 1 root root 36, 0 Mar 29 06:54 0
crw--w---- 1 mm64 tty 36, 9 May 28 15:18 9

To see all the hardware devices (block and character) on a Unix machine,

5$ find / ’(’ -type b -o -type c ’)’ -ls 2> /dev/null | more

Direct a program’s output to a hardware device

It looks like we’re overwriting the file/dev/pts/9 , but actually we’re sending the data to the ter-
minal’s device driver.

1$ cd
2$ pwd

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 19 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

3$ who | more
mm64 pts/9 May 28 15:11 (3a_imac_03.ndlab.its.nyu.edu)

4$ date > /dev/pts/9
5$ echo hi there > /dev/pts/9

To prevent you from doing this, the victim can give the samewho command to see the name of the
terminal they’re using.

6$ who | more
mm64 pts/9 May 28 15:11 (3a_imac_03.ndlab.its.nyu.edu)

7$ cd /dev/pts
8$ pwd
/dev/pts

9$ ls -l 9
crw--w---- 1 mm64 tty 36, 9 May 28 15:18 9

10$ chmod 600 9 You can still get mail; reverts torw--w---- when you logout
11$ ls -l 9
crw------- 1 mm64 tty 36, 9 May 28 15:18 9

/dev/null: pp. 68−69

Seenull (7d).

1$ prog > /dev/null Discard the output, e.g. if you’re interested only inprog ’s exit status.

2$ cp /dev/null empty Could also create empty file withtouch .
3$ ls -l empty
-rw------- 1 abc1234 users 0 May 28 15:18 empty

4$ cd /dev Let’s examine/dev/null itself.
5$ pwd
/dev

6$ ls -l null
crw-rw-rw- 1 root sys 102, 2 May 28 15:18 null

How they programmed before they invented pipes: pp. 30−31

The pipe in line 1 is easier than the file redirections in lines 2−4.You don’t hav e to decide what
directory to put the temporary file in, making sure the directory exists and you have w permission for it.
You don’t hav eto decide what to name the file, avoiding names that already exist in that directory. You
don’t hav eto make sure that the three separate commands in lines 2−4 all mention the same filename and
directory name.You don’t hav eto worry about someone reading, removing, or tampering with your tempo-
rary file.

There’s nothing to clean up afterwards if you use a pipe. And you can’t run out of disk space: a pipe
can transfer an indefinitely large amount of information between two programs. Seethe maximum size for
a non-pipe file inintro (2) pp. 5, 16.

1$ prog1 | prog2

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 20 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

2$ prog1 > file
3$ prog2 < file
4$ rm file

Feed a program its standard input from the keyboard

Like any Unix program,bc can take its standard input from an input file, a pipe, or the keyboard.
We illustrate keyboard input below. PressRETURNat the end of each line.

1$ bc ‘‘ binary calculator’’
100 / 7 Space around/ is optional.
14
scale = 5 Ask for five digits to the right of the decimal point; can ask for up to 99.
100 / 7
14.28571
3.14159 * (2.25 + .25) ˆ 2
19.63493
control-d Tell bc that no more input will come from the keyboard.
2$ The shell prompt reappears.

control-d does not kill a program

1$ sort or try this experiment withwc -l
moe
larry
curly
control-d You type everything up to and including this line.
curly sort outputs everything from this line on.
larry
moe
2$ The prompt reappears.

A common cause of freezing up

If you forget to specify where the input comes from, the input is assumed to come from the keyboard
and the program will wait indefinitely for you to type something.When you realize what has happened,
presscontrol-c (Handout 1, p. 20, ¶ (3)) and try again with acontrol-p (Handout 2, p. 11).

1$ grep mania /usr/dict/words okay
2$ grep mania/usr/dict/words The computer seems to freeze up.

Syntax for I/O redirection

Unless you specify otherwise, the input of a program comes from the terminal keyboard. Insteadof
this default, you can specify that the input should come from a file or through a pipe from another program.

Unless you specify otherwise, the output of a program goes to the terminal screen.Instead of this
default, you can specify that the output should go to a file or to another program through a pipe.

The word immediately to the right of a< must be the name of an input file. The word immediately to
the right of a> must be the name of an output file. The word immediately to the right of a| must be the
name of a program that takes its input through the pipe.

1$ prog1
2$ prog1 < infile E.g.,mail abc1234@mycompany.com < infile
3$ prog1 > outfile For example,cal 5 2013 > outfile
4$ prog1 < infile > outfile

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 21 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

5$ prog1 | prog2 For example,cal 5 2013 | lpr -Pedlab
6$ prog1 < infile | prog2 ☞See below.
7$ prog1 | prog2 > outfile
8$ prog1 < infile | prog2 > outfile

9$ prog1 | prog2 | prog3
10$ prog1 < infile | prog2 | prog3
11$ prog1 | prog2 | prog3 > outfile
12$ prog1 < infile | prog2 | prog3 > outfile etc.

How not to redirect I/O

Mother-in-law, court-marshal, billet-doux.

1$ prog < file > file Can’t use same file for both input & output: p. 152.
2$ prog < file > temp Create a file with a different name.
3$ mv temp file Rename the newly created file.

4$ prog1 | prog2 < infile incorrect version of line 6 above

A Unix program is blind to I/O redirection

A Unix program doesn’t hav eto worry about where its input comes from and where its output goes
to. For example, thegrep command in

1$ ps -Af | grep ksh | lpr

doesn’t know the names of the programs that surround it.In fact, it doesn’t even know that it is attached to
two pipes. Theonly part of the command line that it can see is its own name and its own command line
argument(s):

grep ksh

Similarly, thegrep in

2$ grep ksh < infile > outfile

can see only the words

grep ksh

Who invented Unix

Unix was created in 1969−1974 by Ken Thompson and Dennis Ritchie.Brian Kernighan named it.
The languages C and C++ were created by Dennis Ritchie and Bjarne Stroustrup.

http://cm.bell-labs.com/who/ken/
http://cm.bell-labs.com/who/dmr/
http://cm.bell-labs.com/who/bwk/
http://www.research.att.com/ ∼ bs/

Specify an input file name as a command line argument

Only one input file can be specified to the right of the< symbol:

1$ prog < infile good
2$ prog < infile1 infile2 bad
3$ prog < infile1 infile2 infile3 bad

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 22 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

In addition to the< symbol, there is another way to specify an input file for most Unix programs:
simply write the names of one or more input files as command line arguments, without the<. Not every
program allows you to do this, because not every program was written by an author who made the extra
effort to provide this feature.In line 5, the shell checks that theinfile exists and is readable, complain-
ing if it isn’t. In line 4, these checks and complaints have to be performed by thecat .

The man command will tell you if a given program will accept input file names as command line
arguments.mail , tr and tee are the only commands in this course that take input but do not accept
input file names as command line arguments. To feed a file intomail , tr , and tee , you will have to use a
<.

4$ cat infile
5$ cat < infile
6$ cat infile1 infile2 infile3

7$ more infile
8$ more < infile
9$ more infile1 infile2 infile3

10$ lpr infile
11$ lpr < infile
12$ lpr infile1 infile2 infile3

13$ grep abc1234 /etc/passwd
14$ grep abc1234 < /etc/passwd
15$ grep abc1234 /etc/passwd /etc/group

cat: p. 15

The command

1$ cat file

will display afile on the screen.But cat has no specific connection with the screen—at least, it has no
more connection than any Unix program does.cat merely copies its input to its output completely
unchanged. Aswith any Unix program, the input comes from the terminal keyboard and the output goes to
the terminal screen unless you specify otherwise.

2$ cat Typecontrol-d when done.
3$ cat > outfile

4$ who | more Pick a victim.
mm64 pts/9 May 28 15:11 (3a_imac_03.ndlab.its.nyu.edu)

5$ cd /dev/pts
6$ pwd
/dev/pts

7$ ls -l 9
crw-rw-rw- 1 mm64 tty 36, 9 May 28 15:18 9

You can do the following two commands if the thirdwbit of /dev/pts/9 is on:

8$ cat > /dev/pts/9 intrusive
9$ cat /usr/dict/words > /dev/pts/9 malicious

You can do the following two commands if the thirdr bit of /dev/pts/9 is on:

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 23 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

10$ cat /dev/pts/9 Steal his or her typing.
11$ cat /dev/pts/9 > outfile Make a permanent record of it.

12$ cat file1 file2 file3 Concatenate 3 files onto the screen.
13$ cat file1 file2 file3 > bigfile Concatenate 3 files into one big file.
14$ cat file1 file2 file3 | myprog Feed 3 input files into one of our programs.

15$ lpr file1 file2 file3 Start each file on a new page.
16$ cat file1 file2 file3 | lpr Don’t start each file on a new page.

How not to use cat

Remove these threecat ’s: they do nothing. Alsoremove the pipe in front of eachcat .

1$ prog1 | cat | prog2
2$ prog | cat
3$ prog1 | prog2 | cat

★ Don’t usecat to input a single file into a program:

4$ cat file | prog Never do this.
5$ more file | prog Or this.
6$ tail +1 file | prog Even worse.
7$ prog < file You can always do this instead.
8$ prog file Better yet, you can usually do this.

✉ Mail a letter: pp. 8−9

If you had a file namedletter containing a letter, you could mail it toabc1234 like this. mail
is now an alias formailx ; see Handout 2, p. 14, line 68.

1$ mail abc1234@mycompany.com < letter mail
2$ mail abc1234 < letter Recipient’s host defaults to sender’s host.

Instead of mailing a file, you could feed input tomail directly from the keyboard:

3$ mail abc1234@mycompany.com
Subject: How to send mail
Type the letter, pressing RETURN each time you near the right edge
of the screen. Type a line consisting only of control-d to end the
letter. (The control-d must be at the start of the line.)
Press control-c twice to abort the letter.
control-d Tell it that you’re done typing input.
4$

5$ mail abc1234@ibm.com def5678@un.org Send same letter to two or more people.
i4> mail abc1234@i5.nyu.edu Someone on another machine could type this.

Read your mail: pp. 8−9

The onlymailx commands you need areh, p, s , d, and q. Type them in response to the? prompt.
★ If you choose to investigate the ‘‘reply’’ command, be sure to type ther in lowercase to avoid public
humiliation. Seep. 13 ofmailx (1).

Usealpine instead ofmail to read a letter with attachments. It has a help menu. See
http://www.washington.edu/alpine/ .

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 24 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

1$ cd Make it simpler to save a letter later.
2$ pwd

3$ mail
Mail $Revision: 4.2.4.2 $ Type ? for help.
"/usr/spool/mail/mm64": 3 messages 3 new
>N 1 abc1234 Mon May 28 13:41 8/172 "How to send mail"
>N 2 aen0000 Mon May 28 13:42 9/171 "MAD Magazine subscription"
>N 3 hsl5678 Mon May 28 13:44 7/162 "Dodsworth"
? p1 Print letter 1 on the screen. Seemailx (1) p. 8.
? p3
? p2
? s2 madmag Save letter 2 in a file. Type one space after thes2 .
? s3 / other/directory/lewis
? h ‘‘ headers’’: see the table of contents again.
? d1 Delete letter 1.
? d2
? d3 or d1-3
? q Quit.
4$ The shell prompt reappears.

x is just likeq, but it undeletes all the letters you deleted. See p. 10 ofmailx (1).

5$ ls -l madmag Verify that you created a new file namedmadmag.
6$ lpr madmag or use theescape-. in Handout 2, p. 11.
7$ rm madmag
8$ ls -l madmag Verify that you removed the filemadmag.

▼ Homework 2.4: mail a letter to yourself and read it (not to be handed in)

Mail two short letters with subjects, from your account on i5.nyu.edu to your account on i5.nyu.edu.
and read them when they arrive. How long did they take to arrive? Sav ethem into a file, and print and
remove the files.
▲

Summer 2013 Handout 2printed 5/28/13
3:18:06 PM − 25 − All rights

reserved ©2013 Mark Meretzky

