
NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Summer 2013 Handout 11

We hav ethree versions of awk

He turned out to be a young, blond SAS guerrilla-warfare expert with the peculiar
nickname of Awk, a name said to vaguely resemble the grunting noise he would
make on maneuvers.

—George Crile,Charlie Wilson’s War, Chapter 14

The-prune line means ‘‘skip any directory namedhome1 and its subdirectories’’. The ! - name
’*.awk’ means ‘‘don’t output the names of files that end with.awk ’’ . -perm -111 means ‘‘at least all
three of the execute bits--x--x--x must be turned on’’ (Handout 10, p. 1).

#!/bin/ksh
#Output the full pathname of each of our versions of awk.

find / \
-type d -name home1 -prune \
-o \
-type f \
-name ’*awk*’ \
! - name ’*.awk’ \
-perm -111 \
-ls 2> /dev/null |

sort -n #Put identical inode numbers next to each other.

exit 0

30515 58 -r-xr-xr-x 2 root bin 103092 Jul 5 2012 /usr/bin/awk
30515 58 -r-xr-xr-x 2 root bin 103092 Jul 5 2012 /usr/bin/oawk
30627 91 -r-xr-xr-x 1 root bin 136376 Jul 5 2012 /usr/bin/nawk
88803 62 -r-xr-xr-x 1 root bin 90456 Aug 27 2012 /usr/xpg4/bin/awk

1$ man awk Aho, Weinberger, Kernighan: manual for /usr/bin/awk
2$ man nawk new awk and /usr/xpg4/bin/awk

Regular expressions in the argument of awk

You must have / diagonal slashes/ around a regular expression in the argument ofawk (Handout 4,
p. 17), just as you must have { curly braces} around aprint and " double quotes" around a string.By
default, the regular expression is applied to the entire line of input.For example, to list only the files but
not the subdirectories:

1$ ls -l | tail +2 | grep ’ˆ-’ | awk ’{print $NF}’ | more
2$ ls -l | awk ’NR >= 2 && /ˆ-/ {print $NF}’ | more

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 1 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Apply a regular expression to one field

To see if any login name contains a character other than a lowercase letter or digit,

1$ grep ’ˆ[ˆ:]*[ˆa-z0-9]’ /etc/passwd | more
2$ awk -F: ’$1 ˜ /[ˆa-z0-9]/’ /etc/passwd | more

We’l l l ist all the courses given this semester (20132) on i5.nyu.edu. Thanksto the$1 ˜ , the $ in
example 4 means ‘‘end of the first field’’, not ‘‘end of the line’’.

The+0.0 -0.1 will sort the courses in alphabetical order of the first character on each line.If there
are two or more lines that begin with the first character, the+0.1n will sort them in increasing numerical
order of the remaining characters on each line. See p. 106.

3$ grep ’ˆ[ˆ:]*20132:’ /etc/group | sort +0.0 -0.1 +0.1n | more
4$ awk -F: ’$1 ˜ /20132$/’ /etc/group | sort +0.0 -0.1 +0.1n | more

The opposite of̃ is !˜ . To see if anyone has a home directory that is not a descendant of/home1 ,

5$ grep -v ’ˆ[ˆ:]*:[ˆ:]*:[ˆ:]*:[ˆ:]*:[ˆ:]*:/home1/’ /etc/passwd | more
6$ awk -F: ’$6 !˜ /ˆ\/home1\//’ /etc/passwd | more
root:x:0:0:root@i5:/root:/usr/bin/bash
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:

The C Standard Library is in the dynamically linked ‘‘shared object’’ fi le /lib/libc.so . We will
display the ‘‘name table’’ of this file withnm(Handout 3, p. 27) to verify that it contains the function
printf . $NF is the last field on each line;$NF - 1 is the last field minus 1 (if the last field is a num-
ber), and$(NF - 1) is the next-to-last field. The operand of this$ must not be negative; $(NF - 1)
exists only ifNF > 0 .

7$ nm -D /lib/libc.so |
awk -F’|’ ’NR == 5 || NR >= 7 && $NF == "printf" && $(NF - 1) !˜ /UNDEF/’
[Index] Value Size Type Bind Other Shndx Name
[453] | 635548| 396|FUNC |GLOB |3 |16 |printf

Arithmetic in the argument of awk

You can write expressions using fields or other variables. Let’s list the size of each file in megabytes
instead of bytes:

1$ cd /var/apache2/2.2/logs
2$ ls -l | more
total 46583
-rw-r--r-- 1 root root 85611770 May 28 16:56 access_log
-rw-r--r-- 1 root root 31888903 May 28 16:55 error_log
-rw-r--r-- 1 root root 602 Jul 16 2012 error_log.0.gz

3$ ls -l | awk ’NR > 1 {print $5 / (1024 * 1024) "M\t" $NF}’
81.6457M access_log
30.4116M error_log
0.000574112Merror_log.0.gz

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 2 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Mor e than one pattern-action pair

We hav eto use/usr/xpg4/bin/awk or /usr/bin/nawk , because/usr/bin/awk does not
have ˆ for exponentiation.

#!/bin/ksh

ls -l |
tail +2 |
/usr/xpg4/bin/awk ’

$5 < 1024 {print $5 "\t" $NF}
$5 >= 1024 && $5 < 1024ˆ2 {print $5 / 1024 "K\t" $NF} #kilo
$5 >= 1024ˆ2 && $5 < 1024ˆ3 {print $5 / 1024ˆ2 "M\t" $NF} #mega
$5 >= 1024ˆ3 && $5 < 1024ˆ4 {print $5 / 1024ˆ3 "G\t" $NF} #giga
$5 >= 1024ˆ4 && $5 < 1024ˆ5 {print $5 / 1024ˆ4 "T\t" $NF} #tera
$5 >= 1024ˆ5 {print $5 / 1024ˆ5 "M\t" $NF} #peta

’

exit 0

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/pairs1

1$ cd /var/apache2/2.2/logs
2$ pairs1
81.6457M access_log
30.4116M error_log
602 error_log.0.gz

The BEGIN and END patterns

Unlike the Korn shell,awk allows whitespace on either side of the=. As in C, you can change the
statementsum = sum + $5 to sum += $5 (p. 118). TheBEGINpattern/action pair is optional.

#!/bin/ksh
#Output the total size in bytes of all the files in the current
#directory.

ls -la |
awk ’

BEGIN {sum = 0}
NR >= 2 && /ˆ-/ {sum = sum + $5}
END {print "sum:", sum}

’

exit 0

You need a semicolon between two statements on the same line in an action. As in C, you can
change the statementcount = count + 1 to ++count (p. 121).

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 3 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Output the total and average size in bytes of all the files in
#the current directory. Bug: divides by 0 if no files.

ls -la |
awk ’

NR >= 2 && /ˆ-/ {sum = sum + $5; count = count + 1}
END {print "sum:", sum, "average:", sum / count}

’

exit 0

The { that begins an action must be on the same line as the pattern that governs that action, but the
rest of the action can be on the following lines.Now that the statements in the actions are each on a sepa-
rate line, we no longer need the semicolons.

#!/bin/ksh
#Output the total and average size in bytes of all the files in
#the current directory. Bug: divides by 0 if no files.

ls -la |
awk ’

NR >= 2 && /ˆ-/ {
sum = sum + $5
count = count + 1

}

END {print "sum:", sum, "average:", sum / count}
’

exit 0

An action that contains an if statement

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 4 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Output the total and average size in bytes of all the files in
#the current directory.

ls -la |
awk ’

NR >= 2 && /ˆ-/ {
sum = sum + $5
count = count + 1

}

END {
if (count > 0) { #parens instead of double square brackets

print "sum:", sum, "average:", sum / count
} e lse {

print "sum:", sum
}

}
’

exit 0

#!/bin/ksh

ls -l |
/usr/xpg4/bin/awk ’

NR > 1 && /ˆ-/ {
if ($5 < 1024) {

print $5 "\t" $NF
} e lse if ($5 < 1024ˆ2) {

print $5 / 1024 "K\t" $NF #kilo
} e lse if ($5 < 1024ˆ3) {

print $5 / 1024ˆ2 "M\t" $NF #mega
} e lse if ($5 < 1024ˆ4) {

print $5 / 1024ˆ3 "G\t" $NF #giga
} e lse if ($5 < 1024ˆ5) {

print $5 / 1024ˆ4 "T\t" $NF #tera
} e lse if ($5 < 1024ˆ6) {

print $5 / 1024ˆ5 "P\t" $NF #peta
} e lse {

print $5 "\t" $NF
}

}
’

exit 0

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/pairs2

Render an HTML table into a format that can be read easily by awk.

For an HTML table, see Handout 3, pp. 10−11.For lynx , see Handout 4, p. 30.

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 5 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Central Park blah blah 57

White Plains blah blah 56

The table looks like this after theegrep , except that the<TABLE> and </TABLE> tags were
removed by theegrep :

<TABLE>
<TR><TD>Central Park</TD> <TD>blah</TD> <TD>blah</TD> <TD>57</TD></TR>
<TR><TD>White Plains</TD> <TD>blah</TD> <TD>blah</TD> <TD>56</TD></TR>
</TABLE>

The table looks like this after the secondsed :

<TABLE>
<TR>@Central Park@ @blah@ @blah@ @57@</TR>
<TR>@White Plains@ @blah@ @blah@ @56@</TR>
</TABLE>

#!/bin/ksh
#Yonkers temperature is average of Central Park and White Plains.

lynx -source \
http://forecast.weather.gov/obslocal.php\
’?warnzone=NYZ071&local_place=Yonkers+NY&zoneid=EST&offset=18000’ |

tr ’[A-Z]’ ’[a-z]’ |

#Insert a newline immediately after each </TR>
#to ensure that each row of the HTML table is on a separate line.
sed ’s:</tr>:&\
:’ |

egrep ’central park|white plains’ |

#Change every <TD> or </TD> tag to a @.
sed ’s:</*td[ˆ>]*>:@:g’ |

awk -F@ ’
BEGIN {sum = 0}

{sum = sum + $8}
END {print sum / NR}

’

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/temperature

56.5

Look for a pattern that straddles a pair of consecutive lines

grep can search only for a pattern that is confined to one line.TheBEGIN {previous = ""}
and the$0 ̃ are the default and can be removed.

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 6 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Output every pair of consecutive lines where the first
#ends with "hel-" and the second starts with "lo".

awk ’
BEGIN {previous = ""}

previous ˜ /hel-$/ && $0 ˜ /ˆlo/ {
print NR - 1, previous
print NR, $0

}

{previous = $0}
’

exit 0

#!/bin/ksh
#Another way to format the same program.

awk ’
BEGIN {previous = " "}
previous ˜ /hel-$/ && $0 ˜ /ˆlo/ {print NR - 1, previous; print NR, $0}

{previous = $0}
’

exit 0

▼ Homework 11.1: nature vs. nurture

Is there a line in$S45/Shakespeare.complete mentioning the word ‘‘nature’’, followed
immediately by a line mentioning the word ‘‘nurture’’? Look for both upper and lowercase.
▲

Print the lines, if any, between two given lines

For the output ofcvs log , see Handout 8, pp. 3 and 4.We will print the first field of every line
between thelocks: line and theaccess list: line.

#!/bin/ksh
#Output the login name of anyone who has locked the jokes file.

cvs log jokesdir/jokes |
awk ’

BEGIN {between = 0} # zero
/ˆaccess list:/ {between = 0}
between != 0 {print $1}
/ˆlocks:/ {between = 1} # one

’

exit 0

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 7 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Arrays in awk: pp. 122−123

$1 % 12 is the remainder left over after dividing $1 by 12 . If $1 is non-negative, the remainder will
be in the range 0 to 11 inclusive.

#!/bin/ksh
#Each input line has a year.

awk ’
BEGIN {

a[0] = "monkey"
a[1] = "rooster"
a[2] = "dog"
a[3] = "pig"
a[4] = "rat"
a[5] = "ox"
a[6] = "tiger"
a[7] = "hare"
a[8] = "dragon"
a[9] = "snake"
a[10] = "horse"
a[11] = "sheep"

}

{print $1, a[$1 % 12]}
’

exit 0

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/year_to_animal

1$ date | awk ’{print $4}’
16:58:40

2$ date | awk ’{print $4}’ | $S45/year_to_animal
16:58:40 monkey

An array subscript does not have to be a number. It can be a string.

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 8 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Each input line has an anmal.

awk ’
BEGIN {

a["monkey"] = 2004
a["rooster"] = 2005
a["dog"] = 2006
a["pig"] = 2007
a["rat"] = 2008
a["ox"] = 2009
a["tiger"] = 2010
a["hare"] = 2011
a["dragon"] = 2012
a["snake"] = 2013
a["horse"] = 2014
a["sheep"] = 2015

}

{print $1, a[$1]}
’

exit 0

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/animal_to_year

3$ echo monkey | $S45/animal_to_year
monkey 2004

#!/bin/ksh
#exponent is 0 if the file is less than 1K.
#Otherwise, exponent is 1 if the file is less than 1M.
#Otherwise, exponent is 2 if the file is less than 1G. Et cetera.
#log($5) / log(1024) is the logarithm of $5 to the base 1024.

ls -l |
/usr/xpg4/bin/awk ’

BEGIN {
a[0] = ""
a[1] = "K" #kilo
a[2] = "M" #mega
a[3] = "G" #giga
a[4] = "T" #tera
a[5] = "P" #peta

}

NR > 1 && /ˆ-/ {
exponent = $5 == 0 ? 0 : int(log($5) / log(1024))
print $5 / 1024ˆexponent a[exponent] "\t" $NF

}
’

exit 0

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/pairs3

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 9 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

Store every line of input into an array.

In the ‘‘hel-’’ ‘ ‘lo’ ’ example,awk temporarily remembered the previous line of input as it advanced
to the next line. In the following example,awk will rememberevery previous line of input. The first line
of input will be stored ina[1] . The second line of input will be stored ina[2] . By the time we get to the
END, the last line of input will be stored ina[NR] .

See also thebackwards example on p. 122.

#!/bin/ksh
#Input a list of numbers, one per line, and output their median.
#Begin by sorting the numbers. If there is an odd number of numbers,
#the median is the middle number.
#If there is an even number of numbers, the median is the
#average of the two middle numbers.

sort -n |
awk ’

{a[NR] = $0} #Copy each line into an array element.

END {
if (NR == 0) {

print 0 #no numbers
} e lse if (NR % 2 == 1) {

print a[(NR + 1) /2] #odd
} e lse {

print (a[NR/2] + a[1 + NR/2]) / 2 #even
}

}
’

exit 0

An array subscript can be a long string. It can even be an entire line of input such as$0 .

#!/bin/ksh
#Do the same thing as uniq with no arguments,
#except that the duplicate lines do not need to be consecutive.

awk ’
{a[$0] = a[$0] + 1}

a[$0] == 1 {print $0}
’

exit 0

#!/bin/ksh
#Do the same thing as uniq with no arguments,
#except that the duplicate lines do not need to be consecutive.

awk ’++a[$0] == 1’
exit 0

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 10 − All rights

reserved ©2013 Mark Meretzky

NYU SCPS INFO1-CE9545 Section 1 Unix Operating System

#!/bin/ksh
#Trace the ancestry of the given PID: Handout 6, pp. 2-3.

if [[$# -ne 1]]
then

echo $0: arg must be PID 1>&2
exit 1

fi

ps -Af |
awk ’

NR == 1 {print}

NR > 1 {
line[$2] = $0 #$2 is PID
parent[$2] = $3 #$3 is PPID

}

END {
for (pid = ’$1’;; pid = parent[pid]) {

if (line[pid] == "") {
print "’$0’: PID " pid " not found"
exit 2

}
print line[pid]
if (pid == parent[pid]) { #reached the top

exit 0
}

}
}

’

http://i5.nyu.edu/ ∼ mm64/INFO1-CE9545/src/ancestry

1$ ancestry ‘ps -f | awk ’NR > 1 && $NF == "-ksh" {print $2}’‘
UID PID PPID C STIME TTY TIME CMD

mm64 15978 15977 0 15:11:15 pts/9 0:00 -ksh
mm64 15977 15976 0 15:11:11 ? 0:00 /usr/lib/ssh/sshd
root 15976 2761 0 15:11:11 ? 0:00 /usr/lib/ssh/sshd
root 2761 1655 0 Mar 29 ? 1:14 /usr/lib/ssh/sshd
root 1655 1655 0 Mar 29 ? 0:00 zsched

Summer 2013 Handout 11printed 5/28/13
4:58:28 PM − 11 − All rights

reserved ©2013 Mark Meretzky

